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Abstract
Diagnosis of craniofacial conditions is shifting towards pre- and peri-natal stages, since early assessment has
shown to be crucial for the effective treatment of functional and developmental aspects of children. 3D Morphable
Models are a valuable tool for such evaluation. However, limited data availability on 3D newborn geometry, and
highly variable imaging environments, challenge the construction of 3D baby face models. Our hypothesis is
that constructing a bi-linear baby face model that allows identity and expression decoupling, enables to improve
craniofacial and brain function assessments. Thus, given that adult and infants facial expression configurations are
very similar and that 3D facial expressions in babies are difficult to be scanned in a controlled manner, we propose
transferring the facial expressions from the available FaceWarehouse (FW) database to baby scans, to construct a
baby-specific bi-linear expression model. First, we defined a spatial mapping between the BabyFM and the FW.
Then, we propose an automatic neutralization to remove the expressions from the facial scans. Finally, we apply
expression transfer to obtain a complete data tensor. We test the performance and generalization of the resulting
bi-linear model with a test set. Results show that the obtained model allow us to successfully and realistically
manipulate facial expressions of babies while keeping them decoupled from identity variations.
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1 INTRODUCTION
Craniofacial dysmorphology has been highlighted as an
index of developmental disturbance at early stages of
life [LMLP+06; TPBL18; TPM+19], encompassing a
wide range of heterogeneous conditions associated with
many genetic syndromes [HAK+20]. Early recognition
and assessment of craniofacial conditions are often cru-
cial for the effective treatment of functional and devel-
opmental aspects of children [LMLP+06]. For this rea-
son, diagnosis is shifting towards pre- and peri-natal
stages.

Normative population references are needed for cranio-
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facial analysis and 3D Morphable Models (3DMM)
have been proven as a valuable tool for their construc-
tion [KPB+19]. Nonetheless, a crucial aspect to con-
sider when using a 3DMM is that the demographics of
the data used to train the model (e.g., ethnicity, gen-
der and, especially important for our application, age)
must match those of the target population. In addition
to the limited availability of 3D newborn geometries to
train such models, the main challenge is related to a
highly variable imaging environment to obtain such ge-
ometries. Specifically, the variable baby facial expres-
sion during scan acquisition is one of the main factors
affecting model quality and their neutralization is es-
sential to build robust methods. Moreover, fetal facial
expression is believed to be important to investigate the
development of the fetal brain and the central nervous
system [KHN+13].
In this paper, we propose a method to decouple the baby
identity from the expression on a non-controlled ex-
pression dataset. Using the BabyFM [MPT+20], which
was the first 3DMM constructed exclusively from ba-
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bies and newborns, we augment the available 3D data
by transferring the 46 FaceWarehouse (FW) facial ex-
pressions to the original 3D scans used to train the
BabyFM. Our hypothesis is that adding variability and
control over the expression makes the model more gen-
eralizable and reduces the error when performing the
2D-3D fitting from multiple images in which the baby
changes his/her expression.

1.1 Facial 3D Morphable Models
3DMMs are a powerful tool exploited in a large variety
of applications for face analysis [EST+20], face recog-
nition [HV13] and computer vision [MPS21], as well
as for computer graphics [BRV+18], animation [YF20]
and even health [LHCZ21; KPB+19].

The first 3DMM was presented by Blanz and Vetter in
1999 and was built from a limited number of 3D face
scans, mostly in a neutral expression [BV99]. Since
then, numerous approaches have been proposed to build
3DMMs. The simplest one consists in modeling the
facial geometry variation by linear subspaces such as
principal component analysis. However, these methods
encode all geometric variations in the same subspace,
and do not allow modeling different variations indepen-
dently.

Multi-linear models were later presented to decouple
different factors, such as identity and expression. The
most widely used 3D facial expression model is the
FaceWarehouse (FW) [CWZ+14], built from a database
of 150 individuals with 47 blendshapes corresponding
to the 46 Action Units (AU) as described in the Facial
Action Coding System (FACS) [EF02], plus the neu-
tral blendshape. Vlasic et al. [VBPP05] presented two
models: a bi-linear model trained with 15 subjects with
the same ten facial expressions, and a tri-linear one con-
taining 16 subjects with five visemes in five different
expressions. Yin et al. [YWS+] developed a 3D fa-
cial expression database that can be used to construct
bi-linear models. It includes both 3D facial expression
shapes and 2D facial textures of 100 subjects with seven
universal expressions.

Unfortunately, multi-linear models require a complete
data tensor, i.e. there must be a facial scan for each
identity and expression pair. Therefore, multi-linear
models are limited by data availability and they are not
suitable when targeting datasets with sparse or nonuni-
form facial expression. We presented a method that
enables data augmentation to construct a multi-linear
model from a dataset that only contains a single scan
per identity, with an unknown facial expression that, in
most cases, is not neutral.

1.2 Face Transfer
The acquisition of time-varying 3D face scans
has become an increasingly popular technology

for transferring real facial human expressions
to virtual avatars in movies and video games
[CWLZ13; WBLP11; VBPP05]. In addition, this tech-
nology has also been used for face transfer and reenact-
ment of RGB videos [TZS+16; TZN+15; RLMNA18]
and for data augmentation to train 3DMMs and expres-
sion recognition algorithms [WBZB20; TMA19].

The core idea behind the facial expression transfer is
that given two 3D scans of the same person with dif-
ferent expressions, we can locally transfer the expres-
sion to a different person using the displacement vec-
tor (or deformation field) from the reference expression
to the desired one. The limitation of this procedure is
that we need 3D meshes of the source and the target
with the same expression (usually neutral) plus another
3D mesh with the target expression of the same iden-
tity as the source. Moreover, the target and the source
require the same mesh triangulation to apply the de-
formation vector. When transferring expressions or de-
formations between two different databases with differ-
ent triangulation, a mapping between both spaces is re-
quired [SP04; LBB+17]. As we have mentioned, we
cannot control newborns' facial expressions their ex-
pression while being scanned, which hampers the use
of the above ideas.

1.3 Facial Expressions
Facial expressions are configurations of different small
muscle (micromotor) movements in the face [Har16].
Ekman and Friesen's FACS was the first widely used
and empirically validated approach to classifying a
person's emotional state from their facial expressions
[EO79].

There are variations of FACS, such as the Baby FACS,
which code the facial expressions in infants. Both
of them represent an exhaustive catalogue of possible
movements of the human facial musculature [EF02;
Ost06]. Despite the large number of different possible
facial configurations, Ekman et al. [EF02] described a
limited set of 46 AUs that are widely recognized. Any
human expression can be characterized by a specific
combination of AUs.

1.3.1 Facial Expression in Babies

Facial musculature is fully formed and functional at
birth [EO79]. 2-3 weeks old neonates can imitate dif-
ferent actions such as mouth opening and tongue or lip
protrusion. Despite the large debate about the similar-
ity between early infant and adults emotions, there is
agreement over the fact that the muscle movements and
infant facial expressions configurations are very similar
to the adult ones even at early stages [IHH87; OHN92;
CSM93]. However, distinctive facial structures in ba-
bies should be considered.
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(a) Mean BabyFM (b) Open mouth FW (c) NICP Fitting (d) Final Mapping

Figure 1: Mapping FW-BabyFM. (a) and (b) show the models average meshes. Whereas, (c) and (d) show the two
different model fitting stages.

Given that adult and infants facial expression configu-
rations are very similar, and that 3D facial expressions
in babies are difficult to be scanned in a controlled man-
ner, we propose transferring the facial expressions from
the available 3D adult expression databases to baby
scans. We base our work on the FW model, as is the
most widely used model for face transfer and anima-
tion, and it can represent any combinations of facial
muscle movements. Other existing databases provide
overlapping facial movements that substantially reduce
the expression space and model versatility.

2 BABY DATA
Our data consist on 115 3D photogrammetries of the
baby head obtained at the Children's National Hospital
in Washington D.C. The 3D scans have non-neutral ex-
pression and the surface that was not strictly face was
removed [MPT+20].

3 METHODOLOGY
We obtained a data tensor with a complete set of expres-
sions for all identities from a group of non-neutral new-
born scans, to construct a bi-linear model. The spec-
tral correspondence framework was used to establish
the correspondences between the baby scans as detailed
in Morales et al. [MPT+20]. Then, we implemented
the following algorithm to obtain a complete data ten-
sor from the 3D baby scans: 1) we defined a mapping
between the BabyFM and the FW, 2) we trained 3D fa-
cial AUs classifiers to perform expression recognition;
3) we automatically neutralized the baby scan expres-
sions; and 4) we apply expression transfer from FW to
the neutralized baby scans. Each of this step is details
in the following subsections.

3.1 Creating a complete data tensor
3.1.1 Mapping definition
We found a mapping transformation (M ) to represent
surfaces from the FW with the BabyFM triangulation.
Note that both models differ in the number of vertices

(36K in BabyFM vs 11K in FW) and cover the face and
head to a different extent. To facilitate calculating an
accurate mapping (M ), we first triangulated the mouths
from FW using a paraboloid-based approximation (see
Figure 1b), closing the hole and making the registration
more stable. Then, based on the procedure described
in Dai et al. [DPSD20], we performed a multi-stage
fitting that allowed overcoming the possible inaccura-
cies derived from the challenges of establishing corre-
spondences between baby and adult faces given their
anatomical differences. The multi-stage fitting can be
divided in: i) a template adaptation, and ii) an Iterative
Coherent Point Drift (ICPD), each one followed by a
Laplace-Beltrami Regularized Projection (LBRP).

Using the average BabyFM (µBB) and FW mesh (µFW)
with the mouth open as references, we first performed
the template adaptation through a first rigid global
alignment followed by a dynamic adaptation. The
global alignment was based on the 23 anatomical
landmarks of the BabyFM (see Figure 1a), whose
corresponding locations were also manually annotated
in µFW using ParaView-5.4.11. Then, a Non-Rigid Iter-
ative Closest Point (NICP) algorithm with a non-linear
optimization was used to refine the aligment, where
µBB was deformed to fit µFW. This was followed by a
local regularization step using the LBRP.

The above steps yielded the baby-looking facial recon-
struction shown in Figure 1c, due to the constraints im-
posed by the BabyFM. To improve the accuracy of our
reconstruction of µFW, we displaced the BabyFM ver-
tices to the nearest surface point (in barycentric coordi-
nates) in the FW using ICPD, followed by consecutives
LBRP with increasing strength.

The use of barycentric coordinates allows more ac-
curate correspondences, not limited to common land-
marking establishing point-to-point correspondences,
and it also facilitates the mapping between surfaces of
different numbers of vertices, as is our case. Using this
representation, we represent the coordinates pi of each

1 https://www.paraview.org/
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Figure 2: Neutralization pipeline. Considering a non-neutral 3D scan, each patch centered at the anatomical
landmarks considered is projected in the spectral domain and concatenated to form the feature vector. This feature
vector is fed into the AU classifiers and the output is used to synthesize the facial expression of the baby scan in
the FW coordinates by combining the detected AUs (VBB,s). The last step is to apply face transfer to neutralize the
scan using VBB,s.

vertex i of the FW as a function of the nearest BabyFM
vertices as:

pi = α1v1 +α2v2 +α3v3 (1)

where v1, v2, and v3 ∈ R3 are the triangle vertices in
BabyFM coordinates and α1, α2, and α3 ∈ R are the
barycentric coordinate parameters, such that α1 +α2 +
α3 = 1.
Given µBB ∈ R3×N and µFW ∈ R3×M , we defined a
mapping M of dimension M × N to express µFW in
baricentric coordinates of µBB, where each column cor-
responds to the affine combination of µFW vertices to
define pi ∈ µBB. The values α of the triangle on which
pi lies are scalar values ∈ [0,1] and the rest are zero.

3.1.2 3D Facial Expression Recognition
Before transferring a FW facial expression to a given
baby scan, we first need to identify and remove any
expression present in the baby scan, which we refer
to as neutralization. We follow the method proposed
by Derkach et al. [DS18] based on local shape spec-
tral analysis to conduct automatic 3D facial expression
recognition.
As the facial expressions are located in the frontal part
of the face, we compute the spectral representation of
local patches centered at the first 19 anatomical land-
marks of the BabyFM (landmarks of the ears are not
considered as do not add any information for expression
recognition). In our implementation, we define these
patches using a 5-ring neighbourhoods (see Figure 3).
Given a landmark mesh patch P = (V,E) with n ver-
tices where V are the vertices and E the edges connec-
tions, we compute the graph Laplacian LG as an n× n
matrix defined by a discrete Schrödinger operator as:

LG
i j =

 −1 i f (i, j) ∈ E
di i f i = j
0 otherwise

(2)

Figure 3: Local patches used for automatic AU recog-
nition, centered at 19 anatomical facial landmarks, as
defined in Morales et al. [MPT+20].

where di is the valence or degree of vertex i and E are
the edges of the 1-ring neighborhood.

We performed eigen-decomposition of LG to obtain
a local spectral representation of the spatial informa-
tion around every landmark. Then, we defined the τ-
dimensional embedding Φτ = [φ1φ2...φτ ] to represent
the global patch structure. This embedding contained
the eigenvectors ( φ1, ...φτ ) associated with the smallest
eigenvalues, which represent the low frequency infor-
mation. Eliminating high frequencies adds robustness
to local noise.

The mesh coordinates of each patch can be projected
into the spectral domain as

x̃ = Φ
T
τ x (3)

where x̃ are the obtained spectral coefficients and x the
patch coordinates.

We describe each mesh using a feature vector defined as
the concatenation of the spectral coefficients obtained
for its 19 local patches using a 50-dimensional embed-
ding, which has shown to perform well for facial ex-
pression recognition [DS18]. Then, we use these em-
beddings to train the 46 binary support vector machine
(SVM) classifiers using the LIBSVM [CL11].
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Figure 4: Completion of the data tensor. On the right it is illustrated the computation and transferring of the
deformation fields (DFW) of 6 different facial expressions from the FW database to 4 neutralized babies using the
mapping found between the FW and the BabyFM coordinates. And, on the right side it can be seen the completion
of the data tensor after transferring the 6 different facial expressions (columns) to the 4 neutralized babies (rows).

3.1.3 Face transfer

Once we have computed the mapping (M ) between the
FW and the BabyFM, we can express facial expres-
sion deformation vectors from the FW (DFW) under the
BabyFM representation (DBB).

To transfer an expression e to a baby scan with expres-
sion s (i.e. with vertices VBB,s), we randomly select
two scans from an individual of the FW database with
expressions e and s, with vertices VFW,e and VFW,s, re-
spectively. The deformation vector in the FW triangu-
lation (DFW) from s to e is computed as:

DFW = VFW,e −VFW,s. (4)

To achieve expression transfer from the baby mesh
VBB,s to VBB,s, we perform the following operations:

VBB,e = VBB,s +δDBB (5)

DBB = Ain ·M ·DFW (6)

where δ is the weight (strength) of the deformation vec-
tor and DBB is the equivalent to expression deformation
DFW expressed in the coordinates of the BabyFM.

To this end, we need to firstly map the deformation vec-
tor DFW to the BabyFM coordinates by means of the
mapping M (Section 3.1.1) and then align each defor-
mation vector to adapt to the local geometry of the tar-
get individual. The latter is implemented as a set of
local similarity transformations Ain that are computed
by Procrustes alignment of the local neighborhood of
each vertex in VBB,s with respect to M ·VFW,s.

To avoid that the expression transfer depends too much
on a given individual, we repeat the process for κ = 40
randomly selected individuals from the FW database.
The final result, obtained by averaging the obtained
VBB,e, is added to the data tensor. A visual illustration

of this procedure can be seen in Figure 4.

Neutralitzation

The 46 trained classifiers are applied to all the 3D baby
scans, obtaining an automatic estimate of all the AUs
present in each mesh. To neutralize a given scan VBB,s,
we synthesize the facial expression of the baby scan in
the FW coordinates (VFW,s) by combining the detected
AUs. Then, face transfer is applied (Equations 4 - 5),
setting e = neutral, to select VFW,e. An illustration of
this procedure can be seen in Figure 2.

Baby Tensor Expressions

For all the 3D scans that we were able to automatically
neutralize (see Section 4.3), we transferred all the 46
AUs available in the FW database, the six universal ex-
pressions, the compound expressions [Shi15] and some
characteristic baby facial expressions (such as crying
with closed eyes). The detailed list of facial expressions
considered to form the baby data tensor can be found in
Table 2 of the Supplementary Material.

We always started from the neutralized scans, i.e. VBB,s
with s = neutral, while the target expressions e were
those mentioned above, which were transferred to each
available baby subject.

3.2 Bi-linear baby model

After performing face transference we achieved a data
tensor T ∈ R3nverts×nid×nex where nverts is the number of
vertices of the BabyFM triangulation, nid is the num-
ber of baby identities considered after automatic neu-
tralization and nex is the number of facial expressions
that we choose for our expression space. The ob-
tained data tensor is a mode-three tensor with dimen-
sion 93098×95×76.
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Figure 5: Automatic neutralization examples. The first row shows four different original 3D scans and the second
row displays their respective neutralized scan achieved after the proposed automatic neutralization.

Higher-Order Singular Value Decomposition
(HOSVD) is used to decompose the data tensor,
obtaining the following representation:

T = S⊗Uverts ⊗Uid ⊗Uex (7)

where S is the core tensor and the U matrices are the
orthogonal bases for the η different subspaces of the
mode-η tensor.

The decomposition enables us to model and decouple
identity and expression. Thus, a 3D face can be de-
scribed as:

x = C⊗wid ⊗wex + x̄ (8)

where C = S⊗Uverts, x̄ is the mean of the bi-linear, wid
and wex are the identity and expression parameters.

3.2.1 Iterative Fitting
To evaluate the constructed bi-linear model, we recon-
struct a collection of the 3D scans that are independent
to the training scans. A total of 20 3D scans were used
to test the capacity of the bi-linear model to represent
babies that were not included in the training data.

First we perform a Procrustes alignment between the
model and the 3D scan vertices (x). Afterwards, a non-
linear optimization with regularization is used. In each
iteration, we first estimate the identity parameters and
secondly the expression parameters. To initialize the
fitting, expression parameters are set to those corre-
sponding to the neutral expression and the vertices to
the mean of the model. We truncate the model and kept
did = 90 and dex = 50 dimensions.

The shape parameters of the model are obtained using
the following non-linear optimization:

E(w) = β1Everts(w)+β2EPrior(w) (9)

where β1 and β2 are the corresponding weights of each
error term (β1 +β2 = 1). Everts refers to the reconstruc-
tion error of the vertices of the mesh and EPrior to the
error due to the statistical prior that constrains the so-
lution to lie within a hyper-ellipsoid estimated from the

training set (i.e. multi-variate Gaussian assumption).
Each error term depends on the parameters that we are
estimating (w). Thus, we have:

Everts(wid) = ||(C⊗wid ⊗wex)− (x̄−x)||2 (10)

Everts(wex) = ||(C⊗wid ⊗wex)− (x̄−x)||2 (11)

EPrior(wid) = (
wid√

λid
)2 (12)

and
EPrior(wex) = (

wex√
λex

)2 (13)

where x are the 3D scan vertices, λid and λex are the
identity and expression eigenvalues of the correspond-
ing sub-spaces.

4 RESULTS
In this section, we show the results of the above pro-
posed methodology and also, perform different experi-
ments to test the resulting bi-linear model.

4.1 Mapping
The results of the multi-stage procedure implemented
to find an accurate mapping between the BabyFM and
the FW are shown in Figure 1. In (c) it can be seen the
template adaptation result that is still far from the FW
mesh (b). The final mesh obtained after NICP fitting
applying the mapping computed using the barycentric
coordinate representation is shown in (d). In the lat-
ter it can be appreciated the similarity between the FW
original mesh (b) and the one obtained in the BabyFM
coordinates using the computed mapping. Thus, it can
be said that an accurate mapping was found.

4.2 Automatic AU classification
The first 120 identities from the FW database with their
46 respective facial expressions were mapped to the
BabyFM coordinates and then, used for training the AU
classifiers. The remaining identities were used as test
set to evaluate the performance of the classifiers.
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Figure 6: Test Fitting. The first row shows four different babies not included in the training of the model, and the
second row displays their respective reconstruction obtained after fitting the bi-linear model to the original scans.

A total of 46 AU classifiers were trained, obtaining a
mean accuracy of 99.62 ± 0.97% in the test set. The
classifiers with less accuracy were the ones correspond-
ing to the Upper Left and Right Lid Raiser (AU 13 and
14 in the FW database) with an accuracy of 95.67% and
96.31%, respectively. An accuracy of 100% in the test
set was achieved in 30 out of the 46 trained classifiers.
The accuracy of each classifier can be found in Table 1
of the Supplementary Material.

4.3 Neutralization
The evaluation of the 3D scan neutralization was done
by visual inspection, where 3 independent observers
classified the obtained scans as neutral or not neu-
tral. An agreement of 94.52% between the 3 indepen-
dent observers on the classification of the neutralized
scans was archived. As a results 95 scans out of 115
were considered correctly neutralized by the proposed
method and were thus used to construct our data tensor.

A few examples of the results obtained using the pro-
posed automatic neutralization procedure are shown in
Figure 5. The first row shows four different original
3D scans, and the second row displays their respective
neutralized scan achieved. Note that using the pipeline
proposed in Figure 2 we are able to obtain acceptable
neutralizations. The most distinguishable changes be-
tween the original and the neutralized scan are located
in the mouth and cheeks, e.g the closing of the mouth.

4.4 Bi-lienar Model
Once we obtained the complete data tensor, we applied
HOSVD to decompose the tensor and decouple the
identity from the expression in the baby facial geome-
try. To test the performance of the constructed bi-linear
model the following experiments were performed.

4.4.1 Synthetization of Baby Identities

Using the statistics encoded in the identity subspace of
the bi-linear model, the identities with neutral faces of

Figure 7 were randomly synthesized, while the expres-
sion parameters were set to the neutral face parameters
of the model. It can be observed that the constructed
bi-linear model creates new realistic and plausible iden-
tities.

To test the generalization of the model, we change the
expression of the randomly synthesized identities to
evaluate if the model succeed in maintaining the iden-
tity and changing the expression to plausible shapes
while avoiding distortions. As shown in Figure 7, the
obtained changes of expressions are a good represen-
tation of plausible facial expressions for each identity.
Moreover, the expressions can be easily identified.

4.4.2 Interpolation in the expression space
To test if the constructed model is able to represent
expressions that were not part of the training, and if
the expression space is stable to changes, we interpo-
late the expression parameters between different ex-
pressions present in the bi-linear model. Figure 9 shows
the interpolation considering different strengths (from 0
to 1) between happily surprised and happily disgusted;
and between happy and surprise. In the latter, it can be
seen how the baby progressively and realistically raises
the eyebrows and opens the mouth.

4.4.3 Reconstruction error in the test set
Figure 6 shows some qualitative examples of the recon-
structions obtained by fitting the bi-linear model to a
collection of 3D scans that are independent to the train-
ing scans. The main discrepancies between the recon-
structed and the original scans can be located in the re-
gion corresponding to the mouth, which usually is the
noisiest region in the 3D scans. The rest of the facial
shape is reconstructed with high accuracy.

A quantitative analysis was performed by computing
the error between the reconstruction achieved and the
original 3D scan. A mean reconstruction error of 0.928
± 0.142 mm was achieved. In Figure 8, we show the
mean error per vertex across the 20 scans from the test
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Figure 7: Generating synthetic identities and changing their expression. Each row correspond to a randomly
synthesized identity (wid), while each column correspond a different facial expression using the learned expression
parameters of the bi-linear model (wex).

Figure 8: Test reconstruction error. It shows the mean
error per vertex across the 20 scans from the test set
fitting.

set. It can be observed that the highest error (colored in
red) is obtained in the region of the mouth, which is in
agreement with the qualitative analysis.

4.4.4 Data Augmentation

As the reconstructions obtained have a high accuracy,
we can use our approach for data augmentation to im-
prove the created bi-linear model. Once we have the
bi-linear model fitted to a 3D scan, we have its identity
and expression parameters. Thus, if we maintain the
identity parameters (wid) and change the expression pa-
rameters (wid) to the expressions that conform the data
of the model, we obtain new synthetic expressions on
identities different from those used to create the model.
The advantage of this procedure is that no face trans-
fer is needed to change the expression, only the corre-
sponding expression parameters obtained in the model
(Uex). So, in this way we can easily add more variabil-
ity to the model just adding more real identities to the
data tensor and recomputing the bi-linear model. Figure
2 in the Supplementary Materials shows the resulting

changes of expression. Note that plausible expressions
are obtained and the identity of the subjects is kept.

5 CONCLUSIONS
In this paper, we presented a methodology to achieve a
complete baby expression data tensor transferring the
facial expression from the FW adult database to the
BabyFM training set.

The accurate mapping found between the FW and the
BabyFM enable us to transfer facial expressions to the
babies scans and to enrich the baby dataset allowing
the construction of a complete data tensor. Note that
thanks to the AU classifiers, we are able to construct a
synthetic expression with the FW coordinates that imi-
tates the baby expression in the 3D scan and then apply
face transfer from the FW to the baby scan to neutralize
the expression.

Moreover, the different experiments performed in the
obtained bi-linear model show that the obtained model
is a good estimation of the facial shape and expression
of the babies space. It allows us to successfully decou-
ple identity and expression.

As future work, we will use the constructed bi-linear
model to reconstruct the 3D-2D reconstruction from
multiple 2D images taken from different views. Also,
the proposed methodology can be extended to perform
data augmentation of existing non-neutral datasets,
adding facial expressions to each subject.
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