
CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 43, NO. 4, FALL 2020 235

UFleSe: User-Friendly Parametric Framework
for Expressive Flexible Searches

UFleSe: Cadre paramétrique conviviale pour des
recherches expressives et flexibles

Mohammad Halim Deedar and Susana Muñoz-Hernández

Abstract— We present a parametric framework (UFleSe) with a user-friendly interface having a search engine
that enables regular users (without the need of neither technical nor theoretical knowledge) to define their fuzzy
concepts, rules, similarity relations, synonyms, antonyms, and personalizing their definitions for different users,
and to link them with the crisp database fields for performing flexible, expressive queries in a language close to
natural language. It works over multiple modern and conventional data formats, such as JSON, SQL, Prolog,
CSV, XLS, and XLSX. We present the syntax involved in the construction of our various flexible searching
criteria and their personalizations. Furthermore, we present the architecture of this novel system that combines
fuzzy, crisp data, and similarity relations in its queries to return constructive answers ordered by a degree
of searching criteria satisfaction (truth-value between 0 and 1). Finally, we include a comparative analysis
of different fuzzy querying systems here, and we provide various experiments, to show the system behavior,
performance, efficiency, and scalability as well.

Résumé— Nous présentons un cadre paramétrique (UFleSe) avec une interface conviviale ayant un moteur de
recherche qui permet aux utilisateurs réguliers (sans connaissances ni techniques ni théoriques) de définir leurs
concepts flous, règles, relations de similitude, synonymes, antonymes et personnaliser de leurs définitions pour
différents utilisateurs et de les relier aux champs d’une base précise de données pour effectuer des requêtes
expressives flexibles dans une langue proche du langage courant. Il fonctionne avec plusieurs formats de données
modernes et conventionnels, tels que JSON, SQL, Prolog, CSV, XLS et XLSX. Nous présentons la syntaxe
impliquée dans la construction de nos différents critères de recherche flexibles ainsi que leurs personnalisations.
De plus, nous présentons l’architecture de ce nouveau système qui combine des données floues et précises
ainsi que des relations de similitude dans ses requêtes pour renvoyer des réponses constructives ordonnées
par échelle de satisfaction des critères de recherche (valeur de vérité entre 0 et 1). Enfin, nous incluons ici
une analyse comparative de différents systèmes de requête floue et nous proposons diverses expériences pour
montrer également le comportement, les performances, l’efficacité et la notion évolutive du système.

Index Terms— Framework, fuzzy criteria, fuzzy logic, personalization of criteria, search engine, similarity
relation.

I. INTRODUCTION

WHAT is a flexible query, and why do we need it?
Assume, a database storing information about differ-

ent employees, such as their name, age, major, and so on,
by flexible query we mean queries, such as “I am looking
for a good employee” or “I am looking for a manager with
quite a lot of experience and not very old.” In many cases,
users do not have enough details about the exact charac-
teristics of the elements they want to search in a database.
In addition, the users are, in general, unable to give the
proper values of the data characteristic corresponding with
their searching preferences. In those situations, the systems
that allow performing flexible queries can be beneficial to

Manuscript received September 4, 2019; revised December 13, 2019;
accepted January 8, 2020. Date of current version August 21, 2020.
(Corresponding author: Mohammad Halim Deedar.)

The authors are with the Escuela Técnica Superior de Ingenieros Infor-
máticos, Universidad Politécnica de Madrid, 28660 Madrid, Spain (e-mail:
halim.deedar@alumnos.upm.es; susana@fi.upm.es).

Associate Editor managing this article’s review: Mohamed Hamed
Abdelpakey.

Digital Object Identifier 10.1109/CJECE.2020.2966733

satisfy their needs. Moreover, searching in a fuzzy way not
only retrieves the exact information we are looking for from
a database (having crisp information), but, it also provides all
the possible and available information very close to the criteria
we have set for our query. To clarify, we take an example
of a database of restaurants having crisp information. If we
execute a query in a crisp way for retrieving restaurants with
a menu price lower than 10 euros, and there is one restaurant
with a menu price of 10.15 euros, then this one will not
be retrieved, while it might be the one we are looking for.
Moreover, the personalization of the fuzzy criteria is one of the
most important features when searching. There are situations,
such as having a database and multiple users who can use a
searching system and access the database, to perform flexible
queries. Suppose we have a “cheap” fuzzy predicate defined
in our system for retrieving restaurants with low-cost menu
prices from the database. Thus, personalization can provide
results based on the levels of satisfaction of each user for
the same criteria. Fuzzy logic [1], [2] has substantiated its
capability devoted to the management of vague information in
a different number of applications (such as control systems,

0840-8688 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0714-6435
https://orcid.org/0000-0001-7910-3958

236 CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 43, NO. 4, FALL 2020

TABLE I

EMPLOYEES DATABASE

Fig. 1. Old fuzzification function.

database, or expert systems). The integration of fuzzy logic
and logic programming [3] provides fuzzy logic programming
with the capability of dealing with ambiguity and approximate
reasoning. This integration provided us the facility to program
the applications in order to understand the fuzzy characteristics
(it is cold), fuzzy rules (if it is cold, turn on the heater) and
fuzzy actions (since it is not too cold, turn on the heater at
medium degree). Therefore, in our approach, we use Prolog,
which is more declarative and a successful programming
language for representing knowledge, and the Fuzzy logic that
defines not only if an individual belongs to a set or not but it
also provides the degree of its belonging to that set. Supposing,
a database of “employees” in Table I and the definition of the
function “old” in Fig. 1 with respect to the value of “age,”
and the question “is employee X is old?” with Fuzzy logic we
can deduce that “Davis” is “very” old, “Thomas” is “quite”
old, “Scott” is “hardly” old, and “Martin” is “not” old at all.
We highlight the words “very,” “quite,” “hardly,” and “not”
because the usual answers for the query are “1,” “0.82,” “0.5,”
and “0” for the individuals Davis, Thomas, Scott, and Martin,
respectively, and the humanization of the crisp values is done
in the same way by defuzzification.

In this article, we describe our parametric framework that
allows users (without knowledge of the low-level syntax of
the framework and knowledge about Prolog) to define their
fuzzy searching criteria (fuzzy concepts, fuzzy rules with
or without credibility values, and conditional or uncondi-
tional default values), similarity relations, personalization of
the fuzzy criteria, synonyms and antonyms for performing
expressive, and flexible searching over multiple modern and
conventional database tables. The framework takes care of all
the mapping processes to link between the crisp information
stored in the database and the fuzzy concept without the
user interventions. The syntax involved in the construction
of our flexible queries and the details about the design and
implementation of our system for processing flexible queries
is described in this article. As proof of concept, we also

report a thoughtful example of the behavior of our system by
experimenting with flexible searches over two databases. This
article is structured as follows. A brief overview of state of
the art and the details about the background works on which
we depend on is explained in Section I. Afterward, we present
syntactical constructions and the architecture of the system in
Section II. Implementation details about the framework user
interface are given in Section III. Three examples of system
behavior, performance, efficiency, and scalability are included
in Section IV. In Section V, we add a comparative analysis
of the main features of this approach and the main fuzzy
querying systems in the literature. Finally, several conclusions
and future works are discussed in Section VI.

A. State of the Art of Fuzzy Query Systems

We have reviewed the systems that allow flexible queries
over databases in the literature to establish the basis of the
proposal presented in this contribution.

1) Fuzzy Query Systems: Obtaining fuzzy answers by pos-
ing fuzzy queries over databases having nonfuzzy informa-
tion has been studied in some works, where good revisions
can be found in the works, such as the ones provided
by Bosc and Pivert [4], Dubois and Prade [5], Tahani [6],
and Rodriguez [7], although maybe a little bit outdated. More-
over, the integration of fuzzy logic and logic programming
resulted in the development of many fuzzy systems over
Prolog. To represent fuzzy knowledge, we need to create a
link between fuzzy and nonfuzzy concepts, and to achieve that,
we could use any of the existing frameworks. Apart from the
theoretical frameworks as [8], we know about the Prolog-Elf
system [9], the F-Prolog language [10], the FRIL Prolog
system [11], the FLOPER [12], the FuzzyDL reasoner [13],
the Fuzzy Prolog system [14], [15], or RFuzzy [16].
All of them somehow implement the fuzzy set theory
introduced by Zadeh [1], and they allow us to execute
the connectors required to retrieve the nonfuzzy informa-
tion stored in databases. Moreover, there are some tools
for accessing regular databases having nonfuzzy informa-
tion in a fuzzy way, such as by Bosc and Pivert [4], [18],
Ribeiro and Moreira [17], Bordogna and Pasi [19], [21], and
Kacprzyk and Zadrozny [20]. Furthermore, many promising
proposals for performing fuzzy queries on relational databases
can be found in [22]–[27] with the syntax somewhat similar to
SQL, or in some work, they have extended the SQL language.
In Section V, we provide a qualitative comparison analysis,
among different fuzzy querying systems devoted to the main
features existing in different approaches.

B. Background

In this section, we describe the earlier works on which our
framework is based on.

1) RFuzzy Library: RFuzzy1 [16] was implemented as a
library of Ciao Prolog [28] to increase the expressiveness of
Prolog with the possibility of managing fuzzy information.

1In RFuzzy’s name, the “R” means real, because the truth-value that it uses
is a real number instead of an interval or union of intervals as in Fuzzy Prolog.
RFuzzy should not be confused with the term “R-Fuzzy set,” which means
rough fuzzy set.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

DEEDAR AND MUÑOZ-HERNÁNDEZ: UFleSe: USER-FRIENDLY PARAMETRIC FRAMEWORK FOR EXPRESSIVE FLEXIBLE SEARCHES 237

Fig. 2. RFuzzy architecture.

The goal that led to developing RFuzzy was mainly to reduce
the complex syntax of Fuzzy Prolog [14], for representing
fuzzy reasoning with truth-values represented as real numbers.
The answers provided by the RFuzzy are never constraints
(as in Fuzzy Prolog); it can be differentiated between the
crisp and fuzzy predicates without the intervention of the
user, and it can manage the introduction of truth-values. What
makes RFuzzy distinctive is that it allows defining types and
default values (general and conditional). It is the first tool that
provided credibility to the rules through the implementation
of multi-adjoint logic. RFuzzy structure is shown in Fig. 2.
In general, RFuzzy contains the following features that make
it different from other approaches.

1) It represents the truth-values using real numbers instead
of unions of intervals between the real number (that is
the complex representation of Fuzzy Prolog).

2) It provides a concrete syntax to define types so that the
user does not need to code them in Prolog.

3) The results provided by RFuzzy are not constraints;
instead, it provides direct constructive results.

4) It allows the implementation of both the default and
partial default values.

5) RFuzzy uses multiadjoint logic to model its semantic.
a) Semantics: The multiadjoint algebra presented

in [29]–[34] is used to give semantics to RFuzzy. The
purpose of using these semantics is that it provides credibility
for the rules. Comprehensive details about the semantics can
be found in the cited articles. With the help of this semantics,
we are able to use the maximum operator to decide between
multiple rules results and to get the less generic rule as the
valid one instead of the one with the higher value. Refer
to the article [35] for details related fuzzy logic program
conditioned by the combination of truth and a priority value.

b) Rule Syntax: The general structure that is used to
define RFuzzy rules according to a multiadjoint logic seman-
tics is shown in 1 [14]

P(argsPj , Vj)
(Pr j ,Vcj)&i←−−−−−−− @ j (Q1 (argsQ1 j , V1 j))

. . . (Qn (argsQnj , Vnj)) (1)

where P is the predicate, and j is one of the definitions from a
set of definitions j ∈ [1,N] (where N is the number of rules that
we have to define for predicate P, and j identifies one of these
rules). argsP j are the arguments of P in the rule j, in the same
way, argsQi are the arguments of Qi , where i ∈ [1,n] and n
is the number of elements of the body of the clause. Vij is the
truth-value of Qi (argsQij,Vij). @ j is the aggregation operator
of the rule j. Vcj is the credibility to calculate the truth-value,
Pr j is the priority of j rule with respect to other rules of P
definition, and &i is the aggregation operator (product), for
example, for obtaining the truth value with the credibility of
the rule.

2) FleSe Framework: FleSe [36] is the former version of
UFleSe, which is a handy framework for performing fuzzy
and nonfuzzy queries over Prolog databases containing crisp
information. It uses the RFuzzy package, which is a Prolog
library developed with Ciao Prolog, and it uses Fuzzy logic
with Prolog. FleSe was not user-friendly enough to be used
by regular users (users without knowledge of Prolog). It was
limited on querying over Prolog data files only, and users must
understand all the syntax behind the flexible queries, and they
should define the fuzzy criteria manually inside the Prolog file
outside the system before performing searches (it was almost
writing a program in the syntax we explain in Section II).
We overcome all these limitations with UFleSe by introducing
new features that we explain in Sections II and III.

II. DESCRIPTION OF SYSTEM

UFleSe is a search tool that provides a user-friendly Web
interface for users to be able to make expressive queries (using
fuzzy searching criteria, fuzzy rules, synonyms, antonyms,
similarity, negation, and fuzzy qualifiers) over conventional
and crisp data. UFleSe allows users to upload their data to
define in an easy way the similarity concepts and the fuzzy
criteria (fuzzy concept, rules, synonyms, and antonyms) that
they want to use for searching. UFleSe lets the different
users personalize these fuzzy search criteria according to their
personal preferences, and it provides constructive answers to
the queries.

A. Framework Syntax

We present here the syntactical constructions behind various
operations of our framework. They are defined according to
RFuzzy [16] syntax.

1) Database Definition Syntax: In order to define a link
between the fuzzy predicate and the database, first of all,
we have to know what is stored inside each database
field.

The syntax, which is responsible for outlining the contents
of a database into concepts, that we use in our searches
is shown in 2. In the syntax, P is the name of the data-
base table, A is its arity, Ni is the name assigned to a
column (field) of the database table where values are of
type Ti (boolean_type, enum_type, integer_type, float_type,
string_type), and i ∈ [1,A] identifies each field of the table.
We give an example in 3, where we have defined an employee
database having six columns

define_database(P/A, [(Ni , Ti)]) (2)

define_database(employee/6,

(name, string_type),

(age, integer_type),

(years_of_experience, integer_type),

(years_of_studying, integer_type),

(major, enum_type),

(distance_to_the_workcenter, integer_type)]). (3)

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

238 CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 43, NO. 4, FALL 2020

Fig. 3. Decreasing function format for young fuzzification criterion.

2) Fuzzification Syntax: The process of linking the non-
fuzzy values of our table with a fuzzy predicate (criterion) is
called fuzzification. The syntax presented in 4 is responsible
for defining fuzzification. It computes the fuzzy value for a
fuzzy predicate from the crisp value existed in any column of
the database. The breakpoints define the fuzzification function,
and the rest of the values are easily deduced to provide the
truth-value of the fuzzy criterion of each domain value of the
crisp field. In the syntax, P and Ni mean the same as in 2,
fPredName is the name for the fuzzy predicate that is defined,
and [valIn, valOut] is a list of pairs of values to define the
break points domain of the fuzzification. To clarify the syntax,
we give an example in 5, in which we define the youth of an
employee based on his/her age

fPredName(P) : ∼ function(P, (Ni), [(valIn, valOut)]).
(4)

young(employee) : ∼ function(age(employee),

[(20, 1), (60, 0)]). (5)

By defining this fuzzy criterion (young), we mean the age till
which the employee is very young is 20 with truth-value 1,
and as employee’s age is increasing, they get older, and the
truth-value decreases, and the minimum age on which an
employee is not at all young is 60 with the truth-value 0.

In FleSe, the breakpoints for the domain of fuzzification
were not fixed; therefore, the formats of the potential fuzzy
criteria in the Prolog file could be wrongly defined by users
without any knowledge about the functions. In order to make
the fuzzification process easy for regular users, we have
considered three different formats (increasing, decreasing, and
medium) for modeling the structure of the potential fuzzy cri-
teria. In this way, user can easily define the fuzzy criteria using
the breakpoints of the domain of fuzzification ([valIn, valOut]),
where valIn includes the criteria breakpoints (V 1, V 2, V 3,
and V 4) that gets its value as input by the user and valOut
holds the truth-value (0 or 1) which is going to be assigned
automatically by the framework based on the type of the fuzzy
criteria.

We provide an example in Fig. 3, in which the criterion
young has a decreasing format that has been defined by
the user using two breakpoints (V 1 = 20) and (V 2 = 60),
as it has decreasing format; therefore, the system assigns
a truth-value 1 for the breakpoint V1 and a truth-value 0
for the breakpoint V2. Hence, while searching for young
candidates, the system computes the candidates with the age
smaller and equal to 20 with a degree of satisfaction 1,
which means the candidates are completely young, and the
candidates with age greater and equal to 60 with a degree of

Fig. 4. Increasing function format for old fuzzification criterion.

Fig. 5. Medium function format for medAge fuzzification criterion.

satisfaction 0, which means the candidates are not young at all.
The candidates with age between the domain V 1 and V 2 will
have a different degree of satisfaction (truth-value between 0
and 1), which keeps decreasing as the age of the candidate gets
increased. Just like that, our system takes care of the increasing
and medium format functions, as shown in Figs. 4 and 5,
respectively. We explain later in the upcoming sections, how
to define these fuzzy searching criteria.

3) Defining Fuzzy Rules Syntax: Rules help us to define
more expressive, flexible searching criteria by defining the
satisfaction of a fuzzy criterion (predicate) from the satisfac-
tion of other fuzzy criteria. We can define a fuzzy rule with a
single body (having one fuzzy predicate in its body), as shown
in 7, or with multiple bodies, as shown in 8. In 7, aggr is
the aggregator2 used to combine the truth-values of the fuzzy
predicates in fuzzyPred, which is just a conjunction of names
of fuzzy predicates. In both of them, the fuzzyPred is name of
the fuzzy predicate, P means the same as in 2 and fPredName
the same as in 4. We show an example in 8 in which we say,
“an employee is a good employee if he/she is young, highly
experienced, and with high qualification” at the same time

fPredName(P)

: ∼ rule(fuzzyPred) (6)

fPredName(P)

: ∼ rule(aggr,fuzzyPred) (7)

good_employee(employee)

: ∼ rule(prod, (rather(young(employee)),

highly_experienced(employee),

very(high_qualification(employee)))). (8)

2Available aggregation operators are min for minimum, max for maximum,
prod for the product, luka for the Łukasiewicz operator, dprod for the inverse
product, and dluka for the inverse Łukasiewicz operator and complement.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

DEEDAR AND MUÑOZ-HERNÁNDEZ: UFleSe: USER-FRIENDLY PARAMETRIC FRAMEWORK FOR EXPRESSIVE FLEXIBLE SEARCHES 239

4) Syntax for Handling Missing Information: If there is
missing information or the content of the database has a null
value, we can face unexpected behavior which does not satisfy
the definition of our fuzzy predicate from a value stored in a
database. To avoid such problem, the syntax (shown in 9) is
used for defining the satisfaction of the fuzzy concepts which
we call it “defining default truth-values of the fuzzy concepts,”
and, its primary objective is not to stop a derivation process
even if a value is missing. In the syntax, P means the same
as in 2, fPredName the same as in 4, and TV is a truth-value
(a float number between 0 and 1). We give two examples
in 10 and 11 which indicates, in the absence of information,
we consider that the employee is not experienced (this is what
the zero value means) and that, in the absence of information,
the employee is considered to be medium old

fPredName(P) : ∼ default_to(T V) (9)

experienced(employee) : ∼ default_to(0) (10)

old(employee) : ∼ default_to(0.5). (11)

5) Synonyms and Antonyms Definition Syntax: Synonyms
and antonyms help us to increase the number of fuzzy criteria
that can be used for querying the database by defining a fuzzy
predicate from another fuzzy predicate. With the syntactical
constructions in 12 and 13, we can define a fuzzy predicate as
a synonym or antonym of other fuzzy predicates. For example,
we can define “old” from “aged” as a synonym and “young”
from “old” as an antonym, and so on. The examples are
shown in 14 and 15. In the syntax, fPredName is the name
of the fuzzy predicate (young, old, aged, and so on), P is the
same as in 2, credOp is the operator (product by default), and
credVal is the credibility (a type float number, which is 1 by
default)

fPredName(P) : ∼ synonym_of(fPredName2(P),

credOp, credVal) (12)

fPredName(P) : ∼ antonym_of(fPredName2(P),

credOp, credVal) (13)

aged(employee) : ∼ synonym_of(old(employee), prod, 1)

(14)

young(employee) : ∼ antonym_of(old(employee), prod, 1).

(15)

6) Syntax for Defining Credibility to The Rules: We can
define credibility for the fuzzy rules and concept by adding
the syntax in 16 as a tail in their syntactical constructions,
together with the required operator to combine it with its truth-
value. In the syntax, credVal is the credibility (a number of
float type) and credOp is the credibility operator.3 We show
an example in 17 in which we say that the employee Sara
Guzman is young with a truth-value of “0.6,” but this rule
has the credibility of “0.8,” and the operator that must be

3The credibility operators are the conjuntor, such as product, Łukasiewicz
conjunctor and Gödel conjunctor which are mathematical functions which is
monotone and nondecreasing in their coordinates. Users can easily use them in
our framework by selecting “prod,” “luka,” and “min” for the field “credOp”
in the interface.

used to combine the credibility with the truth-value is the
minimum

with_credibility(credOp, credVal) (16)

young(employee) :∼ value(0.6)if (name(employee)is equal

to sara guzman)

with_credibility(min, 0.8). (17)

7) Similarity Relations Syntax: Sometimes, the users might
be interested in searching for some items in the database table
that have a characteristic similar to a particular characteristic.
The syntax in 18 is responsible for defining similarity between
values in RFuzzy. In the syntax, P and N mean the same as
in 2, TV is the same as in 9, and V1 and V2 are two values for
the column N of the database table P. In the example, in 19,
we say that “the employees with major Business is 0.7 similar
to the commerce one”

similarity_between(P, N, [(V 1), N(V 2), TV]) (18)

similarity_between(employee, major(Commerce),

major(Business), 0.7). (19)

8) Syntax for Personalization of Fuzzy Concepts: The tail
syntax in 20 is added for the personalization of a fuzzy rule.
During searches, the personalized definition of the searching
criteria will be used for users that have defined their specific
definition. The general definition will be used otherwise.
In the syntax, Username is the name of any user (a string).
We provide an example in 21 in which we say that “Sara
considers that the employee Luis is not old.” Therefore, if it is
she who poses a query to the system asking for old employees,
she will not obtain Luis

only for user ‘UserName’ (20)

old(employee) :∼ value(0) if (name(employee)

is equal to luis) only for user ‘Sara’. (21)

B. System Architecture

Our system is a Web application implemented in Java
with a Prolog search engine. Java and Ajax are used for
the development of the Web user interface with lots of
improvements in communication with Prolog. Our database
is managed directly by the Prolog code because it has
the facilities for linking to it. We are not restricted to
any database or database interface. It uses CLP(R) and
RFuzzy packages, which are Prolog libraries developed for
Ciao Prolog.

The type of database that our system works with is a table
that can be in any of the conventional and modern formats
(XLS, XLSX, JSON, CSV, SQL, and Prolog).

The system architecture, which is shown in Fig. 6 has four
main parts.

1) System Modules: UFleSe contains six different modules.

1) Parsing Module: It is responsible for parsing the
data-files (database table) of different formats (XLS,
XLSX, JSON, CSV, SQL, and Prolog) and generate a
configuration file (Prolog format).

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

240 CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 43, NO. 4, FALL 2020

Fig. 6. UFleSe architecture.

2) Criteria Definition Module: This module is responsible
for the fuzzification of the criteria. It allows users to
define the fuzzy criteria (fuzzy concepts and fuzzy
rules definitions) by creating a link between the fuzzy
predicate and the crisp information stored in the data
file, or by defining one fuzzy predicate from another
fuzzy predicate (synonyms and antonyms).

3) Similarity Definition Module: This module is responsible
for defining the similarity relation between different
elements of the database table.

4) Personalization Module: This module is responsible for
the personalization of the fuzzy criteria.

5) Flexible Query Process Module: It takes the flexible
queries as input (which is a natural language like query)
from the users and provides the results as output (con-
structive with truth-value) after several computations of
fuzzy criteria and similarity relations. We discuss more
the system behavior while posing a flexible query in
Experimentation (Section IV).

6) Visualization Module: It is responsible for the visual-
ization of the resulting data sets in order to make the
results more useful and understandable to the users.

2) Configuration File: The configuration file contains the
Prolog data set, which holds the contents of our database table
and all the flexible search criteria (fuzzy concepts, fuzzy rules,
similarity relations, personalization of fuzzy predicates, and
synonyms and antonyms of fuzzy predicates) defined by the
users through the framework interfaces. The syntactic sugar is
added directly to the configuration file by the system during
the creation of the file, and it contains the negation operator
and modifiers. That is, it contains all the information needed
for resolving the queries.

C. Ciao Compiler

The compiler of the Ciao System [28] is the engine that
provides a result for the queries by using the translation of
the expressive, flexible query to RFuzzy syntax. It uses the
RFuzzy and CLP(R) libraries (packages) and consults data of
the configuration file.

D. Result

Our framework provides constructive results with different
degrees of accomplishment (truth-values) assigned.

III. FRAMEWORK USER INTERFACE

In order to remove the gap between the advanced users
(researchers and developers) and the regular users (without
having knowledge of Prolog and low-level syntax of the frame-
work), we provide a user-friendly interface that feeds from the
knowledge stored inside the framework. In this way, regular
users can easily experiment and perform flexible, expressive
searches devoted to their defined fuzzy searching criteria over
their database tables, which they have in any of conventional
and modern formats, we present more comprehensive details
about the conversion process of the uploaded data files in [37].
Before anything else, the user must sign in to the system
using his/her Gmail or Twitter account and upload the database
tables.4 Once uploaded, the user has to define the types of
the columns (integer, string, float, enum, and date) existing
in the database table. Afterward, the system generates the
configuration file. We present the uploading interface in Fig. 7,

4The type of database that our system works with is a table, that can be
in any of the conventional and modern formats (CSV, XLSX, XLS, JSON,
SQL, and Prolog).

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

DEEDAR AND MUÑOZ-HERNÁNDEZ: UFleSe: USER-FRIENDLY PARAMETRIC FRAMEWORK FOR EXPRESSIVE FLEXIBLE SEARCHES 241

Fig. 7. Data-file uploading interface.

Fig. 8. Defining new criteria.

Fig. 9. Defining fuzzy search criteria.

in which we can see a list of database tables in various formats,
and the option “Privacity” that can be either “private” or
“public.” Each user decides the accessibility to the other users
of the database tables that he/she has uploaded.

To make the fuzzification process easy for regular users,
we provide them different interfaces to use for defining various
flexible search criteria and other features by selecting one of
the options from the combo shown in Fig. 8.

A. Defining Fuzzy Search Criteria (Fuzzy Concept)

The interface for defining fuzzy criteria is shown in Fig. 9.
For more details about this interface, refer to [38]. For ease
of use, we have fed most of the interface variables with the
information stored inside the configuration file so that users
can define fuzzy searching criteria easily. This interface defines
fuzzy searching criteria based on the syntax in 4.

Fig. 10. Young fuzzy predicate graph.

Fig. 11. Defining similarity relations.

1) Step 1: In the interface, user has to select the database
table name, and the column of crisp data, such as employee
table, and the column age.

2) Step 2: Once selected, then the user should define the
name of the fuzzy predicate in the text field area, for example,
young.

3) Step 3: Afterward, the user has to define the formats
of the criteria. There are three common formats for searching
fuzzy criteria based on a crisp field of data. 1) Increasing
criterion (the value of the criterion increases when the value
of the crisp increases). 2) Decreasing criterion (the value of
the fuzzy criterion decreases when the value of crisp data
increases). 3) Range criterion (the value of the fuzzy criterion
has truth-value 1 in a range of crisp data, increases before and
decrease after that range).

Based on the example, the user selects the second option
for the young fuzzy predicate, which is, “LESS age MORE
young.” Once selected, the system will define the structure
of the fuzzy criteria by asking a few simple questions in
a language easy to understand by regular users. The user’s
answers define the domain of fuzzification by fixing the
breakpoints of the fuzzy function (V 1, V 2, V 3, and V 4).
Based on our example, the system asks for the maximum
age in which the employee is completely young, we give 20,
and the minimum age in which employee is not at all young,
we give 60, the system takes care of the definition of the
truth-values to complete the domain of the fuzzification (by
assigning truth-value 1 till the age 20 and truth-value 0 from
the age 60). By saving the form, the fuzzy predicate “young”
gets created inside the configuration file, and we can start
posing a flexible query based on the criterion “young.” We
present the graphical representation of “young” fuzzy predict
in Fig. 10 which is a decreasing format graph.

B. Defining Similarity Relation Interface

The interface for defining similarity relation devoted to the
RFuzzy syntax in 18 is shown in Fig. 11.

1) Step 1: The first thing the user needs to do is, to select
the table name and the (column) of the values between which
he/she wants to define the similarity relation. In the example
(see Fig. 11), the user has selected the table employee and the
column major.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

242 CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 43, NO. 4, FALL 2020

Fig. 12. Graph of similarity relations between business and other majors.

2) Step 2: Afterward, the user chooses the items from the
lists (of values of major field) between which he wants to
define the similarity relation. (in the example user has selected
the values business and commerce from the column major.)

3) Step 3: Finally, once items are selected, the user must
define a similarity degree (a truth-value between 0 and 1) that
represents how similar these two items are.

By saving the form, the similarity relation between business
and commerce gets created in our system, and we can start
posing flexible queries based on “majors similar to business”
or “majors similar to commerce.” We provide more details
about the similarity interface in [39].

Our system does not allow contradictions while the def-
inition of a similarity relation which already exists in the
system. Suppose if there is a similarity relation in the system
as “business is very similar to marketing” (with a truth-value
0.8 for example) and a user wants to define a new relationship
between the same objects, but with a different similarity
degree, such as “business is very different from marketing”
(with a truth-value 0.3 for example), in this case, instead of
defining a new relation our system will update the prespecified
relation with the new similarity degree that the user has
recently defined. Moreover, our system will take care of the
symmetric relation between the similarity relations. Taking an
example, if a user has already defined a similarity relation,
such as “business is very similar to marketing,” then the
user does not need to define another symmetric relation as
“marketing is very similar to business” when he/she wants to
retrieve queries based on “marketing”.

While defining a similarity relation degree, we have con-
sidered six different categories (completely different, very
different, rather different, similar, very similar, and completely
similar) based on different similarity degrees to make the
user understand what we exactly mean by these real numbers
between 0 and 1. To clarify, we present a graph in Fig. 12 to
show similarity relations and their categories between different
values of the field major of employee database5 with respect
to the value “business.”

5The defined relations are just examples, we are not saying that business
is 0.8 similar to marketing or any other relations. You need to add another
clause with that information if you want to say that too.

Fig. 13. Defining fuzzy rule criteria.

Fig. 14. Defining synonyms and antonyms.

C. Defining Fuzzy Rules Criteria Interface

In order to do more expressive fuzzy searches, our system
allows users to define fuzzy searching rules through which
users can define a fuzzy rule based on the satisfaction of other
fuzzy predicates. To clarify, we give an example. Suppose we
have already defined a few fuzzy search criteria for query-
ing about highly_qualified and highly_experienced employees.
Now, there might be some employees who are highly_qualified
(having the highest truth-value) but not highly_experienced in
comparison with other employees who are highly_qualified
(with 0.5 truth-value out of 1), but more experienced. There-
fore, a novel system allows a single-flexible query that con-
siders all these two criteria (or maybe more) at the same
time while searching for a good employee and provides the
most satisfactory and efficient result. We provide the interface
in Fig. 13 for defining a fuzzy rule, where, users need to define
a name for the fuzzy rule, the aggregation operator (prod, min,
and max luka), afterward, he has to define the fuzzy predicates
from the combo list which are going to be used as body of
the fuzzy rule. Moreover, users can define the credibility for
the fuzzy rule by clicking the plus symbol for the credibility
option.

D. Defining Synonyms and Antonyms Interface

We can define synonyms and antonyms using the interface
shown in Fig. 14 in which from the combo, we select the fuzzy
predicate on which we want to define synonyms or antonyms
of it. We provide an example user interface (see in Fig. 14)
where we have defined aged as a synonym and young as an
antonym of the old fuzzy predicate of the table employee.
Synonyms and antonyms of a fuzzy criterion can be defined
at the same time or separately based on the user’s choice.

E. Personalization Interface

In order to let the users have more satisfactions on their
searching results devoted to a fuzzy search criterion, we pro-
vide them the personalization option that allows the user to

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

DEEDAR AND MUÑOZ-HERNÁNDEZ: UFleSe: USER-FRIENDLY PARAMETRIC FRAMEWORK FOR EXPRESSIVE FLEXIBLE SEARCHES 243

Fig. 15. Personalization of fuzzy criteria.

modify the definition of a fuzzy concept to be better adapted
to his/her preferences. With this feature, users can personalize
how the framework translates the nonfuzzy attributes stored
in the database into the fuzzy ones that he/she uses in
queries. We present the personalization interface in Fig. 15 in
which it asks the user which fuzzy predicate he/she wants to
personalize and his/her preferences for the fuzzification of the
values stored in the database. The interface for personalization
is user-friendly enough; the user only needs to define his/her
preferred values for the breakpoints of the domain of the
fuzzification. Our system uses the personalized predicate if
the user logged in has previously defined a personalization;
otherwise, it uses the general definition. We provide a working
example of this functionality with details using our system in
Section IV-B.

F. Search Engine

Our framework gets the user’s query as input according to
the following format:

I am looking for a/an individual{
not m fp

whose nfp co value

}
AND

(22)

where individual is the name of the table that we are querying
(e.g., employee), not gives a negation mechanism to the
queries, m is the modifier (fairly, little, rather, very, and very
little), fp is a fuzzy predicate from the fuzzy searching criteria
defined in the system for a data table, such as fast, cheap, big,
expensive, . . ., nfp is a nonfuzzy predicate corresponding a
crisp field of the table, such as name, club, age, price, . . ., co
indicates comparison operand, and it consists of an operand
(is equal to, is different from, is bigger than, is lower than,
is bigger than or equal to, is lower than or equal to, and is
similar to), and value is a crisp value of the field nfp. To pose a
query over a database, first, we select the configuration file that
is the already uploaded data file enriched with the searching
criteria definition [see Fig. 16(a)] and then the database table
[see. Fig. 16(b)] existed inside the configuration file. Each
configuration file can contain various tables. Each query is
compound by so many simple queries as wanted (they can be
added by the AND functionality).

One of the most interesting features of the user interface
is that it interacts with the system, and therefore, it knows
if the attribute selected in the search engine [see Fig. 17(a)]
is fuzzy or not. We provide an example in [Fig. 17(b)] for

Fig. 16. Selecting the configuration file and the database table. (a) Selecting
the configuration file. (b) Select what we are looking for.

Fig. 17. Selecting the attributes and posing the flexible query. (a) Selecting
the predicates. (b) Search engine.

posing a flexible (compound) query “I am looking for a
good employee, young with a major similar to business and
with home not very far from the work center.” In the search
engine, the first and second selected criteria (good employees
and young) are the fuzzy predicates; therefore, two boxes in
the left appears for defining not (negation) operator and the
modifiers are selected (if needed), and the third criterion is a
nonfuzzy predicate (major); therefore, two boxes appear in the
right for defining the comparison operand. The other box is
a combo for selecting a crisp value from the database table,
or if the operand is not a similarity operator, then a free text
field appears for entering a crisp value. The fourth criterion is

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

244 CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 43, NO. 4, FALL 2020

Fig. 18. Employees database example.

again a fuzzy predicate, where we have selected not negation
operator and the modifier very. The plus sign serves to add
more conditions to the query; it is the AND functionality
(it only has a line at the beginning), the minus sign removes
the added condition from the query and the show options
label through which we switch the operator for combining the
truth-values from minimum to product, Łukasiewicz or any
other. The attributes are the names we give to the columns
using the syntax in 2 and the fuzzy predicates are defined
using the syntaxes in 4, 12, and 13 (the system does not
allow to define duplicate fuzzy predicate, even we defined it
manually inside the configuration file; it appears only once).
After posing the query, we need to press the button search.
The search engine then provides the query results, grouped in
five tabs: “10 best results,” “results over 70,” “results over 50,”
“results over 0,” and “all results.” This helps the user to choose
the results that best fit his/her query.

G. Available Release

We have implemented an open-source prototype of our
framework. We have created a project in a forge to make our
software available online6 for users and researchers with a free
software license GNU.

IV. EXPERIMENTS

In this section, we present the system behavior, per-
formance, efficiency, speed, and scalability through three
experiments using two databases employees database (having
21 tuples) and players database (having 1000 tuples).

A. Experimentation 1

We have analyzed the system behavior when a flexible
query is executed through this example. We have developed
a small database about employees for experimentation pur-
poses only. We have shown a brief schema of this database

6UFleSe’s download link: https://github.com/FuzzyLP/UFleSe.git

in Fig. 18. We posed an expressive, flexible query in the
search engine, which is in a natural language like query
[see Fig. 17(b)]: “I am looking for good employees who
are young with a major similar to business and whose dis-
tance to work center is not very far.” This flexible query
is a compound query which contains fuzzy concepts, fuzzy
rules, antonyms, similarity relations (based on the 4, 7, 13,
and 18), negation, and very modifiers in its structure, and it
implies the definition of the five attribute domains in the data-
base table, such as years_of_studying, years_of_experience,
age, major, and home_distance attributes. To fuzzify them,
we have defined the following fuzzy criteria on them,
such as highly_qualified, highly_experienced, young, similarity
relations between majors, and far_distance_to_workcenter,
respectively. The database searching process starts when the
fuzzy query is executed in the search engine. The flexible
query process module translates the fuzzy query into an
RFuzzy query with the help of the Ciao compiler. Afterward,
it divides the query into different subqueries, calculates and
combines all the results obtained from each subquery at the
same time, and provides us the final result.

1) Subquery 1 (Fuzzy Rule): “I am looking for good
employees.” This query is a fuzzy rule based on
the syntax in 7, which has two more fuzzy predi-
cates in its structure which are highly_qualified and
highly_experienced. The result obtained from this sub-
query is shown in Table II.

2) Subquery 2 (Antonyms): “ I am looking for young
employees.” This query is solved by calculation of the
antonym of fuzzy predicate “old,” which are defined
using 4 and 13. The result obtained from this subquery
is shown in Table III.

3) Subquery 3 (Similarity Relations): “ I am looking for
majors similar to business.” This query provides all
the employees whose majors are similar to business
(including, of course, the employees with a business
major). This query is based on 18. The result obtained
from this subquery is shown in Table IV.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

DEEDAR AND MUÑOZ-HERNÁNDEZ: UFleSe: USER-FRIENDLY PARAMETRIC FRAMEWORK FOR EXPRESSIVE FLEXIBLE SEARCHES 245

TABLE II

RESULT OF:“Good Employees”

TABLE III

RESULT OF:“Young Employees”

4) Subquery 4 (Negation Operator)7: “I am looking for
employees who are not far distance from work center.”
We have used the “not” negation modifier to experiment
with its working. This query provides all the employees
who have less distance to the work center. This query
is based on the negation of 4. The result obtained from
this subquery is shown in Table V.

Our flexible query is calculated using the following functions.
old(employee):∼ function(age(employee), [(20, 0)], [(90, 1)]).
young(employees):∼ antonym_of(old(employees), prod, 1).
highly_experienced(employees):
∼function(years_of_experience(employees)
, [(0, 0),(15,1)]).
highly_qualified(employees): ∼function(years_of_studying
(employees), [(0,0),(10,1)]).

7The “not” negation operator of our system allows users to negate any
fuzzy search criteria without writing any additional syntax or code inside the
configuration file.

TABLE IV

“Majors Similar to Business”

TABLE V

“Employees Not Far From Work Center”

far_distance_to_workcenter(employees): ∼ func-
tion(home_distance
(employees), [(0,0),(90,1)]).
good_employees(employees):∼ rule(prod,(highly_experienced
(employees), highly_qualified(employees)))with_credibility
(prod,1).
define_similarity_between(employee,
major(business),major(business),1).
define_similarity_between(employee, major(business), major
(marketing), 0.8). define_similarity_between(employee,
major(business), major
(international_business),0.8). define_similarity_between
(employee,major(business), major(commerce), 0.7).
define_similarity_between
(employee,major(business), major(finance), 0.7).
define_similarity_between
(employee,major(business), major(economics), 0.6).
define_similarity_between
(employee,major(business), major(human_resource), 0.5).

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

246 CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 43, NO. 4, FALL 2020

Fig. 19. Result of query: “I am looking for good employees who are young
with a major similar to business and whose distance to work center is not
far.”.

define_similarity_between
(employee,major(business), major(computer_science), 0.2).
define_similarity_between
(employee,major(business), major(architecture),0.2).
define_similarity_between
(employee,major(business),
major(geology), 0.1). define_similarity_between
(employee,major(business),
major(physics), 0.1). define_similarity_between
(employee,major(business,
major(acting,0.1). define_similarity_between
(employee,major(business), major(biology), 0.1).
define_similarity_between(employee,major(business),
major(law), 0).

The flexible query process module with the help of Ciao
compiler combines all the four subqueries using the con-
junction AND (conjunctions are defined based on the type
of the queries posed in the search engine), considering the
priorities between different rules while calculation processes,
and returns a final result, as shown in Fig. 19.

We can observe that: finally (see Fig. 19), “Jones” with the
age of 64, 11 years of experience, 10 years of studying, and
with the major “international business,” and home distance
“32 km,” is the best candidate with the highest truth-value
“0.37” that satisfies the requirements of our query. It is a very
restricted search based on compound criteria, and therefore,
the truth-value is quite low.

B. Experimentation 2

In this experimentation, we are going to test the system
behavior for the personalization of fuzzy searching criteria.

Fig. 20. Result of young predicate after Personalization by User1.

User1: personalizes the young fuzzy predicate, which we
have defined previously in Section IV-A over employees
database, saying that “the maximum age on which employees
are completely young is 20, and the minimum age on which
employees are not at all young is 90.” But, user1 wants to
personalize this fuzzy predicate, considering that Javier Casas
with age 30 is not young (supposed, any physical problem have
been taken into account). After querying over “young” fuzzy
criterion by User1, in contrast with the result set of the query
through “admin user” (any other user without personalization
of the young definition), as shown in Table III, where Javier
Casas was retrieved with truth-value “0.86,” which means he
is very young. Now, we have queried the same database using
the same “young” fuzzy predicate by the user “User1,” and
we retrieved “Javier Casas” assigned with truth-value “0,”
which means he is not young at all (for user1 opinion).
The result obtained from the personalized query is shown
in Fig. 20. Hence, any number of users can personalize
this fuzzy criterion, without having any contradiction while
querying for young employee. Moreover, the system does
not duplicate any fuzzy predicate after the personalization;
therefore, while posing a query, there is always a distinct fuzzy
and nonfuzzy predicate in the list [see in Fig. 17(a)]. The
system is “intelligent” enough (user sensitive) to determine
which user has personalized the predicate so that it provides
results based on his/her personalized criteria if he/she is the
one who poses the query.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

DEEDAR AND MUÑOZ-HERNÁNDEZ: UFleSe: USER-FRIENDLY PARAMETRIC FRAMEWORK FOR EXPRESSIVE FLEXIBLE SEARCHES 247

Fig. 21. Example of players database.

TABLE VI

SET OF FLEXIBLE QUERIES

C. Experimentation 3

We performed different tests to measure the system effi-
ciency on a database about FIFA football players, which
consists of 1000 tuples. For the sake of the brevity, we have
shown a partial view of the database (see Fig. 21). In order to
analyze the efficiency of our system, we have performed two
different tests on the database: 1) the first one is by varying the
complexity of the query. 2) Second is by varying the number
of tuples computed on the same query, to analyze the system
scalability.

We designated a set of different queries to measure the per-
formance of the system. We presented these queries, that vary
in complexity, in Table VI along with the number of tuples
calculated and their execution time in seconds. In Fig. 22(a),
we can see that the complexity of the query does not have a
big effect on the execution time (only a little bit).

We measured scalability by varying the number of tuples in
the database from 100 to 1000. To do that, we have executed
the most representative queries. Execution times are shown
in Table VII, and we have shown them in Fig. 22(b). In Fig. 22,
we can notice how the scalability increases devoted to the
number of computed rows in the most complex queries, that
the ones with more computational needs.

Fig. 22. Execution times in queries performed on the players DB. (a) Exe-
cution time. (b) Scalability in execution time.

TABLE VII

EXECUTION TIMES VARYING NUMBER OF TUPLES

V. COMPARATIVE ANALYSIS

In Table VIII, we present a comparison between the char-
acteristics of the main fuzzy querying systems in the literature
and our proposal.

The first thing that makes our proposal differs from other
fuzzy query systems is the use of the RFuzzy library in our
framework, which makes our syntax for fuzzifications very
simple. Moreover, it allows us to provide default truth-values
(conditioned and unconditioned), credibility to the rules, and
the priorities features that help us in increasing the capabilities
in deciding which result is more preferred to be chosen
among the result provided by the different rules, it is not
necessary if the last rule offers a result with higher truth-
value. Moreover, the proposals by Bosc and Pivert [4], [18],

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

248 CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 43, NO. 4, FALL 2020

TABLE VIII

COMPARISONS BETWEEN FEATURES OF FUZZY QUERY SYSTEMS

Ribeiro and Moreira [17], Bordogna and Pasi [19], [21], and
Kacprzyk and Zadrozny [20], most of them are without any
implementation associated, it is only a theoretical description,
and some of them not seem to be a search engine project.
Furthermore, several proposals allow querying relational data-
bases in a fuzzy way; some of the promising proposals can
be found in [22]–[27]. Most of the work discussed in these
articles focus in advancing the effectiveness of the existing
methods, in adding new syntactic constructions in the query
or in allowing to introduce the conversion between nonfuzzy
values and fuzzy values required to perform the query, for
which they use a syntax very similar to SQL or an extension
of SQL (they are perfectly adequate for advanced users,
developers, or researchers), but they are a bit difficult to the
regular users (the syntax is a little bit complicated for them),
and in order to get the answers for the queries, the user has
to instruct the search engine how to get the fuzzy results
from nonfuzzy values stored in the database, and the user
must also understand the low-level syntax and the semantics
of the language, and he/she must know about the structure
of the database tables. As far as we know, the features that
make our framework novel and different from others are as
follows.

1) Personalization of fuzzy predicates for flexible searches
for different users.

2) A user-friendly system that allows any users without
knowing the low-level syntax of the framework or with-
out knowing Prolog can define fuzzy searching criteria
for performing flexible searches.

3) A search engine with a general form for getting the
user’s query (not only a text field area) and understand
them, and retrieves the possible results even though
the condition given in the query does not satisfy that,
therefore, for the restaurant’s example before, the food
with the price “10.15” euro would be in the valid results
set.

4) It allows performing flexible searches based on syn-
onyms and antonyms.

5) It provides credibility to the rules that make our search
engine that first engine that implements multiadjoint
logic.

6) It provides constructive results with the truth-value so
that users can understand the result data set.

7) It provides the “not” negation modifier, which can negate
any fuzzy concept and rules without writing any extra
code.

8) Allowing users to perform crisp, fuzzy, and compound
queries all together in a single query interface.

In contrast with most of the fuzzy query systems, there are
several approaches in fuzzy logic devoted to the similarity rep-
resentation, but with many difference with our proposal, as the
works in [40]–[43], their most significant differences with ours
are: 1) that we do not force our relations to be an equivalence
for our similarity criteria. Since some of them mention, this is
too limiting for real-world applications. Moreover, 2) we are
not trying to evaluate the closeness (or similarity) between two
fuzzy propositions. We handle between predicates only two
kinds of similarity: 1 (for synonyms) and 0 (for antonyms), but
no other values for similarity can be defined between fuzzy
concepts. They could be defined, but we do not consider it
friendly for users. We let the user define similarities between
the different values of a field of the database so that we can
search for answers with similar values to a concrete value of
a field.

VI. CONCLUSION

In this article, we describe the easy procedure that lets
us define fuzzy concepts and link them to crisp database
fields. We have presented UFleSe, a parametric framework that
allows the user to perform fuzzy and nonfuzzy queries over
conventional and modern databases by linking the nonfuzzy
values which are stored in the database with fuzzy concepts.
The system translates expressive queries into enrich Prolog
queries (with RFuzzy syntax) and provide answers for them.
It handles if there are null values existed inside our database
as well.

We have explained the syntax and semantics behind various
operations of our framework, along with the structure of the
system and its implementation details.

Our main goal is to provide a system user-friendly enough
so that regular users (without knowledge of the low-level
syntax of the framework and about programming) can define
their fuzzy concepts, rules, similarity relations, synonyms, and
antonyms. It allows users to personalize the fuzzy concepts
for performing expressive, flexible searches (fuzzy, crisp, and
compound queries) over their databases and let other users be

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

DEEDAR AND MUÑOZ-HERNÁNDEZ: UFleSe: USER-FRIENDLY PARAMETRIC FRAMEWORK FOR EXPRESSIVE FLEXIBLE SEARCHES 249

able to search their data in the same expressive way that they
have defined. The rest of the users can also personalize the
fuzzy search criteria definitions if they want. We have provided
three case studies to prove the concept and to show the behav-
ior, performance, efficiency, and scalability of our system.
We hope this contribution helps in the development and the
improvement of more human-oriented search mechanisms so
that we use human-oriented attributes (young, expensive, and
so on) instead of computer-oriented ones (age under X, price
over Y, and so on).

Our article is oriented to validate our framework with dif-
ferent users interested in searching over their data by upload-
ing their databases, adding the fuzzy criteria and similarity
definitions for expressive searching in their data, searching
and using them in our framework, and finally, providing their
opinion related their satisfaction with it.

We are also working on introducing a mechanism for clus-
tering the system users devoted to their profile and searching
records.

REFERENCES

[1] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353,
1965.

[2] L. A. Zadeh, “Calculus of fuzzy restrictions,” in Fuzzy
Sets and Their Applications to Cognitive and Decision
Processes. New York, NY, USA: World Scientific, 1974,
pp. 1–39.

[3] J. W. Lloyd, Foundations of Logic Programming, 2nd ed. Berlin,
Germany: Springer-Verlag, 1987.

[4] P. Bosc and O. Pivert, “SQLf: A relational database language for
fuzzy querying,” IEEE Trans. Fuzzy Syst., vol. 3, no. 1, pp. 1–17,
Feb. 1995.

[5] D. Dubois and H. Prade, “Using fuzzy sets in flexible querying: Why
and how?” in Flexible Query Answering Systems, A. Troels, C. Henning,
and L. H. Legind, Eds. Boston, MA, USA: Springer, 1997, pp. 45–60.
[Online]. Available: http://dl.acm.org/citation.cfm

[6] V. Tahani, “A conceptual framework for fuzzy query processing—A step
toward very intelligent database systems,” Inf. Process. Manage., vol. 13,
no. 5, pp. 289–303, 1977.

[7] L. J. T. Rodriguez, “A contribution to database flexible querying: Fuzzy
quantified queries evaluation,” Ph.D. dissertation, Simón Bolívar Univ.,
Caracas, Venezuela, Nov. 2005.

[8] R. Ebrahim, “Fuzzy logic programming,” Fuzzy Sets Syst., vol. 117,
no. 2, pp. 215–230, Jan. 2001.

[9] M. Ishizuka and N. Kanai, “Prolog-elf incorporating fuzzy logic,” in
Proc. 9th Int. Joint Conf. Artif. Intell., 1985, pp. 701–703.

[10] D. Li and D. Liu, A Fuzzy Prolog Database System. New York, NY,
USA: Wiley, 1990.

[11] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth, Fril, Fuzzy and
Evidential Reasoning in Artificial Intelligence. New York, NY, USA:
Wiley, 1995.

[12] P. J. Morcillo and G. Moreno, “Floper, a fuzzy logic programming
environment for research,” in Proc. 8th Jornadas Sobre Programacion
y Lenguajes (PROLE), 2008, pp. 259–263.

[13] F. Bobillo and U. Straccia, “FuzzyDL: An expressive fuzzy description
logic reasoner,” in Proc. IEEE Int. Conf. Fuzzy Syst. (IEEE World Congr.
Comput. Intell.), Jun. 2008, pp. 923–930.

[14] S. Guadarrama, S. Muñoz-Hernández, and C. Vaucheret, “Fuzzy prolog:
A new approach using soft constraints propagation,” Fuzzy Sets Syst.,
vol. 144, no. 1, pp. 127–150, May 2004.

[15] C. Vaucheret, S. Guadarrama, S. Muñoz-Hernández, and LPAR, “Fuzzy
prolog: A simple general implementation using CLP(R),” in Logic for
Programming, Artificial Intelligence, and Reasoning (Lecture Notes in
Artificial Intelligence), vol. 2514, M. Baaz and A. Voronkov, Eds. Berlin,
Germany: Springer, 2002, pp. 450–464.

[16] S. Munoz-Hernandez, V. Pablos-Ceruelo, and H. Strass, “RFuzzy: Syn-
tax, semantics and implementation details of a simple and expressive
fuzzy tool over Prolog,” Inf. Sci., vol. 181, no. 10, pp. 1951–1970,
May 2011.

[17] R. A. Ribeiro and A. M. Moreira, “Fuzzy query interface for a business
database,” Int. J. Hum.-Comput. Stud., vol. 58, no. 4, pp. 363–391,
Apr. 2003.

[18] P. Bosc and O. Pivert, “On a strengthening connective for flexible
database querying,” in Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ),
Jun. 2011, pp. 1233–1238.

[19] G. Bordogna and G. Pasi, “A fuzzy query language with a linguistic
hierarchical aggregator,” in Proc. ACM Symp. Appl. Comput. (SAC),
1994, pp. 184–187, doi: 10.1145/326619.326693.

[20] J. Kacprzyk and S. Zadrozny, “SQLf and FQUERY for access,” in Proc.
Joint 9th IFSA World Congr. 20th NAFIPS Int. Conf., vol. 4, 2001,
pp. 2464–2469.

[21] G. Bordogna and G. Psaila, “Customizable flexible querying in classical
relational databases,” in Handbook of Research on Fuzzy Information
Processing in Databases. Derry Township, PA, USA: Hershey, 2008,
pp. 191–217.

[22] H. Prade, “Generalizing database relational algebra for the treatment
of incomplete or uncertain information and vague queries,” Inf. Sci.,
vol. 34, no. 2, pp. 115–143, Nov. 1984.

[23] M. Umano, I. Hatono, and H. Tamura, “Fuzzy databaase sys-
tems,” in Proc. IEEE Int. Joint Conf. Fuzzy Syst., vol. 5, 1995,
pp. 35–36.

[24] J. M. Medina, O. Pons, and M. A. Vila, “Gefred: A generalized model
of Fuzzy Relational Databases,” Inf. Sci., vol. 76, nos. 1–2, pp. 87–109,
Jan. 1994.

[25] N. Konstantinou, M. C. Spanos, E. Solidakis, and N. Mitrou, “VisAVis:
An approach to an intermediate layer between ontologies and relational
database contents,” in Proc. CAISE 3rd Int. Workshop Web Inf. Syst.
Modeling (WISM), 2006, p. 239.

[26] C. Martínez-Cruz, J. M. Noguera, and M. A. Vila, “Flexible queries on
relational databases using fuzzy logic and ontologies,” Inf. Sci., vol. 366,
pp. 150–164, Oct. 2016.

[27] Y. Takahashi, “A fuzzy query language for relational databases,” IEEE
Trans. Syst., Man, Cybern., vol. 21, no. 6, pp. 1576–1579, Nov. 1991.

[28] The CLIP Lab. The Ciao Prolog Development Sys-
tem. Accessed: Mar. 23, 2015. [Online]. Available:
http://www.clip.dia.fi.upm.es/Software/Ciao

[29] J. Medina, M. Ojeda-Aciego, and P. Vojtáš, “A multi-adjoint approach
to similarity-based unification,” Electron. Notes Theor. Comput. Sci.,
vol. 66, no. 5, pp. 70–85, Dec. 2002.

[30] J. Medina, M. Ojeda-Aciego, and P. Vojtáš, “A completeness theorem for
multi-adjoint logic programming,” in Proc. 10th IEEE Int. Conf. Fuzzy
Syst., Aug. 2005, pp. 1031–1034.

[31] J. Medina, M. Ojeda-Aciego, and P. Vojtáš, “Multi-adjoint logic pro-
gramming with continous semantics,” in Proc. 6th Int. Conf. Logic
Program. Nonmonotonic Reasoning (LPNMR). London, U.K.: Springer-
Verlag, 2001, pp. 351–364. [Online]. Available: http://dl.acm.org/
citation.cfm?id=646400.759097

[32] J. Medina, M. Ojeda-Aciego, and P. Vojtáš, “A procedural semantics for
multi-adjoint logic programming,” in Progress in Artificial Intelligence
(Lecture Notes in Computer Science), vol. 2258, P. Brazdil and A. Jorge,
Eds. Berlin, Germany: Springer, 2001, pp. 290–297.

[33] J. Medina, M. Ojeda-Aciego, and P. Vojtáš, “Similarity-based unifi-
cation: A multi-adjoint approach,” Fuzzy Sets Syst., vol. 146, no. 1,
pp. 43–62, Aug. 2004.

[34] J. M. Moreno and M. O. Aciego, “On first-order multi-adjoint logic
programming,” in Proc. 11th Spanish Congr. Fuzzy Logic Technol., 2002,
p. 16.

[35] V. Pablos-Ceruelo and S. Muñoz-Hernández, “Introducing priorities
in rfuzzy: Syntax and semantics,” in Proc. 11th Int. Conf. Math.
Methods Sci. Eng. (CMMSE), vol. 3, Benidorm, Spain, Jun. 2011,
pp. 918–929.

[36] V. Pablos-Ceruelo and S. Muñoz-Hernández, “FleSe: A tool for posing
flexible and expressive (fuzzy) queries to a regular database,” in Proc.
11th Int. Conf. Distrib. Comput. Artif. Intell., S. Omatu, H. Bersini, J.
M. Corchado, S. Rodríguez, and P. Pawlewski, Eds. Cham, Switzerland:
Springer, 2014, pp. 157–164.

[37] M. H. Deedar and S. Muñoz-Hernández, “Extending a flexible searching
tool for multiple database formats,” in Emerging Trends in Electrical,
Communications, and Information Technologies. Singapore: Springer,
2018.

[38] M. H. Deedar and S. Muñoz-Hernández, “User-friendly interface
for introducing fuzzy criteria into expressive searches,” in Intelli-
gent Systems and Applications. Cham, Switzerland: Springer, 2020,
pp. 982–997.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/326619.326693

250 CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 43, NO. 4, FALL 2020

[39] M. H. Deedar and S. Muñoz-Hernández, “Allowing users to create sim-
ilarity relations for their flexible searches over databases,” in Artificial
Intelligence and Soft Computing. Cham, Switzerland: Springer, 2019,
pp. 526–541.

[40] J.-B. Wang, Z.-Q. Xu, and N.-C. Wang, “A fuzzy logic with similarity,”
in Proc. Int. Conf. Mach. Learn. Cybern., vol. 3, 2002, pp. 1178–1183.

[41] L. Godo and R. O. Rodríguez, “A fuzzy modal logic for similarity
reasoning,” in Fuzzy Logic and Soft Computing, K. Y. Cai, G. Chen,
and M. Ying, Eds. Norwell, MA, USA: Kluwer, 1999.

[42] D. Dubois and H. Prade, “Comparison of two fuzzy set-based logics:
Similarity logic and possibilistic logic,” in Proc. IEEE Int. Conf. Fuzzy
Syst. Int. Joint Conf. 4th IEEE Int. Conf. Fuzzy Syst. 2nd Int. Fuzzy Eng.
Symp., vol. 3, Nov. 2002, pp. 1219–1226.

[43] F. Esteva, P. Garcia, L. Godo, E. Ruspini, and L. Valverde, “On similarity
logic and the generalized modus ponens,” in Proc. IEEE 3rd Int. Fuzzy
Syst. Conf., vol. 2, Dec. 2002, pp. 1423–1427.

Mohammad Halim Deedar received the B.C.A.
degree in computer applications and the M.Sc.
degree in computer science from Jamia Hamdard
University, New Delhi, India, in 2014 and 2016,
respectively. He is currently pursuing the Ph.D.
degree in software systems and computing with the
Polytechnic University of Madrid, Madrid, Spain.

His current research interests include data manage-
ment and analytics, fuzzy logic, logic programming,
and machine learning.

Susana Muñoz-Hernández received the B.S. degree
in licenciada en informática from the Society of
International Studies of Madrid, Madrid, Spain, in
1997, the M.S. degree in management of informa-
tion technologies from the Ramón Llull University,
Barcelona, Spain, in 2003, and the Ph.D. degree in
computer science from the Polytechnic University of
Madrid (UPM), Madrid, in 2003.

She has professional experience in some compa-
nies (the International Conference on Telecommu-
nications (ICT) and bank sector) and joint research

(national and European) projects of recognized prestige. She has been an
Associate Professor with the Computer Science School, UPM, since 1998,
where she develops her research activity with the BABEL Group, with more
than eighty publications. She set up the Technology for the Development and
the Cooperation Group, Madrid, in 2006, where she is currently the Director.
She has directed various projects oriented to improve education in developing
countries, including Burundi, Ethiopia, Kenya, and El Salvador. She is
currently the Director of the Educational Innovation Group—Technology
Innovation for Educational Development, Madrid. Her teaching experience
is in computer programmings, such as methodology of programming, logic
and functional languages, constraint programming, and fuzzy logic, free
software applications, and personal skills, such as communication, relation,
presentations in public, negotiation, conflict solving, and management of
intercultural teams.

Dr. Muñoz-Hernández was a member of the Advisory Board of the Direction
of Cooperation for the Development of UPM International Relations and
the Advisory Board of the Conference of Rectors of Spanish Universities,
University Observatory of Cooperation for Development. She was a member
of the Manager Committee of the Spanish Platform for Software and Services
from 2008 to 2010. She is a member of the Management Board of the
itdUPM, Center of Innovation in Technology for Human Development.
She received the first prize in a national competition for talented young
people organized by the University of La Salle, Madrid, in 2003. She
received the 2011 UPM prize of research in international cooperation for
development. She coordinated the European Master in Computational Logic
(first official Erasmus Mundus master in computer science) from 2004 to
2008. She is part of the committees of several international conferences in
her area, including the ACM Symposium on Applied Computing (SAC), the
Spanish Conference on Programming and Computer Languages (PROLE),
the International Conference on Information Processing and Management of
Uncertainty (IPMU), the Workshop in Artificial Intelligence applied to Mobile
Robotics (WCAFR), the International Work Conference on Artificial and
Natural Neural Networks (IWANN), SERVICE COMPUTATION, EDUCON,
the IEEE Education Society’s flagship Asia-Pacific Conference Series (TALE),
Fuzzy Computation Theory and Applications (FCTA) en the International
Joint Conference on Computational Intelligence (IJCCI), WomENcourage,
ACM Symposium on Computing and Development (DEV), the European
Conference on Sustainability, Energy & the Environment (ECSEE), and
FUTURE COMPUTING. http://babel.ls.fi.upm.es/ susana/publications.html

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 15,2021 at 06:37:27 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

