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Abstract—The cloud paradigm has become increasingly attractive throughout the recent years due to its both technical and economic

foreseen impact. Therefore, researchers’ and practitioners’ attention has been drawn to enhancing the technological characteristics of

cloud services, such as performance, scalability or security. However, the topic of identifying and understanding cloud consumers’ real

needs has largely been ignored. Existing requirements elicitation methods are not appropriate for the cloud computing domain, where

consumers are highly heterogeneous and geographically distributed, have frequent change requests and expect services to be

delivered at a fast pace. In this paper, we introduce a new approach to requirements elicitation for cloud services, which utilizes

consumers’ advanced search queries for services to infer requirements that can lead to new cloud solutions. For this, starting from the

queries, we build fuzzy Galois lattices that can be used by public cloud providers to analyze market needs and trends, as well as

optimum solutions for satisfying the largest populations possible with a minimum set of features implemented. This new approach

complements the existing requirements elicitation techniques in that it is a dedicated cloud method which operates with data that

already exists, without entailing the active participation of consumers and requirements specialists.

Index Terms—cloud services, data analysis, requirements elicitation, Galois lattice.

✦

1 INTRODUCTION

C LOUD computing is largely seen as a successful and
promising paradigm due to its capability to efficiently

adapt to business changes by scaling software or hardware
resources in a flexible way. Therefore, it has received great
interest from both research and industry throughout the
recent years, and has so far managed to maintain its promise
to deliver both technical and economic benefits [1].

As a result, the number of public cloud services available
is growing continuously and it is expected that this growth
will continue in the future [2]. While this can be seen as an
advantage for cloud consumers who have a wide variety
of offers to choose from, this phenomenon can also lead
to a paradox of choice [3], where users do not know what
services best match their needs. To solve this problem, re-
searchers [4] and industry practitioners recognize that there
is a need to develop search engines or platforms dedicated
to aggregating and displaying cloud service offerings from
various providers. These would act as marketplaces [5], [6]
exposing advanced search capabilities that allow (potential)
cloud consumers to input and refine their needs according
to various criteria. Then, a matching algorithm would iden-
tify what existing public cloud services match the features
requested. An example in this direction is the Intel Cloud
Finder [7], which matches IT requirements to existing cloud
services from those providers that signed up on the Intel
platform and published their offering.

Another consequence of the rapid growth in popularity
of cloud services is the emergence of numerous related
research areas, ranging from intercloud architecture models
to cloud performance and virtualization. In this context, the
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focus has been strongly directed towards building better ser-
vices from a technological perspective, whereas the human
aspect has been largely ignored. While there are examples
of research conducted in the area of cloud adoption [8], [9],
the issue of identifying and satisfying cloud consumers’ real
needs has not been thoroughly addressed. Moreover, the
existing requirements acquisition or elicitation techniques
are not suitable for the cloud domain, and dedicated re-
quirements elicitation methods for the cloud are lacking
[10]. In this paper, we introduce a new approach for solving
an existing requirements engineering (RE) problem: the
absence of dedicated requirements elicitation techniques for
cloud services. We concentrate on identifying (potential)
cloud consumers’ needs by modeling and analyzing the
data collected from consumers’ advanced search queries on
cloud service marketplaces.

In the following subsections, we firstly explain what
requirements elicitation is and why it is important. Then,
we clarify the cloud challenges that hinder the usage of
existing requirements elicitation methods and finally outline
the main contributions of this paper.

1.1 Requirements Elicitation

Requirements elicitation is typically seen as the first step
in the requirements engineering process [11]. According to
Sommerville and Kotonya, requirements elicitation refers
to activities undertaken to discover the requirements of a
system to be built or a problem to be solved [12]. Addi-
tionally, Van Lamsweerde also includes the identification
of stakeholders in the requirements elicitation stage [13].
Generally, requirements elicitation refers to seeking, gath-
ering and consolidating requirements, and is regarded as an
indispensable step towards building successful solutions.

Nuseibeh et al. highlight that requirements are not some-
where, waiting to be collected, but elicitation techniques are
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necessary to investigate and understand users’ needs [14].
For instance, traditional methods (e.g., questionnaires, in-
terviews, analysis of existing documentation), group elicita-
tion methods (e.g., brainstorming, focus groups, RAD/JAD
workshops), prototyping, model-driven techniques (e.g.,
scenarios, KAOS, i*), cognitive methods (e.g., protocol anal-
ysis, laddering, card sorting) and contextual techniques
were developed to enable requirements elicitation, and have
been used successfully in traditional settings for decades.

Similarly, in the cloud domain, consumers’ requirements
have to be identified in order to know what characteristics
future cloud services should exhibit such that they satisfy
consumers’ needs, and to avoid failure-proneness. However,
the cloud paradigm poses a few challenges that do not
allow using the existing requirements elicitation methods,
as explained in the following subsection.

1.2 Cloud Challenges

Whereas existing requirements elicitation methods have
proven useful for determining stakeholders’ needs in tradi-
tional contexts, i.e. where stakeholders are easy to identify
and physically reachable, most of these techniques are heav-
ily challenged by the particular features of the cloud. For
instance, given that cloud services can be easily sold and
customized online, consumers are generally geographically
distributed, often worldwide. This leads to a lack of local
markets, i.e. cloud providers do not always have a deep
understanding of the international markets they sell to.
This is in contrast to the traditional delivery model, where
contracts are made with local physical suppliers that then
sell software or hardware solutions, intermediating this way
the expansion of the business to a local, known market.

Moreover, cloud consumers can be highly numerous and
heterogeneous, with diverse profiles and backgrounds, and
exhibiting thoroughly different requirements that cannot be
easily satisfied on an individual basis. In such settings, exist-
ing elicitation methods cannot be applied, since stakehold-
ers cannot be identified, such that requirements specialists
can interact with them directly [15].

Another challenge is represented by the frequent change
requests coming from cloud consumers, especially busi-
nesses, and their volatile requirements. On the one hand, such
cloud consumers are largely modern businesses that need
their requests to be met fast. On the other hand, to face the
competition, providers have to first know, ideally predict,
and then satisfy these requests efficiently, such that they do
not lose their clients. In this context, they cannot afford to
apply elicitation methods that require long waiting times for
gathering requirements, or long processing and analyzing
times, and this is where most of the existing techniques fail.

Last but not least, the cloud is still young compared to the
traditional delivery model. Therefore, dedicated methods
for addressing consumers’ needs have not been developed
so far, to address the challenges identified.

Tsumaki and Tamai [16] categorize the existing require-
ments elicitation methods according to two criteria. Firstly,
depending on how requirements acquisition is conducted,
requirements can be collected and sorted either in a static
or dynamic way. Secondly, depending on the properties of
the target space to be analyzed, the space can be either
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Figure 1. Requirements elicitation techniques, adapted after [16].

closed or open. Using this categorization, due to the fast and
dynamic pace of the cloud, service providers should elicit
requirements in a dynamic, ideally continuous fashion. Since
consumers’ needs may change rapidly and this can often
be unpredictable, the space is open. As it can be observed
in Figure 1, methods such as brainstorming, role playing or
ethnography could seemingly fit these characteristics. How-
ever, these are the type of methods that necessarily require
the physical and simultaneous presence of stakeholders in
the same geographical space, which is incompatible with
the cloud paradigm. Therefore, according to the existing
related work and based on our previous research [17], it
is evident that there is a need for dedicated cloud elicitation
techniques that support cloud companies in understanding
and providing their consumers with services that truly meet
their needs. Such a dedicated method would belong in the
framework proposed by Tsumaki and Tamai in the bottom
right corner (dynamic elicitation process and open space), as
shown in Figure 1, and should accommodate the following
requirements [17]:

R1: Fit for wide and heterogeneous audiences;
R2: Take less time than traditional elicitation methods;
R3: Make automated elicitation possible;
R4: Be applied remotely;
R5: Be able to handle volatile requirements.

1.3 Main Contributions

This work is an extension of an existing paper published in
the 2014 IEEE 10th World Congress on Services [18]. There,
we introduced the preliminary idea of building fuzzy Galois
lattices to support cloud providers in the requirements
elicitation activity. In this extension, we have three new
contributions:

1. We enhance the preliminary algorithm introduced in
[18], by improving its performance through a pre-processing
technique that calculates frequencies of search queries. This
is included as a functionality in the StakeCloud Tool we
developed.

2. We add a similarity classifier that allows the flexible
clustering of similar queries; this leads to reducing the
modeling space, thus improving the scalability. Similarly,
this functionality is included in the prototype.
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3. We conduct a series of experimental evaluations to
verify our requirements elicitation approach, and explain
how it meets the five requirements above.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our approach, including the idea, definitions
for the terms used and algorithms developed. Section 3
presents the evaluation of the solution and the interpretation
of the results. In Section 4, we give an overview of related
work, and Section 5 concludes the paper.

2 APPROACH

2.1 Definitions

In this subsection, we introduce the terms utilized in de-
scribing our approach, as well as the corresponding mathe-
matical definitions.

Definition 1. A partially ordered set (or poset) is a set taken
together with a partial order on it. Formally, a partially
ordered set is defined as an ordered pair A = (X,≤),
where X is called the ground set of A and ≤ is the partial
order of A.

Definition 2. For any subset A′ of a poset A, the members
of the families lb(A′) = {a ∈ A : ∀a′ ∈ A′ : a ≤ a′} and
ub(A′) = {a ∈ A : ∀a′ ∈ A′ : a′ ≤ a} are called the lower
and upper bounds of A′ in A, respectively.

Definition 3. The members of the families inf(A′) =
max(lb(A′)) and sup(A′) = min(ub(A′)) are called
infima and suprema of A′ in A, respectively.

In other words, the supremum of A′ is the smallest
element of A that is greater than or equal to each element
of A′. It is unique and it may or may not belong to A′. The
infimum of A′ is defined analogously.

Definition 4. A poset A is called a Galois lattice iff for any
subset A′ of A, there exist a least upper bound sup ∈ A
(the supremum of A′) and a least lower bound inf ∈ A
(the infimum of A′).

Galois connections have their roots in Galois theory [19],
and refer to correspondences between two posets. Accord-
ing to Erné et al. [20], they are defined as follows:

Definition 5. Considering the posets P = 〈P,≤〉 and D =

〈Q,≥〉, if P
π∗→ Q and Q

π∗

→ P are functions such that for
all p ∈ P and all q ∈ Q, p ≤ qπ∗ iff pπ∗ ⊑ q, then the
quadruple π = 〈P, π∗, π

∗,D〉 is called a Galois connection.

Definition 6. A binary relation R(X,Y ) is a set of ordered
pairs (x, y), x ∈ X, y ∈ Y . For any given elements p ∈ X
and q ∈ Y , the pair (p, q) is either an element of R(X,Y )
or it is not.

In a Galois concept lattice, the elements can generally
take binary values. When we model cloud service queries,
some features can be easily represented using only binary
values, e.g., the service provides mobile support (1) or not
(0). However, numerous features are better represented on
ratio scales, e.g., for data storage cloud services, the values
can be between 1 GB and 20 TB; in this case, binary values
and therefore binary relations would be difficult to use.
Consequently, we use the extension of the Galois lattice
theory to fuzzy binary relations [21], such that features

can not only be represented on a nominal scale (taking the
binary values 0 or 1), but also on a ratio scale.

Definition 7. Fuzzy binary relations R̃ allow a degree of mem-
bership in a relation: the degree of membership of (p, q)
in R̃ may be any real number from the range [0, 1].

Therefore, a fuzzy set Si includes a degree of member-
ship for each of its elements, taking a value in the range
[0,1]. A set with the membership degrees restricted to the
values 0 and 1 (crisp set) is a particular type of a fuzzy set,
so it is formally correct to mix the features on a nominal
scale with those on a ratio scale in the same representation.

Definition 8. Each concept in a Galois hierarchy that rep-
resents the set of objects sharing the same values for a
certain set of properties is called a formal concept.

In contrast to general formal concept analysis the-
ory (FCA) [22], Galois connections take into consideration
the relations between fuzzy concepts represented on ratio
scales. For example, 0.2 and 0.5 are only two distinct values
in FCA, whereas 0.2 and 0.5 are two values which can
be ordered in Galois connections theory, e.g., 0.2<0.5. This
leads to the notion of fuzzy Galois lattices [21] the nodes
of which represent fuzzy concepts, which in turn are con-
structed from a fuzzy binary relation.

2.2 Idea

With the emergence of cloud service marketplaces acting
as intermediators between consumers and providers, large
amounts of data are generated. (Potential) consumers use
such platforms to search for services that match their crite-
ria, thus inputting their needs and preferences as advanced
search queries. Such log data are currently used by rec-
ommender systems [23] to suggest existing services with
similar features, but this is generally the highest extent to
which these data are exploited. A significant majority of the
companies we interviewed in one of our previous studies
[17] mentioned that they logged consumers’ search data
and tried to analyze it, but the large dimensions usually
hindered the understanding. In most cases, their analysis
was reduced to identifying which service features appeared
most commonly in the advanced search queries. Therefore,
we are facing a big data problem: the large datasets cannot
be processed and visualized easily, which leads to losing the
potential of such data.

Our idea is to utilize the logged advanced search queries
for cloud services to find requirements and combinations of
features that can eventually lead to developing new cloud
services and new classes of cloud solutions. Our approach
follows the process illustrated by the UML activity diagram
in Figure 2. The process contains ten activities, as follows.

A1: Collect data. The input necessary for running our
approach is represented by advanced search queries data
collected through a cloud services marketplace. In this con-
text, an advanced search query is a query that allows users
to specify desired values for a set of predefined features.

A2: Check for duplicates. Once the data has been collected,
our StakeCloud Tool that implements the approach checks
the input dataset for duplicates, i.e. identical queries.

A3: Count frequency for each unique query. In case no du-
plicate queries are found, each query has the frequency set
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Figure 2. UML activity diagram of the process of our approach [24].

to 1. If duplicate queries are identified, the tool keeps only
one instance of each unique query and counts its frequency,
i.e. how many times it appears in the given dataset.

A4: Model unique queries as vectors of fuzzy values. Natu-
rally, advanced search queries contain heterogeneous data.
For instance, the values associated with a query input for
a public cloud data storage service can be: 300GB storage
capacity, 30 days file recovery, 98% reliability, and the service
should allow AES encryption for backup. Using monotonic
modeling functions, such values are transformed into fuzzy
values, taking values in the range [0,1]. For example, the
feature “reliability” can be modeled as a monotonic function
as follows, transforming a value of 95% into the fuzzy
value 0.5. Here, the range (90, 99%] is considered the most
important and is modeled accordingly, since most services
do not have reliability values under 90% or above 99%.

f(x) =







0, x ≤ 90%
0.1 ∗ (x− 90), x ∈ (90, 99%]
1, x > 99%

For features represented on a nominal scale, such as
”AES encryption”, f(x) can take the value of 1 if the feature
is available, else 0. The rest of features work similarly.
Evidently, there are numerous ways in which f(x) can be
defined; the choice only has to ensure that it is a monotonic
transformation which leads to values in the range [0,1], and
maintains a ratio scale for fuzzy values. Table 1 shows a list
of ten different features of a cloud data storage service, along
with possible modeling functions. This way, an advanced
query for a cloud service can be defined as a vector of
fuzzy values Si = {fij : j = 1, n}, where f represents the
features of the cloud service, and n is the number of features
assigned to the generic type of service S in the search
platform. According to Figure 2, the activity of defining
the modeling functions is performed by the cloud provider.
However, our tool is enhanced with a set of pre-defined
monotonic functions for common cloud service features,
which can be used by the cloud provider to (semi-)automate
this task. Moreover, the tool has a checking mechanism that
ensures the functions defined by the provider cover the
range [0,1] monotonously. The current tool does not support
modeling exclusion queries, but we plan to integrate this in
our next release. The undesired features can be marked in
our dataset with a flag and then propagated in the lattices.

A5: Set degree of similarity. The cloud provider represen-

Table 1
Service features (N = nominal scale: {0,1},

R = ratio scale: [0,1])

No. Feature Scale Modeling function f(x)

f1 Private user N 0: N/A, 1: available
f2 Business user N 0: N/A, 1: available
f3 Storage R 10−3x, x < 103 GB;

1, x ≥ 103 GB
f4 Mobile support N 0: N/A, 1: available
f5 File recovery R 10−2x, x < 102days;

1, x ≥ 102days
f6 Reliability R 0, x ≤ 90%; 1, x > 99%;

0.1 ∗ (x− 90), x ∈ (90, 99%]
f7 AES encryption N 0: N/A, 1: available
f8 SSL encryption N 0: N/A, 1: available
f9 Max size/file R 0, x < 0.1 GB; 1, x ≥ 10 GB

0.1 ∗ x, x ∈ [0.1, 10) GB
f10 Uptime R 0, x ≤ 90%; 1, x > 99%;

0.1 ∗ (x− 90), x ∈ (90, 99%]

tative can bundle or cluster the input queries by selecting
the degree of similarity on a scale from 0 to 100%. The
degree of similarity is an integer in the range [0,100] and
a similarity of 100% means that all the input queries are
considered to be 100% similar, thus leading to one single
cluster that includes all of them. Conversely, a similarity of
0% means that all the input queries are distinct, thus leading
to a number of clusters equal to the number of queries, each
cluster containing one single query. Provided that the degree
of similarity is higher than 0, the bundling action will group
similar queries and define a representative vector of fuzzy
values for each such bundle (more details on this in Section
2.3.3). The bundling is calculated based on Euclidean dis-
tances between the vectors of features composing the input
queries and the supremum of all the queries. Therefore, a
vector is considered similar to another vector to a degree of,
e.g., 20% when, among all the other vectors, it is within the
closest 20% distance. When the input datasets are large, this
activity may be necessary to enable an easier visualization
of the output and achieve improved performance. For this
reason, we allow the user to set the degree of similarity
already before generating the lattice. However, the user can
also directly generate the lattice without bundling.

A6: Compute bundles. Provided that the user selected
a degree of similarity different from the default value
(0%), the tool computes the corresponding bundles and the
representatives (as vectors of fuzzy values) for each. The
algorithm used for this step is detailed in Section 2.3.3.

A7: Generate fuzzy Galois lattice model. Based on the input
dataset modeled as vectors of fuzzy values, and/or the com-
puted bundles, the tool generates the corresponding fuzzy
Galois lattice (for an example, see Figure 7). Lattices are
represented graphically as acyclic directed graphs having
exactly one source node (with no incoming edges) and one
sink node (with no outgoing edges). In our applied case
of fuzzy Galois lattices, the nodes on the first level in the
hierarchy correspond to the vectors of features given by
cloud consumers (e.g., (1), (2)). As explained in Section 2.1,
the topmost element is the supremum or upper bound for
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all the lattice elements. This is the only lattice node that
satisfies all input queries fully. However, implementing such
a service in practice is most often either very expensive or
impossible. Therefore, we recommend that cloud providers
should analyze the infima options, which are represented
by all the other nodes of the lattice, from the second hier-
archy level down (e.g., (1,4), (2,7), (2,4,7), (1,2,3,4)). Infima
nodes are service offerings that satisfy the input queries,
but only to a limited extent. This way, providers can make
compromises to satisfy large populations of consumers with
a minimum set of requirements implemented, to reach an
optimum solution. In this respect, it is important to note that
all the infima elements represent newly generated classes
of services, which can be candidates for implementation.
Therefore, our approach goes beyond simple statistics, since
the infima elements are new combinations of feature values,
which cannot be easily inferred by counting frequencies in
the initial datasets or using standard statistical methods.
Moreover, if the lattice generated is split in sub-lattices for
a more thorough analysis, the same properties related to
infima and suprema elements are maintained for the sub-
models: any sub-lattice has at least a supremum and an
infimum node, respectively, so in any such subset of nodes
there will be at least a service candidate that fully satisfies
the nodes in the first hierarchy level and at least a node that
satisfies these to a limited extent, which can be calculated
by our method. The algorithm employed for building these
models is described in Section 2.3.2.

A8: Choose analysis criteria. Once the lattice has been
drawn (including bundles or not), the cloud provider user
of our approach can choose the preferred criteria for per-
forming data analysis. These criteria are selected and im-
plemented in such a way that they support the service
provider in his/her understanding and reasoning process,
to decide what types of services should be supplied to
satisfy consumers’ needs. For instance, (s)he can choose to
compare the satisfaction level for individual features for a
set of classes of services (graph nodes) (s)he selected in the
lattice, or (s)he can study to what extent particular queries
can be satisfied by new classes of services generated by our
method. These analysis criteria are detailed in Section 3.5.2.

A9: Display graphs. Based on the criteria chosen, the
corresponding graphs are displayed. The graphical repre-
sentation can consist of points or functions in a Cartesian
coordinate system (e.g., as shown in Figure 7).

A10: Analyze. The cloud company representative can
use the lattice model and graphical representations from
A9 to perform a thorough analysis of consumers’ queries.
Moreover, (s)he can change the analysis criteria at any time
and generate new graphs, or change the degree of similarity
used for bundling.

2.3 Algorithms

The activities that compose the process of our approach
introduced in Section 2.2 are implemented by the following
algorithms.

2.3.1 Frequency Counter

In order to support activities A2 and A3, we utilize Algo-
rithm 1, shown in pseudocode below. This calculates the
frequency for each query of the input file.

Algorithm 1 calculateFrequency(inputFile)

1: d = dictionary(fuzzyV ector)
2: foreach query q ∈ inputF ile do
3: if q /∈ d.keys() then
4: d[q] = 1
5: else
6: d[q] = d[q] + 1
7: end if
8: end for

As an abstract data type, we use a dictionary (or asso-
ciative array) composed of (key, value) pairs. In our case,
the values contained by the dictionary are vectors of fuzzy
values (fuzzyV ector), and each key appears only once. For
every query q of the initial input file, we check whether it is
part of the keys set or not. If it is found, we increment its fre-
quency counter; if not, the frequency is set to 1. The output
consists of a dataset made of exclusively unique queries and
the corresponding computed frequencies. This algorithm
ensures that the dataset to be processed further does not
contain any duplicates, which is important for the overall
performance and behaviour of the method. Algorithm 1 has
O(S) complexity, where S is the number of service queries.

2.3.2 Lattice Generator

The activity A7 is one of the core steps in our approach,
since it deals with generating the fuzzy Galois lattice, the
pre-requisite model for the data analysis. Algorithm 2 shows
what operations are needed before the graph can be drawn.

Algorithm 2 generateLattice(fBR[S,F])

1: C = C ′ = ∅
2: Ck

S =
(

S
k

)

3: C = ∪S
k=1{C

k
S}

4: foreach i ∈ C do
5: foreach j ∈ i do
6: foreach f ∈ [1..F ] do

7: infFeature[f ] = min
len(j)
r=1 j[r, f ]

8: C ′ = C ′ ∪ infFeature[f ]
9: end for

10: end for
11: end for
12: eliminateDuplicates(C ′)
13: drawGraph(C ′)

The input of Algorithm 2 is represented by a fuzzy
binary relation (fBR), which is a matrix with two
dimensions: S service queries that exist in the dataset with
unique queries, and F features, which are the pre-defined
features for the type of service analyzed, e.g., cloud data
storage, as shown in Table 1. Firstly, all elements of the
power set P(S) of the set S of search queries are generated
as combinations (line 2). These are sets of sets of vectors
with fuzzy values, where S queries are taken k at a time
without repetition. For example, if S = 5 and k = 3, C3

5 =
{[s1, s2, s3], [s1, s2, s4], [s1, s2, s5], [s1, s3, s4], [s1, s3, s5],
[s1, s4, s5], [s2, s3, s4], [s2, s3, s5], [s2, s4, s5], [s3, s4, s5]},
where si, i = 1, S are unique service queries. Secondly, we
append all these Ck

S calculated to C (line 3), which becomes



1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TSC.2015.2466538, IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , [DATE] 6

a large set that includes all the possible combinations of
service queries, based on the initial input file.

Thirdly, we calculate the fuzzy concepts (lines 4-11),
yielding 2S FCs. According to Galois connections theory,
the FC belonging to a subset S′ is calculated by taking
the minima of all feature values of the queries contained
in S′ (line 7). In case C exposes special properties, these
are considered at this stage. As a typical example, assume
we detect a small distance between two rows of the fuzzy
binary relation. Since this method is based on computing
minimum values, detecting a search query which is the
minimum of another will lead to reduction opportunities
in the final lattice, i.e. some nodes do not have to be
represented due to redundancy.

Naturally, after calculating all the FCs, C ′ may include
duplicates. In order not to draw any classes of services more
than once, we now eliminate the duplicates from C ′. This
way, we keep only one entry for each fuzzy vector generated
when calculating the feature values (line 7).

The last step of Algorithm 2 consists of drawing the
lattice (graph). When doing so, the algorithm takes into ac-
count the hierarchical properties of the lattice. For instance,
our approach will draw the directed edges FC4−FC4,5 and
FC5 − FC4,5 from service queries s4 and s5 represented
by FC4 and FC5, respectively, to the lattice node FC4,5,
which is a formal concept generated based on queries s4
and s5. The other edges are drawn in a similar fashion, e.g.,
FC4,5−FC2,4,5, FC2,4,5−FC1,2,4,5, such that the indices of
the supremum node always represent a subset of the indices
of the infimum node.

The operation for calculating the minima values in line

7 has a complexity of O( 2
S

S
) which, combined with the

complexity of iterating over the combinations O(2S−1) and
features O(F ), leads to the overall complexity for Algorithm

2 of O(F∗22S

S
), therefore O(2S). The exponential character in

the size of S is natural when computing Galois lattices.

2.3.3 Similarity Classifier

The third algorighm is used for implementing activity A6
(cf. Figure 2), where the tool computes clusters of similar
queries based on a degree of similarity sim provided by the
user in activity A5.

Algorithm 3 takes the degree of similarity sim and the
set of unique queries (uniqueQ) as input. The latter is
the output of activity A4, and is a bi-dimensional matrix
with S queries and F service features. The algorithm re-
turns the clustersList, which is a list containing all the
clusters computed. Initially, this is initialized to the empty
set. Our bundling algorithm uses Euclidean distances be-
tween vectors to find clusters, in a similar way to other
clustering algorithms from data mining, such as k-means.
Nevertheless, we could not have used an existing known
implementation such as Lloyd’s algorithm, since we cannot
provide the number of expected clusters (the k value in k-
means), but are interested in seeing the resulting clusters,
regardless of their number. In this respect, our algorithm
belongs to hierarchical clustering, avoiding the problem of
first identifying the number of clusters generated. Moreover,
it has a deterministic behavior, always producing the same
results for the same input. Therefore, instead of selecting

Algorithm 3 calculateSimilarity(sim,uniqueQ[S,F])

1: clustersList = ∅
2: if sim == 0 then
3: return uniqueQ[S, F ]
4: else
5: sup = supremum(uniqueQ)
6: uniqueQ′[S′, F ′] = uniqueQ[S, F ]
7: foreach query q ∈ uniqueQ do

8: dist(sup, q) =
√

∑F

i=1(supi − qi)2

9: end for
10: while uniqueQ′ 6= ∅ do
11: maxDist = maxi=1,S′,qi∈uniqueQ′(dist(sup, qi))
12: cluster = ∅
13: breakingPoint = sim∗maxDist

100
14: foreach query q ∈ uniqueQ′ do
15: if dist(sup, q) < breakingPoint then
16: cluster = cluster ∪ q
17: end if
18: end for
19: uniqueQ′ = uniqueQ′ − {q|q ∈ cluster}
20: clustersList = clustersList ∪ cluster
21: end while
22: return clustersList
23: end if

some random queries as anchors for the clusters, we use
one single anchor: the supremum of the input dataset sup.

In case the degree of similarity sim given by the user
is equal to 0, the algorithm returns the list of initial unique
queries (lines 2-3) - the clusters list for sim == 0 coin-
cides with the initial dataset when all the input queries
are unique. Otherwise, if the sim value is greater than
0, we calculate the maximum Euclidean distance between
the supremum sup and each query q in our set (lines 7-
8), and the breaking point for the cluster (lines 11-13). The
breakingPoint defines the lower bound of the cluster, i.e.
the least Euclidean distance to the supremum within which
a search query must be in order to qualify for cluster mem-
bership. All the queries whose distances to the supremum
are smaller than the breakingPoint value for a given sim
are considered similar for the sim value specified. Each
element of the set ends up in a cluster, as long as the distance
between it and the supremum is smaller than the breaking
point (lines 14-18). Then, the dataset is updated (line 19) to
include only those elements that did not become members
of clusters or were left out as single unclustered elements,
and the steps above are repeated until the dataset is empty.
Finally, the clusters formed in each iteration are added to
the clustersList (line 20).

For calculating the representative of each cluster (a vec-
tor of fuzzy values), we use the centroid or geometric center
concept. This is calculated as the arithmetic mean position
of all the points in the n-dimensional space, where n is
the number of features for the specified cloud service. We
did not choose the medoid concept as the representative
object for each cluster, as it is most commonly done in data
mining, since medoids are always elements of the dataset,
and this was not a requirement in our case. Here, it is
more important to achieve a minimal dissimilarity between
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the representative and all the elements of the cluster, such
that the new lattice generated after the bundling activity
illustrates the initial dataset well, without high information
loss. If the queries included in the cluster have frequencies
higher than 1, these are also taken into account, since we
calculate a weighted centroid, i.e. each query is represented
in the cluster proportionally to its frequency.

Given that we first test whether sim is 0, the best case
complexity for Algorithm 3 is O(1). Otherwise, since calcu-
lating maxDist is done in O(N ′), the overall complexity is
O(N+N ′2), where N is the number of elements of uniqueQ
and N ′ is the number of elements of uniqueQ′. The worst
case complexity tends to O(N2), when N ′ tends to N .

3 EVALUATION

3.1 Goal and Metrics

To evaluate our approach, we assess how it meets the
five requirements introduced in Section 1.2 (R1-R5). These
emerged from the related work in the field of dedicated
cloud elicitation techniques and our previous study with 19
cloud provider companies [17]. Therefore, we assume that
having an approach that meets these requirements would
support cloud providers in understanding and satisfying
their consumers’ needs better. We define the goal for our
evaluation as follows:

Analyze our dedicated requirements elicitation ap-
proach for the purpose of evaluation with respect
to the extent to which it satisfies cloud providers’
requirements for a new requirements elicitation method
(R1-R5) from the point of view of cloud provider
companies in the context of analyzing advanced search
queries for cloud services to infer new requirements.

Since R2 deals with time-efficiency, the main metric we
use for meeting this requirement is the time. We calculate the
time needed for generating the lattice nodes and models, as
well as the time required for finding similar queries and gen-
erating clusters. As far as the automation is concerned (R3),
we show what output can be automatically generated by our
approach and explain to what extent the method introduced
is more automatic than the existing requirements elicitation
techniques. Furthermore, we use the standard deviation as
a metric for heterogeneity (R1) of queries in a dataset. As
far as remote application (R4) and volatile requirements
(R5) are concerned, we describe how our approach can be
applied and its output can be analyzed remotely, as well
as how volatile requirements can be monitored and future
predictions can be made.

3.2 Method

In this work, we focus on internal, rather than external
evaluation. This means that we evaluate the performance
of our approach and present how it meets the requirements
identified (R1-R5), but do not conduct an external evaluation
against other existing methods. The main reason for this is
that such an evaluation is virtually impossible.

None of the existing requirements elicitation techniques
mentioned in Section 1.1 uses advanced search queries
datasets as input, such that we could compare the output of
our method to the output of other similar methods. In this

Table 2
Product Managers’ ideas on using the sample dataset

Activity PM1 PM2 PM3 PM4 PM5

Analyze query
frequency

x x x x

Analyze query
importance

x

Predict future
requests

x x

Analyze queries
for services sim-
ilar to theirs

x x

respect, the innovative nature of our approach is the cause
for the lack of a benchmark or ground truth we could use for
an external evaluation, e.g., using metrics such as precision,
recall or fallout. Moreover, trying to analyze the datasets
manually to build our own ground truth is impossible,
given the large amounts of data.

3.3 Product Managers’ Input

In our semi-structured interviews conducted with cloud
providers between November 2012 and January 2013 on
how they perform requirements elicitation [17], we dis-
cussed the possibility of utilizing consumers’ search data for
infering service requirements. At that time, while some com-
panies were logging such data, none of the 19 interviewed
cloud businesses was using them for requirements elicita-
tion. In January 2015, we contacted again five of the prod-
uct managers (PM) we had previously interviewed, from
companies located in three different European countries,
and asked them if this situation had changed meanwhile.
All five explained that although the idea of using log data
analysis for the purpose of getting to know their (potential)
consumers better is a recurrent topic, no concrete initiatives
have been taken in this regard so far. They confirmed that
the requirements elicitation approaches they were using at
the time we performed our interviews are still in use now.

Moreover, we now gave the five product managers a
sample dataset of 500 advanced search queries, and asked
them how they would use it to help their companies in
their decision making process regarding the launch of a new
cloud service. The most frequent responses recorded are
displayed in Table 2. Analyzing the frequency of each query
was the the most common activity they would undertake
(4 out of 5 responses), reasoning that if numerous people
search for the same type of service, that is a sign such a
service should be launched, if it does not exist. PM2 and
PM4 mentioned that several such datasets from different
moments in time could be used to predict future requests,
based on the evolution history. PM3 and PM4 also added
that it would be interesting to analyze those queries that are
similar to what their companies already offer, to identify
what kind of changes could be implemented to enhance
their services and satisfy consumers. The most advanced ap-
proach was suggested by PM5, who mentioned she would
use the tf-idf (term frequency-inverse document frequency)
method to determine how important a query is in a set of
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queries (document) of a collection of sets of queries (corpus).
This is similar to analyzing individual query frequency,
since the tf-idf is proportional to the frequency of each
query, but it is offset by the frequency of the query in the
corpus. When asked whether they utilized such datasets at
all, three PMs answered that their recommender systems are
the only ones making use of such data, to suggest services
similar to the ones viewed by the user.

Therefore, although the five PMs interviewed are too
few for achieving statistical significance, they confirmed
our hypothesis that there are no elicitation methods in use
that take the same type of input as our method, for the
purpose of requirements acquisition. Moreover, our tool
implementing the approach supports automating the ac-
tivities suggested by the PMs, and goes beyond these. On
the one hand, these findings encourage us to continue our
efforts invested in elaborating the presented approach. On
the other hand, they certify that finding a ground truth for
an external evaluation is virtually impossible. Consequenty,
we performed the evaluation described below.

3.4 Experimental Setup

We used three distinct datasets as our simulation data,
representing advanced search queries for data storage cloud
services. They contain 250 queries1, 500 queries2 and 1000
queries3, respectively. Since obtaining large amounts of real-
world search information is particularly difficult due to
sensitivity and privacy, we generated the needed datasets
ourselves.

However, we used an available small dataset containing
real-world data [18] coming from one of the companies
interviewed [17] as a starting point. Moreover, we generated
the queries such that they define data storage cloud services
with ten features, as described in Table 1. For this, we
followed the constraints imposed by the individual features:
some are represented on a nominal scale, whereas others are
represented on a ratio scale. Therefore, some of the features
are defined by binary values, such as the ”mobile support”,
and others are defined by fuzzy values in the range [0,1],
such as ”reliability”. To test the performance of the similarity
classifier, we set a degree of similarity between 20 and 90%.

All the experiments presented in the following subsec-
tions were run on a 4 GB 1333 MHz DDR3, 1.8 GHz Intel
Core i7.

3.5 Automation and Time-Efficiency

We saw that existing requirements elicitation methods are
challenged in the cloud domain by the time factor. More-
over, the need to involve a large number of stakeholders
simultaneously in the same geographical spot is another
issue posed by the cloud settings, which could be solved by
means of automation. To show how our approach addresses
these challenges, we firstly analyze the time efficiency (R2)
of our algorithms and then describe the automation capabil-
ities (R3).

1. http://www.ifi.uzh.ch/rerg/people/todoran/Dataset250.pdf
2. http://www.ifi.uzh.ch/rerg/people/todoran/Dataset500.pdf
3. http://www.ifi.uzh.ch/rerg/people/todoran/Dataset1000.pdf
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Figure 3. Time performance of the similarity classifier and number of
clusters generated.

3.5.1 Time Efficiency (R2)

In contrast to the existing elicitation techniques, our ap-
proach has a passive character, i.e. consumers are not di-
rectly and consciously involved in the requirements elici-
tation process, since the requirements for new services are
inferred based on their searches. This way, virtually no time
is dedicated specifically to the elicitation process, but rather
to the data analysis. Consequently, we will calculate the data
processing times.

Similarity Classifier

We firstly analyze the behavior of the similarity classifier
(Algorithm 3). As described in Section 2.3.3, the degree of
similarity (sim) is given by the cloud provider representa-
tive using the StakeCloud prototype [24] that implements
our approach. Then, the bundles of similar queries are
automatically generated. We measured the time needed to
generate clusters for degrees of similarity between 20 and
90%, with an increment of 10, for the three datasets of 250,
500 and 1000 queries, respectively. We excluded the extreme
margins of the range [0,100], i.e. [0,20) and (90,100], because
values converging to 0 will not generate any clusters and
will simply maintain the original list of queries, and values
converging to 90 will likely generate only one large cluster
consisting of all the queries in the dataset. Moreover, we
measured how many clusters are generated for each degree
of similarity, for every dataset. The results obtained are
shown in Figure 3.

Generally, the time needed to process the data and
generate queries bundles grows linearly with the number of
queries in the dataset: e.g., for sim = 20, generating clusters
for a dataset of 250 queries (shown in red in Figure 3) will
take 0.26 seconds, while for a dataset of 500 queries (green)
it will take 0.57 seconds, and for 1000 queries (blue) 1.33
seconds. This observation also holds for the other values of
the degree of similarity. The time values we obtained are in
the same range as those of well-known clustering methods,
such as k-means [25], for datasets of comparable sizes.

As expected, the time required to generate the clusters
is directly proportional to the number of clusters generated,
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a)

b)

c)

Figure 4. Fuzzy Galois lattices for: a) 5 queries, b) 10 queries, and c) 15
queries.

and inversely proportional to the value of sim. In Figure
3, the bigger the size of the circle representing the cluster,
the larger the number of clusters generated for that partic-
ular degree of similarity, as exemplified in the legend. For
instance, for the dataset with 500 queries (green), sim = 90
will lead to 2 clusters, whereas sim = 20 will lead to 11
clusters. It can be noted that the value of sim = 20 causes
comparatively longer needed time periods compared to the
other values. This is due to the fact that our algorithm
always compares the distances between the supremum and
each query to the breaking point calculated (line 15, in
Algorithm 3), and the lower the value of sim, the more
such computations needed. Nevertheless, the times are still
manageable on a regular machine, being in the range of
seconds for thousands of queries.

According to our tests so far, visualizing Galois lattices
generated directly from datasets with less than 15 queries is
still possible, without any need for clustering, unless specif-
ically desired so. The tool allows zooming and dragging,
thus making it easy for the user to navigate in the models
even when the graphs are rather complex, as in Figure 4 b)
and c). For datasets with more than 15 queries, the user can
choose to automatically compute bundles and then generate
the lattice. This way, (s)he can adjust the degree of similarity
until the model is easy to visualize. When some of the
represented nodes are not original queries from the dataset,
but bundles representatives, a mouseover feature allows the
user to see what composing queries each cluster consists of,
and their frequencies.
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Figure 5. Time needed to generate the lattice nodes.

Lattice Generation
We computed the time needed to generate fuzzy Galois

lattices for various datasets, containing between 5 and 19
queries. We tested our Algorithm 2 with datasets of these
sizes, since these are likely to lead to models that are still
easy to visualize and analyze, as explained above. For this
reason, we generally recommend bundling similar queries
initially, if the input dataset contains more than 15 queries,
such that an overall view of the data is first generated. Then,
the user can explore individual bundles and regenerate the
model as needed. This also ensures a rapid lattice genera-
tion, thus fast data processing: e.g., building the model for
10 distinct queries takes 0.05 seconds, generating a total of
154 nodes to be represented in the lattice.

The graph in Figure 5 shows the time needed to generate
the corresponding lattice nodes for the datasets used. The
labels displayed next to the points represent the number
of queries processed. Datasets of 5 to 13 queries produce
lattices almost instantly, in less than 1 second. Then, the
time needed increases with an exponential tendency. The
logarithmic fit curve for the generated points is represented
as a dotted line and has the following definition:

y(x) = 95.35 ∗ log(29.52 ∗ x) + 179.16

Whereas the method is indeed based on combinations of
initial queries, several reductions are applied. Firstly, the fre-
quency of each query is calculated, leading to representing
only unique queries. In cases when frequency values higher
than 1 are detected, these are labeled and propagated in
the new classes of services generated. Secondly, when the
vector of fuzzy values representing a query is the minimum
of another vector, numerous nodes are generated, that are
identical; again, only unique new classes of services are in-
cluded in the lattice, which is another reduction opportunity
scenario. Thirdly, queries in real world datasets do not tend
to be thoroughly different, and the more similar they are, the
fewer the lattice nodes. Therefore, despite its supposedly
exponential character, our approach performs better than
2n. The combinations initially computed by Algorithm 2
only concern the labels of queries and the actual calculations
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Figure 6. Lattice nodes vs. combinations.

are only performed on the nodes that qualify to be part of
the lattice.

The reductions applied lead to high delta (∆) values
between the number of combinations generated mathemat-
ically and the actual number of nodes needed to build
the lattice. This is shown in Figure 6, that presents the
discrepancy between the number of lattice nodes (grey) and
the combinations (black), for 5, 10, 15 and 20 queries, respec-
tively. For instance, for a dataset of 15 queries, ∆ = 1047464.
The exponential fit curve for the middle points of ∆ values
is shown in red, and has the definition:

y(x) = 0.54 ∗ e0.69∗x

The exponential character of this fit curve demonstrates
that while the time needed to generate the lattices grows
fast, the approach performs better than standard exponen-
tial, not needing all the mathematical combinations. When
the input datasets contain less than 50 unique queries, the
computing time remains in the range of hours, e.g., for
25 queries, without any pre-processing and bundling, the
needed time is 3.85h. Nevertheless, as soon as bundling is
applied, the time can drop drastically, depending on the
value of the degree of similarity. This efficiency issue is
known in the field of concept lattices, and various solutions
have been investigated to mitigate it. For instance, Kumar
and Srinivas [26] apply k-means clustering for lattice re-
duction, defining a number of desired clusters k. However,
they only focus on the clusters resulted in their analysis, not
mentioning anything about the performance gain. In our
context, we can conclude that the time required for the data
analysis is still much shorter than that of any other exist-
ing requirements elicitation techniques, even when several
hours of computation are needed. Moreover, the results re-
ported are obtained on our rather limited desktop machine.
Algorithm 2 is principally parallelizable, and running it on
a multi-core cluster should yield better results, decreasing

the computation time proportionally to the number of cores
used. However, this is subject to future work.

3.5.2 Automated Elicitation (R3)

As far as automation is concerned, our Galois lattices ap-
proach for cloud services is different from all the existing
requirements elicitation techniques in that data collection
is exclusively automated. The needs are gathered from
(potential) consumers in a passive and unobtrusive way.
Moreover, our technique is tool-supported [24], such that
most of the data analysis is automated. As shown in Fig-
ure 2, the StakeCloud Tool performs numerous activities,
such as computing bundles of similar queries. Whereas the
new classes of services are automatically generated, while
performing the analysis in A10, providers can perform a
manual what-if investigation to dynamically simulate what
happens when only one or a few features are varied, how
these impact the general clustering, or zoom in specific parts
of the lattice, to analyze the best ideas for new services.

For instance, Figure 7 shows a sample scenario in our
tool. The top right panel contains the input dataset loaded,
consisting of 20 distinct queries. The corresponding Galois
lattice is displayed in the main panel, where the topmost
element is the supremum for the entire lattice, and the first
level in the hierarchy is composed of inidvidual queries
(circles, e.g., (6)) and bundles (rounded rectangles, e.g.,
(2)) generated based on a degree of similarity of 75%. The
remaining nodes are classes of services generated automati-
cally, as infima of the elements in the first hierarchy level.

Upon selecting three latice nodes displayed in gray (the
bundle (2) and the individual queries (1) and (4)), the user
can immediately visualize the corresponding supremum ((),
in green) and infima elements (red). The numerical fuzzy
values of these are also displayed in the right central panel.
As explained in Section 2.2 A7, the infima elements are the
main candidates to evaluate when the provider is interested
in satisfying consumers with searches such as (1), (2) and
(4). For this, the user can select from five different criteria
of analysis from the drop-down menu in the bottom right
panel, e.g., analyze to what extent individual features are
accomplished by selected nodes or their suprema/infima.
Assuming the cloud provider is interested in satisfying as
many as possible features fully for the selected queries,
he selects the suprema/infima full satisfaction analysis.The
tool automatically generates the graph displayed in the
bottom right corner of the tool window, showing the results.
The graph allows multiple plotting options, the scale can be
changed and zooming capabilities are also embedded.

As a next step, the user can decide to choose other
analysis criteria, look into the individual queries composing
the bundle (2), or regenerate the lattice by changing the
degree of similarity (as shown by the loops in Figure 2).
Moreover, there is the option of adding new queries to
the dataset. Lastly, the approach allows the user to model
his/her existing offerings as vectors of fuzzy values, and
then to search if these are among the lattice nodes. If they are
found, they are highlighted, which helps cloud providers to
see what queries they can satisfy with their current services,
or how they could mildly enhance them to satisfy larger
populations. In case their current services are not found
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Figure 7. Tool screenshot - sample scenario.

among the nodes, a new lattice including them is generated,
showing their relations to the other lattice elements.

Therefore, through the tool support provided, we pro-
pose our approach as a requirements elicitation technique
that allows the automation of requirements acquision to a
large extent, and puts at cloud providers’ disposal means
for analyzing the automatically generated visualizations.

3.6 Consumers’ Heterogeneity, Geographical Distribu-

tion and Volatile Requirements

In this subsection, we show how our approach addresses R1,
R4 and R5, by enabling the elicitation of requirements from
globally distributed audiences, whose needs are volatile.

3.6.1 Wide and Heterogeneous Audiences (R1)

The advanced searches needed by our fuzzy Galois lattices
technique are always conducted on marketplaces websites.
Therefore, our approach allows any number of consumers
from virtually anywhere to input their needs for services
in a completely asynchronous way. Moreover, according to
the interviewed cloud providers [17], performing advanced
searches for services is among the most frequent methods
used by both individual consumers and businesses to select
cloud solutions suitable for their needs.

When generating the datasets used for experimentation,
we took into account the heterogeneity aspect. Therefore,
the queries used are highly heterogeneous, while they still
follow the constraints posed by the features in Table 1. As a
metric for heterogeneity, we use the standard deviation:

σ =

√

√

√

√

1

N

N
∑

i=1

(xi − µ)2

In our case, N is the number of queries, xi, i = 1, N
represent the individual queries, and µ is the mean of the
queries in the dataset. We used the standard deviation for
measuring the amount of dispersion from the average for

the queries in our three datasets, and obtained the following
results. For the dataset composed of 250 distinct queries,
σ250 ≃ 0.324, for the 500 queries, σ500 ≃ 0.322, and for the
1000 queries, σ1000 ≃ 0.319. All these values round to the
value of 0.32, indicating that all the queries used in our tests
are well spread, therefore heterogeneous.

3.6.2 Remote Application (R4)

Our approach is search-based, which means that it can be
applied for any consumers, located anywhere, including
those who are not physically reachable.

According to Use Case 3.9 defined for cloud computing
by NIST (American National Institute of Standards and
Technology)4, ”a cloud-user makes a structured capability or
capacity or price request to one or several cloud-providers
and receives a structured response that can be used as input
to drive service decisions”. This use case describes exactly
the paradigm our approach is built on: the remote request
for cloud service capabilities, upon which consumers get
matching results from the marketplace. Such remote re-
quests are the queries used as input, enabling the remote
application of our approach. Moreover, remote analysis of
the output of our method is also possible.

For instance, in the example shown in Figure 7, the
automatically generated bottom right graph represents the
number of features from queries (1) (green) and (4) (blue)
and bundle (2) (red) that are fully satisfied by their supre-
mum and infima. The information displayed in such graphs
is available to the cloud provider company without the need
to send its consultants overseas. For example, the cloud
provider representative can observe that classes of services
like (1,2,4,5,6) and (1,2,4,5,6,7) would both satisfy fully 4
features for query (1) and 3 features for query (4). How-
ever, (1,2,4,5,6,7) satisfies one feature less than (1,2,4,5,6) for
bundle (2). Nevertheless, it has the advantage of satisfying
also query (7), which belongs to the composing set. In this

4. http : //www.nist.gov/itl/cloud/3 9.cfm Accessed: June 2015.
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case, it is worth studying what is more valuable for the
cloud provider: satisfying bundle (2) to a larger extent,
or query (7). The analysis can continue until the provider
has obtained enough information to make a decision what
service(s) are worth launching, e.g., by unbundling query (2)
to analyze the queries it consists of, generating the graphs
that visualize to what extent query (7) can be satisfied by
the given infima, generating the graphs that show also
the extent to which the features of the selected nodes are
partially satisfied, etc. For another analysis example, please
refer to [18]. This analysis is performed exclusively remotely,
based on the input dataset.

Given its unobtrusive character, this technique is also
suitable when consumers are not able to describe their
requirements easily in an interview or a workshop, and can
thus be used to complement other elicitation methods.

3.6.3 Volatile Requirements (R5)

Volatile requirements, i.e. requirements that change while
being elicited, analyzed, validated and/or implemented,
represent a recognized challenge for requirements elicita-
tion methods. In contrast to the existing techniques, where
extensive time is allocated to first gathering requirements
which are then analyzed, our approach enables a continu-
ous elicitation process. Cloud consumers’ data is collected
continuously as advanced search queries on marketplaces,
and can be instantly fed as input to our tool-supported
approach. This way, volatile requirements can be monitored
in an uninterrupted fashion. Moreover, due to the remote
character of our method, this is done at virtually no addi-
tional cost. This feature is particularly fitting with the agile
character of most cloud provider companies, which use fast
development cycles and have rather short times to market.

Furthermore, our approach can be used for trend mon-
itoring. For instance, it can calculate the mean for selected
features of a series of datasets over a period of time. If it is
detected that the mean value shifts steadily over that period
of time, this represents a hint that the feature might follow
that trend also in the future. For example, if the mean for the
feature ”storage” increases by 0.5GB every quarter for two
years, this may indicate that a growth should be expected
also in the following year(s). Conversely, if the frequency of
a binary feature such as ”AES encryption” decreases over a
given series of datasets, this may be an indication that this
features may be replaced by another, or consumers simply
do not want it any more.

3.7 Threats to Validity

As far as construct validity is concerned, we tried to avoid
evaluation apprehension by ensuring the product managers
contacted that all the information is anonymized and used
exclusively for research purposes. We also mitigated hy-
pothesis guessing by not giving them any details about our
approach. Internal validity is threatened by the fact that we
generated the datasets ourselves. However, we constructed
them respecting the constraints of the features encoded
and starting from a real world dataset. This way, we re-
duced the possible causal relationship between treatment
and outcome. The fact that the datasets are self-generated
concerns the external validity, i.e. generalizing results to

industrial practice in particular. However, we attempted to
build representative queries, as described above.

4 RELATED WORK

From the early 2000s, researchers observed that require-
ments engineering also needs to consider distributed [27]
and asynchronous settings [28], and this currently extends
to the cloud context. However, due to its collaboration-
intensive and time-consuming nature, requirements elicita-
tion becomes difficult in the cloud [27], [29].

As far as dedicated cloud requirements elicitation methods
are concerned, there has been some advancement during
the recent years. For instance, frameworks focusing on the
supply-demand relation have been designed [30], Sun et
al. developed a hybrid fuzzy framework for helping cloud
consumers to select services that match their needs when
their requests are uncertain [31], and management systems
for requirements ensuring QoS have been developed [32].
Moreover, researchers looked into methods for eliciting
particular types of requirements, e.g., legal [33] or security
[34]. Still, these are only niche recommendations and no
comprehensive clear solution exists, addressing the cloud-
specific requirements elicitation challenges.

As far as distributed requirements elicitation is concerned,
Lloyd et al. conducted a study [15] on the effectiveness of
elicitation techniques in distributed requirements engineer-
ing, concluding that synchronous elicitation approaches are
generally more effective than asynchronous ones. Lim et al.
[35] present ideas on asynchronous and distributed stake-
holder identification, assuming that key stakeholders are
known, and further users can be identified based on domain
knowledge. However, such approaches do not easily extend
to the cloud context, since the audience for services is most
often unknown and globally distributed.

Tuunanen [36] addresses the problem of reaching and
involving wide audience end-users, or users who are not
within organizational reach. He argues that traditional tech-
niques do not provide adequate solutions and presents
methods which could potentially fill this gap (e.g., Easy-
WinWin). However, none of these methods has been suc-
cessfully used on a large scale for distributed elicitation so
far. Moreover, research on EasyWinWin by Kukreja et al. [37]
promises to provide support for distributed settings, but
only focuses on stakeholders within organizational reach.

Another challenge of requirements elicitation in the
cloud is the continuous change of consumer needs [38].
Consequently, various wiki approaches have been imple-
mented, to provide a time-efficient possibility for updat-
ing and eliciting requirements. For instance, Decker et al.
developed a wiki-based solution that enables stakeholders’
participation in RE [39], Solis and Ali’s spatial hypertext
wiki focuses on distributed teams [40], whereas Liang et al.
[41] and Lohmann et al. [42] exploit semantic annotation
wikis. However, wiki-based methods generally assume that
stakeholders are at least identifiable, which is not the case
in a cloud context.

Studies from the field of web-information systems by
Yang and Tang [43] reveal that the elicitation needs regard-
ing Internet-based systems are also rather different from
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those of traditional systems (e.g., due to higher user diver-
sity). Moreover, most existing requirements elicitation meth-
ods can only deal with a limited number of stakeholders
[38]. The number of potential cloud service consumers may
often go beyond what traditional methods can handle [34],
and no real solutions addressing this elicitation issue have
been developed so far. Market-driven techniques [44], which
are usually employed when it is impossible to consider
individual consumers, prove to be rather limited in the
cloud, due to the lack of specific localized markets.

Work in data mining, machine learning and particu-
larly recommender systems [5] also addresses the problem
of extracting value from search data. For example, search-
based and collaborative techniques can make personalized
online product recommendations [45], and user feedback
has been used to rank various products [46]. Throughout the
recent years, recommender systems [23] (e.g., probability-
based collaborative filtering [47]) and clustering data mining
methods [48] have been heavily used for marketing pur-
poses, to suggest similar products in e-commerce systems,
or to segment populations. However, to our knowledge,
such techniques have never been adapted or utilized for
requirements elicitation in the cloud.

Furthermore, data analysis methods that model con-
sumers’ needs have not been explored for the purpose of
cloud requirements elicitation so far. Whereas there is an
extensive body of research in the field of Galois concept
lattices, most researchers exclusively focus on the math-
ematical implications of such graphs, and do not apply
them in a practical context. There are only a few examples
of attempts where lattices are used to identify objects or
concepts in given datasets [49], [50], or applied to browsing
retrieval [51]. Most existing lattice-related work focuses on
clustering opportunities with Galois lattices from a purely
theoretical perspective [52].

To summarize, the existing elicitation techniques, even
when adapted, are mostly unsuitable for the cloud, and can
support cloud service providers only to a limited extent
in their requirements elicitation processes. Moreover, the
existing data mining and lattice approaches have not been
applied in the requirements acquisition context so far, to our
knowledge, leaving the issue of dedicated cloud require-
ments elicitation techniques unsolved.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach to requirements
elicitation for cloud services, that builds fuzzy Galois lattices
based on consumers’ advanced search queries. We evalu-
ated it against five main cloud providers’ requirements and
showed how it addresses them: it can gather needs from
wide and heterogeneous audiences whose requirements are
volatile, automates data analysis and can be applied re-
motely, taking less time than traditional elicitation methods.
Our approach is best-suited for the early elicitation phase
and for monitoring market trends. It can be succeeded by
more in-depth requirements elicitation with complementary
methods such as prototyping and large-scale online experi-
ments. Although our approach was natively built for cloud
contexts, we foresee that it can be applied successfully also
in other domains that exhibit similar properties and where

queries can be collected in a similar fashion, e.g., in tradi-
tional web-service and service-oriented systems. However,
we have not investigated this usage scenario so far, but it is
subject to future work.

A limitation of our approach is that it assumes con-
sumers provide values for all the features specified as
advanced search criteria. Currently, we ignore the queries
with values of zero for all features (outliers) and allocate
default values when no values are assigned. We are now
working on implementing the maximum likelihood estima-
tion, which uses the available data to compute maximum
likelihood estimates. Moreover, we plan to improve the time
performance and method scalability by using MapReduce
to compute the minima values in Algorithm 2. In addition,
we are currently working on extending the approach to
work when particular features have weights denoting their
importance. Naturally, adoption issues related to users’ data
privacy may occur when our method is deployed in practice
and some time may be needed until cloud providers get
used to the workflow. Therefore, we plan to apply our elic-
itation method in real world settings, with cloud providers
and their datasets, to discover any potential issues and
demonstrate its actual impact and practical use.
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