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Abstract General one-loop contributions to the decay pro-
cesses H — f fy and its applications are presented in this
paper. We consider all possible contributions of the additional
heavy vector gauge bosons, heavy fermions, and charged
(also neutral) scalar particles propagating in Feynman loop
diagrams. Therefore, analytic results are valid in a wide class
of models beyond the Standard Model. Analytic formulas
for the form factors are expressed in terms of Passarino-
Veltman functions in the standard notations of LoopTools.
Hence, the decay rates can be evaluated numerically by using
this package. The computations are then applied to the cases
of the Standard Model, U (1) p_1, extension of the Standard
Model as well as Two Higgs Doublet Model. Phenomenolog-
ical results for all the above models are studied. We observe
that the effects of new physics are sizable contributions and
these can be probed at future colliders.

1 Introduction

After discovering the Standard-Model-like (SM-like) Higgs
boson [1,2], one of the main purposes at future colliders like
the high luminosity large hadron collider (HL-LHC) [3,4] as
well as future lepton colliders [5] is to probe the properties
of this boson (mass, couplings, spin and parity, etc). In this
experimental program, the Higgs productions and its decay
rates should be measured as precisely as possible. Based on
these measurements, we can verify the nature of the Higgs
sector. In other words we can understand deeply the dynamic
of the electroweak symmetry breaking. It is well-known that
the Higgs sector is selected as the simplest case in the Stan-
dard Model (SM), since there is only one scalar doublet field.
From theoretical viewpoints, there are no reasons for this
simplest choice. Many models beyond the SM (BSMs) have
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extended the Higgs sector (some of them have also expanded
gauge sectors, introduced mass terms of neutrinos, etc). In
these models many new particles are proposed, for examples,
new heavy gauge bosons, charged and neutral scalar Higgs
as well as new heavy fermions. These new particles may
also contribute to the productions and decay of Higgs boson.
Therefore, the more precise data on the Higgs productions
and decay rates could provide us an important information to
answer the nature of the Higgs sector and, more importantly,
to extract the new physics contributions.

Among all the Higgs decay channels, the processes H —
f fy are of great interest for the following reasons. Firstly,
the decay channels can be measured at the large hadron col-
lider [6-9]. Therefore,these processes can be used to test
the SM at the high energy regions. Secondly, many of new
particles as mentioned in the beginning of this section may
also propagate in the loop diagrams of the decay processes.
Subsequently, the decay rates could provide a useful tool for
constraining new physics parameters. Last but not least, apart
from the SM-like Higgs boson, new neutral Higgs bosons in
BSMs may be mixed with the SM-like one. These effects can
also be observed directly by measuring of the decay rates of
H — f fy.For above reasons, the detailed theoretical eval-
uations of one-loop contributions to the decay of Higgs to
fermion pairs and a photon within the SM and its extensions
are necessary.

Theoretical implications for the decay H — ffy in
the SM at the LHC have been studied in Refs. [10-12].
Moreover, many computations of one-loop contributions to
the decay processes H — f fy are available within the
SM framework [13-20]. The same evaluations for the Higgs
productions at ey colliders have been proposed in [21,22].
One-loop corrections to H — f fy in the context of the
minimal super-symmetric standard model Higgs sector have
been computed in [23]. Furthermore, one-loop contributions
for CP-odd Higgs boson productions in ey collisions have
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been carried out in [24]. In this article, we present general
formulas for one-loop contributions to the decay processes
H — ffy. The analytic results presented in the current
paper are not only valid in the SM but also in many BSMs
in which new particles are proposed such as heavy vector
bosons, heavy fermions, and charged (neutral) scalar parti-
cles that may propagate in the loop diagrams of the decay
processes. The analytic formulas for the form factors are
expressed in terms of Passarino-Veltman (PV) functions in
standard notations of LoopTools [25]. As aresult, they can
be evaluated numerically by using this package. The calcu-
lations are then applied to the SM, the U(1)p_ extension
of the SM [26] and two Higgs doublet models (THDM) [27].
Phenomenological results of the decay processes for these
models are also studied.

We also stress that our analytical results in the present
paper can also be applied to many more BSM frameworks.
In particular, in the super-symmetry models, many super-
partners of fermions and gauge bosons are introduced. Fur-
thermore, with extending the Higgs sector, we encounter
charged and neutral Higgs bosons in this framework. There
exist extra charged gauge bosons in many electroweak gauge
extensions, for examples, the left-right models (LR) con-
structed from the SU (2); x SUQR)r x U(1)y [28-30], the
3-3-1 models (SU (3); x U(1)x) [31-37], the 3-4-1 mod-
els (SU4)r x U(1)x) [37-42], etc. Analytic results in this
paper have already included the contributions by such par-
ticles which may also be exchanged in the loop diagrams
of the aforementioned decay processes. Phenomenological
results for the decay processes in the above models are of
great interest in future. Future publications will be devoted
to these topics.

The layout of the paper is as follows: we first write down
the general Lagrangian and introduce the notation for the
calculations in the Sect. 2. We then present the detailed cal-
culations for one-loop contributionsto H — f fy in Sect. 3.
The applications of this work to the SM, U (1) p_ 1, extensions
of the SM and THDM are also studied in this section. Phe-
nomenological results for these models are analysed at the
end of Sect. 3. Conclusions and outlook are presented in the
Sect. 4. In appendices, we first review briefly U (1) . exten-
sions of the SM and THDM. Feynman rules and all involved
couplings in the decay processes are then shown.

2 Lagrangian and notations

In order to write down the general form of Lagrangian for a
wide class of the BSMs, we start from the well-known con-
tributions that appear in the SM. We then add the extra terms
which are extended from the SM. For example, the two Higgs
doublet model [27] adds a new Higgs doublet that predicts
new charged and neutral scalar Higgs bosons; a model with
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a gauge symmetry U (1) p_y, which proposes a neutral gauge
boson Z’, a neutral Higgs [26,43]; minimal left-right mod-
els with a new non-Abelian gauge symmetry for electroweak
interactions SU (2); x SUQ2)r x U(1)p—r [28-30] intro-
ducing many new particles including charged gauge bosons,
neutral gauge bosons and charged Higgs bosons. The men-
tioned particles give one-loop contributions to the decays
under consideration.

In this section, Feynman rules for the decay channels
H — ffy are derived for the most general extension of
the SM with considering all possible contributions from the
mentioned particles. In this computation, we denote V;, V;
for extra charged gauge bosons, Vko for neutral gauge bosons.
Moreover, §;, S; (S,?) are charged (neutral) Higgs bosons
respectively and f;, f; indicate fermions. In general, the clas-
sical Lagrangian contains the following parts:

L=Li+Lc+ Lo+ Ly (D
where the fermion sector is given by
Ly=vYriDyy 2)

with Dy, = 9, — 3y igy [ Y, T¢ Vg]. In this formula, 7% is
a generator of the corresponding gauge symmetry. The gauge
sector reads

oA T[S ]

where V4, = 9,V — 0,V + gf** VPV with f¢ being
a structure constant of the corresponding gauge group. The
scalar sector is expressed as follows:

Lo=Y Tri(D.®)" (D ®)] -V (®). )
o]

We then derive all the couplings from the full Lagrangian.
The couplings are parameterized in general forms and pre-
sented as follows:

e By expanding the fermion sector, we can derive the ver-
tices of vector boson V with fermions. In detail, the inter-
action terms are parameterized as

Lyry = Z fiyu(g‘l}ffPL +g\I§ffPR)iju+h~C
fi. iV
(&)

with P g = (1 F y5)/2 and h.c is hermitian conjugate
terms.

e Trilinear gauge and quartic gauge couplings are expanded
from the gauge sector:
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Vi, Vi, Vi, Vi
4o (6)
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e Next, the couplings of scalar S (S can be neutral or
charged scalar) to fermions are taken from the Yukawa
part Ly. The interaction terms are expressed as follows:

Lsqify= . FilghPL+ e PRIfS +he.  (T)
firfi»S

e The couplings of scalar S to vector boson V can be
derived from the kinematic term of the Higgs sector. In
detail, we have the interaction terms

Lsyv.ssv.ssvv = Y gsEVI-VI-SI?ViMVJl/L

S¢Vi Vi

+ D0 8sps @SS — @uSHSIVE

s0.8;.v

+ Z gSkV,-VjQSkViMV]?M

Sk Vi vy

0,

+ D 8s5vol@uS)S) — BuS)HSAVH

S,’,SJ’,VO

n
+D 0 gssvvSiSiVEViu
SiSi Vi, Vi

+ 2
51,8, v, v
0 Oy 1
+ ) 85050vvy Si SiVie Vi
50.89. Vi vy
0 01,0, 1,0
+ Z gSI‘]S“].’V,f’\/,(’SiSij Viu
s0.89.v0.vp

oo ®)

IR TACIZRVIU
85,5, vov0SiSiVi " Vi

e Finally, the trilinear scalar and quartic scalar interactions
are from the Higgs potential V (). The interaction terms
are written as

0
Lsss.ssss = Y 85555055
5¢.5i.S;

KRR
+ ) 85059551 5 Ok
57,59, S.51

0 ¢0 0

+ > 850505051 S}k
0 ¢0 ¢O
570.89.87

060 60 ¢0

+ ) 850s050595i S Sk
0 ¢0 ¢0 ¢O
50,50, 0.5

+ ) essasSiSiSkSi+ ()
Si S,k 81

All of the Feynman rules corresponding to the above cou-
plings giving one-loop contributions to the SM-like Higgs
decays H — f fy are collected in Appendix D. In detail,
the propagators that appear in the decay processes in the uni-
tary gauge are shown in Table 6. All the related couplings
that occur in the decay are parameterized in general forms
which are presented in Table 7 (we refer to appendices B and
C for two typical models).

3 Calculations

In this section, one-loop contributions to the decay pro-
cesses H — f(q1) f(g2)y(g3) are calculated in detail. In
the present paper, we consider the computations in the limit
of my — 0 for external fermions. All Feynman diagrams
involving these processes can be grouped into the following
classes (see Fig. 1).

By working in on-shell renormalization scheme, we con-
firm that the contribution of diagrams (e + /) vanishes for
on-shell external photon, as explained in Refs. [44,45]. One
can neglect the Yukawa couplings ys (since my — 0 for
external fermions) in this computation. As a result, the con-
tributions of diagrams (g + k) can be omitted. Following
Refs. [44,45], it is known that we need a counterterm to
get a finite result for these processes, because there exist tree
level coupling H ZZ and renormalization of mixing Zy . The
counterterm is depicted in the diagram () and its amplitude
takes the form of ~ g,,,Cpz,, . As discussed in many previ-
ous works [13,15,17,23,46], if we collect the form factors
as the coefficients of q3“ q; in Eq. (10), the form factors do
not receive any contribution from the counterterm diagram
(m). Moreover, total contribution from the class (a + f) is
vanishing. We also consider the group of (n + o) that is not
equal to zero (as the group of (a 4+ f)). However, we know
that the couplings of S,? f f are proportional to m /v (vis
Vacuum Expectation Value). As a result, this contribution is
also omitted in the limit of m y — 0. Hence, we only have
the contributions of (b + ¢ 4+ d) which are separated into two
kinds. The first one is the topology b which is called Vko’k pole
contributions. The second type (diagrams ¢ and d) belongs
to the non- Vko* pole contributions. We remind that Vko* can
include both Z, y in the SM and the arbitrary neutral vector
boson Z’ in many BSMs. In the further course, we consider
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Fig. 1 Types of Feynman diagrams contributing to the SM-like Higgs decays H — f fy
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the general case of additional neutral gauge bosons in the
loop diagrams. Their mixing is also included. In this paper,
we take only m y — 0 for external fermions. For fermions at
internal lines, their masses will be non-zero. Therefore, there
are no infrared (IR) divergences the current calculations.
The general one-loop amplitude which obeys the Lorentz-
invariant structure can be decomposed as follows [20]:

2
Aloop = Z {[q?q;? — 8"q3 - qrli(q1) (Fi, Ry PR
k=1
Py POV fei @), (10)

where the Dirac spinors u(q1), v(g2) for the external fermions
and the polarization vector ¢ (g3 ) for the external photon are
taken into account in this equation. All form factors are com-
puted as follows:

Vko* -poles

Non—Vko
FieL/r = Fi 1k

Fy /R i (11)
for k = 1, 2. Kinematic invariant variables involved in the
decay processes are taken into account: g2 = g2 = (g1 +
2©)%. 413 = (q1 +93)* and g3 = (2 + 43)*.

We first write down all Feynman amplitudes for the above
diagrams. With the help of Package-X [47], all Dirac
traces and Lorentz contractions are handled. In this computa-
tion, dimensional regularization is performed in space-time
dimensions d = 4 — 2¢&. Therefore, the trace and contrac-
tions are applied for Feynman loop momentum in general d
dimensions. Subsequently, the amplitudes are then written
in terms of tensor one-loop integrals. By following tensor
reduction for one-loop integrals in [48] (the relevant tensor
reduction formulas are shown in appendix A), all tensor one-
loop integrals are expressed in terms of PV-functions. We
then take d — 4 for the final results. By using LoopTools,
these scalar functions can be evaluated numerically. We then
get numerical results for the decay rates.

3.1 Vko* pole contributions

In this subsection, we first arrive at the Vko* pole contributions
which are corresponding to the diagram b. In this group of
Feynman diagrams, it is easy to confirm that the form factors
follow the below relation:

= Ry R (12)
Their analytic results will be shown in the following subsec-
tions. All possible particles exchanging in the loop diagrams
are included. We emphasize that analytic expressions for the
form factors presented in this subsection cover the results
in Ref. [49]. It means that we can reduce to the results for
H — vy of Ref. [49] by setting f to v; and replacing the
corresponding couplings. Furthermore, all analytic formulas
shown in the following subsection cover all cases of Vko*

F Vko* -poles

—F Vko* -poles
kL/R =

1,L/R

poles. For instance, when Vko* — p*, we then set kao =0,
FVkO = 0.In addition to that Vko* becomes Z (or Z") boson, we
should fix kao = Mz and FVAQ = T'z (or Z') respectively.
In the following results, Qy denotes the electric charge of
the gauge bosons V;, V; and Qg (and Q) is the charge of
the charged Higgs bosons S;, S; (and fermions f).

We begin with one-loop triangle Feynman diagrams where
all particles in the loop are vector bosons V; ; (see Fig. 2).
One-loop form factors of this group of Feynman diagrams
are expressed in terms of the PV functions as follows:

V¥ poles eQy
Rl = g 2
Vi Vi vy
. oL
8HViVj ngoff
MM (2 — M2, + T M
A V(q Vo +1 yO VO)
! J k k k
X{[ngfAViVj(M%’ B M‘z’.i)
+ayovy, (Mjy + MY, + M%}_)]
x Bi1 (M7, My, M%j)
+ (M3, +3M% — M?)
8vivv; \My V; v;
_2gV]§)AViV/M%I_]Bl(M;{, M3, M)
2
T2My, (8vovv; — 8voavv;)
x Bo(M7;, My, M%j)
+28v0av,v; I:MIZ-IBlll + Boo + 23001]
x (M, My, My,)
+4ngOV;Vj M‘z/l (M‘z/: + 3M‘2/j - q2>
xCo(0. 4%, My, My, My, , M3,)
280y, | ME M3, + M3, — )
4 4 . 2 2
+My, + My, + (4d — )My, My,
~* (M}, + M3) (€2 + Ci2)
x (0,4, My, My, My, M3,)
+28vov,v, [M%,(M‘z,i + M‘zfj )
+3My, — My, + (4d — 6)My, M3,
—* M}, - M)
xCa(0, ¢%, My, My, My, M%j)},
v _poles v poles
E Py = By, (g‘l;koff = g‘ljkoff). (13)
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Fig. 2 One-loop triangle
diagrams with vector bosons
Vi, j in the loop

Fig. 3 One-loop triangle
diagrams with scalar bosons S; ;
in loop

The results are written in terms of B- and C-functions. We
note that individual one-loop amplitudes for the diagrams in
Fig. 2 can contain one-loop three-point tensor integrals up to
rank R = 6. However, after taking into account two triangle
diagrams, the amplitude for this subset of Feynman diagrams
is only expressed in terms of the C-tensor integrals up to rank
R = 2. As aresult, we have up to C-functions contributing
to the form factors. Furthermore, some of them may contain
UV divergences but after summing all these functions, the
final results are finite. The topic will be discussed at the end
of this section.

We next concern one-loop triangle Feynman diagrams
with S;, §; in the loop (as described in Fig. 3). The cor-
responding one-loop form factors are given:

V,?*—poles _ eQs
Fk,L |Si,5_/ = 42
L
2 2 2 2 2 2 :
51.8;.V0 Myq~(My —q°)(q~ — ka() +lFV,§)MV,?)

@ Springer

x{(q2 - M| A0M3) — Ao3) |

+Mp (M3 — ij —q%)Bo(q®, Mg, ng)
+q* (M — M5, + M5 ) Bo(M7y, M§,, M§,)

+2M5q* My — g7)C12(0, ¢°, My, M, M3, ng)},

F V,f)*—poles 0*_poles

|4 L R
g =F* . ( — )
k,R |S,,S_/ k,L |SHS_/ gV,?ff ngOff

(14)

We observe the factor 1/ (M%{ — ¢?) in these formulas.
This may lead to the kinematic divergence in the limit of
> > M %, However, we check that this divergence will be
cancelled out. In the limit of q2 — M%, the sum of By-
terms in these formulas is vanishing. Other terms contain the
overall factor M121 — ¢? that is also cancelled out the pole
1/(M%1 — ¢?). As a result, the final results stay finite in the
limit of ¢ — M?%.
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Fig. 4 One-loop triangle
diagrams with two scalar bosons
S; and a vector boson V; in the
loop

Fig. 5 One-loop triangle
diagrams with a scalar boson S
and two vector bosons V; in the
loop

Similarly, we have the contributions of one-loop triangle
Feynman diagrams with exchanging scalar boson S; and vec-
tor boson V; in the loop. The Feynman diagrams are depicted
in Fig. 4. Applying the same procedure, one has the form fac-
tors

FVko*-poles _ eQy
kL Isi.v; = 8772

X Z M2 M2

S, vy v T HTY

L
8HS:V; gV,PS,'Vj gv]?ff

a%(q> = M) (g® = My +iT o Myo)

x {(q2 — M3)(M3; — M5, + M%,j)[Ao(Mﬁ,) - Ao(M?/_,)]
+M3 a2 M3, + 3m3, - M)

+(M3, — M3 )M = M3, + M3)] Bola®, M3, M3,)
+a*[ M3, — (M, + My,)?]

x[M,%, — (Mg, — MV_/.)Z}BO(M%,, M3 M)

+2Mpq* My — P (MG — M5, + My)
xC12(0, g%, My, M5, M., M%j>},

V,?*—poles
Fk, R Is;, V;

0
_ Fkv,'l PO v (gékoff - gﬁpﬁ.). (15)
We also consider the contributions of one-loop triangle dia-
grams with exchanging a scalar boson S; and two vector
bosons V; in the loop. The Feynman diagrams are presented
in Fig. 5. The corresponding form factors for the above dia-
grams are given:

FV,?*—poles i eQy
k,L lvi.s; = )

L
BHVS; 8vpvis; 8vorr

x>

2 012 2002 — A 2V(h2 — A2 i
VoSV MHMV,-q My —q*)(q MV£+1FV£1MVAQ)

x {(M,%, — ") (Mj; — M5, + M%,.)[AO(M@) — Ao(M%,.)]

+q?[ M3 (M, + M) — (M3, — M3)* | Bo(M3,, M3, M3)

—M? [M,Z,(ng — M} +q%) + M3, QMY — M3, — q*)

+M3, (54 = M3) | Bota®, M3, M3)

+2Mpyq> (M — a*) My — M3, + M)

Ci2(0, 4%, My, My, My, M§)

MY M2 g2 (M2 — g2)Co0, g%, My, M2, M2, Mg/_)},
Vko*»poles

Fik vi.s

v poles
— k
=F1

L R
sy (850 = 8o ) (16)
Finally, we have to consider fermions exchanging in the one-
loop triangle diagrams (shown in Fig. 6). The form factors
then read

V% _poles e Qf
Fer ol =72
fo L
N¢ g
c 8yo
% Z Vi If

2 _ pm2 .
P (q kao +ilyoMyo)

L L R R
x { [Zm 18R 1i 18y gy, T 818 1y,
L R R L
+2my; (ngifngkOfifj + ngifngkof,-fj)]

X[sz + Clz](O, 512’ M%{’ m%,m%, m?‘,)

@ Springer



277 Page 8 of 22

Eur. Phys. J. C (2022) 82:277

Fig. 6 One-loop triangle fla) flq)

diagrams with charged fermions q

fi,j in the loop —— f

e ]
fg2)
H(p) _
-=>»-- [
AW, 1 (43) AW, ) (@)

+[3mf,- i 1,8v0 1.5, + 811118v0 5 1)
L R R L

tmy (ngifngJPfifj + gHﬁf/'ngoﬁfj)]

xC2(0, %, M3, m%‘, ; mi m%‘j)

L R
+my (gHﬁfngkoﬁfj

R R 2 M% m% m% m?
87180 5 004 ’M”’mﬁ’mf"’mf")}’
VO poles
Fk’kR |fivfj

Vko* -poles

— L R
- Fk,L |ftvf/ (gvkoff - ngoff) (17)

3.2 Non- Vko* pole contributions

‘We turn our attention to the non- Vko* pole contributions, con-
sidering all possible particles exchanging in the loop dia-
grams (¢ +d). One first arrives at the group of Feynman dia-
grams with vector bosons V; ; at internal lines (as depicted
in Fig. 7). Analytic formulas for the form factors are given:

eQv

1672

0
Non-V,*

Fip 7y =

L L
Z gHViVj ngfo ngf\)f
X
2 2
Vi,V MViMVj

x{ —2M3,[Co0, iz, My, MY, M3, M)
+Colqiz, 0, My, M3, M3, M3) |
—(Mp + My, + M‘Z/j){[czz + C12]
©, q12, My, My, M3, My )
—i—[sz + Clz](qn,(), M%I,M\Z/ivM\Z/ij\Z/j)}
—(M} +3M3, = M3 )| C2(0, g1, M3,
My, Mi,, My)

+Ca(qi2, 0, MYy, M3, M3, M3) |
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2 2 2 a2 a2 a2
+2(Mvj —MVI)CI(CIIL 0, MHsM [7MV/’MV/)
2 02 2.

+8 — 2d) M}, M, [D3(0, 0,0, M3;
—l—Da(O,O,O,M%J;fm,mz,M%,M%,O,M\Z/j))]
+(4 = 20) M3, M3 || D33 + Das + Dis |
2. 2 a2 2

(0,070,MH,QZS’CIIZ:MV,-’MV,-’OvMVj)
+[D33 + D23](0, 0.0. Mj;: q12. q13.

2 2 42
MVi’O’MV.f’MVj)]

+4MG, M3, D2(0, 0,0, M7j; q12, 413,

2 2 2
MV17O’MV/’MV1)}7 (18)
Non- V0¥ Non- V0¥
Fl,R ¢ |Viij = Fl,L ‘ |Viij
L R . L R
(g"ifvf = 8Vifvps 8Vifup 7 ngf”f>’ (19
Non-V* Non-V0*
F2,L ‘ vi.v; =F ¢ lvi.v;
({1113, q23} — {q23, 6113}), (20)

Non-V* Non-V2*
k _ k
Fr "lvvi=F, " lwy

L R . L R
(gVifo = 8Vifvrr 8Vifvy ngfo>' @D

We find that the result is presented in terms of C- and D-
functions up to Cp;- (D33-) coefficients. The reason for this
fact is explained as follows. Due to the exchange of vec-
tor bosons in the loop, we have to handle one-loop tensor
integrals with rank R > 3 in the amplitude of individual dia-
grams. However, they are cancelled out after summing all
diagrams. As a result, the total amplitude is only expressed
in terms of tensor integrals with R < 2 that explain for the
above result.

For neutral vector bosons Vio, VY at internal lines (see
Fig. 8), the corresponding form factors are obtained as

FNon—Vk°*| 00— le
A T
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Fig. 7 One-loop triangle and
box diagrams with vector
bosons V; ; in the loop

Fig. 8 One-loop triangle and
box diagrams with vector
bosons Vio, V]Q in the loop

Fig. 9 One-loop diagrams with
charged scalar bosons S; ; in the
loop

— > f(a)

7" (g3)
f(%)
——>—  f(a)
7" (g3)
I A
JE(Q2)

— > f(a)

—— fl(a)

——— f(a)

7" (g3)
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Fig. 10 One-loop box
diagrams with neutral scalar
bosons SE j particles in loop

Fig. 11 One-loop diagrams
with exchanging vector boson
Vi and scalar boson S; particles
in loop

@ Springer

\

ViR

— fla)
//,S.? "!ﬂ/(q3)
A\
\\ S?

f(fh)
flar)

flq)
H(p)
V(gg) o
.
/'/f A
S
e v (gs)
\\\f A
N
—(—
7(qs)

———— fla)

—— fla)

——— fla)

.S, 7"(4s)




Eur. Phys. J. C (2022) 82:277

Page 11 of 22 277

Flg 12 One-loop diagrams , (@) , —>—  f(q)
with vector boson ViO and scalar p W ’
boson Sj.) in the loop u '/S‘.’ Y ’/S‘? ’y"(q3)
) 4 J ,/ J
___,(]_)_ A +(gs) ___,(]f)__ fA
A I \43 Vo
—<— flq) f(q2)
, > f@)
,'/f 1
Hp) s
eree L, MWW 7(g3)
F A
< f(g2)
fla1) ——>—— fla)
0 0 Y(qa-
H(p) Vlf | H(p) V1f | v (%)
[ V(. R
> \\ S;) v (qS) \\ S;)
Y—— f(q) F(a)
———  f(a)
A
Hip) vy
TEY et . MMMV 7 (g3)
\\\f A
———  f(g)
L L
X Z gHViOV;) ng.Off gvj(_)ff results read
v0 0
i’
x {(4 —2d)[ D33 + Daz] + (8 — 2d)D3} PR e0s
,L o) T g2
(0701 0’ M]2-17q23’q135M207070’ M20)7 (22) R R
. OV" i XD 8HSS; 85, fuy 85, v
Non-V,* Non-V,* S;,S;
Fip " |Vi°,v10 =F, " |Vl.0,Vj(.) !
L R . L R X{[D33+D23+D3]
(gv?ff 8o Bvepr gV}’ff)’ @3)
Non-V* _ Non-v* x(0,0,0, M;: q12. q13. M3, 0, Mgi, M3)
Fyp " lvovo=Fip 7 oy Lo
+[D33 + D23 + D13 + D3]
({413, q23} = {q23, Q13}), (24)
Non-V%* Non-V0* % (0, 0,0, M%{; q23, 4912, M%{_, Mgl_ ,0, Mg_)}, (26)
Fy R |Vl.0,VJQ = |Vl.°,Vj° !
Non-V* Non-V*
L R . L R k = g .
(gV,«Off T8Vt Svopr T gV,°fif)' @5 Fur s =R s
R L . R L
(gSifo T 8sifvy 8Sifvp gijVf)’ @7

Next, we also consider one-loop diagrams with charged
scalar bosons S; ; at internal lines (shown in Fig. 9). The

Non-V,* Non-V*
k _ k
FZ,L |Si,Sj = Fl,L |Si,Sj
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<{CI13, q23} — {q23, 6]13}), (28)
Non-V* Non-V*
F2,R ‘ |Si»Sj = FZ,L ‘ |Si»Sj
R L . R L
(gSifo T 8sifvp 8ifvp T gSffo)' (29

Furthermore, one also has the contributions of neutral scalar
bosons Sg j exchanging in the loop diagrams (as described in
Fig. 10). Analytic results for the form factors then read

FNon—VkO* _ €Qf
1L |s?,s? 82
L R
x D EHs)s) 850 rr 8

57,89

X [D33 + D3 + Dg]

x(0,0,0, M7y; g23, q13; M3y, 0,0, Mgy), (30)
i J
Non-V* Non-V*
Fi g ‘ |S?,S§? =F ‘ |s,9,s;’
L R R L
850 pr > 850 rps 850 sp — & ) €1y
( S)ff SO rf esVff S91f
Non-V* Non-V2*
Byt ls0.50=Fi 1 ¢ ls0.50
({413, q23} = {q23, 6113}), (32)
Non-V* Non-V*

Fr ls0.50 = F21 ‘ ls0.50
L R . R L
(gs?ff T 850y Bsopp T gs?ff)' (33)

We now consider non- Vk*o pole one-loop diagrams with
scalar §; (or S?) and vector V; (or Vl.o) propagating in the
loop. The diagrams are depicted in Figs. 11 and 12. The cal-
culations are performed with the same procedure. We finally
find that these contributions are proportional to m . As a
result, in the limit of m y — 0, one confirms that

Non-V2* Non- V%
k k
Fep “lvis;=F.r " lvs; =0, (34)
Non—VkO* Non—V,?*
Fk,L |Vl.0,S? = Fk,R |Vl.0,S? =0 (35)
fork =1, 2.

We verify the ultraviolet finiteness of the results. We find
that the UV-divergent parts of all the above form factors come
from all B-functions, while C- and D-functions in this paper
are UV-finite. Higher rank tensor B-functions can be reduced
into By and Ag. We verify that the sum of all B-functions
gives a UV-finite result. As a result, all the form factors are
UV-finite (see our previous paper [49] for example).

Having the correct form factors for the decay processes,
the decay rate is given by [20]:

dr q12 [ ) 5
- F
dqiqis  51273M3, q13(| F1.rl
HE R + a5 (FLLP + 1R 66)

@ Springer

Table 1 All the couplings involving the decay processes H — f fy
in the SM

Vertices Couplings
8HV;V; eMyy [sw
8vov,v; ecw/sw
2
8V av;v; e cw/sw
L .
8Y0, 0, e/(2swew)
R
8yo, .y, 0
kVFVS
L,R ,
8Hfi emy/Qsw Mw)
8vop s e(T = Oy s§)/(sw ew)
i fi fj
R
g, s —eQysw/ew
kJtJg
g\lz.fvf 9/(\/E sw)
R
8V, foy 0

Integrating the above integrand over 0 < gy < Mlzi and
0 <gqi3 < M%, — q12, one gets the total decay rates. We
show typical examples which we apply our analytical results
for H — ffy to the SM, the U(1)p_; extension of the
SM, THDM. Phenomenological results of these models will
be presented in the next section.

4 Applications

We are going to apply the above results to the standard
model, the U(1)p_; extension of the SM, and the THDM.
For phenomenological analyses, we use the following input
parameters: « = 1/137.035999084, M7z = 91.1876 GeV,
'z = 2.4952 GeV, My = 80.379 GeV, My = 125.1 GeV,
m; = 1.77686 GeV, m; = 172.76 GeV, m;, = 4.18 GeV,
ms = 0.93GeV andm,. = 1.27 GeV. Depending on the mod-
els under consideration, the input values for new parameters
are then shown.

4.1 Standard model

We first reduce our result to the case of the standard model.
In this case, we have V;, V; — wt, w-, Vk0 — Z,y. All
couplings relating to the decay channels H — f fy in the
SM are replaced as in Table 1.

In the SM, the form factors are obtained by taking the
contributions of Eqs. (13, 17, 18, 22). Using the above cou-
plings, we then get a compact expression for the form factors
as follows:

a’m? |: 16
L —

© 3swMw Lqi2
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Table 2 Numerical checks for

This work

Ref. [20]

9.62231539663501 - 108
—3.501515874673991 - 10~10
—9.95227151085161 - 10~8
—3.531494528007124 - 1010

9.62360254230002 - 108
—3.597907189717628 - 1019
—9.95098785515085 - 108
—3.622848558573573 - 1010

9.62231539662956 - 108
—3.501515874674078 - 1010
—9.95227151084899 - 108
—3.531494528006995 - 10710

9.62360254229717 - 108
—3.597907189717582 - 1010
—9.95098785514946 - 108
—3.622848558573332 - 10710

form factor F,y in this work (412, 13)
with by in A2 of [20] (100, 200)
(=100, 200)
(100, —200)
(=100, —200)
2 L
+2(8SW -3) 8%¢¢ ]
eswew g2 — M3 +ilz Mz

X {4<C22 +Ci2 + Cz) + Co}(O, q12, M3, m?, m?, m?)

e 821 ]
SwM%V

q12 eswqin— M +iTzMz

x{[ — M <81 3By + 231“) - 2(300 + 23001)]
x (M, My, Miy)

+[an (a1 — M3 ) + 210 + 80— D)}y |
><<C22 +Ci2+ Cz)(O, qi2. M3y, My, My, M)

+4M3, (q12 — AM3)Co(0, qi2, M3y, M3y, M3, M%V)}

+Lg(gLqu )2

4t sw My, 4

x{(_M,Z, —2m)|(cn

+Ci1 +C1>(M%1,0, qi2, M}, M3, M3))
+(Cra+ Cit + €1 ) (M. 12, 0, My, M3y, M3 |
—2M€V[CO(M,2,, 0. q12. M2, M3, M2))
+Co(M2,, g12, 0, M2, M3, M%V)]
+2M, (2 — d)[(DIS + D2 + Dn)
(M7.0,0,0; q12. q13. My, My, My, 0)
+<D23 + Dy + D13 +2D12 + Dn)
(M}.,0,0,0: 423, q12, M3y, M3y, 0. M) ]
—amiy[ (D3 + D2+ Do)

(M%,0,0,0; g1, q13, M3, M3, M3, 0)
+D0 (M. 0.0.0: 423, gi2. My, My 0. M) |

Table 3 Cross'—chec.k the' results k This work Ref. [13]

of the decay widths in this work

with [13] 0 0.576865 0.5782
0.1 0.242514 0.245
0.2 0.184121 0.1897
0.3 0.121368 0.1242
0.4 0.0572478 0.05844

—2dM;‘V[(D2 + Dl)
(M%,0,0,0; g3, q12, My, M, 0, M%)

+Dl(M,2,,0,o,o;qlz,q13,M%V,M%V,Mav,m]}
oMy (L 2{

() J@ -2
ch‘zysw ZI7

X [D23 + Dy + D13 + 2Dy + Dn]

(M%,0,0,0; 23, q13, M3, M%,0,0)

+[d<D2+D1)+2<D3+DO)]

(M%,0,0,0; g23, q13, M3, M3, 0, 0)}, (37)

where some coupling constants relate in this representation
like gy, = /(v2sw). 85 = e(2sy — 1)/ Qewsw) and

g{,f,fuf =0, g§ff =esw/cw.
Other form factors can be obtained as follows.

FiL = B>y ({Cm, q23} — {q23, 6113}), (38)
Frr = FrL (8@fo — g%f'u]& 8§ff - g§ff> (39)
fork =1, 2.

It is stressed that we derive alternative results for the form
factors of H — f fy inthe SM in comparison with previous
works, because our calculations are computed in the unitary
gauge. Thus, our formulas may get different forms in com-
parison with the results in [20] which have been calculated
in R¢-gauge. In this paper, we cross-check our results with
[20] by numerical tests. The numerical results for this check
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are shown in Table 2. We find that our results are in good
agreement with the ones in [20] with more than 10 digits.
We also generate the decay widths for H — eey and
cross-check our results with [13]. The results are presented
in Table 3. For this test, we adjust the input parameters and
apply all cuts in the same way as in [13]. In the Table 3, the
parameter k is taken into account which comes from the kine-
matical cuts of the invariant masses m r¢, m r,, as follows:

mypmy, = (kMp)*. (40)

We find that our results are in good agreement with the ones
in [13].

4.2 U(1)p— extension of the SM

We refer to the appendix B for reviewing briefly this model.
In the appendix B, all couplings relating to the decay pro-
cesses H — f fy are derived in U (1)g_;, extension of the
SM (see Table 4). Apart from all particles in the SM, two
additional neutral Higgs and a neutral gauge boson Z’ which
belongs to U (1) p—1 gauge symmetry are taken into account
in this model.

For phenomenological study, we have to include three the
new parameters such as the mixing angle cy, the U(1)p_p,
coupling g and the mass of new gauge boson M’,. In all the
below results, we set ¢, = 0.3,0.7 and ¢, = 1 (forcy = 1,

we are back to the standard model case). The mass of Z’ is
in the range of 600 GeV < M/, < 1000 GeV. The coupling
g1 isin 0.05 < g} <0.5.

We study the impact of the U(1)p—_; extension of the
SM on the differential decay widths as functions of m zf
and m ¢,. The results are shown in the Fig. 13 with fixed
M/, = 1000 GeV. In these figures, the solid line shows the
SM case by setting ¢, = 1. While the dashed line presents
¢y = 0.7 and the dash-dotted line is for ¢, = 0.3. In the left
figure, we observe the photon pole at the lowest region of
m ¢r. The decay rates decrease up to m g ~ 60 GeV. They
then grown up to the Z-peak (the peak of Z — f f) which
is located around m s ~ 90 GeV. Beyond the peak, the
decay rates decrease rapidly. In the right figure, the decay
widths increase up to the peak of m s, ~ 81 GeV which
corresponds to the photon recoil mass at the Z-pole. They
also decrease rapidly beyond the peak. It is interesting to
find that the contributions of U (1) g, extension are sizable
in both cases of ¢, = 0.7, 0.3. These effects can be probed
clearly at the future colliders.

We next examine the decay widths as a function of M.
In this study, we change the mass of Z’ boson as 800 GeV
< Mz < 1000 GeV and set ¢, = 0.7 (see Fig. 14). The
dashed line shows the case of gi = 0.05, the dotted line
presents g = 0.2 and the dash-dotted line is for g = 0.5.
In the whole range of M/,, we observe that the decay widths

dr’ dl’
0.100¢ 0.010¢
0.005F
0.010F
0.001
0.001 5.x 10-4 [
10-4,
1.x10°*
5.x10°+
10-5 | ol b b e b o L
20 40 60 80 100 120 2 40 60 80 100 120
mygy [GeV] my~ [GGV]

Fig. 13 Differential of the decay width as functions of m sy and m s,
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Fig. 14 The decay widths T [KGV]
which are functions of M/, 0.11852 ¢
S
\h
\~\.\
0.11850 | I
0.11848 +
011846~~~ T T T T T e e e e ———— -
PR S S R S S U S R T S S S S S S S
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Fig. 15 The decay widths are function of g

are proportional to g (it is also confirmed by later analyses).
They also decrease with increasing M’,. We observe that the
contributions from the U (1) p_; extension are massive and
can be probed clearly at future colliders.

We finally discuss the effect of g} on the decay widths
(seen Fig. 15). In these figures, we set Mz = 800 GeV and
ca = 0.3 (¢, = 0.7) for the left figure (for the right figure)

respectively. We find that the decay widths are proportional
to g}.

4.3 Two Higgs doublet model
For reviewing the THDM, we refer to the appendix C for

more detail. In this framework, the gauge sector is the same as
in the SM. It means that we have V; = V; = W, Vk0 =Z,y.
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dl’ dr’
0100 (tan B = 5)

0010

0.010

0.001
0.001

104

dI’ dl’
dm dmy;
1 1
0.100 0100
0.010 0010}
0.001 0.001
10+ 104
109 109
Fig. 16 Differential decay rates as a function of the invariant mass of leptons m sy with changing @ = —0.47, 0, 0.4
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Fig. 17 Differential decay rates as a function of the invariant mass of leptons m sy with changing charged Higgs masses M y+ = 400, 600, 800

GeV
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In the Higgs sectors, one has additional charged Higgs H*
and two neutral scalar CP even Higgs bosons H?, Hg and a
CPodd Higgs A. All couplings relating to the decay processes
H — f fy are shown in Table 5.

For the phenomenological results, we take 1 < tan 8 <
30, Mpo = 125.1 GeV, —900° GeV? < m, < 900> GeV?,
340 GeV < My+ <900 GeV, —7/2 < o < 7 /2. We study
the differential decay rates as a function of the invariant mass
of leptons m 7. We select My = 700 GeV, m}, = 800>
GeV?. The results are shown in Fig. 16. In this figure, the
solid line shows the SM case. The dashed line presents the
case of « = —0.4x. The dash-dotted line is for the case of
o = 0. The dotted line is for the case of « = 0.4w. The
values of tan 8 (tan 8 = 5, 10, 15 and 25) are shown directly
in the sub-figures of Fig. 16. The decay rates have the same
behavior as in previous cases. We observe the photon pole
at the lowest region of m s¢. They decrease from the photon
pole to the region of m sy ~ 60 GeV and then grown up
to the Z-peak. Beyond the Z-peak, the decay rates decrease
rapidly. The effect of the THDM are also visible in all cases.

We next change the charged Higgs masses Mg+ =
400, 600, 800 GeV and take o« = 0.47. In this figure, the
solid line shows the SM case. The dash-dotted line is for
the case of My+ = 400 GeV. The dashed line presents the
case of Mg+ = 600 GeV. The dotted line is for the case of
Mpy+ = 800 GeV. The values of tan 8 (tan8 = 5, 10, 15
and 25) are shown directly in the sub-figures of Fig. 17. The
decay widths are inversely proportional to the charged Higgs
masses. We find that the effect of the THDM are sizeable
contributions in all the above cases. These effects can be
discriminated clearly at future colliders.

5 Conclusions

We have performed the calculations for one-loop contribu-
tions to the decay processes H — f fy in the limit of mye —
0. In this computation, we have considered all possible
contributions of the additional heavy vector gauge bosons,
heavy fermions, and charged (and also neutral) scalar parti-
cles that may exchange in the loop diagrams. The analytic
formulas are written in terms of Passarino-Veltman func-
tions that can be evaluated numerically by using the pack-
age LoopTools. The evaluations have then been applied
to the Standard Model, U (1)g_; extension of the SM, the
Two-Higgs-Doublet Model. Phenomenological results of the
decay processes for the above models have been studied in
detail. We find that the effects of new physics are sizable
contributions and they can be probed at future colliders.
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Appendix A: Tensor one-loop reductions

In this appendix, tensor one-loop reduction method in [48]
is discussed briefly. First, the definition of one-loop one-,
two-, three- and four-point tensor integrals with rank R are
as follows:

{A; B; C; DyM1H2ir — (12)2=d/2
ddk JM 2 oL R

y . (A1)
(2m) {Py; Py Py; PI Py Ps3; PL Py P3Py}
In this formula, P; (j =1, ..., 4) are the inverse Feynman
propagators
Pj = (k+q;)* —m5 +ip. (A2)

In this equation, we use g; = Z,j: | pi with p; for the exter-
nal momenta, and i ; for internal masses in the loops. Dimen-
sional regularization is performed in space-time dimension
d = 4 — 2¢. The parameter > plays the role of a renor-
malization scale. When the numerator of the integrands in
Eq. (A.1) becomes 1, one has the corresponding scalar one-
loop functions (they are noted as Ao, By, Co and D). Explicit
reduction formulas for one-loop one-, two-, three- and four-
point tensor integrals up to rank R = 3 are written as follows
[48]. In particular, for one- and two-point tensor integrals,
the reduction formulas are:

At =0, (A3)
Al = gh" Ago, (A4)
AMVP =0, (A.5)
B* = ¢" By, (A.6)
B"" = ¢""Boo +q"q" B, (A7)
B*" = {g,q}""” Boo1 + q"q"q" Bi11, (A.8)
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For three-point functions, one has

2
Ct=gq{'Ci+q5Ca=) ql'C.
i=1

(A.9)

2
C =g""Coo+ Y q!'q)Cij, (A.10)

ij=1
2 2

CH =Y {g. i} Cooi + Y ql'q}afCijx. (A.11)
i=1 i, jk=1

Similarly, tensor reduction formulas for four-point functions
are given by

3
D" =q{'Di + gy Dy +q5 D3 =) q!'D;, (A.12)
i=1
3
D" =¢" Do+ Y ql'q)Dij, (A.13)
ij=1
3 3
DM =g, qi}"""Dooi + Y ql'qlqf Dijk. (A.14)
i=1 ij.k=1

The short notation [48] {g,q;}*"" is used as follows:
{g, g} = g’“’qip + g""qiM + g"”q} in the above rela-
tions. The scalar coefficients Agg, Bi, - - - , D333 in the right
hand sides of the above equations are so-called Passarino-
Veltman functions [48]. They have been implemented into
LoopTools [25] for numerical computations.

Appendix B: Review of U (1) p_; extension

In this appendix, we review briefly U (1) p—, extension [26].
This model follows gauge symmetry SU(3)c ® SU(2)1 ®
U(1l)y ® U(1)p—r. By including complex scalar S, general
scalar potential is given by

V(®,S) =m?d d + i (dTD)? + u?(S?

+2|SI* + 1307 @[S (B.1)

In order to find mass spectrum of the scalar sector, we expand
the scalar fields around their vacuum as follows:

¢+ Y
&= vy+h+it], S:%. (B.2)
V2

The Goldstone bosons ¢, £ will give the masses of W+ and
Z bosons. In unitary gauge, the mass eigenvalues of neutral
Higgs are given:

()= () (&)

(B.3)

with mixing angle
A3V Vs
\/(klvi — 202)% + (A3v405)?

Sy = Sin 2« = (B.4)

After this transformation, masses of scalar Higgs are given

M}%I = )»11)3, + Aov; — \/()\IU(% — Av2)? + (A3vg05)2,
(B.5)

Mf%z = )‘”)35 + hav; + \/(MU(% — M02)% + (A30p05)2.
(B.6)

The masses of the gauge bosons W, Z and Z’ are obtained
by expanding the following kinematic terms

Loauge — (D' ®)TD,®, (D"S)*D,S. (B.7)

As aresult, the mass of Z' is Mz = 2uv,g].
The Yukawa interactions involving right-handed neutrinos
are given:
Ly = —y?qudekCD — y;kéLjuRkiUZCD* — y;kl_Ljequ)
—y;kl_LjURkiGQCD* — ijk(vR);- VRrr S + h.c. (B.8)

for j, k =1, 2, 3. The last term in this equation is the Majo-
rana mass term for right-handed neutrinos. After the sponta-
neous symmetry-breaking, the mass matrix of neutrinos is

o"*

(B.9)

The diagonalization is obtained by the transformation
diag( B (sz)2 Mi> _ (cosai — sin @ 0 miD
Mi sina; cosq; m'y M'
cosq; sinq;
—sino; cos o
fori =1,2,3 and o;; = arcsin(m’y/M").
We show all relevant couplings in the decay under consid-

eration. In the case of o; — 0, all the couplings are shown
in Table 4

(B.10)

Table 4 All the couplings involving the decay processes H — f fy
in the U (1) 1 extension of the SM

Vertices Couplings
hi(ha) f —576“2(;;; es::f
zZ,ff iQf &\Vu
hi(h) W W, P19 (sa) g
hy(h2)Z,Z,) szgV Ca(Sa)8puv

hl(hZ)Z,/,LZ\/;) _i4giM,Z Sa(_ca)guv
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Appendix C: Review of two Higgs doublet model

Based on Ref. [27], we review briefly the two Higgs doublet
model with softly-broken Z;-symmetry. In this model, there
are two scalar doublets @1, &, with hypercharge ¥ = 1/2.
Parts of the Lagrangian extended from the SM are presented

as follows:
L=Lk+ Ly —V(®, D), (C.DH

where the kinematic term is L, the Yukawa part is Ly and
V (P4, ®,) is the Higgs potential. First, the kinematic term
takes the form of

2
Z D, q>k )" (D" dy) (C.2)

with Dy, = 8, —igT“W¢ —i% B,,. The Higgs potential with

broken the Z;-symmetry is expressed:

1
V(®), &) = m11q> D) — m (D,

+<1>*<1>)+l D al cpTch
1 myy 2+2 1

% (i
s (cb{cbl) (q>;q>2)
)

g (0] 02) (]1)

+2 | (a]o2) + (a]or)’].

In this potential, m%2 plays the role of soft-breaking scale
of the Z,-symmetry. The two scalar doublet fields can be
parameterized as follows:

(C.3)

¢ ¢
vi+m+i& |, &= |v2t+tm+ié&

V2 V2

b =

(C.4)

We get an equation system for these parameters from the
stationary conditions of the Higgs potential. The relations
are shown as follows:

2
2 2V Moo Ass o
m”—,l,LU—2+2U1+Tz—0, (CS)
2
2 2V, A2 o Adds o
mhy, — W v—2+7U2+T 1—0, (C6)

where v2 = v% + v% is fixed at the electroweak scale or

v = (W2Gp)TV? = 246 GeV and the new parameter w?
is defined as /ﬁ = v1 5 . The shorten notation is A345 =
A3+ A4+ As. The mixing angle is given g = tan B = vy /vy.
The mass terms of the Higgs potential V,,,,55 can be expressed
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as:

0 0 (o7
— + o+ 1 1
Vinass = (¢1 ’ ¢2 )Rﬂ (0 M%ﬁ_) Rﬂ (¢;->
1 00\ -1 (&
+§($1, &)Rp (O Mz) Ry <§2
Lo R Mig O (M),
+2 N, m)Rg O M2 8 () )
Here the diagonalized matrix of neutral masses is defined as
v

amidn;
(C.8)

diag(M? MZ?) = Ry M?RI, with (M?);; =

HO’

The mass eigenstates can be then expressed as follows:
Gt\ _ R [
HY) ™ 7F \¢S)"
G% _ -1 (& HY 1
<A>_R’3 (52 ’ H0 = R 'Ry’ nz €9

where

Rﬁ:(cﬁ S/g)’ Ra=<0a Sa)
—Sp CB —So Cy

with —7/2 < o < m/2. In the unitary gauge, it is well-
known that G* and G° are massless Goldstone bosons that
will become the longitudinal polarization of W+ and Z°.
The remains H*, A and H1 , become the charged Higgs
bosons, a CP- odd Higgs boson and CP-even Higgs bosons
respectively. The masses of these scalar bosons are given by

2

(C.10)

M = u? = -G+ s). (C.11)

M?% = ? —v?as, (C.12)
Mélo = 52 M3 = 254ce M3, + M3, (C.13)
M? = M3+ 254ce M3, + 52 M3,. (C.14)

Hy
From the Higgs potential in Eq. (C.3) with the stationary
conditions in (C.5), we have 7 parameters. They are

{?»1,2,3,4,5, 1, nﬁg} (C.15)

For phenomenological analyses, the above parameters are
transferred to the following parameters:

[M%H,MA,MIZ_IO,M?{O,O[ 1. m ). (C.16)

All the couplings that are involved in the decay processes
H — f fy are derived in this appendix. In general, we can
consider the lightest Higgs boson H{) is the SM like-Higgs
boson. In Table 5, all the couplings are shown in detail.

For the Yukawa part, we refer [27] for more detail. Depend
on the types of the THDMs, we then have the couplings of
scalar fields and fermions.
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Table 5 All the couplings that

are involved in the decay Vertices Couplings
processes H — f fy in the 0 ~ o2
THDM H)W W, ER
L 2M2
HZ,Z, [ =545 (p—a) 8
H]O(I))Hi(q)WiLF ?i@%&—a) (p o

HY(p)H™ (@) Ay
HY(p)H () Z,
HYHYH~

HTH ALA,
HYH™Z,A,

iZMTWsW (P—Du

iMZ ey (p— @)

g[(z;ﬂ M = M2)s(-a) +204% = MEg)cor2f c(ﬂ,a)]

2ie? &uv

P Qw
teg oy 8uv

Table 6 Feynman rules involving the decay channels in the unitary

Table7 All couplings that are involved in the decay processes in unitary

gauge gauge
Particle types Propagators Vertices Couplings
Fermions f i/fz—i_imj; H- S,;). S,'O —i 8HS;S;
—my H-S; -Sj _lgHSl“S?
—i v )

Charged (neutral) TI(Mz) [gpw _ #] H-V/! v iguv,v; "

gauge bosons pm =My, VP Viityo o y0v ; )

V;(VIO) H-V, Vj i gHViOV}’ g

. A o L R

Gauge boson —! |:g/w — &0 " vi| H- fi fj L <gH_f,fj PL+28ny g, PR)

VO% Doles P — M2, +ilyoMyo (VER 0 7 (L R

K P Vi koK Vi S f-f —i(gw,PL+ 8w, PR
i S ff S ff

Charged (neutral) A* - fi - f; ieQ ry*

scalar bosons p*— sz“,- (Méo) [ ,4[ . ! u

M 0 :
Hp)- V" - $H@) i8hyosr (P — "
(VI + .
Vk . Viv . Sj +i ngOV,'S/ guv
0pn v A .
My Co Vi "(p1) - Vi (p2) - Vi (p3) —i gyoy,y, Tuva (P, p2, p3)
Ly = ——=itHY. cin F ’ J Sl
v Sp —ieQv I'"*(p1, p2, p3)

Appendix D: Feynman rules and couplings

In the below Tables 6 and 7, we use Pr /g = (1 F ¥5)/2,
T4 (p1, pa, p3) = g™ (p1 — p2)* + g (p2 — p3)* +
8" (p3 — p1)¥ and §1"F = gl goF — gitetg\P — ghf gve
and Qy denotes the electric charge of the gauge bosons
Vi, V; and Qg is charge of the charged Higgs bosons S;, S;.
Moreover, the factor &y,0 is included for covering all possible
cases of neutral gauge boson. It can be 0 and 1 for the case
of the pole of photon and Z-boson (Z’-boson) respectively.

AR(p1) - VP (p2) - VI (p3)
V/?M'fi'fj
V]?“.A"-Vi"ﬂVf

VOl AY.S S

VOr L Si(p) - Si(q)
ARS8

Viu'f"’f

Vi(’“.f.f

NE f-vf

Si S s

iyu(g‘L/Sfifj PLtgyo, PR)
—ieQv 8v0av;v; Syv.ap
—ieQs 8vQAs;S; 8w

i 8yoss, (P =)

ieQs(p— )"

iy" (géi o PL 83 f,s PR)
ir" (g‘Lf,-"/:f Pr+ g‘lfi‘)/lf' PR)
igé.fuf Pr + iggf\,f Pr

i8§ ro, PL i85, PR
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