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Abstract: Defining and identifying causal intervention effects for transmissible infectious disease outcomes
is challenging because a treatment – such as a vaccine – given to one individual may affect the infection
outcomes of others. Epidemiologists have proposed causal estimands to quantify effects of interventions under
contagion using a two-person partnership model. These simple conceptual models have helped researchers
develop causal estimands relevant to clinical evaluation of vaccine effects. However, many of these partnership
models are formulated under structural assumptions that preclude realistic infectious disease transmission
dynamics, limiting their conceptual usefulness in defining and identifying causal treatment effects in empirical
intervention trials. In this paper, we propose causal intervention effects in two-person partnerships under
arbitrary infectious disease transmission dynamics, and give nonparametric identification results showing
how effects can be estimated in empirical trials using time-to-infection or binary outcome data. The key insight
is that contagion is a causal phenomenon that induces conditional independencies on infection outcomes that
can be exploited for the identification of clinically meaningful causal estimands. These new estimands are
compared to existing quantities, and results are illustrated using a realistic simulation of an HIV vaccine trial.
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1 Introduction
Estimating the causal effect of an intervention can be challenging when the outcome of interest is contagious
[41]. For example, a vaccine intended to prevent infection by a transmissible disease may reduce the risk of
infection in individuals who receive it, and may reduce transmissibility if a vaccinated individual becomes
infected. When study subjects are embedded in interacting groups among whom the disease may be trans-
mitted, it can be difficult to separate the effect of one subject’s vaccination on themselves from its effect on
other individuals and the group as a whole. Usually, the estimand of greatest clinical interest is the effect of an
intervention on individual risks of infection, holding all else constant.

The pursuit of empirically meaningful definitions of population-level causal vaccine effects has a long
history. [19] first described informally the conditions under which vaccine effects can be estimated. [24]
established some of the first theory and definitions for clinically meaningful vaccine effects, and subsequent
work by Halloran and colleagues [22, 26, 27] described epidemiological study designs for identifying these
quantities. [23] gave the first formal definitions of causal vaccine estimands using notation and assumptions
of a modern counterfactual-based causal inference framework [54]. [31] and [60] showed how this formalism
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could be applied in empirical randomized trials of clustered individuals [21, 29]. More recently, researchers
have shown that randomized trials may not measure clinically meaningful intervention effects when infection
can be transmitted within groups [15, 40, 59].

Researchers have described two-person partnershipmodels of infectious disease transmission for defining
more granular, or individual, causal intervention effects. [64] introduced a partnership model consisting
of two interacting individuals who may be vaccinated and can transmit the infection to each other. By lim-
iting the extent of potential disease transmission to two individuals, effects can be more easily defined in
terms of potential outcomes indexed by treatments of both individuals and the outcome of their partner.
The partnership model can accommodate many types of epidemiological relationship where infectious dis-
ease transmission may occur between indidivudals. The partnership model can accommodate, for example,
parent-child relationships, sibling relationships, needle-sharing partnerships among injection drug users, or
sexual partnerships. While nearly all real-world partnerships occur in the context of a broader network of
epidemiological relationships with others, partnership models may be useful when pairs are drawn nearly
independently from disparate networks, so that pairs experience independent exposure to infection from
outside the partnership. For example, a study of disease transmission among cohabitating couples chosen
from different cities could plausbly claim that the pairs experienced independent exposure to infection from
outside the relationship.

Using a principal stratification approach, the partnership model permits computations of bounds for
the infectiousness effect [10, 20, 64]. [66] presented a special case of the partnership model in which one
individual is home-bound, and can only be infected via transmission from the other. The assumed asymmetry
in the disease transmission structure – the home-bound partner cannot be infected from a source external to
the partnership and cannot infect the other partner – makes this model tractable for point identification of
contagion and infectiousness effects by ensuring that interference only happens in one direction. Interference
arises when an individual’s potential outcomes depend on the treatment status of others [13]. To allow for
mutual dependence of individuals’ potential outcomes on others’ treatments, [43] extend this approach
to allow both individuals to be treated, with transmission occurring only from one specified individual to
the other. However, [42] show using causal diagrams that transmission complicates application of existing
mediation techniques, requiring additional structural assumptions about the nature of dependence among
outcomes under different forms of interference [6, 44, 55, 57]. [57] proposed extensions of mediation analysis
to symmetric mediation settings, using statistical chain graph models that do not require a priori fixing the
individual whose outcome plays the role of the mediator within the partnership.

When the outcomes are time-dependent processes – as is often in infectious disease transmission dynamics
– binary outcome indicators and specified time windowsmay be used to define outcomes so that themediation-
based approaches may be applied. But these definitions can complicate identification of causal effects because
(i) a repeatedlymeasured outcome over timemay introducemultiplemediators, and (ii) absence of the outcome
at prior time points as a prerequisite for later measurements induces time-varying confounding. Existing
methods for longitudinalmediation analysis have therefore either focused on defining “interventional” indirect
effects in terms of combined path-specific effects that can be non-parametrically identified [36, 56, 65, 67, 69],
or adopted approaches that avoid defining nested counterfactuals for time-to-event outcomes [1, 14]. These
approaches to longitudinal mediation share the common prerequisite that the roles of the outcomes within
each partnership are asymmetric.

Statisticians and epidemiologists have developed parallel literature devoted to mathematical modeling
of infectious disease transmission dynamics. This work treats infectious disease transmission as a dynamic
temporal phenomenon: the risk of infection in a given subject may change over time, as a function of the
infection status of their contacts, and covariates. For example, [51] present hazard models of infectious disease
transmission in groups that accommodate individual-level (e.g. treatment) variables with possibly differ-
ent effects on susceptibility and infectiousness. [33, 34] extends these ideas to develop nonparametric and
semi-parametric statistical models for estimating covariate effects under contagion. Structural transmis-
sion modeling has gained wide use in clinical studies of infectious disease dynamics because it combines
mechanistic assumptions about infectious disease transmission with regression-style covariate adjustment
[3–5, 7–9, 46, 61, 62, 68].
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In this paper, we take a different approach to define and identify intervention effects in symmetric two-
person partnerships under contagion. We seek to combine approaches from causal mediation analysis and
mathematical modeling of transmission to develop a nonparametric framework that formalizes the role of
time in infectious disease transmission from a causal perspective. In our construction, either individual can
be vaccinated, can be infected from outside, and can infect the other if infected themselves. An individual’s
treatment (or vaccine status) and covariates may affect both susceptibility to, and infectiousness of, their
infection outcome. We first introduce a generic causal model and straightforward assumptions that permit
non-parametric identification of “exposure-controlled” and natural “exposure-marginalized” contagion,
susceptibility, and infectiousness effects. Briefly, the contagion effect captures how transmissible the infection
is from an infected individual to an uninfected individual. The susceptibility effect summarizes the effect of
treatment on the infection outcome of individual who receives it. The infectiousness effect indicates the effect
of an individual’s treatment on others’ outcomes, when that individual is infected. We propose a framework
that is non-parametric and imposes no restrictions on the joint distribution of infection times in a partnership.
Before any infections have occurred in a partnership, the potential first infection times are conditionally
independent, because neither partner can yet transmit the infection to the other. After the first infection,
the time to infection of the remaining susceptible partner is now a function their partner’s, as well as their
own, treatment and covariates. Because the resulting causal model incorporates this temporally changing
structure, it is more complex than settings considered in other proposals. In particular, the causal effects
defined in this paper differ from the “direct” and “indirect” effects defined using the interference framework
developed by [31] inwayswedescribe formally. On the other hand, this added complexity yields straightforward
point identification results that cannot be obtained by treating the infection outcomes of both individuals
as simultaneous mediating variables [10, 20, 64]. Lastly, we discuss nonparametric identification under
randomization and in observational settings, compare these estimands to existing quantities proposed by
other authors, and conduct a simulation analysis of a hypothetical HIV vaccine trial to illustrate the estimands.

2 Setting
Consider a population consisting of pairs of individuals, henceforth referred to as partnerships. Within a
partnership, either individual can be infected from an external source (exogenous to the partnership), and
once infected, an individual may internally (endogenous to the partnership) transmit the infection to their
uninfected partner. Label the individuals in the partnership 1 and 2. In a given partnership, let Ti be the
infection time of person i, and let Yi(t) = 1{Ti < t} be the indicator of prior infection at time t. Let Xi be the
binary treatment status of i, and let X = (X1, X2) be the joint binary treatment vector for the partnership.
Let L = (L1, L2) be measured baseline covariates for the two individuals, including shared covariates for the
partnership as a whole. In each partnership, we observe (T1, T2, X1, X2, L1, L2). In a symmetric partnership,
the labels for individuals 1 and 2 may carry meaning (e.g. in mother-child pairs), or may be arbitrary and
interchangeable. We will use the index i to refer generically to one individual, either 1 or 2, and j to refer to the
partner of i.

To describe the causal structure of infectious disease transmission within a partnership, we consider a
decomposition of the infection time Ti that will help us define counterfactual infection times under different
circumstances. Recall that both individuals are uninfected at baseline, and letWi be the time to initial infection
of i from a source of infection external to the partnership. If i is the first in their partnership to become infected,
then we observeWi. If their partner j is infected first, we observeWj = wj andWi is censored at time wj. When
Wi is censored by earlier infection of j, let Zi be the additional time to infection of i, beyond the infection time
wj of their partner. Formally, we decompose Ti as follows.

Ti =
{︃
Wi ifWi < Wj

Wj + Zi otherwise.
(1)
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We emphasize that the decomposition (1) is purely notational, and places no a priori restrictions on the joint
distribution of infection times (Ti , Tj). Instead, (1) shows how observation of (Ti , Tj) reveals information about
these infection waiting times: if Ti < Tj, then we can determineWi = Ti,Wj > Ti, and Zj = Tj − Ti. Figure 1
illustrates this decomposition and motivates the contagion effect presented in Definition 1 below: the disease
is said to be “contagious” if the distribution of Ti is different from that ofWi, or equivalently, if prior infection
of j (Wj < Wi) changes the conditional distribution of the remaining time to infection of i (Zi). The definition
(1) permits specification of causal assumptions, outlined below, to capture the way treatments to both i and j
may affect different parts of the waiting times to infection.

In line with existing partnership models, it is assumed throughout that the partnerships are indepen-
dent, thereby ruling out transmission between partnerships [31, 53]. Though partnerships are assumed to be
independent, the waiting timesWi andWj, or Zi and Zj, need not be identically distributed. The potential
for transmission between partners is assumed to be symmetric – that is, either can infect the other – but the
framework accommodates asymmetries in transmission if the distributions ofWi andWj, or Zi and Zj, differ.

Time

Z1

W2

T1 W1

Time

Z2

W1

T2 W2

Figure 1: Illustration of contagion in a two-person partnership. At left, when subject 2 becomes infected first (W2 < W1), then
W1 is censored, and Z1 is the remaining time to infection of subject 1. At right, when subject 1 is infected first (W1 < W2), then
W2 is censored, and Z2 is the remaining time to infection of subject 2. Informally, the outcome is said to be “contagious” when
the distribution of Ti is different from that ofWi.

2.1 Assumptions

In this section, we describe assumptions that are sufficient to identify the causal effects defined in Section 3
from observable infection time data for each partnership. We state assumptions for a generic individual i and
their partner j. To define potential, or counterfactual, infection times for individual i, letWi(x) be the potential
value ofWi under the joint treatment allocation x = (x1, x2). Let Zi(wj , x) be the additional potential time to
infection of i, following the infection of j at timeWj(x) = wj, under joint treatment allocation x.

Assumption 1 (Exclusion restriction and independence of the initial infection). Wi(x) = Wi(xi), Wi(xi) |=

Wj(xj) | L, and Wi(xi) |= Lj | Li, for all x.

Assumption 1 states that individual i’s initial infection timeWi(x) is invariant to the partner’s treatment status
xj. Hence it may be viewed as a “no-interference” assumption onWi, becauseWi is the initial infection time
from an external source, which can only be realized whenWi precedesWj. Further,Wi(xi) is independent of
Wj(xj) given (observed) covariates L. Assumption 1 respects a unique property of infectious disease: neither
transmission nor treatment interference can occur without prior infection.

Assumption 2 (Initial infection exchangeability). Zi(wj , x) |= Wj(xj) | L, for all x, wj > 0.

Assumption 2 states that there is sufficient covariate information in L so that the potential further time to
infection Zi(wj , x) when j is infected at wj is conditionally independent of the potential initial infection time
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Wj(xj) of j. While this assumption bears similarity to the assumption of no unobserved confounding between
the counterfactual mediator and nested potential outcome (for the same individual) under the single mediator
setting [49, 52], we note that this assumption relates to counterfactual outcomes for different individuals.

Assumption 3 (Treatment exchangeability). Wi(xi) |= X | L and Zi(wj , x) |= X | L, for all x, wj > 0.

Assumption 3means that the potential waiting timesWi(xi) and Zi(wj , x) are independent of the assigned treat-
ment X within levels of the (observed) covariates L. This assumption prima facie resembles the conventional
unconfoundedness assumptions for the (individual) exposure-mediator and exposure-outcome relations in
mediation analysis. But in this context, Assumption 3 states that there is no unmeasured confounding between
an individual’s infection times and the joint treatments for both individuals in the same partnership.

Two additional assumptions, commonly made in the literature when identifying causal estimands, ensure
identifiability of potential infection outcomes from observational data.

Assumption 4 (Consistency). Wi = Wi(xi), and Zi = Zi(wj , x)under the observed treatmentX = xand infection
time Wj = wj, for all x, wj > 0.

Assumption 5 (Positivity). 0 < Pr(Wj < w|Xi = xi , Li = li) < 1 for all w > 0, xi, and li; 0 < Pr(Zj < z|X = x, L =
l) < 1 for all z > 0, x and l; and 0 < Pr(X = x|L = l) < 1 for all l.

A final assumption permits identification of certain “cross-world” potential infection outcomes.

Assumption 6 (Cross-world initial infection exchangeability). Zi(wj , x) |= Wj(x′j) | L when x = (xi , xj) and
x′j ≠ xj, for all wj, x, and x′j .

Assumption 6 states that within levels of the observed covariates L, the potential waiting time of i to infection,
after j is infected at wj under treatment xj, is independent of the potential infection timeWj under a different
treatment x′j. Informally, when Assumption 6 holds, after j becomes infected at (some fixed time) wj, the
waiting time until i becomes infected under treatments x = (xi , xj) is independent of the time it would have
taken j to be infected under a different treatment x′j ≠ xj. We call this assumption a “cross-world” assumption
because it makes explicit a probabilistic relationship between variables that cannot co-exist in the same
realization of the process, namely Zi(wj , x) orWi(x′j).

Finally, let Ti(Wj(xj), x) be the potential outcome for the infection time of subject i, when j is infected at
timeWj(xj) and the assigned treatments are x = (xi , xj). Following the decomposition (1) and by Assumptions
1–3, we can construct the potential infection time Ti(Wj(xj), x) as follows:

Ti(Wj(xj), x) =
{︃
Wi(xi) ifWi(xi) < Wj(xj)
Wj(xj) + Zi(Wj(xj), x) otherwise.

(2)

The potential infection time withWj = wj fixed is denoted as Ti(wj , x).
For convenience, define the binary potential infection outcome evaluated at time t, Yi(t;wj , x) =

1{Ti(wj , x) < t}.We refer to thepotential infection time Ti(wj , x) and infectionoutcome Yi(t;wj , x) as exposure-
controlled potential outcomes because they hold the partner’s infection timeWj = wj constant, thereby con-
trolling the exposure to infection experienced by i. Similarly, we define Yi(t;Wj(x′j), x) = 1{Ti(Wj(x′j), x) < t},
and refer to Ti(Wj(x′j), x) and Yi(t;Wj(x′j), x) as natural potential outcomes because they do not control the
exact infection time wj of the partner, and instead rely on the natural distribution ofWj under the treatment
xj.

The potential infection time decomposition (2) formalizes intuition about the structure of interference
under contagion: there can be no interference without prior infection. When neither i nor j is infected, the
time to infection of i is solely a function of the treatment xi, and there is no interference within the partnership.
This is because the treatment xj of j can only affect i after j becomes infected. When j is the first to be infected,
the remaining time to infection of i is now a function of both xi and xj, because j has now gained the ability to
transmit to i. This apparent complexity simplifies identification of causal effects, as we show below.
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3 Causal estimands
Contrasts of potential infection outcomes under different treatments x and infection times wj can yield
epidemiologically meaningful causal estimands. In this paper, we express causal contrasts as differences of
average potential infection outcomes. Effect measures on the hazard ratio, risk ratio, or odds ratio scales may
be defined similarly [e.g. 24, 45].

First, the contagion effect captures the change in infection risk in one individual due to a change in the
infection time of their partner.

Definition 1 (Contagion effect). For wj ≠ w′
j and treatment x = (xi , xj), the controlled contagion effect is

CE(t, wj , w′
j , x) = E[Yi(t;wj , x) − Yi(t;w′

j , x)] and the natural contagion effect is CE(t, x) = E[Yi(t;Wj(0), x) −
Yi(t;Wj(1), x)].

We say that the infection outcome (absent treatment) is “positively contagious” if for all infection times wj < w′
j

with wj < t, the controlled contagion effect under no treatment is CE(t, wj , w′
j , 0) > 0. In this way, we interpret

contagion, or outcome transmissibility, as a causal phenomenon that need not depend on treatments: under
positive contagion, earlier infection of one’s partner causes one to become infected earlier, on average. On
the other hand, the natural contagion effect CE(t, x) incorporates features of the treatment effect: it replaces
fixed values of wj and w′

j with their counterfactual distributions Wj(0) and Wj(1) when j is treated versus
untreated, similar to the effect proposed by [66] for an asymmetric partnership. The natural contagion effect is
a “cross-world” estimand because it integrates the average potential infection outcome E[Yi(t;wj , x = (xi , xj))]
with respect to the distribution ofWj(x′j) under a treatment Xj = x′j that cannot arise in the same realization as
Xj = xj. Figure 1 can be reinterpreted in light of Definition 1: positive contagion means that earlier infection of
j causes i to become infected earlier, compared to the infection time of i that would have occurred, hadWj
happened later.

The susceptibility effect is of interest in vaccine trials because it summarizes the clinical effect of an
intervention on the individual who receives it, holding the treatment status and infection time of their partner
constant [18, 23, 26]. The susceptibility effect is sometimes called the “per-exposure effect” because it holds
the distribution of exposure to infectiousness constant [45].

Definition 2 (Susceptibility effect). For wj > 0 and Xj = xj, the controlled susceptibility effect is SE(t, wj , xj) =
E[Yi(t;wj , xi = 1, xj) − Yi(t;wj , xi = 0, xj)] and the natural susceptibility effect is SE(t, xj) = E[Yi(t;Wj(xj), xi =
1, xj) − Yi(t;Wj(xj), xi = 0, xj)].

If the controlled susceptibility effect is negative for every wj and xj, this means that the treatment is beneficial
to the individual who receives it. Note that the natural susceptibility effect is not a cross-world estimand: it
averages potential infection outcomes with respect to the distribution of Wj(xj), where xj is the treatment
under which the infection outcome of i is realized.

The infectiousness effect summarizes the effect of changing the treatment to j on the infection risk of i,
while holding the treatment to i and the infection time of j unchanged.

Definition 3 (Infectiousness effect). For wj > 0 and Xi = xi, the controlled infectiousness effect is IE(t, wj , xi) =
E[Yi(t;wj , xi , xj = 1)−Yi(t;wj , xi , xj = 0)]and the natural infectiousness effect is IE(t, xi) = E[Yi(t;Wj(0), xi , xj =
1) − Yi(t;Wj(0), xi , xj = 0)].

The natural infectiousness effect is a cross-world estimand because the first term in the contrast specifies that
the infection time of j is realized under xj = 0, but the infectiousness of j subsequently is realized under xj = 1.
Several authors have described the natural infectiousness effect as unidentified even under randomization
when only binary infection outcomes are recorded at follow-up [10, 10–12, 20, 64, 66].
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4 Identification of potential infection outcomes
We wish to non-parametrically identify the average potential infection outcome E[Yi(t;wj , x)] using obser-
vations of pairwise infection times, treatments, and covariates (Ti , Tj , Xi , Xj , Li , Lj). A preliminary result
identifies the distribution ofWi(xi) in Lemma 1 using information about infection times. The proof is given in
the Appendix.

Lemma 1. Suppose Assumptions 1, 3-5 hold. Then the distribution function of Wi(xi) given Li = li is identified by

Fi(w|xi , li) = 1 − exp

⎡⎣− w∫︁
0

p(Ti = u, Tj > u|X = (xi , xj), L = (li , lj))
Pr(Ti > u, Tj > u|X = (xi , xj), L = (li , lj))

du

⎤⎦
for any fixed values of xj, and lj, where p(Ti = u, Tj > u|X = (xi , xj), L = (li , lj)) is the joint probability density of
Ti and survivor function of Tj.

Lemma 1 is a standard distributional identification result in competing risks [2]. Here,Wi andWj are competing
event times within the same partnership. The distribution of Wi or Wj is identified utilizing both waiting
times in the partnerships, even when the waiting times are censored due to lost to follow-up or administrative
censoring for some partnerships. The identified distribution function Fi(w|xi , li) is a function of xi and li
only, and is invariant to values of xj and lj. However, in order to identify this function in the presence of the
competing eventWj, particular values of xj and lj must be held constant.

The main result shows that average exposure-controlled potential infection outcomes given L = l are
identified. Proofs are given in the Appendix.

Theorem 1 (Identification of the average exposure-controlled potential infection outcome). Suppose As-
sumptions 1-5 hold and x = (x1, x2). For fixed values of wj and t, if wj < t,

E[Yi(t;wj , x)|L = l] = Fi(wj|xi , li) + (1 − Fi(wj|xi , li))E[Yi(t)|Ti ≥ wj , Tj = wj ,X = x, L = l] (3)

otherwise, if t ≤ wj, E[Yi(t;wj , x)|L = l] = Fi(t|xi , li).

X2 W2 Z2 T2

X1 W1 Z1 T1

L2

L1

Figure 2: Causal graphical model for infection outcomes in a two-person partnership, under Assumptions 1–5. Covariates L1
and L2 may be dependent within partnerships, and covariates of both subjects may affect the joint treatments (X1 , X2). The
initial infection timesW1 andW2 are functions of individual covariates and treatments alone by Assumption 1, and thus no
arrows exist from Xj toWi or from Lj toWi. Subsequent waiting times Z1 and Z2 are functions of treatments and covariates of
both subjects, and the infection time of the first infected subject. From the decomposition of the infection time (1), the latent
additional infection time Zi and the (possibly latent) timeWi are relevant to exclusive cases of realization of Ti, so they are no
arrows between them. The overall infection time Ti is determined byWi,Wj and Zi, as specified in (1).
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In Theorem 1, Fi(wj|xi , li) is identified by Lemma 1 using all infection times (including censored infection
times), andE[Yi(t)|Ti ≥ wj , Tj = wj ,X = x, L = l] is estimated by the average outcome Yi(t) among observations
when Tj = wj, Ti > Tj under X = x and L = l.

The structure of (3) shows that the average exposure-controlled potential infection outcome is identified by
two types of observable events: when i is infected before their partner, and when i is infected after their partner.
In contrast to most work studying causal effect of vaccine using binary infection outcomes by the end of
observation, the causal identification in (3) is built on observation of infection time, which provides sufficient
control for exposure to infection. Figure 2 shows a causal diagram [48] that captures the causal structure
among the variables in the system outlined by Assumptions 1-5. This causal diagram does not necessarily
represent a causal non-parametric structural equation model (NPSEM). The approach proposed in this paper
is not contingent on having a well-defined joint (probabilistic) density of the counterfactuals under every
possible intervention, whereas, [57] build on NPSEMs that are represented using such causal diagrams.

If we do not fix the infection timeWj = wj, and instead allow it to take its “natural” value under a particular
treatment to j, we obtain the marginal average potential infection outcome when L = l as follows.

Corollary 1 (Identification of average natural/exposure-marginalized potential infection outcome). Sup-
pose Assumptions 1-5 hold. Then for x = (xi , xj), E[Yi(t;Wj(xj), x)|L = l] = E[Yi(t)|X = x, L = l]. If in
addition x′j ≠ xj and Assumption 6 holds,

E[Yi(t;Wj(x′j), x)|L = l] =
t∫︁

0

E[Yi(t;wj , x)|L = l]dFj(wj|x′j , lj).

where Fj(wj|x′j , lj) is given by Lemma 1 and E[Yi(t;wj , x)|L = l] by Theorem 1.

Definition 3 and Corollary 1 together show why the natural infectiousness effect is not identified even under
randomization when only binary infection outcomes are recorded at follow-up [10–12, 20, 64, 66]. The correct
marginalization over infection timesWj(x′j) cannot be computed unless the distribution ofWj(x′j) is identified
as in Lemma 1. The controlled and natural infectiousness effects are similar to those proposed by [12], but here
the marginalization is over the infection time of j, not their binary infection outcome.

Finally, by standardization of the potential infection outcome across the distribution of covariates L, we
can identify the average potential infection outcome. Let G(l) be the distribution function of the joint covariate
vector L = l in the population of partnerships. Then

E[Yi(t;wj , x)] =
∫︁

E[Yi(t;wj , x)|L = l]dG(l) (4)

and
E[Yi(t;Wj(x′j), x)] =

∫︁
E[Yi(t;Wj(x′j), x)|L = l]dG(l) (5)

where E[Yi(t;wj , x)|L = l] and E[Yi(t;Wj(x′j), x)|L = l] are given by Theorem 1 and Corollary 1 respectively.
Because this paper is focusedonnonparametric identification,we leavediscussion of non-parametric statistical
estimation of both controlled and natural causal estimands to the Appendix.

5 Comparison to other infectious disease intervention effects
Statisticians and epidemiologists have proposed a wide variety of estimands summarizing the effect of inter-
ventions for contagious outcomes, often in the two-person partnership setting. In this section, we evaluate the
meaning of alternative definitions of vaccine effect estimands in the context of the causal effects defined above.
We take the controlled contagion, susceptibility, and infectiousness effects defined above as fundamental
characteristics of the disease transmission process and intervention under study. Whenever possible, we
characterize the sign, or direction, of alternative effects, as a function of these primitives. In some cases, where
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the relationship is complex, we evaluate the alternative estimands under a null hypothesis, for example when
the controlled susceptibility or infectiousness effect is zero, so that explicit results can be analytically proven.
For simplicity, we omit the role of covariates L in the comparison of estimands.

The “attack rate” of an infectiousdisease is defined for individualswith treatment x asARx(t) = E[Yi(t)|Xi =
x]. The ratio of attack rates, sometimes called “relative cumulative incidence”, is a traditional measurement for
the vaccine effect on susceptibility [12, 16, 17, 19, 24–27, 29, 30, 38, 47], defined as VEAR(t) = 1−AR1(t)/ AR0(t).
A related estimand, called the “direct effect”, is a contrast on the difference scale, DE(t) = AR1(t) − AR0(t)
when treatment is randomized within groups [31]. In the symmetric partnership setting, attack rates ARx(t)
that condition only on the treatment to i implicitly marginalize over treatment to j.

Theorem 2. Suppose SE(t, wj , xj) = 0 and IE(t, wj , xj) < 0 for all xj and wj > 0. If X = (Xi , Xj) is positively
dependent, then DE(t) < 0 and VEAR(t) > 0; if X is negatively dependent then DE(t) > 0 and VEAR(t) < 0; and if
Xi |= Xj then DE(t) = VEAR(t) = 0. If there is no treatment effect whatsoever, SE(t, wj , x) = IE(t, wj , x) = 0 for all
x and wj > 0, then DE(t) = VEAR(t) = 0 for any joint distribution of X.

In other words, VEAR(t) and DE(t) may or may not recover the sign, or direction, of the susceptibility effect,
depending on the susceptibility and infectiousness effects, and the joint distribution of X within clusters. [40]
and [15] proved similar results in a parametric setting under Bernoulli, block, and cluster randomization for
the joint treatment X in clusters or partnerships. [38], [24], [25], [26] and [51] warned that VEAR(t) may be a
biased approximation to the susceptibility effect due to differential exposure to infection between treated
and untreated individuals in clusters. We show simulation examples that result in biased DE(t) under block
randomization in Table 1 and Figure 4(d) below.

Related definitions of the attack rate condition on the treatments to both individuals in the partnership.
The attack rate among individuals with treatment x whose partner has treatment x′ is ARx,x′ (t) = E[Yi(t)|Xi =
x, Xj = x′]. The indirect effect is defined as IDE(t) = AR01(t)−AR00(t) [12, 31], and is equivalent to the difference
of the natural infectiousness and contagion effects defined above:

IDE(t) = E[Yi(t;Wj(1), (0, 1)) − Yi(t;Wj(0), 0)]
= E[Yi(t;Wj(1), (0, 1)) − Yi(t;Wj(0), (0, 1))] + E[Yi(t;Wj(0), (0, 1)) − Yi(t;Wj(0), 0)]
= −CE(t, (0, 1)) + IE(t, 0).

The secondary attack rate is the proportion in a cluster infected after being exposed to an earlier infected
individual, formally defined as SARx′ ,x(t) = E[Yi(t)|Tj < t, Ti > Tj , Xi = x, Xj = x′]. The SAR is the average
infection status of iwhen j is infected during the study before i, under treatments x and x′ to i and j respectively.
Based on the potential pitfalls of SAR, researchers proposed VEnetI (t) = 1 − SAR10(t)/ SAR00(t) as “secondary
attack rate for infectiousness” [20, 24, 26–29, 47]. We analyze VEnetI (t) under the null hypothesis of no infec-
tiousness effect, and show that when the infection is contagious and there is a susceptibility effect, VEnetI (t)
may nevertheless be nonzero. Let h0(u|0) be the hazard of the potential infection timeWi(0), and let h0(u|1)
be the hazard ofWi(1).

Theorem 3. Suppose IE(t, wj , 0) = 0, CE(t, wj , w′
j , 0) > 0 for all 0 < wj < w′

j, and h0(u|1) = εh0(u|0) with
ε ∈ [0, 1), then VEnetI (t) > 0. If SE(t, wj , xj) = 0 for all wj and xj, then VEnetI (t) preserves the same sign as
IE(t, wj , 0). Suppose CE(t, wj , w′

j , 0) = 0 for all 0 < wj < w′
j and h0(u|1) = εh0(u|0) with ε ∈ [0, 1), then

VEnetI (t) > 0.

In other words, when the true infectiousness effect is null, the infection outcome is positively contagious, and
the vaccine has a favorable susceptibility effect prior to the first infection, VEnetI (t) can nevertheless be nonzero.
In a more extreme case, when the true contagion effect is null, the disease is not transmissible so that the
true infectiousness is null; if the vaccine has a favorable susceptibility effect prior to the first infection, then
VEnetI (t) is still nonzero. Simulation examples show biased VEnetI (t) under a null contagion effect in Tables 1
and 2 below.
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A simple explanation shows why VEnetI can behave in unexpected ways: it is not solely a function of
the infectiousness effect. Instead, VEnetI (t) also incorporates reduced exposure to infection from delaying
the infection of partner j due to vaccination, which in fact is the susceptibility effect on the partner j before
the first infection occurs. Therefore, when the true susceptibility effect is null, VEnetI (t) is only a function of
the infectiousness effect and thus recovers the correct sign of infectiousness effect. From a sightly different
perspective, several authors have also pointed out that VEnetI (t) may suffer from selection bias because it
conditions on post-randomization variables – the infection status of both partners [20, 24–26, 51]. Specifically,
VEnetI (t) relies on the eventual infection outcome of partner j, rather than the infection time of partner j. [20]
use tools from principal stratification to derive bounds for the infectiousness effect to correct this selection
bias, and propose a bound estimator CVEcI (t) for VEnetI (t) under Bernoulli randomization. We analyze these
bounds by simulation below.

Several authors have recognized that simple comparison of outcomes in treated versus untreated indi-
viduals may not suffice to identify meaningful causal effects for infectious disease interventions, even under
randomization. For example, [63], [66], [42], and [43] apply tools from mediation analysis to a simplified
partnershipmodel to identify contagion and infectiousness effects similar to those we have defined above. This
“asymmetric partnership” model focuses on pairs of individuals i and j when i is restricted to be home-bound,
unvaccinated, and may only be infected by their (possibly vaccinated) partner j. Partner j is randomized to
receive treatment or placebo, and may be infected by a source of infection outside the partnership. In other
words, the relative role of the two subjects cannot be swapped. For example, in a HIV trial of zidovudine, the
study units are mother-child pairs, and only mothers are vaccinated and may transmit HIV to the children,
not vice versa [39]. This is different from the symmetric partnership setting we considered, when both i and j
can be treated and infected by the outside or each other.

To represent this structural assumption in the framework outlined here, we force the infection time of
the home-bound partner, in the absence of infection in their partner, to be infinite. To this end, let hazard
ofWi(0) be hi0(t|0) = 0, so that infection of i from an external source can never occur. These authors define
the infectiousness effect as VEI(t) = E[Yi(t; Yj(1), (0, 1))] −E[Yi(t; Yj(1), (0, 0))], which contrasts the infection
outcomes of i when j is treated versus untreated, with j’s infection status Yj(xj) set to the value it would take if
j were treated.

Theorem 4. Suppose hi0(t|0) = 0 for all t > 0. Then VEI(t) = IE(t, 0).

In other words, under the asymmetric setting where i is unvaccinated and cannot be infected from outside the
partnership, VEI(t) is equivalent to the natural infectiousness effect in Definition 3.

A contagion effect is defined by [66] as VEC(t) = E[Yi(t; Yj(1), (0, 0)) − Yi(t; Yj(0), (0, 0))], contrasting the
infection outcome of i when the infection status of j is set to the value it would obtain if j were treated versus
untreated. Note that this quantity reverses the difference in the natural contagion effect in Definition 1, as
VEC(t) = −CE(t, x). We provide sufficient conditions for the controlled contagion effect CE(t, u, u′, 0) and
VEC(t) (or equivalently, −CE(t, x)) to behave similarly, that is, to have opposite sign.

Theorem 5. Suppose hi0(t|0) = 0 for all t > 0 and SE(t, wj , 0) > 0. Then VEC(t) has opposite sign as
CE(t, wj , w′

j , 0) for 0 < wj < w′
j . Suppose hi0(t|0) = 0, SE(t, wj , 0) = 0 and CE(t, wj , w′

j , 0) > 0, then VEC(t) = 0.

In other words, in the asymmetric partnership setting, −VEC(t) recovers the sign of the true contagion effect,
when the vaccinehas a favorable susceptibility effectprior to the first infection. However, if the true susceptibility
effect is null, VEC(t) = 0 regardless of the true contagion effect.

6 Application: a hypothetical vaccine trial
We simulate observational and randomized trials of a hypothetical HIV vaccine in a large population of sexual
partnerships [25]. We assume individuals are not infected at baseline, but that either individual may become
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infected from outside the partnership, and transmission within partnerships may occur. To parameterize
the infection transmission process, we specify hazard models for the infection times Wi(xi) and Zi(wj , x).
This approach has been employed in extensive prior work on statistical models for time-to-infection data
[25, 32–35, 51]. For a time t > 0, Let the hazard ofWi(xi) given covariates Li = li be given by

λWi (t; xi , li) = α(t)eβ0xi+θ
′
0li . (6)

In words, the hazard of infection in an individual whose partner is not infected, is given by a Cox model with
baseline hazard α(t). Following infection of j at timeWj = wj, the remaining potential infection time Zi(wj , x)
given L = l = (li , lj) has hazard

λZi (t;wj , x, l) = λWi (t; xi) + 𝛾(t − wj)eβ1xi+σxj+θ
′
1lj+θ

′
2li (7)

for t > wj. The coefficients β0 and β1 represent the change in infection risk due to vaccination of i, and σ
represents the change in transmission risk due to vaccination in j when j is infected. Covariate effects are
represented by θ0, θ1, and θ2, and α(t) and 𝛾(t − wj) are baseline transmission hazards for the external and
internal forces of infection respectively. This specification implies that the external force of infection and
transmissibility are competing risks for infection of i [37, 38, 50]. That is, a susceptible individual can be
infected by a source of infectiousness outside their partnership, or from an infected partner. We consider three
specifications of the baseline transmission hazards for the external and internal forces of infection: (i) both
are time-invariant as in (8)

α(t) = α (8)
𝛾(t) = 𝛾,
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Figure 3: Illustration of average controlled potential infection outcomes under different values of the infection time wj and
joint treatment x, under time-invariant baseline hazards α(t) = 0.2 and 𝛾(t − wj) = 10 and coeflcients eβ0 = eβ1 = 0.3 and
eσ = 0.5. Contrasts of potential outcomes in (a), (b) and (c) show the controlled contagion effect, the infectiousness effect, and
the susceptibility effect evaluated at different times, shown together in (d).
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(ii) the external baseline hazard varies seasonally and the internal baseline hazard decays over time as in (9)

α(t) = a(1 + sin(2πt + ϕ)) (9)
𝛾(t − wj) = b exp[−ω(t − wj)],

to (iii) when the external baseline hazard varies over seasons and the internal baseline hazard increases first
then decreases over time as in (10).

α(t) = a(1 + sin(2πt + ϕ)) (10)

𝛾(t − wj) = b
1

Γ(k)θk
(t − tj)k−1e−

t−tj
θ

Table 1: Simulation results showing true values of the natural contagion, susceptibility, infectiousness effects, and alternative
estimands defined by [20, 31], and [66]. Estimands are evaluated under six different scenarios – (i) constant hazards with
α = 0.2 and 𝛾 = 10 in (8), (ii) constant hazards without contagion with α = 0.2, 𝛾 = 0 in (8), (iii) time-varying hazards
with a = 0.4, b = 25 and w = 0.5 in (9), (iv) time-varying external hazard without contagion with a = 0.4, b = 0 and
w = 0.5 in (9), (v) time-varying hazards with a = 0.2, b = 40, k = 1.5 and θ = 3 in (10), and (vi) time-varying hazard
without contagion with a = 0.2, b = 0, k = 1.5 and θ = 3 in (10), respectively. The effect of vaccination is the same across all
scenarios with eβ0 = eβ1 = 0.4 and eσ = 0.01. The individual covariates (li , lj) are correlated with ρ = 0.1 and coeflcients of
eθ0 = eθ1 = eθ2 = 0.95.

Treatment CE(t, 0) SE(t, 0) IE(t, 0) DE(t) IDE(t) VEnetI (t) CVEcI (t)
Constant hazards

Observational 0.12 −0.14 −0.19 −0.16 −0.20 −0.70 -
Bernoulli 0.12 −0.14 −0.19 −0.16 −0.20 −0.70 ( −0.73, −0.66)
Block - - - 0.06 - - -
Cluster - - - −0.39 - - -

Constant hazards without contagion
Observational 0.00 −0.18 0.00 −0.18 0.00 −0.01 -
Bernoulli 0.00 −0.18 0.00 −0.18 0.00 −0.01 (−0.25, 0.19)
Block - - - −0.18 - - -
Cluster - - - −0.18 - - -

Time-varying external and decreasing internal hazards
Observational 0.12 −0.14 −0.20 −0.21 −0.22 −0.51 -
Bernoulli 0.12 −0.14 −0.20 −0.21 −0.22 −0.51 (−0.53, −0.50)
Block - - - 0.08 - - -
Cluster - - - -0.50 - - -

Time-varying external and decreasing internal hazards without contagion
Observational 0.00 −0.28 0.00 −0.28 0.00 −0.02 -
Bernoulli 0.00 −0.28 0.00 −0.28 0.00 −0.02 (−0.43, 0.36)
Block - - - −0.28 - - -
Cluster - - - −0.28 - - -

Time-varying external and increasing-then-decreasing internal hazards
Observational 0.10 −0.16 −0.17 −0.17 −0.18 −0.64 -
Bernoulli 0.10 −0.16 −0.17 −0.17 −0.18 −0.64 (−0.62, −0.39)
Block - - - 0.02 - - -
Cluster - - - −0.37 - - -

Time-varying external and increasing-then-decreasing internal hazards without contagion
Observational 0.00 −0.18 0.00 −0.18 0.00 −0.01 -
Bernoulli 0.00 −0.18 0.00 −0.18 0.00 −0.01 (−0.43, 0.36)
Block - - - −0.18 - - -
Cluster - - - −0.18 - - -
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Table 2: Simulation results showing true values of the natural contagion, susceptibility, infectiousness effects, and alternative
estimands defined by [20, 31], and [66]. Estimands are evaluated under six different scenarios - (i) constant hazards with
α = 0.2 and 𝛾 = 10 in (8), (ii) constant hazards without contagion with α = 0.2, 𝛾 = 0 in (8), (iii) time-varying hazards
with a = 0.4, b = 25 and w = 0.5 in (9), (iv) time-varying external hazard without contagion with a = 0.4, b = 0 and
w = 0.5 in (9), (v) time-varying hazards with a = 0.2, b = 40, k = 1.5 and θ = 3 in (10), and (vi) time-varying hazard
without contagion with a = 0.2, b = 0, k = 1.5 and θ = 3 in (10), respectively. The effect of vaccination is the same across all
scenarios with eβ0 = eβ1 = 0.3 and eσ = 0.5. The individual covariates (li , lj) are correlated with ρ = 0.1 and coeflcients of
eθ0 = eθ1 = eθ2 = 0.95.

Treatment CE(t, 0) SE(t, 0) IE(t, 0) DE(t) IDE(t) VEnetI (t) CVEcI (t)
Constant hazards

Observational 0.14 −0.18 −0.01 −0.20 −0.14 −0.04 -
Bernoulli 0.14 −0.18 −0.01 −0.20 −0.14 −0.04 (−0.08, 0.02)
Block - - - −0.04 - - -
Cluster - - - −0.36 - - -

Constant hazards without contagion
Observational 0.00 −0.22 0.00 −0.22 0.00 −0.01 -
Bernoulli 0.00 −0.22 0.00 −0.22 0.00 −0.01 (−0.39, 0.19)
Block - - - −0.22 - - -
Cluster - - - −0.22 - - -

Time-varying external and decreasing internal hazards
Observational 0.15 −0.18 −0.01 −0.23 −0.15 −0.03 -
Bernoulli 0.15 −0.18 −0.01 −0.23 −0.15 −0.03 (−0.04, 0.00)
Block - - - −0.03 - - -
Cluster - - - −0.44 - - -

Time-varying external and increasing-then-decreasing internal hazards without contagion
Observational 0.00 −0.34 0.00 −0.34 0.00 −0.02 -
Bernoulli 0.00 −0.34 0.00 −0.34 0.00 −0.02 (−0.64, 0.36)
Block - - - −0.34 - - -
Cluster - - - −0.34 - - -

Time-varying external and increasing-then-decreasing internal hazards
Observational 0.12 −0.21 −0.02 −0.22 −0.13 −0.08 -
Bernoulli 0.12 −0.21 −0.02 −0.22 −0.13 −0.08 (−0.21, 0.07)
Block - - - −0.08 - - -
Cluster - - - −0.36 - - -

Time-varying external and increasing-then-decreasing internal hazards without contagion
Observational 0.00 −0.22 0.00 −0.22 0.00 −0.01 -
Bernoulli 0.00 −0.22 0.00 −0.22 0.00 −0.01 (−0.64, 0.36)
Block - - - −0.22 - - -
Cluster - - - −0.22 - - -

When the baseline hazards α(t) and 𝛾(t − wj) are time-invariant as specified in (8), the model reduces to a
Markov susceptible-infective process with an external force of infection [e.g 15, 40]. For any functional forms
of the baseline hazards α(t) and 𝛾(t − wj), the hazard specifications (6) and (7) imply distributions forWi(xi)
and Zi(wj , x), and hence Ti(wj , x), that obey the required identification Assumptions 1–6.

Subjects in partnerships are endowed with individual characteristics L = (Li , Lj) that may be correlated.
In the randomized trial simulation, the vaccine is randomized in accordance with a specified distribution –
Bernoulli, block, or cluster randomization – without regard to these traits. Under each randomization design,
the marginal treatment probability Pr(Xi = xi) is 1/2. For Bernoulli randomization, Pr(X = x) = 1/4, for
block randomization, Pr(X = x) = 1{

∑︀
i xi = 1}/2, and for cluster randomization, Pr(X = (1, 1)) = 1/2 and

Pr(X = (0, 0)) = 1/2. In the observational study simulation, we consider a univariate individual covariate for
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illustration, and the traits L = (Li , Lj) together determine the joint distribution of vaccine in the partnership as

Pr(Xi = 1|Li = li) =
1

1 + e−li

where (︃
Li
Lj

)︃
∼ Normal

(︃(︃
0
0

)︃
, v
(︃
1 ρ
ρ 1

)︃)︃
with v > 0. Non-parametric estimation of both controlled and natural causal estimands is described in detail
in the Appendix.

Figure 3 illustrates controlled infection outcomes E[Yi(t;wj , x)] over time for different choices of wj and
x under the time-invariant hazard scenario, estimated non-parametrically with sufficiently large numbers
of pairs (N = 100, 000) so as to represent their true values in the simulation. Estimated controlled infection
outcomes area aligned with their true values in Figure 3. Contrasts of these potential infection outcomes give
the controlled contagion, susceptibility and infectiousness effects, shown in the lower-right corner of Figure 3.

Tables 1 and 2 show the true values of the natural contagion, susceptibility and infectiousness effects, and
compare these values to the true values of alternative estimands proposed by other authors, including the direct
effect DE(t), the indirect effect IDE(t), the secondary attack rate infectiousness effect VEnetI (t), and CVEcI (t)
bounds introduced by [20]. All natural or marginal estimands are evaluated at time t = 2 years under each
design and under both time-invariant and time-varying baseline hazards. Estimands that are not identified
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Figure 4: Comparison of different natural infectiousness and susceptibility effects. Figure a) compares different natural infec-
tiousness effects – natural infectiousness effect IE(t, xi = 0), crude infectiousness effect VEnetI (t), the infectiousness defined
in mediation analysis VEI(t) and bounds identified by principal stratification – when both true susceptibility effect and true
infectiousness effect are beneficial (eβ = 0.3, eσ = 0.5). Similarly, Figure b) shows the same comparison of multiple natural
infectiousness effects as in Figure a) when the true infectiousness effect is much stronger than the true susceptibility effect
(eβ = 0.4, eσ = 0.01). Figure c) shows the comparison of different types of natural susceptibility effect – the natural susceptibil-
ity effect SE(t, 0), the crude susceptibility effect DE(t) under Bernoulli, Complete, and Cluster randomization – when both true
susceptibility effect and true infectiousness effect are beneficial (eβ = 0.3, eσ = 0.5) as in Figure a). Likewise, Figure d) shows
the same comparison of multiple natural susceptibility effects when the true infectiousness effect is much stronger than the
true susceptibility effect (eβ = 0.4, eσ = 0.01). All four graphs are under constant baseline hazards α(t) = 0.2 and 𝛾(t) = 10.
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under a given design are not evaluated. In Table 1, when the true infectiousness effect much stronger than the
true susceptibility effect, the direct effect DE(t) is positive (0.06 and 0.08) under block randomization when
the disease is contagious, even though the true susceptibility effect is negative, or beneficial [see, e.g. 15, 40].
Table 2 shows another simulation setting where DE(t) achieves the same sign as the susceptibility effect when
the true infectiousness effect is on the same scale of the true susceptibility effect. In the three scenarios without
contagion, the disease is not contagious and infection outcomes are realized independently. Therefore, all
“indirect” and “infectiousness” effects should be null. However, VEnetI (t) is negative (−0.01 and −0.02 in both
Table 1 and 2), conflicting with the fact that the disease is not transmissible (as proved in Theorem 3). The
identification interval CVEcI (t) has nonzero width, but covers zero.

Figure 4 compares different types of natural susceptibility and infectiousness effects over time, when
both effects are beneficial (negative). In the bottom-right panel of Figure 4, we show that DE(t) under block
randomization can suffer from directional bias.

7 Discussion
We have described a nonparametric framework for identifying causal intervention effects under contagion
in general two-person partnerships. The estimands and identification results generalize those given in prior
work [20, 43, 64, 66], and establish that point identification of clinically meaningful causal estimands under
contagion is possible even when relationships are symmetric and either individual can be treated. We take a
nonparametric approach that does not ascribe infections to particular sources. Instead, the approach focuses
on the effect of changing treatments or exposure to infections on the expectations of potential outcomes
without information about “who-infected-whom”. We have made no assumptions about the functional form of
infection risks (beyond the independencies and exclusion restrictions implied by Assumptions 1–6), how the
risk of infection to a susceptible individual changes when their partner becomes infected, or how the vaccine
changes susceptibility or infectiousness over time. The framework respects the logic of infectious disease
transmission: if the outcome is not transmissible, the contagion and infectiousness effects are zero.

By studying the role of a partner’s infection time in the identification of controlled causal effects, we
can identify causal estimands that are both more fundamental and more directly linked to the biological
effect of a vaccine on infection risk than simple contrasts of infection rates. Our results also show that while
some crude contrasts can recover causal effects in restricted settings (e.g. the infectious effect VEI(t) in the
asymmetric partnership setting) or under a particular randomization design (e.g. the direct effect DE(t) under
independent Bernoulli randomization), they may not deliver useful summaries of vaccine effects in more
general situations. Finally, the framework developed in this paper may be useful in settings beyond infectious
disease epidemiology, where symmetric mediated effects are of interest [e.g. 55, 58].

One important limitation of our identification approach is that the controlled estimands and cross-world
natural estimands require observation of infection times, and not just binary infection indicators at a follow-up
time t. In real-world vaccine trials, it may be unreasonable to require investigators to measure infection times
Ti with precision, as is required by Lemma 1 and Theorem 1. Instead, cross-sectional infection assessment,
follow-up surveys, or tests for biomarkers of prior infection are commonly used as the primary outcome.
Corollary 1 shows exactly how controlled effects that rely on infection times relate to natural effects that do
not. Attempts to disentangle individual effects from the mediating effects of treatment to partners using only
binary infection outcomes may fail to recover useful controlled or marginal effects [see, e.g. VEnetI , analyzed
by 20]. One exception is the natural susceptibility effect, which can be estimated by binary outcomes under
Bernoulli randomizations, as shown by Corollary 1.

Finally, while the symmetric partnership setting is useful for conceptualizing, defining, and identifying
causal estimands, real-world vaccine trials usually happen in clusters of varying sizes. Adapting the setting
outlined here to larger clusters results in rapid expansion of the number of potential outcomes, correspond-
ing to every possible ordering of infections, necessitating simplifying structural assumptions to reduce the
dimensionality of the problem. One promising avenue for dramatically reducing the number of potential
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outcomes without imposing a parametric structure was proposed by [33, 34]. The idea is that contagion works
by competing risks, where hazards of infection from different sources are additive. This approach imposes no
additional structure on the distribution of the initial time to infection, but assumes that new infected cluster
members always add a competing risk of infection to the already existing risks of infection for susceptibles.
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A Proofs
Proof of Lemma 1. Let fi(w|xi , li) be the density ofWi(xi) when Li = li and let Fi(w|xi , li) be the corresponding
cumulative distribution function. By Assumption 5, 0 < Fi(w|xi , li) < 1 for all w > 0, xi, and li, so we can write

fi(w|xi , li)
1 − Fi(w|xi , li)

= − d
dw log(1 − Fi(w|xi , li)).

Then rearranging, we have

Fi(w|xi , li) = 1 − exp

⎡⎣− w∫︁
0

fi(u|xi , li)
1 − Fi(u|xi , li))

du

⎤⎦
= 1 − exp

⎡⎣− w∫︁
0

fi(u|xi , li)(1 − Fj(u|xj , lj))
(1 − Fi(u|xi , li))(1 − Fj(u|xj , lj))

du

⎤⎦
by Assumption 1

= 1 − exp

⎡⎣− w∫︁
0

p(Wi(xi) = u,Wj(xj) > u|X = (xi , xj), L = (li , lj))
Pr(Wi(xi) > u,Wj(xj) > u|X = (xi , xj), L = (li , lj))

du

⎤⎦
by Assumption 3

= 1 − exp

⎡⎣− w∫︁
0

p(Wi = u,Wj > u|X = (xi , xj), L = (li , lj))
Pr(Wi > u,Wj > u|X = (xi , xj), L = (li , lj))

du

⎤⎦
by Assumption 4

= 1 − exp

⎡⎣− w∫︁
0

p(Ti = u, Tj > u|X = (xi , xj), L = (li , lj))
Pr(Ti > u, Tj > u|X = (xi , xj), L = (li , lj))

du

⎤⎦ ,
where xj is any fixed value of Xj and lj is any fixed value of Lj.

Lemma 2. Under Assumptions 1–3, Yi(t;wj , x) |= Wj(xj) | L and Yi(t;wj , x) |= X|L.

Proof of Lemma 2. Fix a value wj > 0 and let x = (xi , xj). If Wi(xi) < wj, then Ti(wj , x) = Wi(xi) and by
Assumption 1,Wi(xi) |= Wj(xj) | L, so Ti(wj , x) |= Wj(xj) | L. IfWi(xi) > wj then Ti(wj , x) = wj + Zi(wj , x) and
by Assumption 2 Zi(wj , x) |= Wj | L, so Ti(wj , x) |= Wj(xj) | L. Therefore, since Yi(t;wj , x) = 1{Ti(wj , x) < t},
it follows that Yi(t;wj , x) |= Wj(xj) | L.

By the same reasoning, if Wi(xi) < wj, then Ti(wj , x) = Wi(xi) and by Assumption 3, Wi(xi) |= X | L.
If Wi(xi) > wj then Ti(wj , x) = wj + Zi(wj , x) and by Assumption 3, Zi(wj , x) |= X | L. Therefore, since
Yi(t;wj , x) = 1{Ti(wj , x) < t}, it follows that Yi(t;wj , x) |= X | L.

Lemma 3. Under Assumptions 1-4, E[Yi(t, wj , x)] = E[Yi(t)|Wj = wj ,X = x].

Proof of Lemma 3. Fix a value wj > 0 and x = (xi , xj). IfWi(xi) ≥ wj then

E[Yi(t, wj , x)] = Pr(Ti(wj , x) < t) by the definition of Yi(t, wj , x)
= Pr(wj + Zi(wj , x) < t) by the definition of Ti(wj , x) andWi(xi) ≥ wj
= Pr(Zi(wj , x) < t − wj)
= Pr(Zi(wj , x) < t − wj|Wj = wj) by Assumption 2
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= Pr(Zi(wj , x) < t − wj|Wj = wj ,X = x) by Assumption 3
= Pr(Zi < t − wj|Wj = wj ,X = x) by Assumption 4
= Pr(Zi < t −Wj|Wj = wj ,X = x)
= Pr(Zi +Wj < t|Wj = wj ,X = x)
= Pr(Ti < t|Wj = wj ,X = x) by the definition of Ti
= E[Yi(t)|Wj = wj ,X = x] by the definition of Yi(t)

IfWi(xi) < wj then

E[Yi(t, wj , x)] = Pr(Ti(wj , x) < t) by the definition of Yi(t, wj , x)
= Pr(Wi(xi) < t) by the definition of Ti(wj , x) andWi(xi) < wj
= Pr(Wi(xi) < t|Xi = xi , Xj = xj) by Assumption 3
= Pr(Wi(xi) < t|Wj = wj , Xi = xi , Xj = xj) by Assumption 1
= Pr(Wi < t|Wj = wj ,X = x) by Assumption 4
= Pr(Ti < t|Wj = wj ,X = x) by the definition of Ti
= E[Yi(t)|Wj = wj ,X = x] by the definition of Yi(t)

Proof of Theorem 1. The average potential infection outcome when L = l is given by

E[Yi(t;wj , x)|L = l] = E[Yi(t;wj , x)|Wj = wj ,X = x, L = l]

by Lemma 2

= E[Yi(t;wj , x)|Wi ≤ wj ,Wj = wj ,X = x, L = l] Pr(Wi ≤ wj|Wj = wj ,X = x, L = l])
+ E[Yi(t;wj , x)|Wi > wj ,Wj = wj ,X = x, L = l] Pr(Wi > wj|Wj = wj ,X = x, L = l])

= Pr(Ti(wj , x) < t|Wi ≤ wj ,Wj = wj ,X = x, L = l) Pr(Wi ≤ wj|Wj = wj ,X = x, L = l])
+ E[Yi(t;wj , x)|Wi > wj ,Wj = wj ,X = x, L = l] Pr(Wi > wj|Wj = wj ,X = x, L = l])

by the definition of Yi(t;wj , x)

= Pr(Wi(xi) < t|Wi ≤ wj ,Wj = wj ,X = x, L = l) Pr(Wi ≤ wj|Wj = wj ,X = x, L = l])
+ E[Yi(t;wj , x)|Wi > wj ,Wj = wj ,X = x, L = l] Pr(Wi > wj|Wj = wj ,X = x, L = l])

by the definition of Ti(wj , x)

= Pr(Wi(xi) < t|Wi ≤ wj , Xi = xi , L = l) Pr(Wi ≤ wj|Xi = xi , L = l])
+ E[Yi(t;wj , x)|Wi > wj ,Wj = wj ,X = x, L = l] Pr(Wi > wj|Xi = xi , L = l])

by Assumption 1

= Pr(Wi < t|Wi ≤ wj , Xi = xi , L = l) Pr(Wi ≤ wj|Xi = xi , L = l])
+ E[Yi(t)|Wi > wj ,Wj = wj ,X = x, L = l] Pr(Wi > wj|Xi = xi , L = l])

by Assumption 4 and Lemma 3

= Pr(Wi < t,Wj ≤ wj|Xi = xi , L = l)
+ E[Yi(t)|Wi > wj ,Wj = wj ,X = x, L = l] Pr(Wi > wj|Xi = xi , L = l])
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When t ≥ wj, then

E[Yi(t;wj , x)|L = l] = Pr(Wi < t,Wj ≤ wj|Xi = xi , L = l)
+ E[Yi(t)|Wi > wj ,Wj = wj ,X = x, L = l] Pr(Wi > wj|Xi = xi , L = l])

= Pr(Wi ≤ wj|Xi = xi , L = l])
+ E[Yi(t)|Wi > wj ,Wj = wj ,X = x, L = l] Pr(Wi > wj|Xi = xi , L = l])

= Fi(wj|xi , li) + (1 − Fi(wj|xi , li))E[Yi(t)|Wi > wj ,Wj = wj ,X = x, L = l].
Likewise, when t < wj, then

E[Yi(t;wj , x)|L = l] = Pr(Wi < t,Wj ≤ wj|Xi = xi , L = l)
+ E[Yi(t)|Wi > wj ,Wj = wj ,X = x, L = l] Pr(Wi > wj|Xi = xi , L = l])

= Pr(Wi < t|Xi = xi , Li = li])
+ E[Yi(t)|Wi > wj ,Wj = wj ,X = x, L = l] Pr(Wi > wj|Xi = xi , Li = li])

= Pr(Wi ≤ t|Xi = xi , Li = li])

since E[Yi(t)|Wi > wj ,Wj = wj ,X = x, L = l] = 0 when t < wj

= Fi(wj|xi , li).

Proof of Corollary 1.

E[Yi(t;Wj(xj), x)|L = l] = E
[︀
E[Yi(t;Wj(xj), x)|L = l]

]︀
=

∞∫︁
0

E[Yi(t; u, x)|Wj = u,X = x, L = l]dFj(u|xj , li) by Assumption 1

=
∞∫︁
0

E[Yi(t)|Wj = u,X = x, L = l]dFj(u|xj , li) by Lemma 3 and Assumption 4

= E[Yi(t)|X = x, L = l].

Likewise, when x = (xi , xj) and x′j ≠ xj,

E[Yi(t;Wj(x′j), x|L = l] = E
[︀
E[Yi(t;Wj(xj), x|L = l]

]︀
=

∞∫︁
0

E[Yi(t; u, x)|Wj = u,X = x, L = l]dFj(u|x′j , li) by Assumption 1

=
∞∫︁
0

E[Yi(t)|Wj = u,X = x, L = l]dFj(u|x′j , li) by Lemma 3 and Assumption 4

Lemma 4. When SE(t, wj , xj) = 0, then Fj(t|xj) = Fj(t|1− xj) andE[Yi(t)|Xi = 1, Xj = xj] = E[Yi(t)|Xi = 0, Xj =
xj], for all xj ∈ {0, 1} and t ≥ 0.

When SE(t, wj , xj) = IE(t, wj , xi) = 0, then E[Yi(t)|Xi = 0, Xj = 1] = E[Yi(t)|Xi = 0, Xj = 0].
When SE(t, wj , xj) = 0 and IE(t, wj , xi) < 0, then E[Yi(t)|Xi = 0, Xj = 1] < E[Yi(t)|Xi = 0, Xj = 0].

Proof of Lemma 4. First we prove Fj(t|xj) = Fj(t|1 − xj), for all xj ∈ {0, 1} when SE(t, wj , xj) = 0.

Fj(t|xj) = Pr(Wj(xj) < t) = Pr(Tj(wi = ∞, xi , xj) < t) by the definition of Tj(wi , xj , xi)
= E[Yj(t;wi = ∞, xj , xi)] by the definition of Yj(u;wi , xj , xi)
= E[Yj(t;wi = ∞, x′j , xi)] since SE(t, wj , xj) = 0
= Pr(Wj(x′j) < t) = Fj(t|x′j).

(11)
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Second, we prove E[Yi(t)|Xi = 1, Xj = xj] = E[Yi(t)|Xi = 0, Xj = xj] for all xj ∈ {0, 1}, if SE(t, wj , xj) = 0.

E[Yi(t)|Xi = 1, Xj = xj] =
∞∫︁
0

E[Yi(t)|Wj = u, Xi = 1, Xj = xj]dFj(u|xj) by Assumption 1

=
∞∫︁
0

E[Yi(t; u, xi = 1, xj)]dFj(u|xj) by Lemma 3

=
∞∫︁
0

E[Yi(t; u, xi = 0, xj)]dFj(u|xj) since SE(t, wj , xj) = 0

= E[Yi(t)|Xi = 0, Xj = xj].

(12)

Third, by (11), we prove E[Yi(t)|Xi = 0, Xj = 1] = E[Yi(t)|Xi = 0, Xj = 0], if SE(t, wj , xj) = IE(t, wj , xi) = 0.

E[Yi(t)|Xi = 0, Xj = 1] =
∞∫︁
0

E[Yi(t)|Wj = u, Xi = 0, Xj = 1]dFj(u|1) by Assumption 1

=
∞∫︁
0

E[Yi(t; u, xi = 0, xj = 1)]dFj(u|1) by Lemma 3

=
∞∫︁
0

E[Yi(t; u, xi = 0, xj = 0)]dFj(u|1) since IE(t, wj , xi) = 0

=
∞∫︁
0

E[Yi(t; u, xi = 0, xj = 0)]dFj(u|0) by (11)

=
∞∫︁
0

E[Yi(t)|Wj = u, Xi = 0, xj = 0)]dFj(u|0) by Lemma 3

= E[Yi(t)|Xi = 0, Xj = 0].

(13)

Fourth, by (11), we prove E[Yi(t)|Xi = 0, Xj = 1] < E[Yi(t)|Xi = 0, Xj = 0], if SE(t, wj , xj) = 0 and
IE(t, wj , xi) < 0.

E[Yi(t)|Xi = 0, Xj = 1] =
∞∫︁
0

E[Yi(t)|Wj = u, Xi = 0, Xj = 1]dFj(u|1) by Assumption 1

=
∞∫︁
0

E[Yi(t; u, xi = 0, xj = 1)]dFj(u|1) by Lemma 3

<
∞∫︁
0

E[Yi(t; u, xi = 0, xj = 0)]dFj(u|1) since IE(t, wj , xi) < 0

=
∞∫︁
0

E[Yi(t; u, xi = 0, xj = 0)]dFj(u|0) by (11)

=
∞∫︁
0

E[Yi(t)|Wj = u, Xi = 0, xj = 0)]dFj(u|0) by Lemma 3

= E[Yi(t)|Xi = 0, Xj = 0].

(14)
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Proof of Theorem 2. Given the conclusions from (12) and (14), we have

DE(t) = E[Yi(t)|Xi = 1] − E[Yi(t)|Xi = 0]
= E[Yi(t)|Xi = 1, Xj = 1] Pr(Xj = 1|Xi = 1) + E[Yi(t)|Xi = 1, Xj = 0] Pr(Xj = 0|Xi = 1)
− E[Yi(t)|Xi = 0, Xj = 1] Pr(Xj = 1|Xi = 0) − E[Yi(t)|Xi = 0, Xj = 0] Pr(Xj = 0|Xi = 0)

= E[Yi(t)|Xi = 0, Xj = 1] Pr(Xj = 1|Xi = 1) + E[Yi(t)|Xi = 0, Xj = 0] Pr(Xj = 0|Xi = 1)
− E[Yi(t)|Xi = 0, Xj = 1] Pr(Xj = 1|Xi = 0) − E[Yi(t)|Xi = 0, Xj = 0] Pr(Xj = 0|Xi = 0)

by (12) in Lemma 4

= E[Yi(t)|Xi = 0, Xj = 1]
[︁
Pr(Xj = 1|Xi = 1) − Pr(Xj = 1|Xi = 0)

]︁
+ E[Yi(t)|Xi = 0, Xj = 0]

[︁
Pr(Xj = 0|Xi = 1) − Pr(Xj = 0|Xi = 0)

]︁
= E[Yi(t)|Xi = 0, Xj = 1]

[︁
Pr(Xj = 1|Xi = 1) − Pr(Xj = 1|Xi = 0)

]︀
+ E[Yi(t)|Xi = 0, Xj = 0]

{︁
[1 − Pr(Xj = 1|Xi = 1)] − [1 − Pr(Xj = 1|Xi = 0)]

}︁
=
{︁
E[Yi(t)|Xi = 0, Xj = 1] − E[Yi(t)|Xi = 0, Xj = 0]

}︁
·
[︁
Pr(Xj = 1|Xi = 1) − Pr(Xj = 1|Xi = 0)

]︁
(15)

Note by (14) in Lemma 4, we have the first term at the last line of (15) being negative. The sign of DE(t) then
depends only on the treatment assignment mechanism, which leads to the following conclusions for DE(t).

1. If the treatment assignment is positively correlated (Pr(Xi = c, Xj = c) > Pr(Xi = c) Pr(Xj = c) for
c ∈ {0, 1}), we have:

Pr(Xj = 1|Xi = 1) − Pr(Xj = 1|Xi = 0)

=
Pr(Xj = 1, Xi = 1)

Pr(Xi = 1) −
Pr(Xj = 1, Xi = 0)

Pr(Xi = 0)

=
Pr(Xj = 1, Xi = 1) Pr(Xi = 0) − Pr(Xj = 1, Xi = 0) Pr(Xi = 1)

Pr(Xi = 1) Pr(Xi = 0)

=
Pr(Xj = 1, Xi = 1)[1 − Pr(Xi = 1)] − Pr(Xj = 1, Xi = 0) Pr(Xi = 1)

Pr(Xi = 1) Pr(Xi = 0)

=
Pr(Xj = 1, Xi = 1) − Pr(Xj = 1, Xi = 1) Pr(Xi = 1) − Pr(Xj = 1, Xi = 0) Pr(Xi = 1)

Pr(Xi = 1) Pr(Xi = 0)

=
Pr(Xj = 1, Xi = 1) − Pr(Xj = 1) Pr(Xi = 1)

Pr(Xi = 1) Pr(Xi = 0) ≥ 0

(16)

Thus, DE(t) < 0.
2. If the treatment assignment is independent (Pr(Xi = c, Xj = c) = Pr(Xi = c) Pr(Xj = c) for c ∈ {0, 1}),

then by similar arguments of (16), we have Pr(Xj = 1|Xi = 1) − Pr(Xj = 1|Xi = 0) = 0. Thus, DE(t) = 0.
3. If the treatment assignment is negatively correlated (Pr(Xi = c, Xj = c) < Pr(Xi = c) Pr(Xj = c) for

c ∈ {0, 1}), then by similar arguments of (16), we have Pr(Xj = 1|Xi = 1) − Pr(Xj = 1|Xi = 0) < 0. Thus,
DE(t) > 0.

When IE(t, wj , xi) = 0, following (13) and (15) in Lemma 4, we have E[Yi(t)|Xi = 0, Xj = 1] = E[Yi(t)|Xi =
0, Xj = 0] and thus DE(t) = 0.

Similar arguments apply for VEAR(t).

Proof of Theorem 3. We evaluate the sign of VEnetI (t) by analyzing SAR00(t) − SAR10(t).

VEnetI (t) = 1 − SAR10(t)
SAR00(t)

= SAR00(t) − SAR10(t)
SAR00(t)

First, we analyze the sign of VEnetI (t) under a null true infectiousness effect, when the infection outcome is
positively contagious and vaccine has a favorable effect prior to first infection through h0(u|1) = εh0(u|0), for
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ε ∈ [0, 1).

SAR10(t) − SAR00(t)
= E[Yi(t)|Tj < t, Ti > Tj , Xi = 0, Xj = 1] − E[Yi(t)|Tj < t, Ti > Tj , Xi = 0, Xj = 0]

=
∫︀ t
0 E[Yi(t)|Wj = u,Wi > u,X = (0, 1)](1 − Fi(u|0))dFj(u|1)

Pr(Wj < t,Wi > Wj|X = (0, 1))

−
∫︀ t
0 E[Yi(t)|Wj = u,Wi > u,X = (0, 0)](1 − Fi(u|0))dFj(u|0)

Pr(Wj < t,Wi > Wj|X = (0, 0))

by applying the law of total probability

=
t∫︁

0

E[Yi(t)|Wj = u,Wi > u,X = (0, 1)]
(1 − Fi(u|0))dFj(u|1)∫︀ t
0 (1 − Fi(v|0))dFj(v|1)

−
t∫︁

0

E[Yi(t)|Wj = u,Wi > u,X = (0, 0)]
(1 − Fi(u|0))dFj(u|0)∫︀ t
0 (1 − Fi(v|0))dFj(v|0)

=
t∫︁

0

E[Yi(t)|Wj = u,Wi > u,X = (0, 0)]
[︁ (1 − Fi(u|0))dFj(u|1)∫︀ t

0 (1 − Fi(v|0))dFj(v|1)
−

(1 − Fi(u|0))dFj(u|0)∫︀ t
0 (1 − Fi(v|0))dFj(v|0)

]︁
.

By IE(t, wj , 0) = 0 and Lemma 3

(17)

To ease the notation in Equation (17), we denote E[Yi(t)|Wj = u,Wi > u,X = (0, 0)] = k(u). Denote g(u|1) =
(1−Fi(u|0))dFj(u|1)∫︀ t
0 (1−Fi(v|0))dFj(v|1)

and g(u|0) = (1−Fi(u|0))dFj(u|0)∫︀ t
0 (1−Fi(v|0))dFj(v|0)

, and G(u|1) =
∫︀ u
0 g(s|1)ds and G(u|0) =

∫︀ u
0 g(s|0)ds. Then by

integration by parts, (17) can be re-written as follows:

SAR10(t) − SAR00(t) =
t∫︁

0

k(u)[g(u|1) − g(u|0)]du

= k(u)[G(u|1) − G(u|0)]
⃒⃒⃒t
0
−

t∫︁
0

(G(u|1) − G(u|0))dk(u).

By their definitions, we have G(0|1) − G(0|0) = 0 and G(t|1) − G(t|0) = 0, and thus k(u)[G(u|1) − G(u|0)]
⃒⃒⃒t
0
= 0.

In other words, the sign of SAR10(t) − SAR00(t) only depends on the sign of G(u|1) − G(u|0) and dk(u) for all
u > 0. First, we can show that dk(u) < 0 for 0 ≤ u < t. For 0 ≤ u < u′ < t, we have

k(u) =
E[Yi(t)|Wj = u,X = (0, 0)] − Fi(u|0)

1 − Fi(u|0)
by Theorem 1

>
E[Yi(t)|Wj = u′,X = (0, 0)] − Fi(u|0)

1 − Fi(u|0)
by CE(t, u, u′, (0, 0)) > 0

=
E[Yi(t)|Wj = u′,X = (0, 0)] − Fi(u′|0) + Fi(u′|0) − Fi(u|0)

1 − Fi(u|0)

= k(u
′)(1 − Fi(u′|0)) + Fi(u′|0) − Fi(u|0)

1 − Fi(u|0)
by Theorem 1

≥ k(u
′)(1 − Fi(u′|0)) + (Fi(u′|0) − Fi(u|0))k(u′)

1 − Fi(u|0)
by k(u′) ≤ 1

= k(u
′)(1 − Fi(u|0))
1 − Fi(u|0)

= k(u′).

(18)
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Next, we analyze the property of G(u|1) −G(u|0) for ∀u > 0. Denote H0(u) =
∫︀ u
0 h0(s|0)ds. Given h0(u|1) =

εh0(u|0) with ε ∈ [0, 1), we can write out G(u|0) and G(u|1) in terms of h0(u|0) as follows.

G(s|1) =
∫︀ s
0 (1 − Fi(u|0))dFj(u|1)∫︀ t
0 (1 − Fi(v|0))dFj(v|1)

=
∫︀ s
0 ε · h0(u|0)e

−ε·H0(u)e−H0(u)du∫︀ t
0 ε · h0(v|0)e−ε·H0(v)e−H0(v)dv

=
∫︀ s
0 ε · h0(u|0)e

−(ε+1)·H0(u)du∫︀ t
0 ε · h0(v|0)e−(ε+1)·H0(v)dv

= 1 − e−(ε+1)H0(s)

1 − e−(ε+1)H0(t)

G(s|0) =
∫︀ s
0 (1 − Fi(u|0))dFj(u|1)∫︀ t
0 (1 − Fi(v|0))dFj(v|1)

= 1 − e−2H0(s)

1 − e−2H0(t)

(19)

From (19), we observe that G(s|1) and G(s|0) only differ by the terms in front of H0. Treat G(s|1) and G(s|0) as
functions of ε, and we can re-express them as G(ε) = 1−e−(ε+1)H0(s)

1−e−(ε+1)H0(t) and G(1) =
1−e−2H0(s)
1−e−2H0(t) , given ε < 1. Then, if G(ε)

is a decreasing function of ε, we have G(u|1) − G(u|0) ≤ 0.

∂
∂ε G(ε) =

H0(u)e−(ε+1)H0(u)[1 − e−(ε+1)H0(t)] − H0(t)e−(ε+1)H0(t)[1 − e−(ε+1)H0(u)]
[1 − e−(ε+1)H0(t)]2

(20)

Divide the numerator of (20) by a positive constant H0(t)H0(u)e−(ε+1)[H0(u)+H0(t)]. We then have if e
(ε+1)H0(u)−1
H0(u) ≤

e(ε+1)H0(t)−1
H0(t) for u < t, then G(u|1) − G(u|0) ≤ 0. Treat e

(ε+1)H0(t)−1
H0(t) as a function of u, given 0 ≤ u < t. We have,

∂
∂u

e(ε+1)H0(u) − 1
H0(u)

= (ε + 1)H0(u)e(ε+1)H0(u) − e(ε+1)H0(u) + 1
[H0(u)]2

= (ε + 1)H0(u) − 1 + e−(ε+1)H0(u)

[H0(u)]2e(ε+1)H0(u)
by e−(ε+1)H0(u) ≥ 1 − (ε + 1)H0(u)

≥ 0.

(21)

Combining (20) and (21), we have G(u|1) − G(u|0) ≤ 0.
In summary, we can see that

SAR10(t) − SAR00(t) = k(u)[G(u|1) − G(u|0)]
⃒⃒⃒t
0
−

t∫︁
0

(G(u|1) − G(u|0))dk(u) < 0

Thus, VEnetI (t) = 1 − SAR10(t)
SAR00(t) =

SAR00(t)−SAR10(t)
SAR00(t) > 0.

Next, we analyze the sign of VEnetI (t) under a null true susceptibility effect.

SAR10(t) − SAR00(t)

=
t∫︁

0

E[Yi(t)|Wj = u,Wi > u,X = (0, 1)]
(1 − Fi(u|0))dFj(u|1)∫︀ t
0 (1 − Fi(v|0))dFj(v|1)

−
t∫︁

0

E[Yi(t)|Wj = u,Wi > u,X = (0, 0)] −
(1 − Fi(u|0))dFj(u|0)∫︀ t
0 (1 − Fi(v|0))dFj(v|0)

]︁
by (17)

=
t∫︁

0

{︀
E[Yi(t)|Wj = u,Wi > u,X = (0, 1)] − E[Yi(t)|Wj = u,Wi > u,X = (0, 0)]

}︀
·
(1 − Fi(u|0))dFj(u|0)∫︀ t
0 (1 − Fi(v|0))dFj(v|0)
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by SE(t, wj , xj) = 0 and (11)

=
t∫︁

0

{︀ E[Yi(t)|Wj = u,X = (0, 1)]
Pr(Wi > u|Wj = u,X = (0, 1)) −

E[Yi(t)|Wj = u,X = (0, 0)]
Pr(Wi > u|Wj = u,X = (0, 0))

}︀ (1 − Fi(u|0))dFj(u|0)∫︀ t
0 (1 − Fi(v|0))dFj(v|0)

=
t∫︁

0

{︀E[Yi(t)|Wj = u,X = (0, 1)]
Pr(Wi > u|Xi = 0) −

E[Yi(t)|Wj = u,X = (0, 0)]
Pr(Wi > u|Xi = 0)

}︀ (1 − Fi(u|0))dFj(u|0)∫︀ t
0 (1 − Fi(v|0))dFj(v|0)

by Assumption 1

=
t∫︁

0

{︀
E[Yi(t)|Wj = u,X = (0, 1)] − E[Yi(t)|Wj = u,X = (0, 0)]

}︀ (1 − Fi(u|0))
Pr(Wi > u|Xi = 0)dFj(u|0)

· 1∫︀ t
0 (1 − Fi(v|0))dFj(v|0)

=
t∫︁

0

IE(t, u, 0)(1 − Fi(u|0))
Pr(Wi > u|Xi = 0) dFj(u|0) ·

1∫︀ t
0 (1 − Fi(v|0))dFj(v|0)

Thus, VEnetI (t) has the same sign as the true infectiousness effect, when the true susceptibility effect is null.
Third, we analyze the sign of VEnetI (t) in the case of no contagion, when the true susceptibility effect is

beneficial. First, CE(t, wj , w′
j , 0) = 0 for all 0 < wj < w′

j implies IE(t, wj , 0) = 0.

IE(t, wj , xi) = E[Yi(t;wj , xi , xj = 1) − Yi(t;wj , xi , xj = 0)]
= E[1{Wi(xi) < t} − 1{Wi(xi) < t}] = 0

Following the same proof for the first case except replacing the second line of (18) by an equal sign, we know
VEnetI (t) > 0.

Proof of Theorem 4. Given hi0(t|0) = 0, we have Fi(s|0) = 1 − e−
∫︀ s
0 h

i
0(u|0)du = 0 forWi(0).

E[Yi(t; Yj(x′j), (0, xj))|hi0(t|0) = 0] = E[Yi(t; Yj(x′j), (0, xj))|Wi(0) = ∞]

by Fi(s|xi) = 0 for ∀s > 0

= E[Yi(t;1{Wj(x′j) < t}, (0, xj))|Wi(0) = ∞]

given Yi(x′j) = {Tj(x′j) < t} and Tj(x′j) = Wj(x′j) whenWi(0) = ∞

= E[Yi(t;Wj(x′j), (0, xj))|Wi(0) = ∞]

= E[Yi(t;Wj(x′j), (0, xj))|hi0(s|0) = 0]
(22)

Thus, by the definition of VEI(t) and IE(t, xi), we have:

VEI(t) = E[Yi(t; Yj(1), (0, 1)) − Yi(t; Yj(1), (0, 0))|hi0(s|0) = 0]

= E[Yi(t;Wj(1), (0, 1)) − Yi(t;Wj(1), (0, 0))|hi0(s|0) = 0] = IE(t, 0|hi0(s|0) = 0)

Thus, VEI is equivalent to the natural infectiousness effect under the asymmetric partnership.
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Proof of Theorem 5. Given hi0(t|0) = 0, we have Fi(t|0) = 1 − e−
∫︀ t
0 h

i
0(u|0)du = 0.

VEC(t) = E[Yi(t; Yj(1), (0, 0))] − E[Yi(t; Yj(0), (0, 0))]
= E[Yi(t;Wj(1), (0, 0))] − E[Yi(t;Wj(0), (0, 0))]

by Equation (22)

=
∞∫︁
0

E[Yi(t;wj , (0, 0))]dFj(wj|1) −
∞∫︁
0

E[Yi(t;wj , (0, 0)]dFj(wj|0)

by Corollary 1

=
∞∫︁
0

{︀
Fi(wj|0) + (1 − Fi(wj|0))E[Yi(t)|Wi > wj ,Wj = wj ,X = (0, 0)]

}︀
d(Fj(wj|1) − Fj(wj|0))

by Theorem 1

=
∞∫︁
0

E[Yi(t)|Wi > wj ,Wj = wj ,X = (0, 0)]d(Fj(wj|1) − Fj(wj|0))

by Fi(t|xi) = 0 for ∀t > 0

=
t∫︁

0

E[Yi(t)|Wi > wj ,Wj = wj ,X = (0, 0)]d(Fj(wj|1) − Fj(wj|0))

since E[Yi(t)|Wi > wj ,Wj = wj ,X = (0, 0)] = 0 for wj > t

=
t∫︁

0

k(wj)d(Fj(wj|1) − Fj(wj|0))

by the definition of k(u) in the proof of Theorem 3

= k(wj)[Fj(wj|1) − Fj(wj|0)]
⃒⃒⃒t
0
−

t∫︁
0

Fj(wj|1) − Fj(wj|0)dk(wj)

by integration by parts

By the definition of k(u) and Fj(u|xj), we know k(t) = 0 and Fj(0|1) − Fj(0|0) = 0, and thus k(wj)[Fj(wj|1) −

Fj(wj|0)]
⃒⃒⃒t
0
= 0. If SE(t, wj , x) > 0, we have Fj(wj|1) − Fj(wj|0) > 0. If CE(t, u, u′, (0, 0)) > 0 for 0 ≤ u < u′ < t,

dk(u) < 0 as shown in the the proof of Theorem 3. Thus, we have the following conclusions.
When SE(t, wj , x) > 0, VEC(t) has the opposite sign as CE(t, u, u′, (0, 0)).
If SE(t, wj , x) = 0 and CE(t, u, u′, (0, 0)) > 0, we have VEC(t) = 0.
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B Statistical estimation

B.1 Statistical estimation for the controlled potential outcomes in Theorem 1

In Theorem 1, for t < wj, the estimation of E[Yi(t;wj , x)|L = l] is achieved by the estimation of Fi(wj|xi , li) by
Lemma 1, which follows the standard technique of estimating distribution of time-to-event data in competing
risks. For t ≥ wj, the estimation of E[Yi(t;wj , x)|L = l] is achieved by the estimation of Fi(wj|xi , li) by Lemma 1
and the estimation of E[Yi(t)|Ti ≥ wj , Tj = wj ,X = x, L = l]. Let ϵ be a small positive number, then

E[Yi(t)|Ti ≥ wj , Tj = wj ,X = x, L = l] = lim
ϵ→0

E[Yi(t)|wj − ϵ < Tj < wj + ϵ, Ti > wj ,X = x, L = l].

Therefore, we estimate E[Yi(t)|Ti ≥ wj , Tj = wj ,X = x, L = l] by averaging Yi(t) among observations when Tj
falls into a narrow region around wj under X = x and L = l. With finite samples of observations, if ϵ is chosen
too small, sample size for the estimation becomes smaller and variance gets bigger; if the ϵ is chosen too big,
the selected observations no longer approximate Tj = wj well enough so that the estimation is more biased.
The ϵ should be chosen to minimize the MSE of the estimation.

We choose ϵ = 0.1 in the estimations of controlled potential outcomes in Figure 3 when t ≥ wj with sample
size N = 100, 000 (under the constant hazard scenario α(t) = 0.2 and 𝛾(t) = 10 with beneficial susceptibility
effect β1 = 0.3 and infectiousness effect β2 = 0.5), as it gives the smallest (or almost smallest) MSE for
most observational times under different treatments and partner’s infection time. Figure B1 illustrates the
estimations of E[Yi(2; xi = 1, xj = 1, wj = 1)] and E[Yi(1.5; xi = 0, xj = 0, wj = 1)] as well as their MSEs for
the choice of ϵ among ϵ ∈ {0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2}, and ϵ = 0.1 gives the smallest MSE
for the estimation.
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Figure B1: The choice of ϵ in the estimation of E[Yi(t; xi , xj , wj)] with sample size n = 100, 000 under the constant hazards
α(t) = 0.2, 𝛾(t) = 10 and coeflcients eβ0 = eβ1 = 0.2 and eσ = 0.5. Figure on the left shows the estimation of E[Yi(t = 2; xi =
1, xj = 1, s = 1)] and its corresponding MSE under different choices of ϵ, and Figure on the right shows the estimation of
E[Yi(t = 1.5; xi = 0, xj = 0, s = 1)] and its corresponding MSE under difference choices of ϵ.

B.2 Statistical estimation for the natural potential outcomes in Corollary 1

From Corollary 1, E[Yi(t; xi , xj ,Wj(xj))] can be estimated by the average of Yi(t) when X = x.
For the identification of cross-world natural potential outcomes when x′j ≠ xj, E[Yi(t; xi , xj ,Wj(x′j))] is

estimated with the help of the estimation of Fj(wj|x′j , lj) by Lemma 1 and the estimation of E[Yi(t;wj , x)|L = l]
in Theorem 1, which requires a proper choice of ϵ again.

We illustrate examples of estimating cross-world natural potential outcomes of E[Yi(t = 2; 0, 0,Wj(1))]
and E[Yi(t = 2; 0, 1,Wj(0))] with sample size N = 1, 000, 000 under the constant hazard scenario (α(t) = 0.2
and 𝛾(t) = 10) with beneficial susceptibility effect (β1 = 0.3) and infectiousness effect (β2 = 0.5). We show
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their estimations as well as theMSEs under the choice among ϵ ∈ {0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2}
in Figure B2, and ϵ = 0.1 gives the smallest MSE for the estimations.
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Figure B2: The choice of ϵ in the estimation of E[Yi(t; xi , xj ,Wj(x′j ))] with sample size n = 100, 000 under the constant hazards
α(t) = 0.2, 𝛾(t) = 10 and coeflcients eβ0 = eβ1 = 0.2 and eσ = 0.5. Figure on the left shows the estimation of E[Yi(t =
2; 0, 0,Wj(1))] and its corresponding MSE under different choices of ϵ, and Figure on the right shows the estimation of E[Yi(t =
2; 0, 1,Wj(0))] and its corresponding MSE under difference choices of ϵ.

B.3 Covariate adjustment for controlled and natural potential infection outcomes in
Equations (4)-(5)

For the adjustment of covariates in Equations (4)-(5), the estimation is achieved by estimating (controlled or
natural) potential outcomes by Theorem 1 and Corollary 1, and then integrate it over the estimated empirical
distribution of the covariates.

We approximate the joint distribution of covariates G(l) empirically by dividing the space of L into small
bins of size ∆ × ∆. The probability of L in one bin centered around (ci , cj) is estimated by Pr(ci − ∆

2 < Li <
ci + ∆

2 , cj −
∆
2 < Lj < cj + ∆

2 ) =
1
N
∑︀

i 1{ci −
∆
2 < Li < ci + ∆

2 , cj −
∆
2 < Lj < cj + ∆

2 }. The size of ∆ should be chosen
to minimize the MSE of the estimations. Within each bin centered, for example the one around (ci , cj), we
estimate E[Yi(t;wj , x)|Li = ci , Lj = cj] and E[Yi(t;x,Wj(xj))|Li = ci , Lj = cj] by Theorem 1 and in Corollary 1,
respectively. Finally, we integrate E[Yi(t;wj , x)|Li = ci , Lj = cj] and E[Yi(t;Wj(xj), x)|Li = ci , Lj = cj] over the
estimated empirical distribution of G(l) by:

E[Yi(t;wj , x)] =
∑︁
ci ,cj

E[Yi(t;wj , x)|Li = ci , Lj = cj] Pr(ci −
∆
2 < Li < ci +

∆
2 , cj −

∆
2 < Lj < cj +

∆
2 )

E[Yi(t;Wj(xj), x)] =
∑︁
ci ,cj

E[Yi(t;Wj(xj), x)|Li = ci , Lj = cj] Pr(ci −
∆
2 < Li < ci +

∆
2 , cj −

∆
2 < Lj < cj +

∆
2 )

We illustrate the estimation of E[Yi(t = 2; xi = 1, xj = 1, wj = 1)] and E[Yi(t = 2; xi = 0, xj = 0,Wj(0))]
with one covariate for each individual, so L = (Li , Lj), with sample size n = 1, 000, 000 under the constant
hazards α(t) = 0.2, 𝛾(t) = 10 and coefficients eβ0 = eβ1 = 0.2 and eσ = 0.5. In our simulation, the covariates
are generated by (︃

Li
Lj

)︃
∼ Normal

(︃(︃
0
0

)︃
, v
(︃
1 ρ
ρ 1

)︃)︃
so that the majority of them fall into (-4,4). Therefore, we separate the covariates space into bins from -4 to 4
by ∆ as well as the 4 left regions at the corners. Specifically, the space of (Li , Lj) are separated into bins of
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(ci− ∆2 , ci+
∆
2 ]×(cj−

∆
2 , cj+

∆
2 ], where cj , cj ∈ {−4+ ∆

2 , −4+
3∆
2 , . . . , 4− 3∆

2 , 4− ∆2 }, as well as (−∞, −4]×(−∞, −4],
(−∞, −4] × (4,∞), (4,∞) × (−∞, −4], and (4,∞) × (4,∞) at the corners.

We show the estimations of E[Yi(t = 2; xi = 1, xj = 1, wj = 1)] and E[Yi(t = 2; xi = 0, xj = 0,Wj(0))]
as well as MSE under the choice among ∆ ∈ {0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2} in Figure B3, and
∆ = 0.1 gives the smallest MSE for the estimations.
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Figure B3: The choice of ∆ in the estimation of natural potential outcomes with sample size n = 1, 000, 000 under the constant
hazards α(t) = 0.2, 𝛾(t) = 10 and coeflcients eβ0 = eβ1 = 0.2 and eσ = 0.5. Figure on the left shows the estimation of
E[Yi(2; 0, 0,Wj(0))] and its corresponding MSE under different choices of ∆ among ∆ ∈ {0.02, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2},
and Figure on the right shows the estimation of E[Yi(3; xi = 1, xj = 1,Wj(1))] and its corresponding MSE under difference
choices of ∆ among ∆ ∈ {0.02, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2}.
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