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ON THE ROLE OF NUMERICAL VISCOSITY IN THE STUDY OF THE LOCAL
LIMIT OF NONLOCAL CONSERVATION LAWS

Maria Colombo1, Gianluca Crippa2,*, Marie Graff3 and Laura V. Spinolo4

Abstract. We deal with the numerical investigation of the local limit of nonlocal conservation laws.
Previous numerical experiments seem to suggest that the solutions of the nonlocal problems converge
to the entropy admissible solution of the conservation law in the singular local limit. However, recent
analytical results state that (i) in general convergence does not hold because one can exhibit coun-
terexamples; (ii) convergence can be recovered provided viscosity is added to both the local and the
nonlocal equations. Motivated by these analytical results, we investigate the role of numerical viscosity
in the numerical study of the local limit of nonlocal conservation laws. In particular, we show that
Lax–Friedrichs type schemes may provide the wrong intuition and erroneously suggest that the solu-
tions of the nonlocal problems converge to the entropy admissible solution of the conservation law in
cases where this is ruled out by analytical results. We also test Godunov type schemes, less affected
by numerical viscosity, and show that in some cases they provide an intuition more in accordance with
the analytical results.
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1. Introduction

1.1. Theoretical framework

We consider nonlocal conservation laws in the form

𝜕𝑡𝜌 + 𝜕𝑥[𝜌 𝑏(𝜌 * 𝜂)] = 0, (1.1)

where the unknown is 𝜌 : [0, +∞)× R → R, 𝑏 : R → R is a given Lipschitz continuous function and 𝜂 : R → R
is a smooth convolution kernel satisfying

𝜂 ∈ 𝐶∞𝑐 (R), 𝜂(𝑥) = 0 if |𝑥| ≥ 1, 𝜂 ≥ 0,

∫︁
R

𝜂(𝑥) d𝑥 = 1.
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In recent years, nonlocal conservation laws have been used to model, among others, sedimentation [3], pedes-
trian [10] and vehicular [4,7] traffic. In particular, in the case of traffic models 𝜌 represents the density of agents
(cars, pedestrians) and 𝑏 their speed. The convolution term models the fact that drivers and pedestrians decide
their velocity based on the density of agents around them. Loosely speaking, the radius of the support of 𝜂
represents the visual range of drivers and pedestrians. Existence and uniqueness results for the Cauchy problem
obtained by coupling (1.1) with an initial datum have been obtained in several works, see for instance [4,10,13].

In this work we deal with the numerical investigation of the local limit. More precisely, we consider a parameter
𝜀 > 0 and we rescale 𝜂 by setting 𝜂𝜀(𝑥) := 𝜀−1𝜂(𝑥/𝜀), in such a way that, when 𝜀 → 0+, 𝜂𝜀 converges weakly-*

in the sense of measures to the Dirac delta. We fix an initial datum 𝜌 : R → R and we consider the family of
Cauchy problems {︂

𝜕𝑡𝜌𝜀 + 𝜕𝑥[𝜌𝜀 𝑏(𝜌𝜀 * 𝜂𝜀)] = 0
𝜌𝜀(0, 𝑥) = 𝜌(𝑥).

(1.2)

When 𝜀 → 0+ (i.e. in the local limit), the above Cauchy problem formally boils down to the conservation law{︂
𝜕𝑡𝜌 + 𝜕𝑥[𝜌 𝑏(𝜌)] = 0
𝜌(0, 𝑥) = 𝜌(𝑥).

(1.3)

The by now classical theory by Kružkov [17] states that, if 𝜌 ∈ 𝐿∞(R), the above problem has a unique
entropy admissible solution, i.e. loosely speaking a unique distributional solution that is consistent with the
Second Principle of Thermodynamics. Motivated by numerical experiments obtained with a Lax–Friedrichs type
scheme, in [2] P. Amorim, R. Colombo and A. Teixeira posed the following question.

Question 1. Can we rigorously justify the local limit? Namely, does the solution 𝜌𝜀 of (1.2) converge to the
entropy admissible solution 𝜌 of (1.3) as 𝜀 → 0+, in some suitable topology?

In [2] the authors provide numerical evidence supporting a positive answer to Question 1. See also [1,4,14,15].
In the special case where the solution of (1.3) is regular, and the convolution kernel is an even function, Zumbrun
[22] showed that the solutions of (1.2) converge to the entropy admissible solution of (1.3) as 𝜀 → 0+. Despite
this positive result, the answer to Question 1 is actually negative in general. More precisely, in [11] we exhibit
some analytical counterexamples that rule out the convergence of the solutions of (1.2) to the entropy admissible
solution of (1.3) (see Sect. 3 for an overview of these counterexamples). Very loosely speaking, one of the main
goals of the present paper is to provide insights on the reasons why the numerical evidence in [2] provides the
wrong intuition on the nonlocal-to-local limit from (1.2) to (1.3).

In [11] we also consider the “viscous counterpart” of Question 1. More precisely, we fix a viscosity parameter
𝜈 > 0 and add a viscous second order term to the right hand side of both (1.2) and (1.3). We arrive at{︃

𝜕𝑡𝜌𝜀𝜈 + 𝜕𝑥[𝜌𝜀𝜈𝑏(𝜌𝜀𝜈 * 𝜂𝜀)] = 𝜈𝜕2
𝑥𝑥𝜌𝜀𝜈

𝜌𝜀𝜈(0, 𝑥) = 𝜌(𝑥)
(1.4)

and {︃
𝜕𝑡𝜌𝜈 + 𝜕𝑥[𝜌𝜈𝑏(𝜌𝜈)] = 𝜈𝜕2

𝑥𝑥𝜌𝜈

𝜌𝜈(0, 𝑥) = 𝜌(𝑥),
(1.5)

respectively. This yields the “viscous counterpart” of Question 1, namely

Question 2. Fix 𝜈 > 0. Does the solution 𝜌𝜀𝜈 of (1.4) converge to the solution 𝜌𝜈 of (1.5), when 𝜀 → 0+?

The answer to Question 2 is largely positive. More precisely, Theorem 1.1 of [11] states in particular that, for
every 𝜈 > 0 and 𝑇 > 0, the family 𝜌𝜀𝜈 converges to 𝜌𝜈 in the strong topology of 𝐿2([0, 𝑇 ]×R)1. See also [9]. To

1The precise results collected in Theorem 1.1 of [11] are actually stronger and in particular apply to the case of several space
dimensions.
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conclude the overview of the analytical results, we quote Proposition 1.2 of [11], which establishes the “nonlocal”
vanishing viscosity limit 𝜈 → 0+ from (1.4) to (1.2), whereas the “local” vanishing viscosity limit from (1.5)
to (1.3) is a classical result by Kružkov [17]. Summing up, we have the following convergence scheme:

𝜕𝑡𝜌𝜀𝜈 + 𝜕𝑥[𝜌𝜀𝜈𝑏(𝜌𝜀𝜈 * 𝜂𝜀)] = 𝜈𝜕2
𝑥𝑥𝜌𝜀𝜈

𝜀→0+

−−−−−−−−−−−→
([11], Thm. 1.1)

𝜕𝑡𝜌𝜈 + 𝜕𝑥[𝜌𝜈𝑏(𝜌𝜈)] = 𝜈𝜕2
𝑥𝑥𝜌𝜈

𝜈→0+

⎮⎮⌄([11], Prop. 1.2) 𝜈→0+

⎮⎮⌄Kružkov’s Theorem

𝜕𝑡𝜌𝜀 + 𝜕𝑥[𝜌𝜀𝑏(𝜌𝜀 * 𝜂𝜀)] = 0 𝜀→0+

−−−−−−−−−−−→
False in general

𝜕𝑡𝜌 + 𝜕𝑥[𝜌𝑏(𝜌)] = 0.

1.2. Numerical results

As mentioned before, Question 1 was first raised, to the best of our knowledge, in [2]. As it is very often
the case in applied mathematics, the authors of [2] discussed Question 1 by running some numerical tests,
which supported a positive answer to Question 1. The answer suggested by the numerical evidence was later
contradicted by the analytical results established in [11], which show that the correct answer to Question 1
is actually negative. The present paper aims at providing insights on the possible reason why the numerical
evidence may suggest the wrong intuition. More precisely, the main goal of the present paper is to raise a
warning flag: the numerical investigation of Question 1 is fairly subtle and numerical experiments, expecially
those performed on coarse meshes, can easily provide misleading information concerning the nonlocal-to-local
limit. In particular, in the present paper we investigate the role of numerical viscosity as one of the main factors
that may jeopardize the reliability of the numerical experiments.

To illustrate the heart of the matter, we first point out that the numerical results in [2] are obtained by
Lax–Friedrichs type schemes, which are known to have high numerical viscosity, see [20,21]. We refer to [18] for
a more extended discussion, but, very loosely speaking, the numerical viscosity is a collection of finite difference
terms that is the “numerical counterpart” of a viscous second order term like the one at the right hand side of
the equations in (1.4) and (1.5). In other words, the presence of the numerical viscosity implies that the model
equation (that is, very loosely speaking, the equation that provides the best approximation of the numerical
scheme) for the Lax–Friedrichs scheme applied to the conservation law at the first line of (1.3) is actually the
equation at the first line of (1.5), where the coefficient 𝜈 is of the same order as the space mesh. Similarly,
when the Lax–Friedrichs scheme is applied to the nonlocal conservation law at the first line of (1.2) the model
equation is actually the equation at the first line of (1.4).

We can now go back to the fact that the numerical evidence does not agree with the analytical results:
a possible explanation is the following. Because of the numerical viscosity, the numerical tests in [2] may be
actually capturing the convergence of 𝜌𝜀𝜈 to 𝜌𝜈 , which holds true by Theorem 1.1 of [11]. In other words: the
numerical tests were designed to suggest an answer to Question 1, but as a matter of fact, owing to the numerical
viscosity, for suitable values of the parameter 𝜀 and of the mesh size they suggest an answer to Question 2.
Since the two questions have opposite answers, the numerical tests may provide the wrong intuition concerning
Question 1.

In the present paper we exhibit numerical experiments supporting the previous argument. In particular, we
show that the numerical viscosity can jeopardize the reliability of standard numerical schemes for the study of
the nonlocal-to-local limit from (1.2) to (1.3). In particular, in Sections 5.2–5.4 we consider the counterexamples
in [11] showing that the answer to Question 1 is negative and we test them with the Lax–Friedrichs type scheme.
For several values of the parameter 𝜀 and of the mesh size the numerical results we obtain suggest that the
answer to Question 1 is positive and hence provide the wrong intuition.

We remark in passing that for the sake of accuracy in the paper we run fairly time-consuming numerical
experiments that go beyond the computational capacity of common laptops and require the use of more powerful
servers. This allows us to test a fairly large set of parameters 𝜀. Our investigation, however, was originally
motivated by the goal of understanding why the numerical evidence provides in some cases the wrong intuition
on the nonlocal-to-local limit: note that in the original paper [2] only one value of the mesh size and four values
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of the parameter 𝜀 were tested. Note furthermore that in applied mathematics quite fast numerical experiments
are often run in the attempt at gaining some insights on analytical questions. In particular, the fairly extended
numerical experiments we run should not conceal the fact that the take-home message of our paper is in a
nutshell that, for some values of the parameter 𝜀 and of the mesh size, the numerical experiments may provide
the wrong intuition.

In this work we also further investigate the role of numerical viscosity by comparing the Lax–Friedrichs type
scheme with a Godunov type scheme. Lax–Friedrichs type schemes are known to have higher numerical viscosity
than Godunov type schemes (see the analysis in [20,21] and Sect. 2.2 for a brief overview). Consistently, we find
that in some cases the numerical results obtained with the Godunov type scheme are more in accordance with
the analytical results than those obtained with the Lax–Friedrichs type scheme, see Sections 5.3 and 5.4.

Finally, we provide further insights on the relation between numerical viscosity and nonlocal-to-local limit
by varying the relation between the convolution parameter 𝜀 and the numerical viscosity. Since the numerical
viscosity depends monotonically on the space mesh, it suffices to vary the relation between the convolution
parameter 𝜀 and the space mesh ℎ. The numerical results obtained when ℎ is of the order of 𝜀2 are in some
cases more in accordance with the analytical results than those obtained when ℎ is of the order of 𝜀, see
Section 5.4. This is again an indication of the fact that the numerical viscosity may compromise the ability of
the numerical scheme to provide reliable information on the nonlocal-to-local limit. Indeed, when the numerical
viscosity decays faster to 0 the numerical results are more in accordance with the analytical results. In general,
the results we have obtained that are the most in accordance with the analytical results use a Godunov type
scheme and a space mesh ℎ of the order of 𝜀2, and this again confirms that the smaller the numerical viscosity,
the more reliable the numerical results. Note, however, that Godunov type schemes are still not completely
satisfactory for the investigation of the nonlocal-to-local limit and that finding reliable numerical schemes to
investigate the nonlocal-to-local limit is an interesting open problem, see also Section 6 for further comments
on this issue.

The paper is organized as follows. In Section 2 we discuss the numerical schemes used in the present work,
i.e. the Lax–Friedrichs and the Godunov schemes. In Section 3 we introduce the examples we will use in the
numerical tests and we overview their main analytical properties. In Section 4 we validate our schemes by
computing the numerical solutions in examples where the analytical solution is known, and by showing that
the two are close. In Section 5 we introduce our main numerical results concerning the nonlocal-to-local limit.
In Section 6 we draw our conclusions and we outline some possible future work. To simplify the exposition, in
the paper we always focus on the case where the conservation law at the first line of (1.3) is the scalar Burgers’
equation

𝜕𝑡𝜌 + 𝜕𝑥(𝜌2) = 0 (1.6)

and hence the nonlocal equation at the first line of (1.2) is

𝜕𝑡𝜌𝜀 + 𝜕𝑥

(︀
𝜌𝜀(𝜌𝜀 * 𝜂𝜀)

)︀
= 0. (1.7)

2. Two numerical schemes for the Burgers’ equation

We now discuss two numerical schemes for both the local (1.6) and nonlocal Burgers’ equation (1.7). We refer
to the book by LeVeque [18] for an extended discussion on numerical schemes for conservation laws.

We discretize the (𝑡, 𝑥)-plane by choosing the space mesh width ℎ and the time step ∆𝑡 and by introducing
the mesh points (𝑡𝑛, 𝑥𝑗) given by 𝑥𝑗 = 𝑗ℎ, 𝑗 ∈ Z, and 𝑡𝑛 = 𝑛∆𝑡, 𝑛 = 0, . . . , 𝑁 , 𝑁 = [𝑇/∆𝑡] + 1, where 𝑇
is the final time and [·] denotes the integer part. In the following we always consider a uniform mesh where
∆𝑡/ℎ = 1/6, which is consistent with the CFL condition. For technical reasons we also define

𝑥𝑗+1/2 = 𝑥𝑗 + ℎ/2 = (𝑗 + 1/2)ℎ.

The numerical schemes aim at defining a piecewise constant approximate solution 𝜌ℎ. As a matter of fact, in
the following we will only define the discrete values 𝜌𝑛

𝑗 . The pointwise values of the approximate solutions are
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recovered by setting 𝜌ℎ(𝑡, 𝑥) := 𝜌𝑛
𝑗 if (𝑡, 𝑥) ∈]𝑡𝑛, 𝑡𝑛+1[×]𝑥𝑗−1/2, 𝑥𝑗+1/2[. We construct the approximate initial

datum by setting

𝜌0
𝑗 :=

1
ℎ

∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

𝜌(𝑥) d𝑥. (2.1)

Both the Lax–Friedrichs and the Godunov scheme are conservative methods that can be written in the form

𝜌𝑛+1
𝑗 = 𝜌𝑛

𝑗 −
∆𝑡

ℎ

[︁
𝐹𝑛

𝑗+1/2 − 𝐹𝑛
𝑗−1/2

]︁
, (2.2)

where 𝐹𝑛
𝑗±1/2 is the so-called numerical flux function. The two methods differ in the way one defines the value

of 𝐹𝑛
𝑗±1/2. We now separately describe them.

2.1. The Lax–Friedrichs method

The Lax–Friedrichs scheme was originally designed for the nonlinear conservation law

𝜕𝑡𝜌 + 𝜕𝑥𝑓(𝜌) = 0 (2.3)

and it is defined by plugging into (2.2) the following numerical flux function:

𝐹𝑛
𝑗+1/2 =

ℎ

2∆𝑡

(︀
𝜌𝑛

𝑗 − 𝜌𝑛
𝑗+1

)︀
+

1
2
(︀
𝑓
(︀
𝜌𝑛

𝑗

)︀
+ 𝑓

(︀
𝜌𝑛

𝑗+1

)︀)︀
.

In the case of the Burgers’ equation (1.6), the above expression boils down to

𝐹𝑛
𝑗+1/2 =

ℎ

2∆𝑡

(︀
𝜌𝑛

𝑗 − 𝜌𝑛
𝑗+1

)︀
+

1
2

(︁(︀
𝜌𝑛

𝑗

)︀2 +
(︀
𝜌𝑛

𝑗+1

)︀2
)︁

=⇒ 𝜌𝑛+1
𝑗 =

1
2
(︀
𝜌𝑛

𝑗+1 + 𝜌𝑛
𝑗−1

)︀
− ∆𝑡

2ℎ

[︁(︀
𝜌𝑛

𝑗+1

)︀2 −
(︀
𝜌𝑛

𝑗−1

)︀2
]︁
.

The numerical viscosity 𝜈LF of the Lax–Friedrichs scheme satisfies 𝜈LF = ℎ2/2∆𝑡, and owing to the CFL
condition ∆𝑡/ℎ = 1/6 we get 𝜈LF = 3ℎ. In other words, the numerical viscosity is of the same order as the space
mesh.

Lax–Friedrichs type schemes for nonlocal conservation laws were considered in various works, see for instance
in [2–4]. In the case of the nonlocal Burgers’ equation (1.7), the numerical flux function is defined by setting

𝐹𝑛
𝑗+1/2 =

ℎ

2∆𝑡

(︀
𝜌𝑛

𝑗 − 𝜌𝑛
𝑗+1

)︀
+

1
2
(︀
𝜌𝑛

𝑗 𝑐𝑛
𝑗 + 𝜌𝑛

𝑗+1𝑐
𝑛
𝑗+1

)︀
, (2.4)

where 𝑐𝑛
𝑗 is the approximate value of the convolution kernel and in the present work it is computed by the

quadrature formula

𝑐𝑛
𝑗 =

ℓ−1∑︁
𝑘=−ℓ

𝛾𝑘𝜌𝑛
𝑗−𝑘, where 𝛾𝑘 =

∫︁ (𝑘+1)ℎ

𝑘ℎ

𝜂𝜀(𝑦) d𝑦 and ℓ =
[︁ 𝜀

ℎ

]︁
+ 1. (2.5)

We recall that the support of the convolution kernel 𝜂𝜀 is always contained in the interval [−𝜀, 𝜀] and we remark
that the above formula provides a reasonable approximation of a convolution only when the parameter 𝜀 is
sufficiently large compared to the space mesh ℎ. By plugging (2.4) into (2.2) we arrive at

𝜌𝑛+1
𝑗 =

1
2
(︀
𝜌𝑛

𝑗+1 + 𝜌𝑛
𝑗−1

)︀
− ∆𝑡

2ℎ

(︀
𝜌𝑛

𝑗+1𝑐
𝑛
𝑗+1 − 𝜌𝑛

𝑗−1𝑐
𝑛
𝑗−1

)︀
.
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2.2. The Godunov method

The basic idea underpinning the Godunov scheme is to solve Riemann problems on each cell of the com-
putational mesh. More precisely, the Godunov scheme for the nonlinear conservation law (2.3) is obtained by
plugging the numerical flux function

𝐹𝑛
𝑗+1/2 := 𝑓

(︀
𝜌*

(︀
𝜌𝑛

𝑗 , 𝜌𝑛
𝑗+1

)︀)︀
(2.6)

into (2.2). In the previous expression, 𝜌*
(︀
𝜌𝑛

𝑗 , 𝜌𝑛
𝑗+1

)︀
is the value at the line 𝑥 = 0 of the entropy admissible

solution of the Riemann problem between 𝜌𝑛
𝑗 (on the left) and 𝜌𝑛

𝑗+1 (on the right). Note that, owing to the
Rankine–Hugoniot conditions, even if the solution of the Riemann problem has a discontinuity at 𝑥 = 0, the
function 𝑓(𝜌) is continuous at 𝑥 = 0 and hence the value 𝑓(𝜌*) is well-defined. As a matter of fact, if the flux
function 𝑓 is convex we have the equality

𝑓
(︀
𝜌*

(︀
𝜌𝑛

𝑗 , 𝜌𝑛
𝑗+1

)︀)︀
=

{︃
min𝜌∈[𝜌𝑛

𝑗 ,𝜌𝑛
𝑗+1] 𝑓(𝜌) 𝜌𝑛

𝑗 ≤ 𝜌𝑛
𝑗+1

max𝜌∈[𝜌𝑛
𝑗+1,𝜌𝑛

𝑗 ] 𝑓(𝜌) 𝜌𝑛
𝑗 ≥ 𝜌𝑛

𝑗+1,
(2.7)

which in the case of the scalar Burgers’ equation (1.6) implies

(︀
𝜌*

(︀
𝜌𝑛

𝑗 , 𝜌𝑛
𝑗+1

)︀)︀2 =

{︃
min𝜌∈[𝜌𝑛

𝑗 ,𝜌𝑛
𝑗+1] 𝜌2 𝜌𝑛

𝑗 ≤ 𝜌𝑛
𝑗+1

max𝜌∈[𝜌𝑛
𝑗+1,𝜌𝑛

𝑗 ] 𝜌2 𝜌𝑛
𝑗 ≥ 𝜌𝑛

𝑗+1.

Note furthermore that the Godunov scheme is known to have less numerical viscosity than the Lax–Friedrichs
scheme, see [20, 21]. More precisely, Tadmor in [20, 21] focuses on conservative, finite difference schemes for
scalar conservation laws and investigates the relation between entropy inequalities and numerical viscosity. At
the analytical level, the relation is very well understood: the strong limit 𝜈 → 0+ of the vanishing vanishing
viscosity approximation (1.5) is an entropy admissible solution of the conservation law (1.3). At the numerical
level, Tadmor in [20,21] discusses the class of so-called E-schemes, which was introduced in [19] and is the class
of schemes that are entropy stable with respect to all convex entropies. The Lax–Friedrichs and the Godunov
schemes are typical examples of E-schemes. It turns out (see [21], p. 482) that the E-schemes are exactly those
having no less numerical viscosity than the Godunov scheme. In particular, the Lax–Friedrichs scheme has
higher numerical viscosity than the Godunov scheme.

Godunov type schemes for nonlocal equations have been considered in [7, 14]. In order to define a Godunov
scheme for the nonlocal Burgers’ equation we first define the convolution term

𝑉 𝑛
𝑗+1/2 =

ℓ−1∑︁
𝑘=−ℓ

𝛾𝑘 𝜌𝑛
𝑗−𝑘+1, with 𝛾𝑘 as in (2.5). (2.8)

By plugging the formula 𝑓(𝜌) = 𝑉 𝑛
𝑗+1/2𝜌 into (2.7) and recalling (2.6) we arrive at

𝐹𝑛
𝑗+1/2 =

{︂
𝑉 𝑛

𝑗+1/2𝜌
𝑛
𝑗 𝑉 𝑛

𝑗+1/2 ≥ 0
𝑉 𝑛

𝑗+1/2𝜌
𝑛
𝑗+1 𝑉 𝑛

𝑗+1/2 < 0.
(2.9)

By plugging the above numerical flux function into (2.2) we obtain a Godunov type scheme for the nonlocal
Burgers’ equation (1.7). Note that our scheme is slightly different from the one in [7, 14] because in [7, 14] the
authors focus on the case where 𝜌 ≥ 0, which implies that 𝜌𝑛

𝑗 ≥ 0 for every 𝑛 and 𝑗 and hence that 𝑉 𝑛
𝑗+1/2 ≥ 0.

This in turn implies that only the first case at the right hand side of (2.9) can occur. In the present work we
consider cases where 𝜌 attains negative values (see Example A in Sect. 3.1) and hence we use (2.9).

We conclude this section by discussing a property of the Godunov scheme (2.9) that we need in the following.
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Lemma 2.1. Assume that
𝜌(𝑥) = 0, for every 𝑥 > 0 (2.10)

and that
𝜂𝜀(𝑥) = 0, for every 𝑥 > 0. (2.11)

Let 𝜌𝑛
𝑗 the value of the approximate solution provided by the Godunov scheme (2.2), (2.9). We have

𝜌𝑛
𝑗 = 0, for every 𝑛 ∈ N, 𝑗 ≥ 1. (2.12)

Proof. We argue by induction on 𝑛. By combining (2.1) with (2.10) we conclude that the equality in (2.12)
holds true for 𝑛 = 0. We now assume that the equality in (2.12) is satisfied by 𝜌𝑛

𝑗 and show that it is satisfied
by 𝜌𝑛+1

𝑗 . We combine (2.2) with (2.9) and we point out that 𝐹𝑛
𝑗+1/2 = 0 for every 𝑗 ≥ 1 owing to (2.12). We

conclude that, to show that the equality in (2.12) is satisfied at 𝑛 + 1, it suffices to show that

𝑉 𝑛
𝑗−1/2 = 0, for every 𝑗 ≥ 1. (2.13)

To establish (2.13), we recall (2.8) and, by combining (2.5) and (2.11), we conclude that 𝛾𝑘 = 0 for every 𝑘 ≥ 0.
By plugging this equality into (2.8) we get

𝑉 𝑛
𝑗−1/2

(2.8)
=

ℓ−1∑︁
𝑘=−ℓ

𝛾𝑘 𝜌𝑛
𝑗−𝑘 =

−1∑︁
𝑘=−ℓ

𝛾𝑘 𝜌𝑛
𝑗−𝑘

(2.12)
= 0, if 𝑗 ≥ 0.

This yields (2.13) and hence concludes the proof of Lemma 2.1. �

3. Analytical results

In this paragraph we briefly discuss the main analytical properties of the examples we will use in our numerical
tests.

3.1. Example A: odd initial datum, isotropic convolution kernels

Assume that

𝜌(0, 𝑥) = 𝜌(𝐴)(𝑥) := (𝑥 + 2)1[−2,−1](𝑥) + 1[−1,0](𝑥)− 1[0,1](𝑥) + (𝑥− 2)1[1,2](𝑥), (3.1)

where here and in the following 1𝐸 denotes the characteristic function of the set 𝐸. The entropy admissible
solution of the Cauchy problem for the (local) Burgers’ equation (1.6) is

𝜌(𝐴)(𝑡, 𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥 + 2
2𝑡 + 1

, 𝑥 ∈ [−2, 2𝑡− 1], 𝑡 ≤ 1
2
, or 𝑥 ∈ [−2, 0], 𝑡 >

1
2
,

1, 𝑥 ∈ [2𝑡− 1, 0], 𝑡 ≤ 1
2
,

−1, 𝑥 ∈ [0, 1− 2𝑡], 𝑡 ≤ 1
2
,

𝑥− 2
2𝑡 + 1

, 𝑥 ∈ [1− 2𝑡, 2], 𝑡 ≤ 1
2
, or 𝑥 ∈ [0, 2], 𝑡 >

1
2
,

0, elsewhere.

(3.2)

We now consider the Cauchy problem obtained by coupling (3.1) with the nonlocal Burgers’ equation (1.7) and
we term 𝜌

(𝐴)
𝜀 its solution. We assume furthermore that the convolution kernel 𝜂 is even, i.e. 𝜂𝜀(𝑥) = 𝜂𝜀(−𝑥)

for every 𝑥. The analysis in Section 5.1 of [11] states that, under these assumptions, the family 𝜌
(𝐴)
𝜀 does
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not converge to the entropy admissible solution (3.2) as 𝜀 → 0+, not even weakly or up to subsequences. We
refer to [11] for the precise statements and the technical proof, but loosely speaking the very basic idea is the
following. By using the fact that the initial datum 𝜌(𝐴) is odd and that the convolution kernel is even, one can
show that the solution of the nonlocal equation is odd and this in turn implies, after some more work, that∫︁ 0

−∞
𝜌(𝐴)

𝜀 (𝑡, 𝑦) d𝑦 =
∫︁ 0

−∞
𝜌(𝐴)(𝑦) d𝑦, for every 𝑡 > 0, 𝜀 > 0. (3.3)

On the other hand, the entropy admissible solution of the Burgers’ equation satisfies∫︁ 0

−∞
𝜌(𝐴)(𝑡, 𝑦) d𝑦 <

∫︁ 0

−∞
𝜌(𝐴)(𝑦) d𝑦, for every 𝑡 > 0 (3.4)

and by comparing (3.3) and (3.4) and performing some more work one eventually manages to rule out
convergence.

3.2. Example B: positive initial datum, anisotropic convolution kernels

If
𝜌(0, 𝑥) = 𝜌(𝐵)(𝑥) := 1[−1,0](𝑥), (3.5)

then the entropy admissible solution of the Cauchy problem for the (local) Burgers’ equation (1.6) is

𝜌(𝐵)(𝑡, 𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑥 + 1
2𝑡

, 𝑥 ∈ [−1, 2𝑡− 1], 𝑡 ≤ 1,

1, 𝑥 ∈ ]2𝑡− 1, 𝑡], 𝑡 ≤ 1,

𝑥 + 1
2𝑡

, 𝑥 ∈ [−1, 2
√

𝑡− 1], 𝑡 > 1,

0, elsewhere.

(3.6)

We term 𝜌
(𝐵)
𝜀 (𝑡, 𝑥) the solution of the Cauchy problem obtained by coupling (1.7) with (3.5). Assume that the

convolution kernels 𝜂𝜀 are anisotropic, more precisely they are supported on the negative real line, i.e.

𝜂𝜀(𝑥) = 0, for every 𝑥 > 0. (3.7)

In this case the analysis in Section 5.2 of [11] states that the family 𝜌
(𝐵)
𝜀 does not converge to the entropy

admissible solution (3.10) as 𝜀 → 0+, not even weakly or up to subsequences. The basic reason why 𝜌
(𝐵)
𝜀 does

not converge to 𝜌(𝐵) is because one can show that

𝜌(𝐵)
𝜀 (𝑡, 𝑥) = 0, for every 𝑥 > 0 and 𝑡 > 0, (3.8)

see Lemma 5.3 of [11]. Since 𝜌(𝐵) does not share this property, then with some more work one manages to rule
out convergence.

3.3. Example C: positive initial datum, isotropic convolution kernels

If
𝜌(0, 𝑥) = 𝜌(𝐶)(𝑥) := 1[−1,1](𝑥), (3.9)

then the entropy admissible solution of the Cauchy problem for the (local) Burgers’ equation (1.6) is

𝜌(𝐶)(𝑡, 𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑥 + 1
2𝑡

, 𝑥 ∈ [−1, 2𝑡− 1], 𝑡 ≤ 2,

1, 𝑥 ∈ [2𝑡− 1, 𝑡 + 1], 𝑡 ≤ 2,

𝑥 + 1
2𝑡

, 𝑥 ∈ [−1, 2
√

2𝑡− 1], 𝑡 > 2,

0, elsewhere.

(3.10)
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As before, we term 𝜌
(𝐶)
𝜀 (𝑡, 𝑥) the solution of the Cauchy problem obtained by coupling (1.7) with (3.9). Assume

that the convolution kernels are even functions, i.e. 𝜂𝜀(𝑥) = 𝜂𝜀(−𝑥), for every 𝑥 ∈ R. In this case, for every
𝑝 > 1 the analysis in Section 5.2 of [11] states that, as 𝜀 → 0+, 𝜌

(𝐶)
𝜀 does not converge to 𝜌(𝐶) strongly in 𝐿𝑝,

not even up to subsequences. Loosely speaking, this is due to the fact that we can single out an entropy that is
conserved by 𝜌

(𝐶)
𝜀 and is dissipated by 𝜌(𝐶).

3.4. Example D: explicit solution of the nonlocal equations

If
𝜌(0, 𝑥) = 𝜌(𝐷)(𝑥) := 1]−∞,0](𝑥), (3.11)

then the entropy admissible solution of the Cauchy problem for the (local) Burgers’ equation (1.6) is the shock

𝜌(𝐷)(𝑡, 𝑥) =
{︂

1 𝑥 ∈]−∞, 𝑡]
0 𝑥 ∈ [𝑡, +∞[.

(3.12)

Also, consider the nonlocal Burgers’ equation (1.7) and assume that the convolution kernel is supported on
the positive real axis, i.e. 𝜂𝜀(𝑥) = 0 for every 𝑥 < 0. In this case one can show that, for every 𝜀 > 0, the
solution of the Cauchy problem obtained by coupling (1.7) with (3.11) is exactly the same shock as in (3.12),
i.e. 𝜌

(𝐷)
𝜀 ≡ 𝜌(𝐷).

3.5. Example E: isotropic convolution kernels, regular limit solution

Assume that
𝜌(0, 𝑥) = 𝜌(𝐸)(𝑥) :=

1
4

(︁
1 + sin

(︁𝜋𝑥

2
+

𝜋

2

)︁)︁
1[−2,0](𝑥) +

1
2
1[0,∞[(𝑥). (3.13)

Since the initial datum is regular and monotone nondecreasing, classical results on scalar conservation laws rule
out shock formation and imply that the solution of the Cauchy problem for the (local) Burgers’ equation (1.6)
is regular. Consider the nonlocal Burgers’ equation (1.7) and assume that the convolution kernels are even, i.e.
that 𝜂𝜀(𝑥) = 𝜂𝜀(−𝑥) for every 𝑥 ∈ R and 𝜀 > 0. Owing to the analytical convergence result by Zumbrun ([22],
Prop. 4.1), in this case we expect that the solutions of the nonlocal equation uniformly converge to the solution
of the (local) Burgers’ equation.

4. Benchmark numerical test for the local and the nonlocal Burgers’
equation: Test 1 (Example D)

In this paragraph we discuss some benchmark tests we use to validate our numerical schemes. We do not
report for brevity the convergence for both schemes in the case of the local Burgers equation, which is a well-
known result. Instead, Test 1 is designed to validate the numerical schemes for the nonlocal equation. We take
the same initial datum 𝜌(𝐷) as in (3.11) and the convolution kernel

𝜂𝜀(𝑥) := 𝛼𝜀(|𝑥− 𝜀||𝑥|)5/2
1[0,𝜀](𝑥),

where (here and in the following) the constant 𝛼𝜀 > 0 is chosen in such a way that 𝜂𝜀 has unit integral. The
exact value of 𝛼𝜀 can vary from occurrence to occurrence. As pointed out in Section 3.4, in this case the solution
of the Cauchy problem for the nonlocal Burgers’ equation (1.7) is explicit and it is given by (3.12). We can then
validate the schemes for the nonlocal equation by computing the 𝐿1 norm in space of the difference between the
numerical solution (obtained with the Lax–Friedrichs and the Godunov type schemes) and the exact analytical
solution. The results are displayed in Figure 1. We evaluate the 𝐿1 norm at time 𝑡 = 2 for different values
of the nonlocal parameter 𝜀, and we evaluate the convergence with respect to mesh size ℎ. The results show
convergence of order 1/4 in average (computed by means of linear regression) of the numerical solution to the
analytical solution for the nonlocal equation.
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Figure 1. Test 1 (Example D), 𝐿1-Convergence of the numerical schemes, Lax–Friedrichs and
Godunov, with respect to the mesh size ℎ, for the nonlocal equation at 𝜀 = 0.25, 0.1, 0.05, 0.01
and 𝑡 = 2.

5. Numerical tests on the nonlocal-to-local limit

We now discuss some numerical tests that aim at investigating the nonlocal-to-local limit from (1.2) to (1.3).
Before entering into the details of each test, we make a preliminary remark. Our main goal in the present paper
is to investigate whether or not standard numerical schemes (the Lax–Friedrichs and the Godunov schemes
discussed in Sect. 2) are suited to numerically study the nonlocal-to-local limit from (1.2) to (1.3). We do this
by keeping the mesh size ℎ fixed in several numerical experiments and letting the nonlocal parameter 𝜀 vary
in the range 𝜀 > ℎ (see the comment after formula (2.5)). As a byproduct, this choice allows us to obtain a
direct comparison with the numerical experiments concerning the nonlocal-to-local limit in Section 3.3 of [2],
because in those experiments the mesh size is fixed. Additionally, we also discuss numerical results where we
simultaneously vary the mesh size ℎ and the nonlocal parameter 𝜀.

5.1. Test 2 (Example E): isotropic convolution kernels and regular limit solution

In Test 2 we consider the same monotone increasing initial datum 𝜌(𝐸) as in (3.13) and the isotropic convo-
lution kernels

𝜂𝜀(𝑥) = 𝛼𝜀(|𝑥− 𝜀||𝑥 + 𝜀|)5/21[−𝜀,𝜀](𝑥). (5.1)

As pointed out in Section 3.5, owing to a result by Zumbrun ([22], Prop. 4.1) from the analytical viewpoint we
expect that in this case the solutions of the nonlocal equations converge to the (regular) solution of the Burgers’
equation.

In Test 2 we compute the numerical solutions of the nonlocal equations with the Lax–Friedrichs type and the
Godunov type methods and we compare it with the entropy admissible solution of the (local) Burgers’ equation,
computed with the Lax–Friedrichs and the Godunov scheme, respectively. We display the results in Figure 2:
the results obtained with both the Lax–Friedrichs and the Godunov type schemes suggest convergence. In the
case of Test 2 this agrees with the analytical results.
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Figure 2. Test 2 (Example E), 𝐿1-error at 𝑡 = 2, for different values of 𝜀, comparing the
solutions of the nonlocal equations with the entropy solution of the (local) Burgers’ equation
for both numerical schemes, when (a) ℎ = 0.0004, (b) ℎ = 𝜀/10.

5.2. Test 3 (Example A): odd initial datum, isotropic convolution kernels

In Test 3 we take the same initial datum 𝜌(𝐴) as in (3.1) and the same isotropic convolution kernels as
in (5.1). As pointed out in Section 3.1, in this case the analysis in [11] implies that the solutions of the nonlocal
equation (1.7) do not converge to the entropy admissible solution of the Burgers’ equation, which is given
by (3.2).

In Test 3 we compute the numerical solution of the nonlocal equation by using the Lax–Friedrichs and the
Godunov type schemes. Several snapshots of the solution are displayed in Figure 3. Also, we compare the
numerical solution of the nonlocal equation computed with the Lax–Friedrichs and the Godunov scheme with
the entropy admissible solution of the (local) Burgers’ equation, computed with the Lax–Friedrichs and the
Godunov scheme, respectively. More precisely, we evaluate the 𝐿1 norm of the difference at time 𝑡 = 2 and for
different values of the convolution parameter 𝜀. We show the corresponding results in Figure 4.

Here are the main remarks concerning the numerical results for Test 3.

(i) Figure 4, part (a) shows the numerical results obtained by keeping the space mesh fixed and varying the
convolution parameter 𝜀. The numerical results for both schemes strongly suggest that the 𝐿1 norm of the
difference converges to 0 when 𝜀 → 0+. As pointed out in Section 3.1, in this case we can analytically
rule out convergence in the nonlocal-to-local limit and hence the numerical evidence provides the wrong
intuition. Owing to the discussion in Section 1.2, this is most likely due to the presence in both schemes of
the numerical viscosity.

(ii) In Figure 4, part (b), we display the results obtained by simultaneously varying the space mesh ℎ and the
convolution parameter 𝜀. More precisely, we choose ℎ of the order of 𝜀2: in this way, the space mesh goes to
0 much faster than the convolution parameter. The results in part (b) are qualitatively similar to the results
in part (a) for the Lax–Friedrichs scheme, whereas the curve for the Godunov scheme is much flatter, which
does not support convergence in the nonlocal-to-local limit. This is more in accordance with the analytical
results, which rule out convergence for this example.

Wrapping up, Test 3 shows that the numerical viscosity may jeopardize the reliability of the numerical
investigation of the nonlocal-to-local limit.
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Figure 3. Test 3 (Example A), snapshots of solution of Burgers’ equation with initial condi-
tion (3.1) and isotropic convolution kernel, when 𝜀 = 0.1, ℎ = 0.0004.

5.3. Test 4 (Example B): anisotropic convolution kernel, positive initial datum

The goal of Test 4 is twofold: first, it again shows that the Lax–Friedrichs scheme can erroneously suggest
that the solutions of the nonlocal equation converge to the entropy admissible solution of the conservation law
as the nonlocal parameter 𝜀 → 0+ in cases where this nonlocal-to-local convergence is ruled out by analytical
results (see Fig. 5). The numerical results obtained by the Godunov scheme do not suggest convergence and
are therefore more in accordance with the analytical results. The second goal of Test 4 is to show that the
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Figure 4. Test 3 (Example A), 𝐿1-error at 𝑡 = 2, for different values of 𝜀, comparing the
nonlocal solution to the local solution for both numerical schemes: (a) fixed viscosity ℎ = 0.0004,
(b) varying viscosity ℎ = 25𝜀2.

Figure 5. Test 4 (Example B), 𝐿1-error at 𝑡 = 2, for different values of 𝜀, comparing the
solutions of the nonlocal equations with the entropy solution of the local equation for both
numerical schemes and for varying viscosity ℎ such that 𝜀 = 1000ℎ2. The 𝐿1 error of the
Godunov scheme is much higher for small values of 𝜀.
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Figure 6. Test 4 (Example B), snapshots of the solution of Burgers’ equation with initial
condition and convolution kernel (3.5), when 𝜀 = 0.1, ℎ = 0.0004.

Lax–Friedrichs schemes may fail to capture relevant qualitative properties of the analytical solution of the
nonlocal equations. Indeed, in the case of Test 4 the analytical solution of the nonlocal equations are supported
on the negative real axis: the numerical solutions computed with the Lax–Friedrichs scheme do not satisfy
this property, whereas owing to Lemma 2.1 the Godunov scheme preserves this property. We now provide the
technical details concerning Test 4: we take the same initial datum 𝜌(𝐵) as in (3.5) and the convolution kernels

𝜂𝜀(𝑥) = 𝛼𝜀(|𝑥||𝑥 + 𝜀|)5/21[−𝜀,0](𝑥).
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Note that these convolution kernels satisfy (3.7) and hence the discussion in Section 3.2 applies. In particular, the
analytical solutions 𝜌

(𝐵)
𝜀 of the nonlocal equations (1.7) are all supported on the negative axis, i.e. satisfy (3.8),

and do not converge to the solution of the (local) Burgers’ equation.
In Test 4 we compute the numerical solution of the nonlocal equations (1.7) by using the Lax–Friedrichs

type method and the Godunov type method and we display the corresponding results in Figures 5 and 6. More
precisely, Figure 5 displays the behavior of the 𝐿1 norm of the difference between the solutions of the nonlocal
equations, computed with the Lax–Friedrichs and the Godunov scheme, and the entropy admissible solution
of the (local) Burgers’ equation at time 𝑡 = 2, computed with the Lax–Friedrichs and the Godunov scheme,
respectively. Recall that the analytical solution is given by (3.6). Figure 6 shows the snapshots of the solution
at different times. We now comment on Figures 5 and 6.

(i) The results in Figure 5 obtained with the Lax–Friedrichs type method suggest that the solutions of the
nonlocal equation converge to the entropy admissible solution of the Burgers’ equation. This contradicts
the analytical results discussed in Section 3.2. On the other hand, the numerical results obtained with the
Godunov type scheme do not suggest convergence and hence are more in accordance with the analytical
results in Section 3.2. This is most likely due to the fact that the Lax–Friedrichs type scheme has higher
numerical viscosity and hence it is not reliable to test the nonlocal-to-local limit. The Godunov type scheme
has less numerical viscosity and is, at least in this case, more reliable.

(ii) The snapshots of the solution obtained with the Godunov type and the Lax–Friedrichs type schemes show
that the Godunov scheme is, at least in this case, better at preserving analytical properties of the solution
of the nonlocal equation. Indeed, the exact solution of the nonlocal Burgers’ equation is supported on the
negative axis, i.e. satisfies (3.8). Owing to Lemma 2.12, this important analytical property is satisfied by
the numerical solution obtained by the Godunov type method, and this is also confirmed by the snapshots
in Figure 6. On the other hand, the snapshots on the forth row of Figure 6 show that property (3.8) is not
satisfied by the solutions obtained by the Lax–Friedrichs type method.

The take-home message from Test 4 is the following: the Godunov type scheme is in this case more reliable
than the Lax–Friedrichs type scheme for the numerical investigation of the nonlocal-to-local limit. The Godunov
scheme is, at least in this case, also better at preserving relevant qualitative properties of the solution.

5.4. Test 5 (Example C): positive density and isotropic convolution kernels

In Test 5 we take the same initial datum as in (3.9) and the same convolution kernels as in (5.1). Since
the convolution kernels are even functions, we can apply the discussion in Section 3.3 and conclude that, for
every 𝑝 > 1, the solutions of the nonlocal equations do not converge in the nonlocal-to-local limit to the
entropy admissible solution of the (local) Burgers’ equation strongly in 𝐿𝑝. In Test 5 we compute the numerical
solution of the nonlocal equations with the Lax–Friedrichs type and with the Godunov type methods. We
display the corresponding results in Figure 7 (convergence analysis) and in Figure 8 (snapshots of the solution).
More precisely, Figure 7 shows the 𝐿𝑝 norm of the difference computed at time 𝑡 = 2 between the numerical
solutions of the nonlocal equations computed with the Lax–Friedrichs and the Godunov method and the entropy
admissible solution of the (local) Burgers’ equation, computed with the Lax–Friedrichs and the Godunov method,
respectively. Here are the main comments.

(i) In the results displayed in Figure 7, part (a), we keep the space mesh ℎ fixed and we consider smaller
and smaller values of the convolution parameter 𝜀. The 𝐿𝑝 error is clearly smaller in the case of the Lax–
Friedrichs scheme with respect to the case of Godunov, for every tested value of 𝑝 > 1, and this means that
the results obtained with the Godunov scheme are more in accordance with the analytical results, which
in this example rule out convergence in the nonlocal-to-local limit.

2More precisely, Lemma 2.1 states that the numerical solution computed with the Godunov scheme is supported on ]−∞, ℎ/2],
where ℎ is the mesh size.
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Figure 7. Test 5 (Example C), 𝐿𝑝-error at 𝑡 = 2, 𝑝 ≥ 1, at different values of 𝜀, comparing the
nonlocal solution to the local solution for both numerical schemes: (a) fixed viscosity ℎ = 0.0004,
(b) varying viscosity ℎ = 64𝜀2.

(ii) Figure 7, part (b) displays numerical results where the space mesh ℎ is of the order of 𝜀2. In this case
the numerical results obtained with both schemes do not suggest convergence in 𝐿𝑝 for 𝑝 > 1 and hence
agree with the analytical results. This is most likely due to the fact that the numerical viscosity goes to
0 very fast and hence does not affect the investigation of the nonlocal-to-local limit. Also in this case, for
fixed 𝑝 the 𝐿𝑝-error computed for the Godunov solution is always bigger than the corresponding 𝐿𝑝-error
computed for the Lax–Friedrichs solution, which means that the results obtained with the Godunov scheme
are more in accordance with the analytical results.

In a nutshell, Test 5 shows that the presence of the numerical viscosity can jeopardize the reliability of the
numerical schemes. In Test 5, the most reliable results are obtained by taking the scheme with the smallest
numerical viscosity.

6. Conclusion

In the present paper we argue that the numerical investigation of the nonlocal-to-local limit for nonlocal
conservation laws is a fairly subtle problem. We have shown that particular attention must be paid to the
numerical viscosity which can, for some values of the mesh size and of the parameter 𝜀, jeopardize the reliability
of the numerical experiments.

This claim is supported by the following instances:

– Lax–Friedrichs type schemes have high numerical viscosity and erroneously suggest convergence in cases
where convergence is ruled out by analytical considerations (see in particular Test 3). Also, Lax–Friedrichs
type scheme fail to capture relevant qualitative properties of the solutions of the nonlocal equations (see in
particular Test 4).
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Figure 8. Test 5 (Example C), snapshots of solution of Burgers’ equation with initial condi-
tion (3.9) and convolution kernel (5.1), when 𝜀 = 0.1, ℎ = 0.0004.

– Godunov type schemes have lower numerical viscosity than Lax–Friedrichs type schemes and, at least in
some cases, provide more reliable information on the nonlocal-to-local limit, see Test 4. Also, they appear
to be better than Lax–Friedrichs type schemes at capturing relevant qualitative properties of the solutions
of the nonlocal equations (see Test 4).

– The numerical results that are most in accordance with the analytical results use the Godunov type scheme
with a very low numerical viscosity (i.e. we choose the space mesh of the order 𝜀2, where 𝜀 is the convolution
parameter), see Test 5.
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We feel that the present work could pave the way for several interesting developments. Our work shows that
both Lax–Friedrichs and Godunov type schemes, especially on coarse meshes, are not completely reliable to gain
analytical intuition on the nonlocal-to-local limit. It would be very interesting, for both numerical and analytical
purposes3, to introduce numerical schemes providing reliable results for the study of the local limit of nonlocal
conservation laws. To this end, a possible future direction is working with Lax–Wendroff type schemes4. This
is motivated by the fact that the model equation for the Lax–Wendroff equation is a third order equation with
no viscous term, see [18]. See also the non-dissipative scheme used in [16].
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