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Preface

This book is a tutorial on foundational geometric principles of Lagrangian
and Hamiltonian dynamics and their application in studying important phys-
ical systems. As the title indicates, the emphasis is on describing Lagrangian
and Hamiltonian dynamics in a form that enables global formulations and,
where suitable mathematical tools are available, global analysis of dynamical
properties. This emphasis on global descriptions, that is, descriptions that
hold everywhere on the configuration manifold, as a means of determining
global dynamical properties is in marked contrast to the most common ap-
proach in the literature on Lagrangian and Hamiltonian dynamics that makes
use of local coordinates on the configuration manifold, thereby resulting in
formulations that are typically limited to a small open subset of the config-
uration manifold. In this sense, the material that we introduce and develop
represents a significant conceptual departure from the traditional methods of
studying Lagrangian and Hamiltonian dynamics.

More specifically, this book differs from most of the traditional studies of
analytical mechanics on Euclidean spaces, such as [13, 75]. Moreover, the
global formulation of mechanics presented in this book should be distin-
guished from the geometric treatments that appear in [1, 10, 16, 25, 27,
37, 38, 39, 69, 70], which explicitly make use of local coordinates when illus-
trating the abstract formulation through specific examples. In contrast, we
directly use the representations in the embedding space of the configuration
manifold, without resorting to an atlas of coordinate charts. This allows us to
obtain equations of motion that are globally valid and do not require changes
of coordinates. This is particularly useful in constructing a compact and el-
egant form of Lagrangian and Hamiltonian mechanics for complex dynam-
ical systems without algebraic constraints or coordinate singularities. This
treatment is novel and unique, and it is the most important distinction and
contribution of this monograph to the existing literature.
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This book is the result of a research collaboration that began in 2005, when
the first author initiated his doctoral research at the University of Michigan
with the other two authors as his graduate advisers. That research program
led to the completion of his doctoral degree and to numerous conference and
journal publications.

The research plan, initiated in 2005, was based on our belief that there
were advantages to be gained by the formulation, analysis, and computation
of Lagrangian or Hamiltonian dynamics by explicitly viewing configurations
of the system as elements of a manifold embedded in a finite-dimensional
vector space. This viewpoint was not new in 2005, but we believed that the
potential of this perspective had not been fully exploited in the research lit-
erature available at that time. This led us to embark on a long-term research
program that would make use of powerful methods of variational calculus, dif-
ferential geometry, and Lie groups for studying the dynamics of Lagrangian
and Hamiltonian systems. Our subsequent research since 2005 confirms that
there are important practical benefits to be gained by this perspective, es-
pecially for multi-body and other mechanical systems with dynamics that
evolve in three dimensions.

This book arose from our research and the resulting publications in [21],
[46, 47], and [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63] since
2005, but it goes substantially beyond this earlier work. During the writing
of this book, we were motivated to consider many new issues that we had not
previously studied; in this sense, all of Chapter 4 is new material. We also had
many new insights and obtained new results that have not been previously
published. Nevertheless, this book is intended to be a self-contained treatment
containing many of the results of those publications plus new tutorial material
to provide a unifying framework for Lagrangian and Hamiltonian dynamics
on a manifold. As our research has progressed, we have come to realize the
practical importance and effectiveness of this geometric perspective.

This book is not a complete treatment of Lagrangian and Hamiltonian
dynamics; many important topics, such as geometric reduction, canonical
transformations, Hamilton—Jacobi theory, Poisson geometry, and nonholo-
nomic constraints, are not treated. These subjects are nicely covered in many
excellent books [10, 37, 38, 39, 70]. All of these developments, as well as the
development in this book, treat Lagrangian and Hamiltonian dynamics that
are smooth in the sense that they can be described by differentiable vector
fields. We note the important literature, summarized in [15], that treats non-
smooth Lagrangian and Hamiltonian dynamics. A complete development of
these topics, within the global geometric framework proposed in this book,
remains to be accomplished.

The following manifolds, which naturally arise as configuration manifolds
for Lagrangian and Hamiltonian systems, are of primary importance in our
subsequent development. The standard linear vector spaces of two- and three-
dimensional vectors are denoted by R? and R3, endowed with the usual dot
product operation; the cross product operation is also fundamental in R3. As
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usual, R™ denotes the linear space of ordered real n-tuples. All translations
of subspaces in R", e.g., lines, planes, and hyperplanes, are examples of em-
bedded manifolds. The unit sphere in two dimensions is denoted by S'; it
is a one-dimensional manifold embedded in R?; similarly, the unit sphere in
three dimensions is denoted by S?; it is a two-dimensional manifold embed-
ded in R3. The Lie group of orthogonal transformations in three dimensions
is denoted by SO(3). The Lie group of homogeneous transformations in three
dimensions is denoted by SE(3). Each of these Lie groups has an additional
structure based on a group operation, which in each case corresponds to ma-
trix multiplication. Finally, products of the above manifolds also commonly
arise as configuration manifolds.

All of the manifolds that we consider are embedded in a finite-dimensional
vector space. Hence, the geometry of these manifolds can be described using
mathematical tools and operations in the embedding vector space. Although
we are only interested in Lagrangian and Hamiltonian dynamics that evolve
on such an embedded manifold, it is sometimes convenient to extend the
dynamics to the embedding vector space. In fact, most of the results in the
subsequent chapters can be viewed from this perspective.

It is important to justify our geometric assumption that the configurations
constitute a manifold for Lagrangian and Hamiltonian systems. First, man-
ifolds can be used to encode certain types of important motion constraints
that arise in many mechanical systems; such constraints may arise from re-
strictions on the allowed motion due to physical restrictions. A formulation
in terms of manifolds is a direct encoding of the constraints and does not
require the use of additional holonomic constraints and associated Lagrange
multipliers. Second, there is a beautiful theory of embedded manifolds, in-
cluding Lie group manifolds, that can be brought to bear on the development
of geometric mechanics in this context. It is important to recognize that con-
figurations, as elements in a manifold, may often be described and analyzed in
a globally valid way that does not require the use of local charts, coordinates,
or parameters that may lead to singularities or ambiguities in the represen-
tation. We make extensive use of Euclidean frames in R® and associated
Euclidean coordinates in R3, R”, and R™*", but we do not use coordinates
to describe the configuration manifolds. In this sense, this geometric formu-
lation is said to be coordinate-free. Third, this geometric formulation turns
out to be an efficient way to formulate, analyze, and compute the kinematics,
dynamics, and their temporal evolution on the configuration manifold. This
representational efficiency has a major practical advantage for many complex
dynamical systems that has not been widely appreciated by the applied sci-
entific and engineering communities. The associated cost of this efficiency is
the requirement to make use of the well-developed mathematical machinery
of manifolds, calculus on manifolds, and Lie groups.

We study dynamical systems that can be viewed as Lagrangian or Hamil-
tonian systems. Under appropriate assumptions, such dynamical systems are
conservative in the sense that the Hamiltonian, which oftentimes coincides
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with the total energy of the system, is conserved. This is an ideal assumption
but a very useful one in many applications. Although our main attention is
given to dynamical systems that are conservative, many of the results can be
extended to dissipative dynamical systems and to dynamical systems with
inputs.

There are two basic requirements to make use of the Lagrangian perspec-
tive in obtaining the equations of motion. Based on the physical properties
of the dynamical system, it is first necessary to select the set of possible
configurations of the system and to identify the set of all configurations M
as a manifold. The second requirement is to develop a Lagrangian function
L : TM — R which is a real-valued function defined on the tangent bundle
TM of the configuration manifold and satisfying certain assumptions. The
Lagrangian function is the difference of the kinetic energy of the system and
the potential energy of the system. It is assumed that the reader has suffi-
cient background to construct the kinetic energy function and the potential
energy function; we do not go into detail on the basic physics to construct
these energy functions. Rather, numerous specific examples of Lagrangian
and Hamiltonian systems are introduced and used to illustrate the concepts.

Hamilton’s variational principle is the fundamental basis for the theory
of Lagrangian and Hamiltonian dynamics. The action integral is the integral
of the Lagrangian function over a fixed time period. Along a motion of the
system, a specific value of the action integral is induced. Small variations
of the system motion, which are consistent with the configuration manifold
but not necessarily possible motions of the system, induce variations in the
value of the action integral. Hamilton’s variational principle states that these
variations in the value of the action integral are necessarily of higher than
first order for arbitrarily small variations about any system motion. In other
words, the directional or Gateaux derivative of the action integral vanishes for
all allowable variations of the system motion. Using methods of variational
calculus where variations are introduced in terms of a small scalar parame-
ter, this principle leads to Euler-Lagrange equations which characterize all
possible system motions.

Hamilton’s equations of motion are obtained by introducing the Legendre
transformation that is a mapping from the tangent bundle of the configu-
ration manifold to the cotangent bundle of the configuration manifold. A
Hamiltonian function is introduced, and Hamilton’s equations are obtained
using a phase space version of Hamilton’s variational principle. Methods of
variational calculus are used to express the dynamics on the cotangent bundle
of the configuration manifold.

It is admitted that some of the derivations are lengthy and the details and
formulas are sometimes complicated. However, most of the formulations of
Lagrangian and Hamiltonian dynamics on specific configuration manifolds,
considered in this book, are relatively simple and elegant. Consequently, their
application to the formulation of the dynamics of mass particles, rigid bod-
ies, deformable bodies, and multi-body systems follows a relatively straight-
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forward pattern that is, in fact, both more general and simpler than the
traditional formulations that make use of local coordinates.

This book presents a unifying framework for this geometric perspective
that we intend to be accessible to a wide audience. In concrete terms, the
book is intended to achieve the following objectives:

e Study the geometric formulations of dynamical equations of motion for La-
grangian and Hamiltonian systems that evolve on a configuration manifold
using variational methods.

e Express theoretical results in a global geometric form that does not require
local charts or coordinates for the configuration manifold.

e Demonstrate simple methods for the analysis of solution properties.

e Present numerous illustrations of theory and analysis for the dynamics of
multiple interacting particles and of rigid and deformable bodies.

e Identify theoretical and analytical benefits to be gained by the proposed
treatment of geometric mechanics.

The book is also intended to set the stage for a treatment of computational
issues associated with Lagrangian and Hamiltonian dynamics that evolve on
a configuration manifold. In particular, the material in this book can be
extended to obtain a framework for computational aspects of Lagrangian
and Hamiltonian dynamics that achieve the analogous objectives:

e Study the geometric formulations of discrete-time dynamical equations of
motion for Lagrangian and Hamiltonian systems that evolve on an embed-
ded configuration manifold using discrete-time variational methods.

e Develop discrete-time versions of Lagrangian and Hamiltonian dynamics;
these are referred to as geometric variational integrators to reflect the
configuration manifold for the problems considered.

e Demonstrate the benefits of these discrete-time dynamics as a computa-
tional approximation of the continuous-time Lagrangian or Hamiltonian
dynamics.

e Express computational dynamics in a global geometric form that does not
require local charts.

e Present numerous computational illustrations for the dynamics of multiple
interacting particles, and of rigid and deformable bodies.

e Identify computational benefits to be gained by the proposed treatment
of geometric mechanics.

Computational developments for Lagrangian and Hamiltonian dynamics, fol-
lowing the above prescription, lead to computational algorithms that are not
based on the discretization of differential equations on a manifold, but are
based on the discretization of variational principles on a manifold. The above
computational approach has been developed in [46, 50, 51, 54]. A symbolic
approach to obtaining differential equations on a manifold has been proposed
in [9], without addressing computational issues.
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This book is written for a general audience of mathematicians, engineers,
and physicists who have a basic knowledge of classical Lagrangian and Hamil-
tonian dynamics. Some background in differential geometry would be helpful
to the reader, but it is not essential as arguments in the book make primary
use of basic differential geometric concepts that are introduced in the book.
Hence, our hope is that the material in this book is accessible to a wide range
of readers.

In this book, Chapter 1 provides a summary of mathematical material
required for the subsequent development; in particular, manifolds and Lie
groups are introduced. Chapter 2 then introduces kinematics relationships for
ideal particles, rigid bodies, multi-bodies, and deformable bodies, expressed
in terms of differential equations that evolve on a configuration manifold.

Chapter 3 treats the classical approach to variational mechanics where
the configurations lie in an open set of a vector space R™. This is stan-
dard material, but the presentation provides a development that is followed
in subsequent chapters. Chapters 4 and 5 develop the fundamental results
for Lagrangian and Hamiltonian dynamics when the configuration manifold
(S1)™ is the product of n copies of the one-sphere in R? (in Chapter 4) and the
configuration manifold (S?)" is the product of n copies of the two-sphere in
R3 (Chapter 5). The geometries of these two configuration manifolds are ex-
ploited in the developments, especially the definitions of variations. Chapter 6
introduces the geometric approach for rigid body rotation in three dimensions
using configurations in the Lie group SO(3). The development follows Chap-
ter 3, Chapter 4, and Chapter 5, except that the variations are carefully
defined to be consistent with the Lie group structure of SO(3). Chapter 7
introduces the geometric approach for rigid body rotation and translation in
three dimensions using configurations in the Lie group SE(3). The develop-
ment reflects the fact that the variations are defined to be consistent with
the Lie group structure of SE(3). The results in Chapters 3-7 are developed
using only well-known results from linear algebra and elementary properties
of orthogonal matrices and skew-symmetric matrices; minimal knowledge of
differential geometry or Lie groups is required, and all of it is introduced in
the book.

Chapter 8 makes use of the notation and formalism of differential geom-
etry and Lie groups. This mathematical machinery enables the development
of Lagrangian and Hamiltonian dynamics with configurations that lie in an
arbitrary differentiable manifold, an arbitrary matrix Lie group, or an arbi-
trary homogeneous manifold (a manifold that is transitive with respect to
a Lie group action). The power of this mathematical formalism is that it
allows a relatively straightforward development that follows the variational
calculus approach of the previous chapters and it results in a simple abstract
statement of the results in each case. The development, however, does require
a level of abstraction and some knowledge of differential geometry and Lie
groups.
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Chapter 9 makes use of the prior results to treat the dynamics of various
multi-body systems; Chapter 10 treats the dynamics of various deformable
multi-body systems. In each of these example illustrations, the equations
of motion are obtained in several different forms. The equations of motion
are used to study conservation properties and equilibrium properties in each
example illustration. The book concludes with two appendices that provide
brief summaries of fundamental lemmas of the calculus of variations and
procedures for linearization of a vector field on a manifold in a neighborhood
of an equilibrium solution.

Numerous examples of mechanical and multi-body systems are developed
in the text and introduced in the end of chapter problems. These examples
form a core part of the book, since they illustrate the way in which the devel-
oped theory can be applied in practice. Many of these examples are classical,
and they are studied in the existing literature using local coordinates; some
of the examples are apparently novel. Various multi-body examples, involv-
ing pendulums, are introduced, since these provide good illustrations for the
theory. The books [6, 29] include many examples developed using local coor-
dinates.

This book could form the basis for a graduate-level course in applied math-
ematics, classical physics, or engineering. For students with some prior back-
ground in differential geometry, a course could begin with the theoretical
material in Chapter 8 and then cover applications in Chapters 3-7 and 9-10
as time permits. For students with primary interest in the applications, the
course could treat the topics in the order presented in the book, covering the
theoretical topics in Chapter 8 as time permits. This book is also intended for
self-study; these two paths through the material in the book may aid readers
in this category.

In conclusion, the authors are excited to share our perspective on “global
formulations of Lagrangian and Hamiltonian dynamics on manifolds” with
a wide audience. We welcome feedback about theoretical issues the book
introduces, the practical value of the proposed perspective, and indeed any
aspect of this book.

TAEYOUNG LEE
Washington, DC

MELVIN LEOK
La Jolla, CA

N. HARRIS McCLAMROCH
Ann Arbor, MI

January, 2017
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