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NON-DENSITY OF STABILITY FOR

HOLOMORPHIC MAPPINGS ON Pk

by Romain Dujardin

Abstract. — A well-known theorem due to Mañé-Sad-Sullivan and Lyubich asserts that
J-stable maps are dense in any holomorphic family of rational maps in dimension 1. In this
paper we show that the corresponding result fails in higher dimension. More precisely, we
construct open subsets in the bifurcation locus in the space of holomorphic mappings of
degree d of Pk(C) for every d > 2 and k > 2.

Résumé (Non-densité de la stabilité pour les applications holomorphes sur Pk)
Un théorème célèbre dû à Mañé-Sad-Sullivan et Lyubich affirme que les paramètres J-stables

forment un ouvert dense de toute famille holomorphe de systèmes dynamiques rationnels en
dimension 1. Dans cet article nous montrons que ce résultat ne subsiste pas en dimension
supérieure. Plus précisément nous construisons des ouverts contenus dans le lieu de bifurcation
des applications holomorphes de degré d de Pk(C) pour tout d > 2 et k > 2.
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1. Introduction

Let (fλ)λ∈Λ be a holomorphic family of holomorphic self-mappings on the complex
projective space Pk. When the dimension k equals 1, the stability/bifurcation theory
of such families was developed in the beginning of the 1980’s independently by Mañé,
Sad and Sullivan [MSS83] and Lyubich [Lyu83, Lyu84], who designed the seminal
notion of J-stability, that is, structural stability on the Julia set, which almost implies
structural stability on P1 (see [MS98]). A salient feature of their work is that the set
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814 R. Dujardin

of J-stable mappings is (open and) dense in any such family, which is ultimately a
consequence of the finiteness of the critical set.

In higher dimension we denote by J∗ the “small Julia set” of f , which by definition
is the support of its measure of maximal entropy. Typically, J∗ is smaller than the
usual Julia set J , and concentrates in a sense the repelling part of the dynamics of f ,
and most of the entropy.

In a remarkable recent paper, Bianchi, Berteloot and Dupont [BBD17] put forward
J∗-stability as the correct generalization of the Mañé-Sad-Sullivan-Lyubich theory in
higher dimension. As these authors point out, there is no reason to expect that the
density of J∗-stability should hold in this setting, and leave the existence of persistent
bifurcations as an open problem [BBD17, §6.2].

At this stage it is worth mentioning that for invertible dynamics in dimension 2,
the classical work of Newhouse [New70] shows that persistent bifurcations can be ob-
tained by constructing persistent (generic) homoclinic tangencies. In the holomorphic
context, Buzzard [Buz97] proved that persistent homoclinic tangencies exist in the
space of polynomial automorphisms of C2 of sufficiently high degree. Furthermore
such automorphisms can easily be “embedded” inside holomorphic mappings of P2

(see e.g. [HP94, §6] and also [Gav98]). It seems however that for these examples, the
Newhouse phenomenon is somehow unrelated to J∗-(in)stability, which has to do with
repelling periodic orbits (see Section 5.1 for a more precise discussion).

Our main goal in this paper is to address the density problem for J∗-stability. We
denote by Hd(Pk) the space of holomorphic mappings of Pk of degree d. By choosing
a set of homogeneous coordinates on Pk, we can express f ∈ Hd(Pk) in terms of a
family of (k+1) homogeneous polynomials in (d+1) variables without common factor.
In this way we get a natural identification between Hd(Pk) and a Zariski open subset
of PN , for N = (k + 1)

[
(d+ k)!/d!k!

]
− 1.

Main Theorem. — The bifurcation locus has non-empty interior in the space Hd(Pk)

for every k > 2 and d > 2.

As we shall see, our constructions are rather specific, since we start with the sim-
plest possible mappings, namely products, and construct robustly bifurcating exam-
ples by taking small perturbations. More interestingly, we isolate some mechanisms
leading to open sets of bifurcations. The next step would be to understand the preva-
lence of these phenomena in parameter space.

While he was working on this paper, the author learned about the work of Bianchi
and Taflin [BT17], in which the authors construct a 1-dimensional family of rational
maps on P2 whose bifurcation locus is the whole family, thus offering an alternative
approach to the question of [BBD17].

Throughout the paper, to avoid overwhelming the ideas under undue technicali-
ties, we focus on dimension k = 2 which is the first interesting case, and explain in
Section 5.2 how to adapt the arguments to higher dimension.

By the analysis of Berteloot, Bianchi and Dupont, to obtain open subsets in
the bifurcation locus, it is enough to create a persistent intersection between the
J.É.P. — M., 2017, tome 4



Non-density of stability for holomorphic mappings on Pk 815

post-critical set and a hyperbolic repeller contained in J∗. We present two mecha-
nisms leading to such persistent intersections. The first one is based on topological
considerations: the idea is to construct a kind of topological manifold contained in J∗,
which must intersect the post-critical set for homological reasons. We apply this strat-
egy for mappings that are small perturbations of product maps of the form (p(z), wd)

(see Theorem 3.1). Of course what is delicate here is to manage dynamically defined
sets with inherently complicated topology.

The second mechanism is based on ideas from fractal geometry. It relies on the
construction of Cantor sets with a very special geometry: namely they are “fat” in
a certain direction and admit persistent intersections with manifolds that are suffi-
ciently transverse to the fat direction. The use of this property in dynamical systems
originates in the work of Bonatti and Díaz [BD96] and has played an important role
in C1 dynamics since then (see the book by Bonatti, Díaz and Viana [BDV05] for
a broader perspective). According to the real dynamics terminology we will refer to
these Cantor sets as blenders.

We implement this idea for product mappings of the form (p(z), wd + κ), where p
admits a repelling fixed point z0 which is almost parabolic, that is 1 < |p′(z0)| < 1.01,
and κ is large (see Theorem 4.7). The parabolic case follows by taking the limit (see
Corollary 4.11).

Despite the specific nature of these examples, our thesis is that the interior of the
bifurcation locus is quite large. We point out a few explicit questions and conjectures
in Section 5.3. In particular since by [BBD17] bifurcations happen when a multiplier
of a repelling periodic point crosses the unit circle, it is likely that blenders are often
created in this process.

Note also that blenders already appear in complex dynamics in the work of Biebler
[Bie16] to construct polynomial automorphisms of C3 with persistent homoclinic tan-
gencies.

The plan of the paper is as follows. In Section 2 we collect a few facts from
J∗-stability theory. The topological mechanism for robust bifurcations is detailed
in Section 3, while Section 4 is devoted to complex blenders. Finally in Section 5 we
explain how to extend the construction of Section 4 to higher dimensions and also
show that J∗-stability is compatible with the Newhouse phenomenon. We also state
a number of open problems and directions for future research. The main theorem
ultimately follows from Theorems 3.1 and Theorem 4.7 for the case k = 2, d > 3,
Theorem 4.12 for k = 2, d = 2 and Theorem 5.4 for k > 3.

Acknowledgements. — Thanks to Fabrizio Bianchi, Lasse Rempe-Gillen and Johan
Taflin for useful comments, and to the anonymous referee for a careful reading of the
paper.

2. Preliminaries

Notation. — When a preferred parameter λ0 is given in Λ, to simplify notation we
denote fλ0

by f0. We use the convention to mark with a hat the objects in Λ × Pk,
like f̂ : (λ, z) 7→ (λ, fλ(z)), etc.

J.É.P. — M., 2017, tome 4



816 R. Dujardin

2.1. Stability and bifurcations for endomorphisms of Pk. — Let f be a holomor-
phic map of degree d on Pk. A classical result of Briend and Duval asserts that it ad-
mits a unique invariant measure of maximal entropy µf , whose (complex) Lyapunov
exponents χi, i = 1, . . . , k satisfy χi > 1

2 log d, and which describes the asymptotic
distribution of (repelling) periodic orbits [BD01]. Recall from the introduction that
for a holomorphic map f on Pk, we denote by J∗ the support of µf .

Repelling periodic points are dense in J∗. In general the closure of repelling periodic
orbits can be strictly larger than J∗, which is a source of technicalities in J∗-stability
theory. Note however that this phenomenon does not happen for regular polynomial
skew products of C2 (see [Jon99]), which are basic to all constructions in this paper.

Let now (fλ)λ∈Λ be a holomorphic family of holomorphic maps of degree d on Pk

(or equivalently, a holomorphic map Λ → Hd(Pk)). A notion of stability for such a
family was recently introduced in [BBD17]. The relevance of this notion is justified
by its number of natural equivalent definitions. The following is a combination of
Theorems 1.1 and 1.6 in [BBD17], with a slightly different terminology (see below for
the notion of Misiurewicz bifurcation).

Theorem 2.1 (Berteloot, Bianchi & Dupont). — Let (fλ)λ∈Λ be a holomorphic family
of holomorphic maps of degree d on Pk. Then the following assertions are equivalent:

(i) The function on Λ defined by the sum of Lyapunov exponents of µfλ : λ 7→
χ1(λ) + · · ·+ χk(λ) is pluriharmonic on Λ.

(ii) The sets (J∗(fλ))λ∈Λ move holomorphically in a weak sense.
(iii) There is no (classical) Misiurewicz bifurcation in Λ.

If in addition Λ is a simply connected open subset of Hd(Pk) or if Λ is any simply
connected complex manifold and k = 2, these conditions are equivalent to:

(iv) Repelling periodic points contained in J∗ move holomorphically over Λ.

If these equivalent conditions hold we say that the family is J∗-stable over Λ. For an
arbitrary family we thus have a maximal open set of stability, the stability locus and
its complement is by definition the bifurcation locus. We denote by Bif the bifurcation
locus.

Condition (ii) will not be used below so we don’t need to explain what the “weak
sense” in (ii) exactly is. By “classical Misiurewicz bifurcation” in (iii) we mean a
proper intersection in Λ × Pk between a post-critical component of f̂ and the graph
of a holomorphically moving repelling periodic point γ : Ω → Pk over some open set
Ω ⊂ Λ. We will treat (a generalized form of) this notion in detail in Section 2.2 below
(see in particular Definition 2.4 for the notion of proper intersection).

Let us also quote the following result, which is contained in Proposition 2.3 and
Theorem 3.5 in [BBD17].

Proposition 2.2. — Let (fλ)λ∈Λ be a holomorphic family of holomorphic mappings
of degree d on Pk, with Λ simply connected. Assume that there exists a holomorphic
map γ : Λ → Pk such that for every λ ∈ Λ, γ(λ) is disjoint from the post-critical set
of fλ. Then (fλ) is J∗-stable.

J.É.P. — M., 2017, tome 4
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2.2. Hyperbolic repellers in J∗. — Recall that if E0 is an invariant hyperbolic
compact set for f0, then for f ∈ Hd sufficiently close to f0, there exists a hyperbolic
set E(f) for f and a conjugating homeomorphism h = h(f) : E0 → E(f). The
conjugacy can be chosen to depend continuously on f , with h(f0) = id, in which
case it is unique and is actually a holomorphic motion. We will refer to it as the
continuation of E0.

According to the usual terminology, a basic repeller E is a locally maximal and
transitive hyperbolic repelling invariant set for f0. It is classical that if E is a basic
repeller, then repelling periodic points are dense in E.

Lemma 2.3 (see also [Bia16, Lem. 2.2.15]). — Let f0 be a holomorphic map on Pk of
degree d > 2. Let E0 be a basic repeller for f0 such that E0 ⊂ J∗(f0). Then there
exists a neighborhood Ω of f0 in Hd such that for f ∈ Ω the continuation E(f) of E0

is a well-defined basic repeller for f , contained in J∗(f).

Proof. — The existence of E(f) and the fact that it is a basic repeller follows from
general hyperbolic dynamics, so we concentrate on the last conclusion. By assumption
there exists a neighborhood N of E0 such that

⋂
k>0 f

−k(N) = E0, where we restrict
to the preimages remaining in N . We can assume that N is a r-neighborhood of E0

for some r = 2r0 > 0. Since E0 is contained in J∗(f0), for every x ∈ E0 we have that
µf0(B(x, r0)) > 0. Furthermore by compactness there exists δ0 such that for every
x ∈ E0, µf (B(x, r0/2)) > δ0.

Now, for f close enough to f0, N =
⋃
x∈E0

B(x, 2r0) is also an isolating neighbor-
hood for E(f). In addition, the uniform continuity of the potential of the maximal
entropy measure implies that if x ∈ E0, µf (B(x, r0/2)) > δ0/2. By construction, if f is
close enough to f0, every y in Ef is the intersection of a sequence of nested preimages:
{y} =

⋂
k>0 f

−n
y (B(fn(y), r0)), where f−ny denotes the inverse branch of fn mapping

fn(y) to y, and fn(y) is r0/2 close to E0. Therefore B(fn(y), r0) ⊃ B(x, r0/2) for
some x ∈ E0, hence µf (B(fn(y), r0)) > δ0/2, and finally y ∈ Supp(µf ). �

We now introduce a notion of proper intersection between a hyperbolic set and the
post-critical set.

Definition 2.4. — Let (fλ)λ∈Λ be a holomorphic family of holomorphic maps on Pk

of degree d > 2 on Pk and let λ0 ∈ Λ. Let E0 be a basic repeller for f0. We say that
a post-critical component V0 ⊂ fn0 (Crit(f0)) intersects E0 properly if there exists
x0 ∈ V0 ∩ E0 such that the graph x̂ of the continuation of x0 as a point of E0 is not
contained in V̂ , where V̂ is the irreducible component of f̂n(Crit(f̂)) containing V0.

The terminology is justified by the fact that since f̂n(Crit(f̂)) is of codimension 1

in Λ × Pk, the assumption on x̂ implies that the graph x̂ and f̂n(Crit(f̂)) intersect
properly at (λ0, x0). Note that this terminology is slightly inadequate since the notion
depends on the family and not only on f0.

The mechanism leading to robust bifurcations will be based on the following lemma,
which is implicitly contained in [BBD17] (see the proof of Proposition 3.8 there).

J.É.P. — M., 2017, tome 4



818 R. Dujardin

Proposition-Definition 2.5. — Let (fλ)λ∈Λ be a holomorphic family of holomorphic
maps on Pk of degree d > 2 on Pk. Assume that for some λ0 ∈ Λ, there exists a
basic repeller E0, contained in J∗(f0) and an integer n > 1 such that fn0 (Crit(f0))

intersects E0 properly.
Then λ0 belongs to the bifurcation locus of the family. If such a situation happens,

we say that a Misiurewicz bifurcation occurs at λ0.

Proof. — Fix a sequence of repelling periodic points xj in E0, converging to x0. The
stability of proper intersections in analytic geometry [Chi89, §12.3] implies that there
exists a sequence λj → λ0 such that xj(λj) properly intersects fnλj (Crit(fλj )). Then
by Theorem 2.1 we infer that λj belongs to Bif, and so does λ0. �

It follows that in condition (iii) of Theorem 2.1 we can replace classical Misiurewicz
bifurcations by Misiurewicz bifurcations in this sense.

3. Robust bifurcations from topology

As outlined above, to construct robust bifurcations, we need to find situations in
which the post-critical set has a robust intersection with a basic repeller. Our first
method to produce such a robust intersection is based on topological arguments.

The starting parameter is a product map in C2 of the form f(z, w) = (p(z), wd),
where p is of degree d. Then f extends to P2 as a holomorphic map. The small Julia
set of f is J∗(f) = Jp × S1, where S1 denotes the unit circle in C.

Theorem 3.1. — Let f(z, w) = (p(z), wd) be a product map with deg(p) = d. Assume
that p satisfies the following properties:

(A1) there exists a basic hyperbolic repeller E for p that disconnects the plane;
(A2) p belongs to the bifurcation locus in Pd(C).

Then f belongs to the closure of the interior of the bifurcation locus in Hd(P2).
More precisely there exists a sequence of polynomials pj of degree d converging to p,

a polynomial q of degree 6 2 and a sequence εj → 0 such that for every j, the map
fj ∈ Hd(P2) defined by fj(z, w) = (pj(z) + εjq(w), wd) belongs to B̊if.

Notice that the assumption on p requires(1) d > 3, so the perturbation εh(w) does
not affect the highest degree part of f , hence fε ∈ Hd(P2).

We denote by Pd(C) the space of polynomials of degree d in C. Examples of poly-
nomials p ∈ Pd(C) satisfying the assumptions of Theorem 3.1 are abundant. One
may be tempted to think that as soon as p admits one active critical point and an
attracting periodic orbit, then there is a nearby p̃ satisfying the assumptions of the
theorem. The next two corollaries are results in this direction. They will be proven at
the end of this section.

(1)Indeed, we essentially need both an attracting orbit and an active critical point.

J.É.P. — M., 2017, tome 4
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Corollary 3.2. — Let f(z, w) = (p(z), wd), with deg(p) = d > 3. Assume that p is a
bifurcating polynomial in Pd(C), such that (d − 2) of its critical points are attracted
by periodic sinks. Then f belongs to the closure of the interior of the bifurcation locus
in Hd(P2).

When several critical points are active it is convenient to use the formalism of
bifurcation currents (see [Duj14] for an introduction to this topic; the bifurcation
current is denoted by Tbif).

Corollary 3.3. — Let f(z, w) = (p(z), wd), with deg(p) = d > 3. Assume that in
Pd(C), p ∈ Supp(T kbif) for some 1 6 k 6 d − 1 and that (d − 1 − k) critical points
are attracted by sinks. Then f belongs to the closure of the interior of the bifurcation
locus in Hd(P2).

Notice that this holds in particular when p belongs to the Shilov boundary of the
connectedness locus (corresponding to the case k = d− 1).

Proof of Theorem 3.1. — Observe first that it is enough to prove the result under the
assumption

(A2’) there exists a simple critical point c for p and an integer k > 1 such that
pk(c) ∈ E.

Indeed let p0 be a polynomial satisfying (A1) and (A2). Since p0 belongs to the
bifurcation locus, it has an active critical point c. Taking a branched cover of param-
eter space, we may always assume that c can be followed holomorphically as p 7→ cp.
Also, E locally persists as a repelling set Ep in a neighborhood of p0. A well-known
and elementary normal families argument shows that there exists an arbitrary small
perturbation p1 of p0 and an integer k such that pk1(cp1) ∈ Ep1 . Furthermore the set of
polynomials p ∈ Pd possessing a multiple critical point is algebraic. Since E is infinite,
the set of polynomials p ∈ Pd such that p(cp) ∈ E is not locally analytic near p1.

Altogether, it follows that there is a sequence of polynomials pj satisfying (A1) and
(A2’) and converging to p0. Thus, if the theorem has been shown to hold under the
assumptions (A1) and (A2’) we simply pick such a sequence and get that the result
holds for p0 as well.

In a first stage let us prove the theorem in the case where k = 1.

Step 1: topological stability of the hyperbolic set. — For ε = 0, f = f0 admits a basic
repelling set E = E × S1. Notice that E has empty interior in the plane. If g∈Hd
is sufficiently close to f , E = E(f) admits a continuation E(g) as a hyperbolic set,
that is, there exists a continuous (even holomorphic in g) family of equivariant home-
omorphisms hf,g : E(f)→ E(g). Actually there is more:

Lemma 3.4. — The conjugating homeomorphism hf,g can be extended to a homeo-
morphism of P2 (not compatible with the dynamics) depending continuously on g and
such that hf,f = id.

J.É.P. — M., 2017, tome 4



820 R. Dujardin

Proof. — The result is more or less part of the folklore. For completeness we sketch
the argument. Let U be an isolating neighborhood of E , which can be assumed to
have smooth boundary, and N be a neighborhood of f in Hd such that for g ∈ N ,⋂
n>0 g

−n(U) = E(g) (here and in the rest of the proof only preimages remaining in U
are taken into account). By the hyperbolicity assumption (and reducing U and N a
bit if necessary), there exists δ > 0 and λ > 1 so that if x, y ∈ U are such that fk(x)

and fk(y) remain in U and d(fk(x), fk(y)) 6 δ for 0 6 k 6 n then d(x, y) < δλ−n,
and the same is true for every g ∈ N . Reducing U and N again if necessary, we may
assume that for every g ∈ N and x ∈ U different preimages of x under g stay far apart,
so that each such preimage can be followed unequivocally as g varies in N . In addition
we can assume that for every x, the continuation g−1(x) of any given preimage f−1(x)

of x satisfies d(f−1(x), g−1(x)) < ε for g ∈ N , where ε < δ(1− 1/λ)/3.
Given such g we will construct the conjugacy h = hf,g by starting from ∂U . Fix

h = id on ∂U , then define h : f−1(∂U)→ g−1(∂U) by assigning to every y ∈ f−1(∂U)

the corresponding preimage of f(y) under g, and finally extend h to a homeomorphism
from U r f−1(U) to U r g−1(U). In addition we can ensure that h is ε-close to the
identity. Now, for every x ∈ U rE(f) we set h(x) = g−k◦h◦fk(x), where k is the last
integer such that fk(x) ∈ U , and g−k is the inverse branch of fk at fk(x) obtained by
continuation of f−k : fk(x) 7→ x. In this way we get an equivariant homeomorphism
h : U r E(f)→ U r E(g).

The point is to show that this conjugacy extends continuously to E(f). Then the
resulting extension will be a homeomorphism by reversing the roles of f and g, which
simply extends to P2 by declaring that h = id outside U , thereby concluding the
proof.

To prove that such an extension exists, we need to prove that for every x ∈ E , if
(xn) ∈ (U r E)N is any sequence converging to x then (h(xn)) converges and its limit
does not depend on (xn).

As a first step towards this result, let us show that for every x ∈ U r E , we have
that d(x, h(x)) < δ/3. For this, let k be the last integer such that fk(x) ∈ U and let
us show by induction on q that d(fk−q(x), gk−q(h(x))) 6 ε

∑q
j=0 λ

−j . Then the result
follows from our choice of ε by putting q = k. For q = 0, gk(h(x)) = h(fk(x)), and
d(fk(x), h(fk(x))) 6 ε by definition of h. Now assume the result has been proved for
some 0 6 q 6 k − 1. Then

d(fk−q−1(x), gk−q−1(h(x)))

6 d(f−1(fk−q(x)), g−1(gk−q(h(x)))),

where f−1, g−1 are appropriate inverse branches,

6 d(f−1(fk−q(x)), g−1(fk−q(x))) + d(g−1(fk−q(x)), g−1(gk−q(h(x))))

6 ε+
1

λ
d(fk−q(x), gk−q(h(x))),

where the last inequality follows from the definition of ε and the induction step. The
estimate d(x, h(x)) < δ/3 follows.

J.É.P. — M., 2017, tome 4



Non-density of stability for holomorphic mappings on Pk 821

We are now in position to conclude the argument. If (xn) and (yn) are two sequences
converging to x, then for large n, the orbit of xn (resp. yn) shadows that of x for
a long time. More precisely there exists k = k(n) −→

n→∞
∞ such that for j 6 k,

d(f j(xn), f j(yn)) < δ/3. Therefore

d(h(f j(xn)), h(f j(yn))) = d(gj(h(xn)), gj(h(yn))) < δ,

and we conclude that d(h(xn), h(yn)) < δλ−k(n). The same argument applied to xn
and xm for large n,m implies that (h(xn)) is a Cauchy sequence. Altogether, we infer
that the sequence (h(xn)) converges to a limit which depends only on x. This implies
that the conjugacy extends to E and finishes the proof of the lemma. �

Step 2: analysis of fε. — In this paragraph we put fε(z, w) = (p(z) + εq(w), wd) as in
the statement of the theorem (an explicit expression for q will be given afterwards),
and work only within the family (fε), where ε ranges in a small neighborhood of 0 ∈ C.
For notational ease, all dynamical objects will be indexed by ε (like Eε, etc.). The
problem is semi-local around E so we work in C2. Also, we normalize the z-coordinate
so that p(c) = 0.

For every ε, the vertical line C = {c} × C is a critical component of fε. We set
Vε = fε({c} × C), which is parameterized by

(1) Vε =
{

(εq(w), wd), w ∈ C
}
.

The solid torus C × S1 is totally invariant under the dynamics and contains Eε. For
small enough ε, the hyperbolic set Eε is homeomorphic to and close to E × S1. Then
from (A1) and Lemma 3.4 (applied to f

∣∣
C×S1) its complement in C×S1 admits both

bounded connected components (the inside part of Eε) and a unique unbounded one
(the outside).

The following lemma provides a form of “topological transversality” between Vε
and Eε.

Lemma 3.5. — There exists a polynomial q of degree 6 2 and a sequence εj → 0 such
that for ε = εj, the real analytic curve

vε = Vε ∩ (C× S1) =
{

(εq(w), wd), |w| = 1
}

intersects both the inside and the outside of Eε.

Proof. — Take q of the form q(w) = (w−1)q̃(w). Then the fiber {w = 1} is invariant
under fε. Since in addition fε(z, 1) = (p(z), 1) does not depend on ε, we get that
Eε ∩ {w = 1} = E ×{1} (indeed, if x ∈ E ×{1} the fε-orbit of x trivially shadows its
f -orbit). The curve vε intersects {w = 1} in d points εq(ζk), where ζ = e2iπ/d (here
we identify {w = 1} with C and drop the second coordinate). Notice that for k = 0,
εq(1) = 0 belongs to E. Put ζ± = ζ±1.

Denote by Out(E) (resp. Inn(E)) the unbounded component of (resp. the union of
bounded connected components of) the complement of E in C, which by assumption
are both non-empty. Remark that the uniform hyperbolicity and transitivity of E
imply that every x ∈ E is accumulated both by Out(E) and Inn(E).
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Claim. — There exists α so that for q(w) = (w − 1)(w − α), there exist εj → 0 so
that εq(ζ−) (resp. εq(ζ+)) belongs to Inn(E) (resp. Out(E)).

Indeed let α ∈ R be such that (ζ+ − α)/(ζ− − α) = eiθ with θ /∈ πQ and assume
that the claim is false. Then for every small enough ε, εq(ζ−) ∈ Out(E) implies that
εq(ζ+) /∈ Inn(E). Using the above remark we reformulate this as

εq(ζ−) ∈ Out(E) =⇒ εq(ζ+) ∈ Cr Inn(E) = Out(E) ∪ E = Out(E),

so by continuity we conclude that

εq(ζ−) ∈ Out(E) =⇒ εq(ζ+) ∈ Out(E).

Of course the reverse implication holds by symmetry, so we get that

εq(ζ−) ∈ Out(E) ⇐⇒ εq(ζ+) ∈ Out(E).

Taking the complement and putting δ = εq(ζ−), we conclude that for every small
enough δ ∈ C,

(2) δ ∈ Inn(E) ⇐⇒ δ
q(ζ+)

q(ζ−)
∈ Inn(E).

Observe that
q(ζ+)

q(ζ−)
=
ζ+ − 1

ζ− − 1

ζ+ − α
ζ− − α

= −e2iπ/d ζ
+ − α
ζ− − α

= −e2iπ/deiθ = eiθ
′
, with θ′ /∈ πQ,

therefore by (2), Inn(E) is invariant under an irrational rotation about 0. Now, if Ω

is an open ball in Inn(E) close to 0, its orbit under this irrational rotation contains a
circle about 0, which contradicts the fact that 0 ∈ Out(E), and concludes the proof
of the claim.

Note that when E is a Jordan curve, which is often the case in practice (see
Lemma 3.6), the argument can be simplified a bit. In particular E cannot be invariant
under multiplication by e2iπ/d at 0 so we can simply choose q(w) = w − 1.

Summing up, we have shown that for ε = εj , vε ∩ {w = 1} intersects different
connected components of {w = 1}rE. Thus to conclude the proof of the lemma it is
enough to prove that for ε small enough the map x 7→ Component(x) induces a 1-1
correspondence between the connected components of {w = 1}rE and the connected
components of (C× S1) r Eε.

Indeed this is obvious for ε = 0. Now, when we vary ε, Lemma 3.4 shows that
there is a homeomorphism hε of P2 such that hε(E) = Eε, which is homotopic to
the identity. Since fε

∣∣
{w=1} does not depend on ε, the construction of hε shows that

we can choose hε = id on this fiber. Thus for every x ∈ {w = 1} r E, hε sends the
connected component of (C × S1) r E containing x to the connected component of
(C × S1) r Eε containing x, which was the desired claim. This finishes the proof of
Lemma 3.5. �
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Step 3: robustness of the Misiurewicz phenomenon in Hd(P2). — Consider an arbitrary
holomorphic map f ′ ∈ Hd(P2) close to f0. Let us first analyze how the post-critical
component V0 can be continued for f ′ (this has been done explicitly before for the
family (fε)). Again, the problem is semi-local around E so for convenience we work
in coordinates in C2. The vertical line {c} × C is a component of multiplicity 1 of
Crit(f0), and moreover Crit(f0) is smooth along {c} × C outside {w = 0}. Therefore
every compact piece of ({c} × C) r {w = 0} can be followed as a part of the critical
set for f ′ close to f0. More specifically, if r is so small that D(c, r) contains no other
critical point of p, and if we let U = D(c, r) × {1/10 < |w| < 10}, there exists a
neighborhood N(f0) such that for every f ′ ∈ N(f0), Crit(f ′) ∩ U is of multiplicity 1

and consists in an annulus A(f ′) which is a graph over A = {c}× {1/10 < |w| < 10},
and converges to A as f ′ → f0. Finally we define V (f ′) to be the component of
f ′(Crit(f ′)) containing f ′(A(f ′)).

Fix a continuous function ϕ0 : C × S1 → R (depending only on z ∈ C) such
that E0 = {ϕ0 = 0}, Inn(E0) = {ϕ0 < 0} and Out(E0) = {ϕ0 > 0}. Extend it to C2

by putting ϕ0(z, w) := ϕ0(z). Define also ψ0 by ψ0(z, w) = |w| − 1, and let Φ0 =

(ϕ0, ψ0) : C2 → R2, so that E0 = {Φ0 = 0}. By Lemma 3.4, for f ′ close to f0, there
exists a continuous map Φf ′ = (ϕf ′ , ψf ′) : C2 → R2 such that E(f ′) = {Φf ′ = 0}.
Notice that for f ′ = fε, since Eε ⊂ C× S1, we can choose ψfε =: ψε = ψ0.

Let now f ′ = fεj be as in Lemma 3.5. We will use elementary algebraic topology
to show that V (f ′) intersects E(f ′) for f ′ close to fεj . Working in the natural pa-
rameterization of Vε given in (1), the real valued function ϕεj changes sign along the
segment [ζ−, ζ+] of the real curve vεj , say ϕεj (ζ−) < 0 < ϕεj (ζ

+). In other words,
ϕεj ◦ fεj (c, ·) changes sign along the segment [ζ−, ζ+] of the unit circle.

Consider a simple loop ` in the complex plane, starting at ζ−, then joining it to ζ+

outside the unit disk, and then returning back to ζ− inside the unit disk, and staying
in the annulus A (e.g. we can take the exponential of the oriented boundary of the
rectangle [1− ρ, 1 + ρ]×

[
− 2π

d ,
2π
d

]
for some small ρ > 0.) Then the loop fεj ({c} × `)

is disjoint from Eεj and the winding number of Φεj along fεj ({c} × `) is equal to 1.
For f ′ sufficiently close to fεj , we can lift {c}× ` to a loop `′ contained in A(f ′) ⊂

Crit(f ′). By continuity, the winding number of Φf ′ along f ′ ◦ `′ is 1. Since `′ bounds
a disk in A(f ′), we infer that Φf ′ must vanish on f ′(A(f ′)). In other words, V (f ′)

intersects E(f ′), which was the desired result.
To conclude that a robust Misiurewicz bifurcation occurs at fεj , it remains to

check that the intersection between V (f ′) and E(f ′) that we have produced is proper.
For this, it is enough to observe that there are product maps (p1(z), wd), with p1

arbitrary close to p, such that if c1 ∈ Crit(p1) is the critical point continuing c, then
p1(c1) /∈ E(p1). Indeed c is active at p in Pd(C) so under arbitrary small perturbations,
it can be sent into the basin of a sink. This finishes the proof of the theorem in the
case where k = 1.

It remains to treat the case where k is arbitrary. Observe that we can assume that
pj(c) is not critical for 1 6 j 6 k, otherwise we replace c by the last appearing critical
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point in this orbit segment. The structure of the proof is the same. Step 1 doesn’t
need to be modified.

For Step 2, since in the case k = 1 we have used the explicit parameteriza-
tion of fε({c} × C), here rather than working with fkε (Crit(fε)), we show that
fε(Crit(fε)) intersects f−(k−1)

ε (Eε) in topologically transverse manner for a well-
chosen sequence (εj). The only slight difficulty to keep in mind when pulling back is
that Eε can intersect other components of the post-critical set.

We put F = p−(k−1)(E) and normalize the z coordinate so that p(c) = 0 ∈ F . As
in the previous case let q be of the form q(w) = (w−1)(w−α). Let Fε = f

−(k−1)
ε (Eε)

which is contained in C × S1. For ε = 0, F0 = F × S1 but now Fε needn’t be
homeomorphic to F0. Since f is proper and dominant Fε is a compact set with empty
interior. Thus if Ω is a bounded connected component of (C × S1) r Eε, f−(k−1)

ε (Ω)

is a union of bounded components of (C × S1) r Fε. It follows that in C × S1,
Inn(Fε) = f

−(k−1)
ε (Inn(Eε)) and likewise for Out(Fε).

We have that Fε ∩ {w = 1} = F , and if (z, 1) ∈ Inn(F ) in C, then (z, 1) ∈ Inn(Fε)
in C × S1, and likewise for the outer part. Indeed fk−1(z, 1) = (pk−1(z), 1) and
pk−1(z) ∈ Inn(E) so (pk−1(z), 1) ∈ Inn(Eε) and the result follows by pulling back the
corresponding inner component. So we can argue exactly as in Lemma 3.5 to conclude
that there exists a sequence εj → 0 such that the real curve ve = fε({c}×C)∩(C×S1)

intersects both Inn(Fε) and Out(Fε).
This analysis being done, we can push forward by fk−1

εj to get a segment of the
real analytic curve fkεj ({c} × C) ∩ (C × S1) whose endpoints belong to Inn(Eεj ) and
Out(Eεj ) respectively and apply the argument of Step 3 without modification. The
proof is complete. �

Corollary 3.2 is a direct consequence of the following lemma.

Lemma 3.6. — Let p be a polynomial of degree d > 3 with marked critical points
c1, . . . , cd−1. Assume that c2, . . . , cd−1 are attracted by attracting cycles and that c1 is
active. Then there exists p̃ arbitrary close to p satisfying assumptions (A1) and (A2).

Proof. — Observe first that if p is an arbitrary polynomial and B is the immediate
basin of attraction of an attracting cycle of period `, such that ∂B contains no critical
point nor parabolic periodic points, then by Mañé’s lemma [Mañ93] ∂B is a hyperbolic
set, which obviously disconnects the plane. We claim that it is basic, that is, transitive
and locally maximal. Local maximality follows from general arguments: namely by
[PU10, Lem. 6.1.2] it follows from the fact that f

∣∣
∂B is an open map (due to the

absence of critical points).
To prove transitivity, let Ω be a component of B (f `(Ω) = Ω). It is enough to show

that f `
∣∣
∂Ω

is transitive. Uniform hyperbolicity implies that ∂Ω is locally connected,
therefore the Riemann map φ : D → Ω extends by continuity to φ : D → Ω. In addi-
tion φ

∣∣
D must be injective otherwise contradicting the polynomial convexity of Ω.

Thus ∂B is a Jordan curve. (This result actually holds in much greater generality, see
[RY08]).
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The formula φf `φ−1 defines a self-map of the unit disk, which can be extended by
Schwarz reflexion to a rational map on P1 preserving the unit circle, hence a Blaschke
product. Now the Julia set of a Blaschke product is either the unit circle or a Cantor
set inside the unit circle, and the second case occurs only if there is an attracting
or parabolic fixed point on the circle, which is not the case here. We conclude that
the Julia set is the circle, hence topologically transitive (even topologically mixing).
Coming back to f we conclude that f `

∣∣
∂Ω

is topologically mixing, which yields the
desired claim.

Under the assumptions of the lemma, let B be the immediate attracting basin of
the cycle attracting, say, c2, which is robust under perturbations, and consider the
active critical point c1. Since p is a bifurcating polynomial, one can make a cycle of
period `m bifurcate close to p, so there exists p1 close to p with a parabolic point α
of period `m and multiplier different from ±1. Then:

(1) α /∈ ∂B: indeed p`m1 behaves like a rational rotation of order greater than 2

at α, so there cannot exist an invariant Jordan curve through α. On the other hand
by [RY08] ∂B is a Jordan curve invariant under p`.

(2) α must attract c1 under iteration of p`m1 , therefore c1 /∈ ∂B.

This implies that for this polynomial p1, ∂B is a basic repeller disconnecting the plane
so (A1) holds. Since in addition p1 has a parabolic cycle, (A2) holds and the corollary
follows. �

Proof of Corollary 3.3. — We freely use the formalism of bifurcation currents, see
[Duj14] for an account. By passing to a branched cover, it is no loss of generality
to assume that the critical points are marked as c1, . . . , cd−1. Let Ti, 1 6 i 6 d − 1,
be the associated bifurcation currents. Since p ∈ Supp(T kbif), reordering the crit-
ical points if necessary, we can assume that p ∈ Supp(T1 ∧ · · · ∧ Tk) and that
ck+1, . . . , cd−1 are attracted by sinks. Then, using the continuity of the potentials
of the Ti, we infer that there exists a sequence of subvarieties [Wn] of codimension
k − 1 in Pd along which c2, . . . , ck are periodic and a sequence of integers (dn) such
that T1 ∧ · · · ∧ Tk = limn→∞ T1 ∧ d−1

n [Wn] (see [DF08, Th. 6.16]). Therefore arbitrary
close to p there are polynomials with one active critical point and the remaining ones
attracted by periodic sinks. The result then follows from Corollary 3.2. �

4. Robust bifurcations from fractal geometry

In this section we consider product mappings of the form f(z, w) = (p(z), wd + κ),
where p admits a repelling fixed point z0 that is almost parabolic, i.e., the multiplier
p′(z0) satisfies 1 < |p′(z0)| < 1.01, and κ is large. We show that certain perturbations
of f exhibit blenders, in the sense of Bonatti and Díaz [BD96], after proper rescaling.
The degree 2 case requires a slightly different treatment so we handle the cases d > 3

and d = 2 separately. Also we strive for a uniformity in κ which allows to cover the
parabolic case as well (see Corollary 4.11).
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4.1. Estimates for Iterated Functions Systems in C. — It is well-known [DK88,
HS16] that the limit set of the IFS generated by two affine maps of the form `±(z) =

µz ± 1 has empty interior when µ is non real and |µ| is sufficiently close to 1. Since
we will need precise estimates as well as variants of this result, we give a detailed
treatment. It will be convenient for us to work with mappings that are contractions
on the unit disk, so we write them in a slightly different form.

Let L = (`j)
d
j=1 be a family of holomorphic maps `j : D→ `j(D) b D. Since the `j

contract the Poincaré metric they define an IFS whose limit set is

E =
⋂
n>0

⋃
|J|=n

`jn ◦ · · · ◦ `j1(D)

(we use the classical multi-index notation J = (j1, . . . , jn)). We say that the IFS L
satisfies the covering property on an open set ∆ ⊂ D if

⋃d
j=1 `j(∆) ⊃ ∆. It then follows

that ∆ ⊂ E and this property obviously persists for any small (C1) perturbation
of (`j).

Our first model situation concerns an IFS with d > 3 branches roughly directed by
dth roots of unity.

Lemma 4.1. — Let d > 3 and L = (`j)
d
j=1 be the IFS generated by the affine maps

`j : z 7−→ mz + αj(1− |m|)e(2πi/d)j ,

where 0.98 < |m| < 1 and αj is such that 3/5 < |αj | < 1 and |argαj | < π/20. Then L
satisfies the covering property on the disk D (0, 1/10).

Proof. — Since |α| < 1 we have that `j(D) b D so we are in the above situation. Let
now z in D (0, 1/10), we have to prove that `−1

j (z) ∈ D (0, 1/10) for some j. We will
show that if arg(z) ∈ [−π/3, π/3] then j = d (or equivalently j = 0) is convenient.
Then the other cases follow, since the unit circle is covered by translates of [−π/3, π/3]

by dth roots of unity.
We compute `−1

0 (z) = 1
m (z − α0(1− |m|)). We have to show that for z = ρeiθ, with

ρ61/10 and |θ|6π/3, then
∣∣`−1

0 (z)
∣∣<1/10, or equivalently |z−α0(1−|m|)|< |m|/10.

Now,

|z − α0(1− |m|)|2 = ρ2 + |α0|2 (1− |m|)2 − 2< (zα0(1− |m|))

6 ρ2 + (1− |m|)2 − 2ρ |α0| cos(arg(z)− arg(α0))(1− |m|)

6 ρ2 + (1− |m|)2 − 2

5
ρ(1− |m|),

where in last line we use |α0| > 3/5 and cos(arg(z) − arg(α0)) > 1/3. So we are left
to showing that

ρ2 + (1− |m|)2 − 2

5
ρ(1− |m|) < |m|

2

102
, for ρ 6 1

10
and 0.98 < |m| < 1.
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For the sake of this computation, put 1− |m| = δ < 1/50. The previous equation can
be rewritten as

ρ2 + δ2 − 2

5
ρδ <

(1− δ)2

102
⇐⇒ ρ

(
ρ− 2

5
δ
)
<

(1− δ)2

102
− δ2.

Since ρ 6 1/10, to prove the last inequality it is enough to show that

ρ− 2

5
δ <

(1− δ)2

10
− 10δ2 ⇐⇒ ρ− 1

10
<

1

5
δ − 99

10
δ2 =

1

5
δ
(

1− 99

2
δ
)
,

and the latter is true because the left hand side is non-positive while the right hand
side is positive. �

Remark 4.2. — Notice that conjugating by a rotation implies that for every fixed θ,
the same result holds when αj(1−|m|) is replaced by eiθαj(1−|m|) in the expression
of `j .

In view of 2-dimensional applications, it is useful to point out a slight reformulation
of this result. Let A be the range of allowed values for α in Lemma 4.1, i.e.,

(3) A =
{
α ∈ C,

3

5
< |α| < 1, |arg(α)| < π

20

}
.

Lemma 4.3. — Let d > 3 and L = (`j)
d
j=1 be the IFS generated by the affine maps

`j : z 7−→ mz + αj(1− |m|)e(2πi/d)j .

where 0.98 < |m| < 1. Fix η > 0 and assume that for every j = 1, . . . , d, the disk
D(αj , η) is contained in A.

Then for every z0 ∈ D (0, 1/10), there exists j such that

`−1
j (D(z0, η(1− |m|))) ⊂ D (0, 1/10) .

Proof. — Notice that when η tends to 0 this is precisely the statement of Lemma 4.1.
In the general case, we simply observe that for every z, when α varies in a disk of
radius η, `−1

j (z) ranges in a disk of radius η(1− |m|)/|m|. For η > 0, put Aη =

{α ∈ A,D(α, η)) ⊂ A} (beware that this is the opposite of a η-neighborhood). If for
some z,

`−1
j (z) ∈ D (0, 1/10) for every α ∈ A

(this is what we have proved for z in an angular sector of width 2π/3 and j = 0) then

`−1
j (z) ∈ D

(
0,

1

10
− η 1− |m|

|m|

)
for every α ∈ Aη.

Now, since `−1
j (D(z, r)) = D

(
`−1
j (z), r/|m|

)
, we infer that for α ∈ Aη, the subset

`−1
j (D(z, η(1−|m|))) is contained inD (0, 1/10), which was the result to be proved. �

For an IFS L, we define Ln to the IFS generated by n-fold compositions of the
generators of L. It has the same limit set as L. Here is an analogue of Lemma 4.1 for
an IFS with two branches. In this case the multiplier needs to be chosen close to the
imaginary axis.
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Lemma 4.4. — Let L = `± be the IFS generated by the affine maps

`± : z 7−→ mz ± α(1− |m|),

where 0.99 < |m| < 1, |arg(m)− π/2| < π/50 and α is a complex number with
0.9 < |α| < 1. Then L2 satisfies the covering property on the disk D (0, 1/10).

Proof. — To establish the result, we show that L2 = (`2+, `+ ◦ `−, `− ◦ `+, `2−) satisfies
the assumptions of Lemma 4.1 (up to conjugating by an appropriate rotation). Indeed,
observe first that conjugating by a rotation, we can assume that α is a positive real
number. Now, let us compute the expression of `2+:

`2+(z) = m2z + (m+ 1)α(1− |m|) = m2z + β++(1− |m|2), where β++ =
(m+ 1)α

|m|+ 1
.

Observe first that 0.98 < |m|2 < 1. Next, we see that β++ is approximately equal to
1+i
2 α. More precisely, given the assumptions on m it can be shown that:

• 1.8 < |m+ 1|2 < 2.2, therefore 0.6 < |(m+ 1)α|/(|m|+ 1) < 0.8;
• |arg (m+ 1)− π/4| < π/20.

For `+ ◦ `−, `− ◦ `+ and `2−, we have analogous estimates, with π/4 replaced by −π/4,
3π/4 and 5π/4 respectively. Thus, conjugating by a rotation of angle π/4, we are in
position to apply Lemma 4.1, and the result follows. �

4.2. Blenders in C2. — We now study a 2-dimensional version of the phenomenon
studied in Section 4.1. Similarly to (3) we define the angular sector

(4) A′ =
{
α ∈ C, 0.7 < |α| < 0.9, |arg(α)| < π

40

}
.

It is easily shown that for every α ∈ A′, the disk D
(
α, 1/40

)
is contained in A,

therefore if αj ∈ A′, the conclusion of Lemma 4.3 holds for any η < 1/40.

Lemma 4.5. — Let d > 3 and L = (Lj)
d
j=1 be an IFS in D2 generated by biholomorphic

contractions of the form

Lj(z, w) = (`j(z), ϕj(z, w)),

and let E be its limit set. Assume that `j is of the form

`j : z 7−→ mz + αj(1− |m|)e(2πi/d)j ,

where 0.98 < |m| < 1 and αj ∈ A′, and that ϕj : D2 → D is a holomorphic map such
that ∣∣∣∣∂ϕj∂z

∣∣∣∣ < 1 and
∣∣∣∣∂ϕj∂w

∣∣∣∣ < 1

2
.

Then any vertical graph Γ intersecting D(0, 1/10) × D, whose slope is bounded by
1

100 (1− |m|) must intersect E, that is Γ ∩ E 6= ∅.
Furthermore, the same holds for any IFS L generated by (Lj)

d
j=1, whenever

(5)
∥∥Lj − Lj∥∥C1 <

1

1000
(1− |m|).
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Note that by the Cauchy estimates a control on the C0 norm of Lj − Lj in a slightly
larger domain is enough to achieve (5).

Proof. — Let us work directly with the perturbed situation. Let G be the set of vertical
graphs Γ in D2 of the form z = γ(w) with |γ′| < 1

100 (1− |m|) and |γ(w0)| < 1/10 for
some w0 ∈ D.

We want to show that if Γ ∈ G then Γ ∩ E(L) 6= ∅. For this we must prove that
there exists an infinite sequence (jk) such that(2) Γ ∩

(
Lj1 ◦ · · · ◦ Ljk(D2)

)
6= ∅, or in

other words, that L−1

jk
◦ · · · ◦ L−1

j1 is well-defined on some piece of Γ.
Arguing by induction, to establish this property it is enough to show that if Γ ∈ G

there exists j ∈ {1, . . . , d} such that L−1

j (Γ) ∩ D2 ∈ G. Write Lj = Lj + εj . We first
observe that the assumption on the slope implies that the diameter of the first pro-
jection of Γ is smaller than 1

50 (1− |m|), hence contained in a disk D
(
z0,

1
50 (1− |m|)

)
for some z0 ∈ D (0, 1/10). Let j ∈ {1, . . . , d} be as provided by Lemma 4.3 for this
value of z0, and consider L−1

j (Γ) (for notational ease we drop the restriction to D2).
This is a subvariety contained in L−1

j

(
D
(
z0,

1
50 (1− |m|)

)
× D

)
. We claim that it is

contained in D (0, 1/10)× D.
Indeed, writing in coordinates Lj = (`j + ε1, ϕj + ε2), we see that if (z, w)

is such that Lj(z, w) belongs to D
(
z0,

1
50 (1− |m|)

)
× D, then `j(z) + ε1(z, w) ∈

D
(
z0,

1
50 (1− |m|)

)
. Since by assumption, |ε1(z, w)| < 10−3(1 − |m|) it follows that

`j(z) ∈ D
(
z0,

1
45 (1− |m|)

)
. By Lemma 4.3 this implies that z ∈ D (0, 1/10), thereby

establishing our claim.
The equation of L−1

j (Γ) is of the form

(6) `j(z) + ε1(z, w) = γ (ϕj(z, w) + ε2(z, w)) ,

which can be rewritten as

(7) z = `−1
j (γ (ϕj(z, w) + ε2(z, w))− ε1(z, w)) .

The z-derivative of the right hand side of this equation is smaller than 1 so the
contraction mapping principle tells us that it has a unique solution for each w. In
other words L−1

j (Γ) is a vertical graph. Finally, the implicit function theorem applied
to (6) implies that the slope of this graph is bounded by

|γ′|
(

1
2 + |∂ε2/∂w|

)
+ |∂ε1/∂w|

|m| − |γ′| (1 + |∂ε2/∂z|)− |∂ε1/∂z|
<

1

100
(1− |m|)

and we are done. �

Remark 4.6. — A similar result holds for an IFS with two branches of the form
(`±(z), ϕ±(z, w), for `±(z) = mz ± α(1− |m|) and m close to the imaginary axis, as
in Lemma 4.4. Indeed, exactly as in the proof of that lemma, it is enough to take two
iterates of the IFS to get back to the setting of Lemma 4.5.

(2)Notice the order of compositions.
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4.3. Blenders for endomorphisms of P2 and the post-critical set

Theorem 4.7. — Let d > 3 and f : P2 → P2 be a product map of the form

f(z, w) = (p(z), q(w)) = (p(z), wd + κ),

with deg(p) = d. Assume that the polynomial p belongs to the bifurcation locus in Pd
and admits a repelling fixed point z0 of low multiplier: 1 < |p′(z0)| < 1.01.

Then there exists a constant κ0 depending only on d such that if |κ| > κ0, f belongs
to the closure of the interior of the bifurcation locus in Hd(P2).

It is easy to construct polynomials p satisfying the assumptions of the theorem for
every d > 3. A variant of this construction is given in Theorem 4.12 below which
allows to treat the case d = 2 as well.

Proof. — We translate the z coordinate so that z0 = 0, and put m = (p′(0))−1, so
that m is a complex number such that 0.99 < |m| < 1. To fix the ideas we work
in the case d = 3, the adaptation to the general case is easy and left to the reader.
Furthermore to ease notation we replace κ by −κ so that the second coordinate
becomes q(w) = w3 − κ.

Step 1: analysis of Jq. — When κ is large, the Julia set of q is a Cantor set; here we
describe its geometry. Consider the disk Dκ := D(0, 2 |κ|1/3). The critical point 0

satisfies q(0) = κ /∈ Dκ so q−1(Dκ) is the union of 3 topological disks, invariant under
a rotation of angle 2π/3. Fix a cube root κ1/3 of κ. If x ∈ Dκ, solving the equation
w3 − κ = x yields

w3 = κ+ x = κ
(

1 +
x

κ

)
, hence w = κ1/3ζ

(
1 +

x

3κ
+O

(
|κ|−4/3))

,

where ζ ∈
{

1, j, j2
}
ranges over the set of cube roots of unity. Therefore we see that

q−1(Dκ) is approximately the union of 3 disks of radius 2/3 |κ|1/3 centered at the cube
roots of κ. Define q−1

ζ to be the inverse branch of q on Dκ such that q−1
ζ (0) = ζκ1/3.

We introduce the new coordinate w̃ = 1
2κ
−1/3w. After coordinate change, the

expression of q becomes q̃(w̃) = 1
2κ

2/3(8w̃3 − 1), so that for large enough κ, q̃−1(D)

is made of 3 components respectively contained in D
(

1
2ζ,

1
2 |κ|

−2/3), ζ ∈ {1, j, j2
}
.

Similarly, from the Cauchy estimate we infer that |(q̃−1
ζ )′| 6 |κ|−2/3 on D.

Step 2: rescaling and construction of a blender. — Close to the origin, p behaves like the
multiplication by p′(0), more precisely we have p(z) = p′(0)z + O(z2). In particular
there is a unique inverse branch p−1

0 defined in a neighborhood of 0 of size δ0(p) and
such that p−1

0 (0) = 0.
For 0 < δ � δ0(p) we rescale the disk D(0, δ) to unit size by introducing the

new coordinate z̃ = δ−1z. In the new coordinate, p becomes p̃(·) = δ−1p(δ·), thus
p̃(z̃) = p′(0)z̃+O(δ) where the O(·) is uniform for z ∈ D, and likewise for the inverse
map p̃−1

0 (z̃) = mz̃ + O(δ). Similar results hold for the derivatives by applying the
Cauchy estimates in a slightly larger disk.
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In the new coordinate system (z̃, w̃) =
(
δ−1z, 1

2κ
−1/3w

)
=: φ(z, w), we have an

IFS with 3 branches on D2 defined by the (p̃−1
0 , q̃−1

ζ ) for ζ ∈
{

1, j, j2
}
. Its limit set Ẽ

is equal to {0} × Jq. Now we perturb f̃ by introducing

f̃•(z̃, w̃) = (p̃(z̃)− 2α(1− |m|)w̃, q̃(w̃)),

where α is a real number in the interval (0.7, 0.9): once for all we choose α = 0.8. We
denote by Ẽ• the corresponding limit set. Notice that in the original coordinates, the
corresponding expression is

(8) φ−1 ◦ f̃• ◦ φ : (z, w) 7−→ (p(z) + εw, q(w)) = fε(z, w) for ε = −δα(1− |m|)
κ1/3

.

The IFS induced by f̃• on D2 is induced by 3 inverse branches for f̃• of the form

(9) (z̃, w̃) 7−→
(
f̃•
)−1

ζ
(z̃, w̃) =

(
p̃−1

0

(
z̃ + 2α(1− |m|)q̃−1

ζ (w̃)
)
, q̃−1
ζ (w̃)

)
=
(
mz̃ + αm(1− |m|)ζ

(
1 +O

(
|κ|−2/3))

+O (δ) ,
1

2
ζ +O

(
|κ|−2/3))

.

Further conjugating the first coordinate by a rotation of angle arg(m), we can assume
that the translation part in the first component of

(
f̃•
)−1

ζ
equals α |m| (1− |m|) (see

also Remark 4.2). Hence if δ is so small and κ so large that (5) is satisfied, applying
Lemma 4.5 (with α |m| instead of α, which is licit since α |m| ∈ (0.7, 0.9)), we deduce
that if V is any vertical graph contained in D(0, 1/10) × D and small enough slope,
then Ṽ ∩ Ẽ• 6= ∅.

Notice that δ and κ can be chosen independently from each other. By Step 1 the
terms O

(
|κ|−2/3) are actually smaller than |κ|−2/3, hence choosing |κ| > 20003/2 is

enough.(3) Likewise, we have to choose δ so that the term O(δ) in the first component
of (9) is roughly bounded by 1

2000 (1− |m|).

Step 3.0: conclusion in a particular case. — Let f be as in the statement of the theorem,
and fix κ large enough so that the previous requirements are satisfied. We will first
prove the result under the simplifying assumption that there exists a simple critical
point c such that p(c) = 0 (recall that 0 is the moderately repelling fixed point).

The basic set E(f) = {0} × Jq is contained in J∗, so by Lemma 2.3 this property
persists in a neighborhood of f . Notice that arbitrary close to f there are maps f1 for
which E(f1) is disjoint from the post-critical set: it is enough to consider product maps
of the form (p1(z), q(w)) for which p1 has a repelling fixed point at 0 not belonging
to the post-critical set. It follows that any intersection between E(g) and g(Crit(g))

for g close to f is proper in H3(P2) so by Proposition 2.5 it gives rise to bifurcations.
Consider the perturbation fε(z, w) = (p(z) + εw, q(w)) as in (8), and let us show

that for small enough ε 6= 0, fε lies in the interior of the bifurcation locus in H3(P2).
If ε is small enough then δ = |κ|1/3 |ε|/0.8(1− |m|) satisfies the requirements of Step 2,
so E(fε) is a blender-type Cantor set contained in D(0, δ) × Dκ (recall that Dκ =

D(0, 2 |κ|1/3)).

(3)There is no attempt to optimize the bound on κ here.
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In the rescaled coordinates (z̃, w̃), the vertical line {c/δ}×C is a component of the
critical set of f̃•, and its image is

Ṽ• := {(−2α(1− |m|)w̃, q̃(w̃)), w̃ ∈ C)} .

The intersection Ṽ• ∩ D2 is the union of 3 vertical graphs of the form

z̃ = −2α(1− |m|)q̃−1
ζ (w̃), w̃ ∈ D, ζ ∈

{
1, j, j2

}
,

in particular these graphs are contained in D (0, 1/10)× D and their slope is smaller
than 2(1 − |m|)|κ|−2/3. Thus by Step 2 we deduce that Ṽ• ∩ Ẽ• 6= ∅, therefore
fε(Crit(fε)) ∩ Eε 6= ∅.

If now g is close to fε, as in the proof of Theorem 3.1 (see the beginning of Step 3
there), every compact piece of {c} × (C r {0}) can be followed as part of Crit(g),
so g(Crit(g)) contains three vertical graphs in D(0, δ) × Dκ which are close to the
corresponding ones for fε. Likewise, the basic set E(g) is induced by three inverse
branches g−1

ζ close to the corresponding ones for fε, thus Lemma 4.5 implies that
E(g) ∩ g(Crit(g)) 6= ∅. This shows that for small ε 6= 0, fε ∈ B̊if, hence f ∈ B̊if, as
desired.

Step 3.1: conclusion in the general case. — Let us now assume that p is an arbitrary
polynomial satisfying the assumptions of the theorem. Replacing p by an arbitrary
close perturbation, we may assume that there exists a simple critical point c and an
integer ` > 1 such that p`(c) = 0. Indeed p belongs to the bifurcation locus so it
admits an active critical point. We may suppose that all critical points are simple
because the locus of polynomials with a multiple critical point is a proper subvariety
and the bifurcation locus is not pluripolar. Now, either 0 is already the image of a
critical point and we are done, or we can make a conjugacy depending holomorphically
on p such that p(1) = 0 and 0 is fixed. Since c is active, Montel’s theorem implies that
perturbing p slightly it can be mapped under iteration onto 0 or 1, and we are done.

Notice that we can also assume that the orbit segment p(c), . . . , p`(c) contains no
other critical point: otherwise we replace c by the last appearing critical point in this
orbit.

As in the case ` = 1, for small ε we consider the map defined by fε(z, w) =

(p(z) + εw, q(w)), which admits a blender-type Cantor set E(fε) in D(0, δ)×Dκ, for
δ = |κ|1/3 |ε|/0.8(1− |m|).

We need to show that this Cantor set intersects the post-critical set. Then as before
this intersection will be robust under further perturbations and we infer that fε ∈ B̊if,
hence f ∈ B̊if. The difficulty is that we cannot control f `ε({c} × C) precisely enough
to guarantee that it contains an almost flat vertical graph in the rescaled bidisk.(4)

Instead we will use Proposition 2.2 together with a graph transform argument.
We start with a lemma, which will be proven afterwards.

(4)Note that already for ` = 1 the variation of f`ε({c}×C)∩ (D(0, δ)×Dκ) with ε is of the same
order of magnitude as δ, and this quantity tends to increase exponentially with `.
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Lemma 4.8. — For small ε there exists a holomorphically varying fixed point xε for f3
ε ,

contained in E(fε) ∩ (D (0, δ/10)×Dκ).

Let us show that there exist arbitrary small non-zero values of ε such that xε
belongs to the post-critical set of fε. Indeed for small ε0 > 0, consider the family
(fε)ε∈D(0,ε0). For ε = 0, x0 belongs to {0} × C = f `0({c} × C). So either for every
small ε, xε ∈ f `ε({c} × C) and we are done, or the family (fε)ε∈D(0,ε0) admits bifur-
cations. Within this family, the bifurcation locus cannot have isolated points because
by [BBD17, Th. 1.6] it supports the measure ddcL which has continuous potential.
It follows that 0 ∈ D(0, ε0) is an accumulation point of the bifurcation locus, so by
Proposition 2.2 there exists a sequence of parameters 0 6= εk → 0, such that xεk
belongs to the post-critical set.

In addition Crit(fε) = (Crit(p) × C) ∪ (C × Crit(q)) is a union of vertical and
horizontal lines. The unique horizontal component {0} × C escapes to infinity so we
conclude that for such parameters εk, there exists a critical point c′ for p and an
integer N such that xε ∈ fNε ({c′} × C). The image of a graph over Dκ in the second
coordinate is the union of 3 such graphs: indeed write Γ = {z = ϕ(w), w ∈ Dκ}, and
observe that

f(Γ) =
⋃

ζ∈{1,j,j2}

{
z = p(ϕ(q−1

ζ (w)) + εq−1
ζ (w), w ∈ Dκ

}
.

Thus we infer that the irreducible component of fnε ({c′}×C) through xε is a vertical
graph. In particular it is smooth and its tangent vector at xε is not parallel to the
horizontal axis.

The following lemma then allows to conclude the proof.

Lemma 4.9. — The periodic point xε of Lemma 4.8 admits a strong unstable manifold
Wuu(xε) that is a graph over the second coordinate in D (0, δ)×Dκ with slope smaller
than δ(1− |m|)/200 |κ|1/3. Furthermore if Γ is any any germ of holomorphic disk
through xε, not tangent to the horizontal direction, the sequence of cut-off iterates
f3n(Γ)

∣∣
D(0,δ)×Dκ

converges to Wuu(xε).

For ε = εk, starting from the component V of fNε ({c′} × C) through xε, we it-
erate under f3

ε , and the lemma says that for large n, f3n
ε (V ) contains a graph in

D (0, δ) × Dκ of slope less than δ(1− |m|)/200 |κ|1/3, intersecting D (0, δ/10) × Dκ.
In the rescaled coordinates, this corresponds to the requirements of Lemma 4.5 so
we get an intersection between fN+3n

ε (Crit(fε)) and E(fε). Notice that the vertical
graph producing this intersection is the image under fN+3n

ε of a disk of the form
{c′} × ∆, where ∆ is a small topological disk close to a cube root of κ. Finally, as
in the particular case of Step 3.0, if g is a small perturbation of fε, {c′} ×∆ can be
lifted to a disk ∆(g) ⊂ Crit(g), and gN+3n(∆(g)) is C1-close to the corresponding
component of fN+3n

ε (Crit(fε)), therefore it intersects E(g). This completes the proof
of the theorem. �

Before proving Lemma 4.8 let us state a Rouché-like fixed point theorem in two
variables:
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Proposition 4.10. — Let h : N
(
B
)
→ C2 be a holomorphic map defined in a neigh-

borhood of a bidisk in C2. Assume that h admits a unique simple fixed point in B. If
η : N

(
B
)
→ C2 is a holomorphic map such that ‖η‖ < ‖h− id‖ on ∂B then h + η

admits a unique fixed point in B.

Proof. — Consider the continuous family of holomorphic mappings Ft = F + tη for
t ∈ [0, 1]. For t = 0, the equation Ft(z) = z admits a unique simple solution in B. The
assumption on η implies that for every η in [0, 1], ‖Ft(z)− z‖ > 0 on ∂B. Thus the
continuity of intersection indices of properly intersection varieties of complementary
dimensions implies the result. �

Proof of Lemma 4.8. — To understand the argument, let us come back to the linear
IFS studied in Lemma 4.1 (for d = 3). Each `j admits a unique fixed point, and there
are two cases. Either m is far away from 1 and this fixed point is close to the origin.
Going to two dimensions, we will choose xε corresponding to one of these fixed points.
When m is close to 1 the fixed point is close to the boundary of the unit disk, so it is
not convenient for us. On the other hand if we look at `1◦`2◦`3, the translation terms
almost compensate and we get a fixed point close to the origin, now corresponding to
a period 3 point for fε.

For the details it is convenient to work in the rescaled coordinate system (z̃, w̃):
the expression of f̃−1

• is given in (9) (hereafter we drop the subscript for notational
convenience), and we look for a fixed point (resp. a period 3 point) in D(0, 1/10)×D.
Assume firstm is far away from 1: |m− 1| > 1/10 and consider the inverse branch f̃−1

1 .
We write f̃−1

1 (z̃, w̃) as the sum of an affine term and a perturbation:

f̃−1
1 (z̃, w̃) = h(z̃, w̃) + η(z̃, w̃), where h(z̃, w̃) = (mz̃ + αm(1− |m|), 1/2) .

Solving h(z̃, w̃) = (z̃, w̃) yields the solution
(αm(1−|m|)

m−1 , 1
2

)
which belongs to

D(0, 1/10)× D because ∣∣∣∣αm(1− |m|)
m− 1

∣∣∣∣ 6 0.8/100

1/10
=

8

100

(recall α = 0.8 and 1− |m| < 0.01). On the other hand if |z̃| = 1/10 we get

‖h(z̃, w̃)− (z̃, w̃)‖ > |(m− 1)z̃ + αm(1− |m|)| > 1

10
|m− 1| − 0.8

100
>

2

1000
,

and when |w̃| = 1 considering the second component gives ‖h(z̃, w̃)− (z̃, w̃)‖ > 1/3,
so

‖h(z̃, w̃)− (z̃, w̃)‖ > 2

1000
on ∂

(
D
(
0, 1/10

)
× D

)
.

Finally the choices already made for κ and δ imply that ‖η(z̃, w̃)‖ < 2/1000 and
Proposition 4.10 yields the desired fixed point. (Recall that Theorem 4.7 claims a
uniformity in κ; on the other hand δ can be freely reduced).
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Suppose now that |m− 1| 6 1/10, and consider the inverse branch for f̃3 given by
f̃−1
j2 ◦ f̃

−1
j ◦ f̃−1

1 . After computation, it expresses in coordinates as

f̃−1
j2 ◦ f̃

−1
j ◦ f̃

−1
1 (z̃, w̃) =

(
m3z̃+αm(1−|m|)(j2 +mj+m2)+η1(z̃, w̃),

j2

2
+η2(z̃, w̃)

)
,

with

(10) |η1(z̃, w̃)| 6 3(1− |m|) |κ|−2/3
+ 3O(δ) and |η2(z̃, w̃)| 6 |κ|−2/3

.

In this case we show directly that f̃−1
j2 ◦ f̃

−1
j ◦ f̃−1

1 sends the bidisk D
(
0, 1/10

)
× D

strictly into itself, so it admits a unique fixed point by contraction of the Kobayashi
metric. By the maximum principle it is enough to show that the boundary of the bidisk
is mapped into its interior, and clearly we only need to focus on the first coordinate.
For |z̃| = 1/10 the first component in (4.3) is bounded by

|m|3

10
+ α(1− |m|)

∣∣∣∣m3 − 1

m− j

∣∣∣∣+ |η1(z̃, w̃)| 6 |m|
3

10
+ 2(1− |m|)2 +

1

100
(1− |m|)

6
|m|
10

+
3

100
(1− |m|) < 1

10
,

where in the first line we use∣∣∣∣m3 − 1

m− j

∣∣∣∣ 6 ∣∣∣∣ (1−m)(m2 +m+ 1)

m− j

∣∣∣∣ 6 3(1− |m|)
|1− j| − |m− 1|

6
3√

3− 1/10
(1− |m|) 6 2(1− |m|)

and the bound for |η1(z̃, w̃)| coming from our choice of κ and δ in Step 2. Thus the
desired contraction property is established and the result follows. �

Proof of Lemma 4.9. — The existence and the graph transform property of the strong
unstable manifold are classical. In our case the specific geometric features of fε make
the construction rather easy so we sketch it for convenience. Since fε preserves the
foliation {w = Cst}, corresponding to the least repelling direction, xε admits a weak
unstable manifold contained in a horizontal leaf. On the other hand, if g denotes the
inverse branch of f3

ε such that xε = g(xε), then gn(D(0, δ) × Dκ) is a sequence of
topological bidisks converging to {xε}, which are asymptotically stretched in the hor-
izontal direction. Therefore, if Γ is a germ of holomorphic disk through xε transverse
to the horizontal leaf, for large enough n it crosses gn(D(0, δ) × Dκ) vertically, so
iterating forward, the cut-off iterate

f3n
ε (Γ)

∣∣
D(0,δ)×Dκ

= f3n
ε (Γ ∩ gn(D(0, δ)×Dκ))

is a vertical graph in D(0, δ) × Dκ. Furthermore, it Γ and Γ′ are two such graphs,
then the C0 distance between Γ and Γ′ in gn(D(0, δ) ×Dκ) is O(|κ|−n), and it gets
multiplied by a factor O(|m|−3n

) under f3n
ε . Applying this to Γ and f3

ε (Γ) shows that
f3n
ε (Γ)

∣∣
D(0,δ)×Dκ

is Cauchy, hence converges, and its limit is by definition the strong
unstable manifold Wuu(xε).
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It remains to establish the estimate on the slope of Wuu(xε). For this it is more
convenient to work in the rescaled coordinates (z̃, w̃), in which case the expected
bound on the slope is 1

100 (1 − |m|). Since in these coordinates, the strong unstable
manifold is the only vertical graph invariant under the graph transform, it is enough
to show that the set of vertical graphs through xε with slope bounded by 1

100 (1−|m|)
is graph transform invariant. As already seen, if z̃ = ϕ(w̃) is a vertical graph in D×D,
its forward image under f̃ε, restricted to C × D is the union of 3 vertical graphs of
equation

z̃ = p̃(ϕ(q̃−1
ζ (w̃)))− 2α(1− |m|)q−1

ζ (w̃).

Assuming ‖ϕ′‖D 6
1

100 (1− |m|), each of them has a slope bounded by∥∥(q−1
ζ )′

∥∥
D ‖p̃

′‖D ‖ϕ
′‖D+2(1−|m|)

∥∥(q−1
ζ )′

∥∥
D6(1−|m|)

( 1

100
|κ|−2/3 ‖p̃′‖D+2 |κ|−2/3

)
.

Since for small δ, ‖p̃′‖D 6 2 and |κ|2/3 > 2000, this quantity is bounded by 1
100 (1−|m|).

For a general graph Γ we cannot iterate this reasoning because its forward iterates
may leave the bidisk. However in our case we start with Γ 3 xε which is either fixed
or of period 3 (with its orbit contained in D2), so we indeed get an invariant set of
vertical graphs and we are done. �

The uniformity in κ in Theorem 4.7 allows to let the multiplier tend to 1.

Corollary 4.11. — Let d > 3 and f : P2 → P2 be a product map of the form

f(z, w) = (p(z), wd + κ).

Assume p0 admits a neutral fixed point. Then there exists a constant κ0 = κ0(d) such
that if |κ| > κ0, f belongs to the closure of the interior of the bifurcation locus in
Hd(P2).

Proof. — Using the uniformity with respect to κ in Theorem 4.7 it is enough to show
that in every neighborhood of p in Pd there exists a polynomial p1 with a repelling
fixed point of low multiplier, belonging to the bifurcation locus.

Without loss of generality we may assume that z0 is rationally indifferent, that
is p′(z0) = e2iπp/q. Taking a branched cover of Pd if necessary (this is needed only
if p′(z0) = 1), we can follow the fixed point z0 holomorphically and normalize the
coordinates so that z0 = 0. Fix a one-dimensional holomorphic family of polynomials
(pλ)λ∈D with p0 = p and such that d

dλ (p′λ(0))
∣∣
λ=0
6= 0. Put ρλ = p′λ(0). Then a

classical computation shows that there exists a local change of coordinates x = ϕλ(z)

depending holomorphically on λ such that in the new coordinates fqλ expresses as

fqλ(x) = ρqλx+ xνq+1 + xνq+2gλ(x)

for some integer ν > 1 (see [DS85, Prop. 1] or [DL15, Prop. 8.1]). Write ρqλ = 1 + bλ+

O(λ2), where b = q dρλ/dλ
∣∣
λ=0

. Then

(11) fqλ(x)− x = x
(
(ρqλ − 1) + xνq + xνq+1gλ(x)

)
,
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hence fqλ admits νq+1 fixed points near the origin: one at 0 with multiplier ρqλ and the
remaining νq ones approximately equal to the (νq)th roots of (1−ρqλ). More precisely
plugging into the right hand side of (11), we get that these fixed points (αi)i=1,...,νq

satisfy
(αi)

νq = (1− ρqλ)− (αi)
νq+1gλ(αi) = −bλ+O

(
|λ|1+1/νq)

,

and their multipliers are of the form

(fqλ)′(αi) = ρqλ + (νq + 1)ανqi +O
(
(αi)

νq+1
)

= 1− νqbλ+O
(
|λ|1+1/νq)

.

We see that arbitrary close to the origin in parameter space, in the regime where 0 is
repelling under fqλ (i.e., |ρqλ| > 1), we can arrange so that |(fqλ)′(αi)| < 1 (e.g. when bλ
is real and positive) or |(fqλ)′(αi)| > 1 (by taking bλ on the imaginary axis). Therefore
bifurcations happen and the result follows. �

We now state a version of Theorem 4.7 in degree 2.

Theorem 4.12. — There exists a parameter c in the Mandelbrot set such that for
every large enough κ ∈ C, the product map f(z, w) = (z2 + c, w2 + κ) belongs to the
closure of the interior of the bifurcation locus in H2(P2).

Proof (sketch). — Pick c ∈ M such that z2 + c has a fixed point z0 whose multiplier
2z0 =: m−1 satisfies 0.99 < |m| < 1 and |arg(m)− π/2| < π/50. (The existence of
such a parameter follows exactly as in the previous corollary, by starting from the
boundary of the main cardioid and perturbing in the appropriate direction.) Shifting c
slightly we can further arrange that the critical point 0 falls onto z0 under iteration.
Arguing as in Step 2 of the proof of Theorem 4.7 (using Lemma 4.4 and Remark 4.6)
shows that the perturbation fε(z, w) = (z2 + c + εw,w2 + κ) admits a blender in
D(z0, δ) × D(0, 2 |κ|1/2) for δ = |κ|1/2 |ε|/0.95(1− |m|), when ε is small and κ is
larger than some absolute constant. Finally the argument given in the third step of
the proof implies the existence of a sequence εj → 0 such that the post-critical set
of fεj robustly intersects this blender, and the result follows. We leave the reader fill
the details. �

5. Further considerations and open problems

5.1. Bifurcations of saddle sets. — In this paragraph we show that persistent ho-
moclinic tangencies, hence robust homoclinic bifurcations, can coexist with J∗-stabi-
lity. This implies that the robust bifurcations constructed in this paper are not induced
by the Newhouse phenomenon. This also highlights the large gap between J∗-stability
and structural stability on P2.

Theorem 5.1. — There exists a J∗-stable family of holomorphic endomorphisms of P2

whose members possess a horseshoe with a generic tangency between the stable and
unstable laminations.
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Proof. — The idea is to embed a polynomial automorphism h of C2 with a robust
homoclinic tangency in an endomorphism of P2 (this idea already appears in Buzzard
[Buz97] and Gavosto [Gav98]). What we need to do is to arrange so that J∗-stability
holds.

The first observation is that we can choose h to be a product of two complex Hénon
mappings of the same degree. Indeed, the automorphisms constructed by Buzzard are
of the form F = F3 ◦F2 ◦F1, where F1(z, w) = (z+ f(w), w), F2(z, w) = (z, w+ g(z))

and F3(z, w) = (cz, c−1w) (see [Buz97, p. 394]). At the initial stage of Buzzard’s
argument, f and g are holomorphic mappings defined on certain open subsets of C,
which are later approximated by polynomials. Thus we can assume that f and g are
polynomials of the same (large) degree d. Let ι be the involution (z, w) 7→ (w, z) and
write F as (F3◦F2◦ι)◦(ι◦F1). Then ι◦F1 is a conservative Hénon map, but F3◦F2◦ι
is not of the right form. So we introduce the linear map ` : (z, w) 7→ (z, cw), and write

F = (F3 ◦ F2 ◦ ι ◦ `−1) ◦ (` ◦ ι ◦ F1) := h− ◦ h+.

We leave the reader check that h− and h+ are of the form (z, w) 7→ (w, c±1z+p±(w)),
with p± of degree d, as desired.

With notation as above introduce Fε = h−ε ◦ h+
ε , where

h±ε (z, w) = (w + εzd, c±1z + p±(w)).

This is a holomorphic endomorphism of P2 which on every given compact subset
in C2 can be seen as a small perturbation of F . In particular if we fix ε small enough
and let c and p± vary we get a holomorphic family of endomorphisms of P2 with a
saddle set exhibiting a persistent generic tangency between its stable and unstable
laminations.

What remains to do is to show that this family is J∗-stable. This will be a conse-
quence of the following lemma.

Lemma 5.2. — Let hε(z, w) = (w+εzd, cz+p(w)), where p is a polynomial of degree d.
Let β = 1/(d− 1), α be a real number such that β/d < α < β and

Vε =
{

(z, w) ∈ C2,
1

2
ε−β < |z| < 3

2
ε−β , |w| < ε−α

}
.

Then for ε sufficiently small (locally uniformly with respect to the parameters c and p),
h−1
ε (Vε) b Vε and hε : h−1

ε (Vε)→ Vε is an unbranched covering.

Applying this lemma successively to h+
ε and h−ε , we deduce that for small ε,

F−1
ε (Vε)bVε and Fε : F−1

ε (Vε)→ Vε is a covering of degree (2d)2. Since deg(Fε)=2d,
we infer that J∗(Fε) ⊂ Vε, and since in addition preimages in Vε can be followed locally
holomorphically with the parameters, it follows that the family obtained by fixing ε
and varying c and p± is locally J∗-stable. Indeed pick any point γ ∈ Vε, and view it
as a (constant) graph from the parameter space to P2. Then, since F−1

ε (Vε) ⊂ Vε and
Fε : F−1

ε (Vε) → Vε is a covering, γ is persistently disjoint from the post-critical set,
so Proposition 2.2 applies and we are done. �
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Proof of Lemma 5.2. — To ease notation, without loss of generality we assume that
c = 1. We rescale the coordinates by putting z̃ = ε−1/(d−1)z = ε−βz and w̃ = w. In
the new coordinates (still denoted by (z, w) for convenience) hε becomes

hε : (z, w) 7−→
(
εβw + zd, ε−βz + p (w)

)
and Vε becomes A(1/2, 3/2) × D(0, ε−α), where A(1/2, 3/2) is the open annulus
bounded by the circles of radii 1/2 and 3/2.

Let now (u, v) ∈ Vε and (z, w) be such that hε(z, w) = (u, v), that is:

(i) εβw + zd = u and (ii) ε−βz + p (w) = v.

Then we claim that εβ |w| � |z|d. Indeed otherwise since |u| ≈ 1 we get that εβ |w| & 1

hence |w| & ε−β , therefore |p(w)| & ε−dβ . Since dβ > α, this implies that |p(w)| � |v|
hence by (ii) ε−β |z| ≈ |p(w)| ≈ |w|d & ε−dβ , so |z| & ε−β(d−1) = ε−1. Plugging
this back into (i), we see that εβ |w| ≈ |z|d. Together with ε−β |z| ≈ |w|d, this yields
|z| ≈ εβ/(d+1) = ε1/(d2−1) = o(1). This is contradictory, so the claim is proved.

Since εβ |w| � |z|d, the equation (i) admits d unramified solutions in z, close to
the dth roots of u. Therefore ε−β |z| ≈ ε−β � |v| so for each such z, solving (ii) in
the variable w gives d solutions satisfying |w|d ≈ ε−β , that is |w| ≈ ε−β/d, and since
β/d < α these solutions belong to D(0, ε−α).

Finally, the critical set is the curve of equation dzd−1p′(w) = 1. If (z, w) ∈
Crit(hε) ∩ Vε we have |z| ≈ 1 so we get that |w| = O(1). Thus the second coor-
dinate of hε(z, w) is of order of magnitude ε−β � ε−α. This means that critical
points escape Vε after one iteration (i.e., hε(Crit(hε)∩Vε)∩Vε = ∅) and we conclude
that hε is unbranched in h−1

ε (Vε). �

Remark 5.3. — Another consequence of Theorem 5.1 is that there exists a J∗-stable
family whose generic members have with infinitely many repelling periodic points
outside J∗. Indeed since the polynomial automorphism F is conservative, by a small
perturbation we can choose the Jacobian to be either smaller of larger than 1. In the
latter case, it is well known that the persistent homoclinic tangency gives rise to a
residual set of parameters with infinitely many sources.

5.2. Higher dimension. — So far we have concentrated on complex dimension 2. The
results of Section 4 can actually be adapted to an arbitrary number of dimensions. Let
us only state one result, which guarantees the existence of open sets in the bifurcation
locus in Hd(Pk) for every d > 2 and every k > 3.

Theorem 5.4. — Let f be a polynomial mapping in C2 of the form f(z, w) =

(p(z), wd + κ), where p ∈ Pd admits a fixed point z0 of multiplier 1 < |p′(z0)| < 1.01

and belongs to the bifurcation locus in Pd (if d = 2 we further require that
|arg(p′(z0))− π/2| < π/50).

Let g be a regular polynomial mapping in Ck−2 admitting a repelling fixed point
in J∗ with eigenvalues larger than 2.
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Then if |κ| > κ0(d, k) is sufficiently large, the product map (f, g) belongs to the
closure of the interior of the bifurcation locus in Hd(Pk).

Proof. — We focus on the case d = 3 and leave the adaptation to degree 2 to the
reader. We keep notation as in the proof of Theorem 4.7 and explain how to generalize
the argument. Put x = (z, w) and denote by y the variable in Ck−2. A preliminary
observation is that F (x, y) := (f(x), g(y)) defines a regular polynomial mapping in Ck

so it extends holomorphically to Pk. Let y0 be the repelling fixed point for g considered
in the statement of the theorem, and recall that E(f) = {0}×Jwd+κ is a basic repeller
contained in J∗(f). Therefore E(F ) := E(f) × {y0} is a basic repeller contained in
J∗(F ) and this property persists for its continuation after a small perturbation of F
in Hd(Pk) by Lemma 2.3.

Let fε(x) = fε(z, w) = (p(z) + εw,wd + κ) as before, and put Fε(x, y) =

(fε(x), g(y)). Recall from Theorem 4.7 that after translation and rescaling of the
(z, w) coordinate, when ε is small and κ is large, the continuation of {0} × Jq defines
a blender type repeller for fε in the unit bidisk. By assumption, there exists η > 0

such that g admits a contracting inverse branch mapping y0 to itself, of derivative
norm smaller than 1/2 in the polydisk centered at y0 and of radius η. We translate
and rescale the y coordinate by putting ỹ = η−1(y − y0). In the new coordinates
(x̃, ỹ), the resulting map F̃ε defines an IFS on Dk with d branches for every small
enough ε.

The mechanism leading to robust intersections between E(F ) and the post-critical
set will be based on the following higher dimensional version of Lemma 4.5, which is
worth stating precisely.

Lemma 5.5. — Let d > 3 and L = (Lj)
d
j=1 be an IFS in Dk generated by biholomorphic

contractions of the form

Lj(z, ω) = (`j(z), ϕj(z, ω)),

with (z, ω) ∈ D× Dk−1, and let E be its limit set. Assume that `j is of the form

`j(z) = mz + αj(1− |m|)e(2πi/d)j , where 0.98 < |m| < 1 and αj ∈ A′ (see (4)),

and ϕj : Dk → Dk−1 is a holomorphic map such that ‖∂zϕj‖ < 1 and ‖∂ωϕj‖ < 1/2.
Then any vertical graph Γ of the form z = γ(ω) intersecting D(0, 1/10) × Dk−1,

whose slope satisfies ‖dγ‖ 6 1
100
√
k−1

(1− |m|) intersects E.
Furthermore, the same holds for any IFS L generated by (Lj)

d
j=1, whenever the C1

norm of Lj − Lj is bounded by 1
1000
√
k−1

(1− |m|).

The proof is identical to that of Lemma 4.5. The appearance of the factor
√
k − 1 in

the constants comes from the fact that the diameter of the first projection of Γ is now
bounded by diam(Dk−1) × slope(Γ) = 2

√
k − 1 ‖dγ‖. Under the above assumptions

on ε, κ and η, in the rescaled coordinates (and possibly after rotation in z), the IFS
induced by Fε on Dk satisfies the hypotheses of the lemma (see (9)).
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The third step of Theorem 4.7 shows that, possibly after a preliminary perturbation
of p, there exists a sequence of parameters εj → 0 and for every k an integer N ′ =

N + 3n and a component of multiplicity 1 of Crit fεj of the form {c′} ×C, such that
(after coordinate rescaling) fN ′εj ({c′} × C) contains a vertical graph Γ in the unit
bidisk, satisfying the assumptions of Lemma 4.5. Remark that by Lemma 4.9, by
increasing κ we can make the slope of this graph smaller than 1

100
√
k−1

(1− |m|).
Going to dimension k, {c′} × Ck−1 is a component of multiplicity 1 of Fε and

the previous discussion shows that (after rescaling) FN ′εj ({c′} × Ck−1) ∩ Dk admits a
component of the form Γ × Ck−2, hence satisfying the requirements of Lemma 5.5.
In addition, this vertical graph is the image of a piece of Γ × Ck−2 contained in
{c′} × ∆ × U , where ∆ is a disk in C close to a cube root of κ and U is a small
neighborhood of the repelling point y0. Increasing N ′ further if necessary, we can
assume that U is disjoint from Crit(g). Since Crit(Fε) = π−1

1 (Crit(f))∪π−1
2 (Crit(g)),

we infer that Crit(Fε) is smooth along {c′} × C× U .
We are now ready to conclude that Fεj ∈ B̊if. Indeed if G is a small perturbation

of F in Hd(Pk), we can lift {c′} × ∆ × U to an open cell in Crit(G), whose image
Γ(G) under GN ′ is close to Γ× Ck−2. So Lemma 5.5 implies that Γ(G) ∩ E(G) 6= ∅,
and we are done. �

5.3. The interior of the bifurcation locus. — The constructions of Section 4 raise
a number of interesting problems. A natural question after Theorem 4.7 (and Corol-
lary 4.11) is whether in these statements the fixed point z0 can be assumed to be
periodic instead of fixed. Then, using the technique of Corollary 4.11, this suggests
that the hypothesis on p in Theorem 4.7 could simply be replaced by “p belongs to
the bifurcation locus”.

While this paper was on revision, this result was achieved by Taflin by using a
related—but different—method.(5)

Theorem 5.6 (Taflin [Taf17]). — Let f(z, w) = (p(z), q(w)) be a product of two poly-
nomial maps of degree d in C. Then if p or q belongs to the bifurcation locus in Pd(C),
f belongs to the closure of the interior of the bifurcation locus in Hd(P2).

In other words, the bifurcation locus restricted to the subfamily Pd×Pd has empty
interior, nevertheless it should be accumulated at every point by robust bifurcations
in the larger space of holomorphic mappings on P2.

In dimension 1, Shishikura’s theorem on the dimension of the boundary of the
Mandelbrot set [Shi98], as well its generalizations to arbitrary spaces of rational map-
pings by Tan Lei and McMullen [Lei98, McM00] are based on the construction of
Cantor repellers of large dimension (i.e., close to 2). In dimension 2, bifurcations are
created by collisions between the post-critical set (which has Hausdorff dimension 2)
and hyperbolic repellers. Intuition from fractal geometry and real dynamics leads us

(5)The result was explicitly stated as a conjecture in the first version of this paper.
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to think that generically, a collision between the post-critical set and a hyperbolic
repeller of dimension larger than 2 should yield massive bifurcation sets.

Here is a specific situation where we expect such a phenomenon to happen.

Conjecture 5.7. — Let f be a Lattès map on P2. Then f belongs to the closure of
the interior of the bifurcation locus.

Indeed, a Lattès example is semi-conjugate to a multiplication on a complex
2-torus, so it admits hyperbolic repellers of dimension arbitrary close to 4. In addi-
tion, it is conformal so the geometry of the perturbations of these repellers is
expectedly easier to understand than in the general case. Notice that Lattès map-
pings indeed belong to the bifurcation locus since the sum of the Lyapunov exponents
of µf is minimal there (see [BBD17, Th. 6.3]).

Finally, on a more ambitious note, one may ask whether the bifurcation locus is
the closure of its interior in Hd(P2) or if on the contrary there are regions where the
density of stability still holds. As outlined in the introduction, bifurcations are created
when a multiplier of a repelling periodic orbit crosses the unit circle, so an interesting
approach to this problem would be to understand when blenders are created in this
process.
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