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Ranking with Adaptive Neighbors

Muge Li, Liangyue Li, and Feiping Nie∗

Abstract: Retrieving the most similar objects in a large-scale database for a given query is a fundamental building

block in many application domains, ranging from web searches, visual, cross media, and document retrievals. State-

of-the-art approaches have mainly focused on capturing the underlying geometry of the data manifolds. Graph-

based approaches, in particular, define various diffusion processes on weighted data graphs. Despite success,

these approaches rely on fixed-weight graphs, making ranking sensitive to the input affinity matrix. In this study,

we propose a new ranking algorithm that simultaneously learns the data affinity matrix and the ranking scores.

The proposed optimization formulation assigns adaptive neighbors to each point in the data based on the local

connectivity, and the smoothness constraint assigns similar ranking scores to similar data points. We develop

a novel and efficient algorithm to solve the optimization problem. Evaluations using synthetic and real datasets

suggest that the proposed algorithm can outperform the existing methods.
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1 Introduction

Retrieving the most similar objects in a large-scale
database for a given query is a fundamental building
block in many application domains, ranging from
web search [1], visual retrieval [2–6], cross media
retrieval [7], to document retrieval [8]. The most
straightforward approach to such retrieval tasks is
to compute the pairwise similarities between objects
in the Euclidean space as the ranking scores.
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Nonetheless, high-dimensional data often lie on a
nonlinear manifold [9, 10]. The Euclidean distance
based approach largely ignores the intrinsic manifold
structure and might degrade the retrieval performance.

State-of-the-art methods mainly focus on capturing
the underlying geometry of the data manifold. The
most common way is to first represent the data manifold
using a weighted graph, wherein each vertex is a data
object, and the edge weights are proportional to the
pairwise similarities. All the vertices then repeatedly
spread their affinities to their neighborhood via the
weighted graph until a global stable state is reached.
The various diffusion processes mainly differ in the
transition matrix and the affinity update scheme [5].
Among others, the random walk transition matrix
is widely used in PageRank [1], random walk with
restart [11], self diffusion [12], label propagation [13]
and graph transduction [14]. The random walk
transition matrix is a row-stochastic matrix such that
the transition probability is proportional to the edge
weights.A slight variant is the symmetric normalized
transition matrix used in the Ranking on Data
Manifold method [15]. To reduce the effect of
noisy nodes, random walks can be restricted to the k
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nearest neighbors by sparsifying the original weighted
graph [16, 17]. For iterative update of the affinities, the
random walk with restart allows for the random surfer
to randomly jump to an arbitrary node. The modified
diffusion process on the standard graph captures the
high-order relations [17] and is equivalent to the
diffusion process on the Kronecker product graph [18].
Despite success, graph-based ranking methods rely
on fixed-weight graphs, making the ranking results
sensitive to the input affinity matrix.

In this study, we propose the ranking with adaptive
neighbors (RAN) algorithm simultaneously learns the
data affinity matrix and the ranking scores. The
proposed optimization explores two objectives. First,
data points with smaller distance in the Euclidean space
have high chance to be neighbors, i.e., more similar.
In contrast to other graph-based ranking methods, the
similarity is not computed a priori but is learned
via optimizing the ranking scores. Consequently,
the neighbors of each datum are adaptively assigned.
Second, similar data points have similar ranking scores.
This is essentially the smoothness constraint in graph
transduction methods [19]. We develop a novel and
efficient algorithm to solve the optimization problem.
Evaluations using synthetic and real datasets suggest
that the proposed ranking algorithm outperforms
existing methods.

In section 2, we present the proposed RAN algorithm.
Next, in section 3 we discuss the empirical evaluation
results and, in section 4, we summarize the conclusions.

Notations: Throughout the paper, the matrices are
written as upper-case letters. For matrix M , the i-th
row and (i, j)-th element of M are denoted by mi and
mij , respectively. An identity matrix is denoted by I ,
and 1 denotes the column vector with all elements as
one. For vector v and matrix M , v ≥ 0 and M ≥ 0

represent all the elements of v and M are nonnegative.

2 Ranking with adaptive neighbors

In this section, we discuss RAN algorithm and then
the optimization approach for solving the objective
function.

2.1 Proposed Formulation

Given a set of data pointsX = {x1, x2, . . . , xN} ⊆ Rd

with a query indicator vector y = [y1, y2, . . . , yN ]
T ∈

{0, 1}N , where y1 = 1 if xi is the query and y1 = 0

otherwise, the task is to find a function f that assigns
each point in the data xi a ranking score fi ∈ R

according to its relevance to the queries. We explore the
local connectivity of each point for ranking purposes
and in particular consider the k-nearest points as the
neighbors of a specific node.

Data points separated by small distances in the
Euclidean space have high chance to be neighbors. We
denote the probability that the i-th data point xi, and
the j-th data point xj are neighbors by sij . Intuitively,
if the two data points are separated by a small distance,
i.e., ‖xi − xj‖22 is small, then their probability sij
of being connected is likely high. One way to find
such probabilities sij|Nj=1 is to solve the following
optimization problem:

min
sTi 1=1,0≤si≤1

N∑
j=1

‖xi − xj‖22sij (1)

where si ∈ RN is a vector with the j-th element as
sij . Nonetheless, the above optimization problem has a
trivial solution, that is, sij = 1 for the nearest data point
xj of xi, otherwise sij = 0. This can be addressed by
adding a l2-norm regularization on si to drag si closer
to the center of mass of the simplex defined by sTi 1 =

1, 0 ≤ si ≤ 1. This slight modification gives us the
following optimization problem:

min
sTi 1=1,0≤si≤1

N∑
j=1

(‖xi − xj‖22sij + γs2ij) (2)

where the second term is the regularization term and γ
is the regularization parameter.

For each data point xi, we compute its probability
of connecting to other data points using Eq. (2). As a
result, we assign the neighbors of all the data points by
solving the following problem:

min
∀i,sTi 1=1,0≤si≤1

N∑
i,j=1

(‖xi − xj‖22sij + γs2ij) (3)

Similar data points have similar ranking scores,
essentially a smoothness constraint over the data graph.
We assume the matrix S ∈ RN×N is the similarity
matrix obtained from assigning the neighbors, where
each row is sTi . We write the smoothness constraint as,

N∑
i,j=1

(fi − fj)2sij = 2fTLSf (4)

where f is the vector of ranking scores for all the data
points, LS = DS − ST+S

2
is the Laplacian matrix

of the affinity matrix, and the degree matrix DS is a
diagonal matrix with the i-th diagonal element defined
as

∑
j(sij + sji)/2.

Combining the above and using the information from
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the query, we derive the final objective function:

min
S,f

n∑
i,j=1

(‖xi − xj‖22sij + γs2ij) + 2λfTLSf

+ (f − y)TU(f − y)
s.t. ∀i, sTi 1 = 1, 0 ≤ si ≤ 1

(5)

where U is a diagonal matrix with Uii = ∞ (a large
constant) if xi is the query, otherwise Uii = 1. The last
term is equivalent to

∑n
i=1 Uii(fi − yi)

2 to make the
ranking results consistent with the queries. The queries
are given much more weights as they reflect the user’s
search intentions. In non-queried examples, we do not
know a priori whether they meet the user’s intentions
and give them lower weights. It is not easy to solve
Eq. (5) because LS = DS− ST+S

2
andDS both depend

on the similarity matrix S. In the next subsection, we
propose a novel and efficient algorithm to solve this
problem.

2.2 Optimization Solutions

We propose to solve Eq. (5) via an alternative
optimization approach. We first fix S and then the
problem transforms to:

min
f

2λfTLSf + (f − y)TU(f − y) (6)

We take the derivative of the above objective function
w.r.t. f and set it to 0, obtaining the following linear
equation:

(2λLS + U)f = Uy (7)

The solution is easily obtained as f = (2λLS +

U)−1Uy.
When f is fixed, Eq. (5) transforms to:

min
S

n∑
i,j=1

(‖xi − xj‖22sij + γs2ij) + 2λfTLSf (8)

s.t. ∀i, sTi 1 = 1, 0 ≤ si ≤ 1 (9)

And based on Eq. (4), it is written

min
S

n∑
i,j=1

(‖xi − xj‖22sij + γs2ij + λ(fi − fj)2sij)

s.t.∀i, sTi 1 = 1, 0 ≤ si ≤ 1

(10)
Because the summations are independent of each other
given i, we can solve the following sub-problem
individually for each i:

min
si

n∑
j=1

(‖xi − xj‖22sij + γs2ij + λ(fi − fj)2sij)

s.t.sTi 1 = 1, 0 ≤ si ≤ 1

(11)

We denote dxij = ‖xi − xj‖22 and dfij = (fi − fj)2,
and denote di ∈ RN as a vector with the j-th element
as dij = dxij + λdfij . Then Eq. (11) is reformulated as:

min
sTi 1=1,0≤si≤1

‖si +
di
2γ
‖22 (12)

Next, we will show how to solve this equation in
a closed form using the Lagrange multipliers method.
The Lagrangian function of the problem is

L(si, η, βi) =
1

2
‖si +

di
2γi
‖22 − η(sTi 1− 1)− βTi si

(13)
where η and βi are non-negative Lagrangian
multipliers.

According to the KKT condition, the optimal solution
is

sij = (− dij
2γi

+ η)+ (14)

where (x)+ is the shorthand for max{x, 0}.
It is often desirable to focus on the locality of each

point, as it can reduce the effect of noisy data and boost
the performance in practice [20]. In this study, we will
learn the sparse vector si and allow xi to connect to
its k-nearest neighbors. Such sparsification of S would
minimize the computational cost.

We sort dij in ascending order such that di1 ≤ di2 ≤
. . . ≤ diN . We want to learn the sparse si with only k
nonzero elements, from Eq. (14); thus we have sik > 0

and si,k+1 = 0. Therefore{
− dik

2γi
+ η > 0

−di,k+1

2γi
+ η ≤ 0

(15)

Considering the constraint sTi 1 = 1, we obtain
k∑
j=1

(− dij
2γi

+ η) = 1⇒ η =
1

k
+

1

2kγi

k∑
j=1

dij (16)

Substituting Eq. (16) into Eq. (15), we obtain the
following inequality for γi
k

2
dik −

1

2

k∑
j=1

dij < γi ≤
k

2
di,k+1 −

1

2

k∑
j=1

dij (17)

For the objective function in Eq. (12) to have an
optimal solution si, we set γi to

γi =
k

2
di,k+1 −

1

2

k∑
j=1

dij (18)

The overall γ is set as the mean of all γi:

γ =
1

n

n∑
i=1

(
k

2
di,k+1 −

1

2

k∑
j=1

dij) (19)

The algorithm for solving the optimization problem
in Eq. (5) is summarized in Algorithm 1.
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Algorithm 1 Algorithm to solve problem in Eq. (5)

Input: (1) Data matrix X ∈ Rn×d,
(2) Query indicator vector y,
(3) parameters γ, λ.

Output: The ranking scores f .
1: Initialize S and compute LS accordingly;
2: while not converged do
3: Define the diagonal matrix U as: Uii = ∞ if yi = 1 and

Uii = 1 otherwise;
4: Update f by solving Eq. (7) as f = (2λLS + U)−1Uy;
5: for i = 1, . . . , N do
6: Update i-th row of S by solving Eq. (12)
7: end for
8: end while

3 Experiments

In this section, we show the performance of the
proposed ranking algorithm RAN (Algorithm 1) on
synthetic and real world datasets.

3.1 Synthetic datasets

We randomly generate two synthetic datasets
constructed as two moons (Fig. 1) and three rings
(Fig. 2) patterns. A query is given in the upper moon
and the innermost ring marked in red cross. The task
is to rank the remaining data points according to their
relevance to the query. We represent the ranking scores
returned by RAN using the diameter of the data points
such that larger points are more relevant. From Fig. 1,
we observe that the ranking scores gradually decrease
along the upper moon. The same decreasing trend
is also observed in the lower moon. In addition, the
ranking scores in the upper moon are generally much
higher than in the lower moon. Such ranking outcome
is intuitively expected. We make similar observations
for the three rings in Fig. 2. The data points in the
innermost ring are more relevant than those in the
middle ring, which are more relevant than those in the
outermost ring. These results clearly show that the
proposed RAN can capture the underlying manifold
pretty well.

3.2 Real dataset

We compare the retrieval performance on three real
image datasets: Yale [21], ORL [22] and USPS [23].

YALE: Yale contains face images of subjects at
different poses and illumination conditions. We extract
11 images at different conditions for 15 subjects. Each
image is down-sampled and normalized to zero mean
and unit variance. The bandwidth for constructing the

Fig. 1 Ranking Example using Two Moon.

Fig. 2 Ranking Example using Three Ring.

weighted graph for the graph based baselines is σ =

0.021. We set k = 5 and λ = 90 for RAN.
ORL: ORL contains contains 400 images with ten

different images for 40 different subjects each. The
bandwidth for constructing the weighted graph for the
graph based baselines is σ = 20. We set k = 5 and
λ = 0.1 for RAN.

USPS: This dataset collects images of handwritten
digits (0-9) from envelopes of the U.S. Postal Service.
We extract 40 images for each digit and normalize them
to 16 × 16 pixels in gray scale. The bandwidth for
constructing the weighted graph for the graph based
baselines is σ = 0.8. We set k = 10 and λ = 1.0

for RAN.
On all the datasets, we use each image as query

and measure the retrieval accuracy by ranking all
the other images. We compare the proposed RAN
algorithm with the Euclidean distance based baseline
and several other diffusion methods, including self-
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diffusion (SD) [12], Personalized PageRank (PPR) [24],
Manifold Ranking [15] and Graph Transduction
(GT) [14]. The results are shown in Tables 1, 2 and
3. From the results, we can see that the proposed RAN
algorithm consistently outperforms all other methods.
The straightforward Euclidean distance based baseline
is the worst because it ignores the manifold structure
in the data. The various diffusion based methods
capture the manifold information to a certain extent,
but they assume the weighted data graph is fixed. We
instead adaptively learn the localized weighted graph
optimized for the ranking. To study how the locality
of the graph, i.e., the number of neighbors k, affects
the retrieval performance, we show (Fig. 3) the retrieval
performance by varying the number of neighbors on
USPS dataset. As it can be seen, it is important to select
a reasonable value for k for the retrieval. For USPS, the
best performance can be achieved at k = 15.

Table 1 Retrieval performance (%) for YALE.
Methods Precision@10 Recall@10

Euclidean Distance 66.61 60.55
SD [12] 69.03 62.75

PPR [24] 69.03 62.75
Manifold Ranking [15] 68.85 62.59

GT [14] 68.91 62.65
RAN (ours) 72.00 65.45

Table 2 Retrieval performance (%) for ORL.
Methods Precision@15 Recall@15

Euclidean Distance 41.56 62.35
SD [12] 46.87 70.30

PPR [24] 47.15 70.73
Manifold Ranking [15] 47.35 71.02

GT [14] 48.97 73.45
RAN (ours) 49.02 73.53

Table 3 Retrieval performance (%) for USPS.
Methods Precision@50 Recall@50

Euclidean Distance 45.53 56.91
SD [12] 47.42 59.27

PPR [24] 47.39 59.24
Manifold Ranking [15] 47.42 59.28

GT [14] 46.18 57.72
RAN (ours) 56.19 70.23
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Fig. 3 Retrieval Performance (%) v.s. the number of neighbors
on USPS.

4 Conclusions

We study the data ranking problem by capturing the
underlying geometry of the data manifold. Instead
of relying on the fixed-weight data graphs, we
propose a new ranking algorithm that is able to
learn the data affinity matrix and the ranking scores
simultaneously. The proposed optimization formulation
assigns adaptive neighbors to each data point based on
the local connectivity and the smoothness constraint
assigns similar ranking scores to similar data points.
An efficient algorithm is developed to solve the
optimization problem. Evaluations using synthetic and
real datasets demonstrates the superior performance of
the proposed algorithm.
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