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ABSTRACT

Procedural Content Generation (PCG) aims to automatically generate the content of games 
using algorithmic approaches, as this can reduce the cost of game design and development. PCG 
algorithms can be applied to all elements of a game, including terrain, maps, stories, dialogues, 
quests, and characters. A wide variety of search algorithms can be applied to PCG problems; however, 
those most often used are variations of evolutionary algorithms. This study focuses on comparing 
three metaheuristic approaches applied to racetrack games, with the specific goal of evaluating the 
effectiveness of different algorithms in producing game content. To that end, a Genetic Algorithm 
(GA), Artificial Bee Colony (ABC), and Particle Swarm Optimization (PSO) are applied to a 
game-level design task to attempt to identify any discernible differences in their performance and 
identify whether alternative algorithms offer desirable performance characteristics. The results of 
the study indicate that both the ABC and PSO approaches offer potential advantages to Genetic 
Algorithm implementation.
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INTRODUCTION

Games are often considered a suitable test environment for artificial intelligence techniques, and 
game developers often focus on finding approaches that can automatically create computer game 
content to help minimize the load on developers (Zhang et al., 2022). Procedural content generation 
(PCG) can be used to build all types of game content, including levels, environments, and components. 
As such, it can be considered a tool that aids the designer in creating this content by offering speed 
advantages in comparison to manually designing the content and potentially through the discovery 
of novel content. PCG can create a realistic and aesthetically pleasing user experience (Korn et al., 
2017) and has been effectively used in a wide range of commercial games. Such games have their 
content algorithmically developed either during the design process or, in some cases, during runtime, 
rather than being designed by humans. A wide range of approaches have been used (Barriga, 2019; 
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Zhang et al., 2022), and there is a growing interest in search-based approaches (Blasco et al., 2023; 
Skjærseth et al., 2021; Zafar et al., 2020; H. Zhang et al., 2018).

The literature shows that evolutionary approaches, such as genetic algorithms (GAs), are one of 
the most widely used metaheuristic methods in search-based PCG (SBPCG); they have been shown 
to be successful in solving a variety of complicated problems (Alyaseri et al., 2024). In other domains 
of study, comparisons of metaheuristic algorithm performance have shown that in many cases, the 
popularity of GAs is not entirely justified. Although GAs excel in various tasks, in some contexts they 
might exhibit limitations, such as slow convergence or becoming trapped in local optima. This has 
motivated the exploration of alternative algorithms (Connor & Tilley, 2016; Panda, 2018; Schmidt 
et al., 2018; Youssef et al., 2001).

Therefore, the main purpose of this study was to compare GAs with two different metaheuristic 
algorithms—artificial bee colony (ABC) and particle swarm optimization (PSO)—in the context of 
PCG for computer games. These algorithms have demonstrated promising characteristics in other 
domains, such as faster convergence for PSO and improved exploration of ABC. PSO in particular 
offers advantages because of its simplicity and ease of implementation. PSO also leverages a form 
of collective memory by considering both the best positions experienced by individual particles and 
those discovered by the entire swarm. This information sharing helps particles explore the search 
space more effectively and avoid getting stuck in the local optima. In contrast, the GA primarily 
focuses on individual selection and crossover, potentially discarding valuable information from less 
successful individuals (Couceiro et al., 2016). ABC also possesses a distinct exploration strategy. 
In the ABC algorithm, both onlookers and employed bees play a role in exploring the search space. 
Employed bees exploit the food sources (potential solutions) they discovered in previous iterations. 
Onlookers, based on the employed bees’ dancing behavior (a form of information sharing), select 
promising food sources for further exploration.

Furthermore, scout bees handle diversification by randomly generating new food sources, 
ensuring the algorithm does not get stuck in local optima. This combination of exploitation (employed 
bees), informed exploration (onlookers), and random exploration (scouts) contributes to ABC’s 
potential effectiveness in finding good solutions (Abu-Mouti & El-Hawary, 2012). The present study 
specifically provides an example of automatically generating race tracks for a racing game. The aim 
was to identify whether alternative algorithms, such as ABC and PSO, with their potential advantages 
observed in other domains, can offer similar benefits when applied to the creation of game content, 
such as race tracks.

The remainder of this article is organized as follows. We first provide an overview of the literature 
supporting this study. Next, we explain our methodological approach, which includes the PCG task 
and implementation of the selected metaheuristics. We then provide details about the performance 
comparisons of various search algorithms in generating race tracks for a racing game. We conclude 
with a discussion of the results and their implications along with suggestions for future research.

BACKGROUND AND RELATED WORK

PCG is the automated creation of game content through algorithmic processes (Yannakakis et al., 
2018). Hendrikx et al. (2013) proposed a comprehensive taxonomy that categorizes common PCG 
methods into six sections, as illustrated in Figure 1. Although various projects in both the gaming 
industry and research have explored different methods for generating content across multiple levels 
of abstraction, in this study we specifically focus on evaluating the justification for the popularity of 
evolutionary approaches within the context of search-based methods.

The chosen algorithms for this study fall under the category of artificial intelligence in Hendrikx 
et al.’s (2013) taxonomy because the primary goal is to compare similar approaches. Although a 
detailed examination of all the methods is beyond the scope of this research, the taxonomy itself 
serves as a valuable frame of reference for understanding the landscape of PCG methods. In addition 
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to Hendrikx et al.’s taxonomy, another significant taxonomy, developed by Zhang (2022), classifies 
PCG methods into three main groups: search-based, traditional, and machine learning approaches.

It is notable that metaheuristic approaches were not explicitly addressed in Zhang (2022) study, 
potentially because they categorized such approaches as a subset of search-based methods. This 
omission may stem from the observed similarities between the techniques used in the search-based 
methods and metaheuristics. Despite this gap, in this study our aim was to focus on a detailed 
comparison of evolutionary approaches in a broader context of SBPCG methods.

The algorithms selected for this study are classified as metaheuristic search algorithms. Togelius et 
al. (2011) described the concept of search-based SBPCG as an advanced case of the more generalized 
“generate and test” approach. Although the literature normally identifies this approach as a method that 
works on a population, as shown in Figure 2, this reflects the popularity of evolutionary algorithms, 
including GAs, although it can also include approaches that are not population based.

Approaches like the one depicted in Figure 2 have been extensively used in literature. For 
example, Ferreira et al. (2014) applied a multi-population GA to Super Mario Bros. to grow four 
game features separately: the ground, block, opponents, and coins. In this example, each element has 
its own population and fitness function, and the approach joins the best individual in the population 
from each element to build the complete level. Many other examples exist with applications in 
relation to platform games (Moghadam & Rafsanjani, 2017), puzzle games (Pereira & Toledo, 2017), 
nonplayer characters (Kim et al., 2017), game narratives (de Lima et al., 2022), and crafted bosses in 
the Kromaia video game (Blasco et al., 2023). All of these studies reached similar conclusions: that 
procedurally generated content can meet the design intent of the game and contribute to the creation 
of playable levels.

Given the apparent success of evolutionary approaches, however, there is no reason why game 
content cannot be generated by different algorithms. In many other domains, research has shown 
that other algorithms can offer improved performance, although some authors have indicated that 
there is a lack of standardization in the evaluation of algorithms (e.g., Dokeroglu et al, 2019), thereby 

Figure 1. Procedural content generation methods taxonomy
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emphasizing the importance of comparative studies in a given context. There is little evidence in the 
literature for the use of other metaheuristic approaches applied to the creation of content for games 
(Togelius et al., 2010).

De Carli et al. (2011) conducted a study of both classical and current techniques that yielded 
numerous algorithms that can be applied to game content creation. Although the scope of their survey 
was broad, it did not consider that metaheuristic approaches could be used at all. This suggests that the 
focus on metaheuristic approaches is relatively recent, but it does not explain the focus on evolutionary 
algorithms. The authors of another review, which included metaheuristic techniques, went so far as 
states that SBPCG can use algorithms such as simulating annealing and PSO (Togelius et al., 2011). 
However, the authors also did not provide any actual examples of their applications in PCG, and a 
direct search of the literature yielded only limited evidence that alternative metaheuristics have been 
used in SBPCG. For example, simulated annealing, Markov chains (Kim & Crawfis, 2015), and PSO 
have been used to automatically generate two-dimensional graphical characters (Fister et al., 2015) as 
well as game levels for an infinite-platform game (de Pontes et al., 2022). Other algorithms have also 
been applied to gaming contexts. For example, Tabu Search has been applied to map generation for 
tabletop games (Grichshenko et al., 2020) and race tracks (Prasetya & Maulidevi, 2016). However, 
only a limited amount of research has explored the use of metaheuristic methods in computer games 
aside from evolutionary algorithms (Alyaseri et al., 2024).

In the PCG literature, irrespective of whether a study is based on evolutionary algorithms or an 
alternative, few studies have compared the outcomes with those provided by any other metaheuristic 
algorithm; neither is there strong justification for selecting these approaches on the basis of an empirical 
understanding of their performance characteristics. Some researchers have conducted comparative 
studies of the performances of metaheuristic algorithms. For example, one study conducted to generate 
race tracks in video games used Tabu Search and GA using two different approaches. The results 
mostly showed the variations between the two approaches in terms of the speed convergence, whereby 
the GA was faster than the Tabu Search (Prasetya & Maulidevi, 2016). However, this project is just 
one instance of a comparison with limited scope. It appears that there is no considerable emphasis 
on evaluating alternative algorithms that can be used in SBPCG.

In contrast to PCG, the use of metaheuristic algorithms in other fields has resulted in considerably 
more diversified representations of algorithms. For example, Dokeroglu et al. (2019) listed 14 

Figure 2. Search-based procedural content generation
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algorithms that have been used to generate new solutions to a range of problems; however, this list is 
far from exhaustive. Although GAs are still common in other domains, the use of other algorithms 
is much more prevalent, and a range of comparative studies have been undertaken in different areas 
over a long time (Collette et al., 2000; Connor & Shea, 2000; Leite da Silva et al., 2011; Gupta 
et al., 2021; Kannan et al., 2005; Reche-López et al., 2009). As a result, a broader understanding 
of the range of algorithms that solve a significant number of well-defined issues, recognize their 
strengths and limitations, and determine their appropriate settings will be used to support solution 
optimization. To date, only a limited number of studies have compared different algorithms in the 
context of PCG in games. Metaheuristic algorithms belong to a domain of algorithms inspired by 
natural phenomena. These are known as nature-inspired algorithms. In this study, we did not depend 
on a specific classification when we selected the algorithms for comparison, because some algorithms 
may belong to more than one category.

Categorization depends on focus, emphasis, and perspective (Dhal et al., 2020; Fister et al., 2013). 
Researchers have developed and evaluated a range of algorithms in this field, each of which has a 
distinct benefit in dealing with specific types of problems while also having disadvantages. However, 
the algorithms included as subjects in this study were GAs, PSO, and ABCs (Dalwani & Agarwal, 
2018). The latter two are examples of swarm algorithms, in contrast to the evolutionary foundation 
of GAs. GAs are the first approach used in this study and are included as a baseline for comparison 
against which other approaches are evaluated. It is the most commonly used evolutionary algorithm 
and was inspired by the concepts of natural selection and the survival of the fittest. The algorithm 
repeatedly modifies the population of the candidate solutions. For each generation, individuals are 
selected from the current population as parents, which are used to produce children for the next 
generation. The more fit candidate solutions in a population are more likely to be selected as parents, 
which is how the principle of survival of the fittest is embodied, and children are produced through 
modeling the genetic operators of crossover and mutation (Kramer & Kramer, 2017). Over successive 
generations, the population evolves toward an optimal solution.

GAs have been applied to a wide range of problems in operations research, engineering, and 
science (Connor, 1996; Ghaheri et al., 2015; Man et al., 1996; Manning et al., 2013; Paszkowicz, 
2013; Potvin, 1996; Wang et al., 2003). Video games broadly use GAs in search-based PCG, which 
are particularly useful for generating content in massive multiplayer online games (Alves et al., 
2018), levels of platform games (Mourato et al., 2011), tower defense games (Kraner et al., 2021), 
quest generation (de Lima et al., 2022), and the design of levels in a dungeon crawler game (Liapis 
et al., 2013).

ABC is the second metaheuristic approach we used in this study. It is inspired by animal behavior 
and falls into the category of swarm intelligence (SI). SI is defined as a group of techniques that uses 
a population of workers, particles, or agents working together to find an optimal (or near-optimal) 
solution to the problem at hand. In the ABC algorithm, the behavior of this population consists of 
simulated honeybees searching for food sources (Karaboga et al., 2014). Self-organization and the 
division of labor are two fundamental bases that are adequate for producing intelligent swarm behavior 
(Alyaseri & Aljanaby, 2014). These fundamentals are powerfully and clearly seen in honeybee 
colonies, along with satisfaction principles.

Although the ABC algorithm is not as popular as GAs, it is still widely applied, and many 
researchers have found it to be an effective technique for solving various optimization problems. For 
example, it improves edge detection in digital image processing (Liu & Tang, 2017). This algorithm 
was specifically developed in the search method for neighboring edge points to obtain the final edge 
detection figure. ABC was also used to solve the antenna array design issue and was compared with 
four other algorithms; the results and analysis of this method show that it is appropriate for solving 
antenna-design problems (Wang et al., 2019). In practical engineering optimization problems, ABC 
has also been used as an efficient approach to solve interval optimization problems. L. Zhang et 
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al. (2018) introduced a novel approach that uses ABC to enhance the generation of perfect interval 
credibility in these scenarios.

In relation to PCG, the ABC algorithm has rarely been applied to video games. Mora et al. (2021) 
referred to the ABC algorithm in their study, but they ultimately applied a different algorithm, namely, 
the artificial flora algorithm. In a select few studies that used comparative analysis, Yücel and Suürer, 
(2020) compared the ABC algorithm with both PSO and the firefly algorithm. Their research was 
conducted in the context of an abstract game scenario wherein players manipulate daisies within a 
grid to capture swarms in a jar. Although their results showed that the firefly algorithm outperformed 
both the PSO and ABC algorithms, there were cases in which ABC outperformed PSO, and vice versa. 
However, in this study we used an algorithm for game mechanics rather than to generate specific 
game content, so it falls outside the area of PCG.

PSO also has demonstrated good performance in many applications, such as the ABC algorithm, 
which falls into the SI category. PSO mimics the social behavior of flocking birds and schooling fish. 
The search for the optima is performed by updating the fitness value and position of the particles in 
each cycle. The position is usually updated by imparting velocity to it. Velocity is a vector of the sum 
of the partial current position, previously the best position, and the global best position accomplished 
by any particle in the search space. This iterative process continues until the best global position is 
reached (Pal et al., 2011).

PSO has been applied to a wide range of problems, including robot path planning (Sahu et al., 
2018), ship design (Zheng et al., 2021), and a limited number of applications related to video games 
(de Araújo et al., 2020). There have been a limited number of applications of PSO as an algorithm 
in PCG tasks. For example, de Pontes et al. (2022) not only showed that PSO can successfully be 
applied to the content generation of an infinite platformer game but also indicated that the algorithm 
offers advantages over GAs in terms of both effectiveness and efficiency.

GA, ABC, and PSO algorithms have been shown to be effective in optimizing solutions to 
a range of problems. Several studies have compared these algorithms, with varying results. For 
example, Kulkarni and Desai (2016) suggested that the ABC algorithm delivers a more accurate 
optimization than PSO; however, it takes a longer time to converge. In another study, Kanović et al. 
(2014) suggested that there was minimal performance variance among GA, PSO, and ABC. However, 
ABC occasionally experiences delayed convergence, which contrasts with the findings of Karaboga 
and Akay (2009), who demonstrated that the ABC algorithm surpasses other metaheuristics across 
various test functions. This discrepancy may be attributed to the problem Kanović et al. studied

Settles et al. (2003) investigated GAs and PSO in evolving neural networks and observed that 
GAs perform better on large networks, whereas PSO performs better on smaller networks. Indeed, 
there is little consensus yet as to whether any algorithm is consistently better, and any outcome is 
highly dependent on the application domain and implementation.

Nevertheless, studies of SBPCG have been limited to some algorithms, focusing on evolutionary 
computation, and have imported its terminology. However, only a few studies have experimented 
with heuristic search methods, and only a few studies have attempted this type of examination using 
several algorithms to identify how they may help fulfill PCG objectives. Research in other fields has 
shown that various algorithms have advantages over GAs, Examples are (Sahu et al., 2018), (Zheng 
et al., 2021), and (Liu & Tang, 2017). The present study is timely and relevant because we conduct 
an empirical evaluation of the different algorithms used in PCG applications.

METHOD

The purpose of this comparative study was to understand how well various metaheuristic search 
algorithms perform when used in PCG tasks to develop game levels. As we highlighted in the literature 
review, there is a strong emphasis on adopting GAs as an evolutionary method for PCG, even if 
alternative algorithms offer potential advantages in other applications. Given the nature of this study, 
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the main component of the evaluation was quantitative, involving a comparison of the algorithms’ 
effectiveness and efficiency, that is, their ability to find decent solutions based on a designed fitness 
function and their convergence speed to a solution.

Research Design
In this study, we used a computational approach to address our research objective. The primary 

methodology included the application of GA, PSO, and ABC to a race track game. The process 
involved implementing each algorithm, collecting relevant data, and systematically comparing their 
performance. Given the stochastic nature of the algorithms selected for this study, the evaluation 
process involved creating a race track. The study had an experimental design with a primary focus 
on determining significant differences among the algorithms. The experimental setup ensured that 
all the variables were held constant, with the only dependent variable being the different algorithms. 
This approach facilitated the attribution of identifiable differences to the specific algorithm under 
examination. To enhance the consistency of the comparison, each algorithm was operated with an 
equal population size of 600 individual solutions and experienced a fixed number of iterations.

Our initial experiments used conventionalized populations; however, these experiments did not 
yield significant performance improvement. Therefore, we investigated the effect of a larger population 
of 600 individuals over 200 iterations. This choice, although seemingly unconventional, was motivated 
by the inherent complexity of our problem. The problem domain involves discovering diverse race 
tracks that feature a variety of curves to enhance player engagement. We hypothesized that a larger 
population would provide broader exploration space, potentially leading to improved performance.

It is reasonable to posit that larger populations could offer advantages for all three algorithms 
under study: GAs, PSO, and ABC. For instance, GAs require a balance between maintaining diversity 
within the population and exploring new regions in the search space. A larger population size might 
facilitate this balance, in particular for intricate problems such as those we are addressing (Farahbakhsh 
& Kheirkhah, 2023). However, it is important to acknowledge the trade-off between the population 
size and computational cost. Larger populations inevitably require more computational resources.

In contrast, PSO is recognized for its ability to rapidly converge on solutions; therefore, smaller 
population sizes may be sufficient. Although maintaining a certain level of diversity is crucial for 
effective exploration, an excessively large population may not be necessary (Couceiro et al., 2016). 
Like PSO, ABC typically uses smaller populations and exhibits a rapid convergence, and thus a very 
large population is unlikely to offer significant benefits (Abu-Mouti & El-Hawary, 2012).

In recognition of the inherent stochastic nature of these algorithms, in this study we addressed 
potential performance variations by considering the average of the performance over 10 runs for each 
algorithm. This multi-run approach aims to provide a more robust understanding of the algorithm 
performance, smoothing out stochastic fluctuations and contributing to a more reliable comparative 
analysis.

In summary, the research method involved systematically applying the selected algorithms to 
a defined problem, creating a race track, and using relevant analyses, as illustrated in Figure 3. The 
experimental design, characterized by consistent variables and a focus on algorithmic differences, 
aimed to yield insights into the comparative effectiveness of the algorithms in addressing the research 
problem.

PCG Task
Our research focused on evaluating algorithms that generate unique race tracks for racing games. 

The first step involved creating a population of 600 tracks. This is achieved by generating random 
tracks with specific characteristics. These tracks were designed as closed loops centered around a 
central point. Like the points on a circle, each point on the track has a distance (radius) from this central 
point, as illustrated in Figure 4. This figure highlights the importance of calculating the coordinates 
of each point using polar coordinates.
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As illustrated in Figure 4, points such as (X1, Y1), (X2, Y2), and (X3, Y3) represent the connection 
points. Polar coordinates, which specify a point’s location on the basis of the distance from a central 
point (radius) and the angular direction, are ideal for generating these initial points.

Figure 3. Research design

Note. GA = genetic algorithm; PSO = particle swarm optimization; ABC = artificial bee colony.
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We chose to create tracks with 18 segments, each contributing to the overall curvature and the 
desired features of the track. To construct these 18 segments, we first determined the connection 
points between them. These connection points are crucial to ensure a continuous and well-formed 
race track. We achieved this by initially generating them using polar coordinates.

For our final track layout, we needed connection points in terms of their x and y (Cartesian) 
coordinates. Therefore, the initially generated polar coordinates were converted into their corresponding 
x- and y-axis values. We developed an efficient track creation method that uses the inherent advantages 
of polar coordinates to produce initial points. This process begins at the origin and represents the 
center of the circular track under consideration. To introduce an element of randomness and variation, 
we selected a set of 18 radial distances, Ri, for these initial points. Ri represents the distance of each 
point from the central point.

The polar coordinates are appropriate for this first phase because of their representational 
efficiency. In a polar coordinate system, a point’s location is defined by two key parameters: (a) the 
radial distance Ri and (b) angular position ϕ. The radial distance signifies the distance of the point from 
a designated centered point (the origin), and the angular position ϕ represents the angle formed by a 
line connecting the point and the origin with the positive x-axis. These parameters are mathematically 
denoted by (R and ϕ). In contrast, the Cartesian coordinate system defines the location of a point 
based on its horizontal (x) and vertical (y) distances relative to the origin. as shown in Figure 5.

To convert these initial polar coordinates (distance and angle) into the final Cartesian coordinates 
(x and y) used for the track layout, we used well-established standard polar-to-Cartesian conversion, 
as in Equations 1 and 2.

  X  i   =  R  i    × COS ( ∅  i  ) .  (1)

Figure 4. Visualization of a race track segment construction using polar coordinates
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  X  i   =  R  i    × SIN ( ∅  i  ) ,  (2)

where x and y represent the desired Cartesian coordinates, Ri denotes the radial distance in the 
polar system, ϕ denotes the angle (typically in radians), COS represents the cosine function, and SIN 
represents the sine function.

The significance of these conversion equations lies in their ability to transform the coordinates 
from the polar system (characterized by distance and angle) into the Cartesian system (characterized 
by horizontal and vertical distances). This transformation is crucial for defining the final track points 
in a game environment; specifically, the radial distance Ri for each point (i) was randomly generated 
within a range of 150–350 pixels from the center. This introduces a crucial element of randomness 
in the track layout. We chose 20° reduction because we had 18 segments. Dividing 360° (full circle) 
by 18 points resulted in a 20° separation between each point.

In additi8on, the polar angle ϕ is systematically reduced by 20° for each subsequent point (i + 
1) compared to the previous point (i). This reduction started at 20° and continued until it reached a 
full circle (360°). As mentioned earlier, the curve has a central point, and this reduction contributes 
to the smooth curvature of the resulting race track.

Following the generation of these 18 key points using polar coordinates, as described earlier, 
they are seamlessly interconnected with each two neighbor points using Bézier curves (Farin, 2006). 
This mathematical approach allows the construction of a closed loop representing the final race track.

Bézier curves, the cornerstone of computer graphics, offer a powerful tool for defining smooth 
and visually appealing paths. Unlike lines or circles with a fixed curvature, Bézier curves allow the 
creation of more dynamic and organic shapes. This characteristic makes them ideal for generating 
realistic and engaging race tracks. These curves operate on the basis of a set of control points that 
act as invisible guides that influence the overall shape and curvature of the resulting path. In our 
case, we specifically used cubic Bézier curves, which require four control points per track segment. 
These control points are denoted in Figure 6 by P1, P2, P3, and P4. The roles of each control point 
in shaping the Bezier curve segment are as follows:

• P1 and P4: These control points directly correspond to the two connection points generated 
earlier using polar coordinates. These represent the starting and ending points of each track 
segment, respectively.

• P2 and P3: These are the two additional control points strategically chosen for each segment. 
They do not necessarily lie on the final curve, but they significantly influence its shape.

Figure 5. Generation of different points using a decreasing angle (φ) for each round
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Although the concept of convex hulls can be relevant to Bézier curves in some advanced 
applications, in particular when dealing with complex shapes or collision detection, it is not directly 
applicable to our current explanation of control points. Convex hulls represent the outermost boundary 
of a set of points, and their use with Bézier curves typically involves ensuring that control points are 
positioned within the desired shape. By understanding the influence of each control point, one can 
effectively manipulate the curvature and overall shape of individual track segments. This allowed 
us to generate a diverse range of race tracks, each offering a unique driving experience within the 
game environment.

This variation in the control point positions (P2 and P3) significantly contributes to the observed 
variability in the individual track segments. By introducing this randomness, we ensured that the 
generated tracks exhibited a range of shapes and curvatures, thereby enhancing the overall dynamism 
and visual appeal of race tracks.

Evaluation (Fitness) Function
This study assumed that some track shapes are more desirable than others, although the intention 

of this research was not specifically to determine whether the algorithms can find an optimal race 
track. Instead, the focus was on comparing the performance of the algorithms against a given fitness 
function, although the fitness function itself may not be able to produce a “perfect” race track. 
Therefore, the fitness function we used in this study was relatively simple and aimed to direct the 
algorithms toward finding tracks with curved shapes in their segments, which could be considered 
preferable to almost straight tracks. This is similar to the work of Prasetya and Maulidevi (2016), who 
considered both the curvature and speed profile as factors in optimizing race tracks.

Because the intent of this work was to compare the algorithm performance and not find an 
optimal track, we simplified it to focus only on curvature on the assumption that the track is made 
more challenging by being more curved. Therefore, the fitness function scales the extent to which 
the given segment is rounded.

After studying different curve samples generated by the cubic Bézier function (Heckel, 2021), 
we observed how the curve shape depended on the two control points (P2 and P3) and their distances 
from the segment edges (P1, P4), as shown in Figure 7. An examination of this figure reveals that 
the curve samples in Panels (b), (c), (e), and (f) present some challenges. In contrast, the samples in 

Figure 6. Generating different track shapes using the cubic Bézier method
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Panels (a) and (d) appear like straight lines. This demonstrates why the samples in Panels (b), (c), 
(e), and (f) were preferable for creating curved shapes.

Our analysis revealed that the distance between a control point and its neighboring segment edges 
significantly affects the scale of the resulting curve. On the basis of this observation, we developed 
a method that uses this distance to determine the weight of each segment. This ensured that each 
segment effectively contributed to the overall shape of the track.

Figure 8 illustrates the process for determining the weights assigned to each track segment. This 
depends on the positions of the control points in the calculation. P1 and P4 represent the two edges 
of a segment, whereas P2 and P3 are control points. In the example shown, the specific positions of 
P2 and P3 are likely to generate a good curve using the Bézier method. In contrast, the control points 
labeled X1 and X2 represent positions that might generate undesirable curves.

We calculated the distance between control point P2 and the first edge point P1 of the segment, 
denoted in Figure 8 as side 1. We then calculated the distance between P2 and the next edge point, 
P4, denoted as side 2. Considering X1 as another possible position for a control point, we followed 
the same approach, calculating the distances between X1 and both edges P1 and P4.

Our analysis revealed that the difference between side 1 and side 2 was smaller than that between 
X1P1 and X1P4. We performed the same comparison for P3 and X2 to gain a better understanding 
of the ideal control-point positions. This observation played a crucial role in the development of our 
weight calculation formula. We used the difference between these distances (subtraction results) for 
both control points (P2 and P3) or in cases with potentially bad curves (X1 and X2). It is important 
to note that the weight assigned to each segment was calculated by summing the difference values 
obtained for both control points (P2 and P3) or, in negative scenarios, X1 and X2.

Mathematically, the subtraction results of    |   |       ⎯ → 
P1P2

  −     ⎯ → 
 P2P4

   |   |     is less than that of    |   |       ⎯ → 
P1X1

  −     ⎯ → 
 P4X1

   |   |     . Therefore, P2 is a better position than X1 in terms of making the curve more rounded. The same 
approach can also be applied to P3. The conclusion comes from the summation of the two results to 
reflect the impact of both control points. In summary, the fitness function is a mathematical formula 
that generates a numerical scale for each track segment W ; see Equation 3.

Figure 7. Different samples of Bézier curve generation
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   W  i   =  |   |       ⟶ 
 P  i   P  i2  

  −     ⎯ → 
 P  i+1   P  i2  

   |   |   +  |   |       ⟶ 
 P  i   P  i2  

  −     ⎯ → 
  P  i   P  i2  

   |   |  ,   (3)

where  i  represents the segment number,   P  i    denotes the endpoints of the segment, and   P  i2   and   P  i3    
are the control points for segment  i .

The summation of these results is the total weight of the track, as shown in Equation 4. A track 
with a small total weight is preferable.

  W  track    =  ∑ 
i = 0

  
17

    W  i   .  (4)

Metaheuristic Implementation
The initial stage of the study implemented three metaheuristic approaches (GA, ABC, and PSO) 

and used these algorithms to generate race tracks to gain knowledge of their relative performance in 
producing game levels.

The performance is determined in two dimensions: (a) the effectiveness of the algorithms in terms 
of their ability to converge on a better solution in a fixed number of iterations and (b) the consistency 
of this effectiveness across multiple attempts to generate race tracks. Figure 9 shows some typical 
tracks generated in this study; note that sharp changes in direction in each would not be desirable in 
a track that was intended to be playable. However, this does not detract from the comparison of the 
algorithm performance and can be addressed in future work by using an improved fitness function.

GA Implementation
The GA was the first metaheuristic approach used in this study. It consisted of four steps after the 

initial population was generated. The first step involved selecting a pair of tracks (parents). However, 
the selection process used three different approaches: (a) a biased roulette wheel, (b) a tournament, and 
(c) a combination of the two approaches. The second step was the evaluation, which depends on the 
weight of the track. The track with the lowest weight was most likely to be considered. The third step 

Figure 8. Illustration of the numerical scale of the track segment
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was the reproduction process, in which individuals’ tracks pass their segments to the next generation. 
The last step was mutation, in which newly formed children are subjected to transformation. The 
genes were randomly selected for modification by exploring new values. After the initial population 
is generated, the steps described in the following four sections are taken.

1.  Selection of the Parents. Our approach to parental selection within the GA lever used three 
distinct techniques: (a) biased roulette wheel selection; (b) tournament selection; and (c) a 
combined approach that utilizes both methods with equal probability (50%), denoted as “Mix.” 
Biased roulette wheel selection represents a variation of the standard roulette wheel selection 
technique used in GAs (Katoch et al., 2021).

In this method, a virtual wheel is divided into sections (pie slices) proportional to the fitness 
scores of the individual tracks within the population. This ensures that tracks exhibiting superior 
performance (lower fitness scores) occupy larger sections of the wheel, and the selection process 
commences with the rotation of the virtual roulette wheel. A fixed point on the wheel perimeter serves 
as a selection marker. The first track segment, whose corresponding section reaches the marker, is 
selected as the first parent. This process is repeated to select a second parent.

The inherent advantage of biased roulette wheel selection is its ability to probabilistically favor 
individuals with higher fitness scores. Because these superior tracks occupy larger sections on 
the wheel they have a greater chance of aligning with the selection marker during rotation. Thus, 
this approach promotes the propagation of desirable track characteristics to the next generation, 
accelerating the evolutionary process toward optimal track designs. In the implementation, we used 
the following steps:

1.  Calculate the total fitness
2.  Calculate the proportion of each individual Pi according to Equation 5

  P  i   =   
 f  i   _  ∑ i=1  
n    f  i   

  ,  (5)

where n is the number of tracks in our population and   f  i    is the fitness value of each track.

Figure 9. Sample of tracks from the initial population
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3.  Calculate the cumulative proportion CPj of each track according to Equation 6

  CP  j   =  CP  j − 1  +  P  j  .  (6)

4.  Generate a random number R between 0.0 and 1.0
5.  Starting from the top of the population, the individual for which CPj goes above R is the selected 

track (parent).
6.  The same process is followed when selecting the other parent.

The second selection strategy used in our GA framework is the well-established 
tournament-selection method. This technique is widely used to identify the most suitable individuals 
(tracks) from the current generation by means of a competitive selection process (Katoch et al., 
2021). Tournament selection involves creating a group that consists of a predefined number (K) of 
individuals from the population. These individuals were chosen randomly. In our implementation, 
we opted for a K value of 2, essentially creating pairwise competition.

After random selection, competition is conducted between K individuals. The fitness score, 
which serves as a measure of an individual’s performance (track quality), was used as the primary 
criterion for this competition. The individual with the lower fitness score (better performing track) 
is designated as the winner and progresses to the next generation. This tournament selection process 
is iterated multiple times, allowing for gradual identification and promotion of the most promising 
candidates (optimal tracks) to the next generation. This iterative approach facilitates the convergence 
of the GA toward populations comprising superior track designs.

Despite the previous selection methods, we incorporated into our third approach a hybrid strategy 
that combined biased roulette wheel selection and tournament selection. During each iteration, we 
generated random numbers between 0 and 100 to determine the selection method. If the generated 
number was less than 50, we used the biased roulette wheel method; otherwise, we used the tournament 
method. This dynamic approach enables adaptability and flexibility in selecting the most suitable 
strategy for each iteration.

2.  The Evaluation Process. The second step is the evaluation, which is based on the weights 
assigned to each track. The track with the lowest weight is more likely to be considered for 
further processing and potential improvement.

3.  The Reproduction Step. The third step is the reproduction process, in which the tracks of 
individuals are passed on to the next generation. This process includes a crucial phase known as 
the crossover point. The crossover point is selected at half the number of genes and determines 
how the segments (genes) of the selected parent tracks are swapped to generate offspring. This 
step facilitates the exploration of different genetic combinations, as shown in Figure 10.

4.  The Mutation Step. Mutation serves as the final step in the GA algorithm. In this crucial stage, 
specified genes (referred to as segments of the track) within the newly formed offspring are 
transformed. These genes are selected at random for modification, enabling the exploration of 
new values and potential enhancements in the genetic diversity of the population. The assigned 
mutation rate of 0.05 indicates the proportion of genes that are subject to transformation. We 
chose this rate after conducting different experiments and found it to be the best.

By iteratively performing these steps, the GA aims to optimize and evolve the population, 
leading to improved solutions over time. These steps provide an overview of the GA process used in 
our research methodology. The actual implementation on the CSharp platform involves additional 
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details and specific parameters based on the research objectives and the problem domain, as shown 
in Figure 11.

ABC Implementation
Our investigation extended beyond GAs to also explore the potential of the ABC algorithm. This 

metaheuristic approach draws inspiration from animal behavior and the principles of SI (Karaboga 

Figure 10. Genetic algorithm crossover

Figure 11. Steps of genetic algorithm approach in track generation
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et al., 2014). SI techniques are characterized by their reliance on a collective of individuals, often 
referred to as workers, particles, or agents. These individuals collaborate and interact with each other to 
collectively search for optimal or near-optimal solutions for complex problems (Karaboga et al., 2014).

The ABC algorithm specifically mimics the foraging behavior observed in honeybee colonies. As 
honeybees collectively locate food sources with a high nectar yield, the algorithm uses a population 
of artificial bees to explore potential solutions—track designs, in our case. Self-organization and 
division of labor, which are fundamental principles of SI (Alyaseri & Aljanaby, 2014; Dedeturk et 
al., 2021) are evident in natural honeybee colonies. These principles are further complemented by 
the satisfaction principles of the ABC algorithm.

Although not as ubiquitous as GAs, the ABC algorithm remains a popular choice for solving 
diverse optimization problems. In this study we used the ABC algorithm to iteratively generate an 
optimized race track through a structured four-phase process:

1.  Initial population phase: During the initial population phase, 600 unique race tracks were 
randomly generated using the methods described earlier. Each of these tracks, denoted by χi, 
represents a potential food source location within the ABC algorithm.

2.  Employee bee phase: The second phase involves employed bees actively modifying the existing 
race tracks. These bees evaluate the quality (fitness) of their assigned tracks and explore the 
search space by applying local search techniques, such as mutations. During each update, a 
mutation rate of 0.05 determines the proportion of segments within a track that will be randomly 
modified. This allows bees to adapt and refine their solutions within the evolving landscape of 
the potential race tracks.

3.  Onlooker bee phase: The onlooker bee phase involves the selection of promising areas within the 
search space. Here, onlooker bees evaluate the solutions (race tracks) presented by the employed 
bees along with their corresponding fitness values. They favor tracks with higher fitness (lower 
values typically indicate better tracks). This selection process is influenced by probability P (χi) 
in the best direction, as defined in Equation 7. Considering this probability, onlooker bees aim 
to discover new, potentially improved tracks. This phase emphasizes exploration and ultimately 
aims to enhance the overall quality of race tracks through the iterative selection of superior 
solutions.

 P ( x  i  )  =   
 f  i   _ Maxf   ,  (7)

where  f  i    is the fitness value and Maxf is the maximum fitness in the population.

4.  Scout bee phase: The final stage in the ABC method is the scout bee phase. Employed bees that 
failed to improve their assigned solutions after a certain number of attempts became scout bees. 
Unlike employed bees, scout bees abandon their current solutions and randomly generate entirely 
new race tracks. This introduces new possibilities for exploration by venturing into uncharted 
territories within the search space. This random exploration allows the algorithm to expand its 
search boundaries and potentially discover superior solutions. By introducing new possibilities 
and exploring unexamined areas, scout bees can contribute to the ongoing search for optimal 
race tracks within the solution space.

In summary, the ABC algorithm progresses through individual phases, starting with the generation 
of a diverse initial population of race tracks. The subsequent phases involve the dynamic adjustment 
of race track positions by employee bees guided by probabilities, strategic selection of promising race 
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tracks by onlooker bees, and exploration of new possibilities by scout bees. This systematic approach 
ensures a comprehensive search for optimized race tracks within the solution space.

PSO Implementation
The PSO method was the last algorithm under study in this research. Unlike GA, PSO operates 

without traditional modification operators such as crossover or mutation. In PSO, particles are 
considered potential solutions for navigating the problem space by following the best positions of 
the current best particles. Of note, PSO has demonstrated computational efficiency, requiring fewer 
computations than GAs for problem-solving (Lima et al., 2011). It is an efficient algorithm in terms 
of both memory utilization and computational speed (Yusup et al., 2012).

PSO draws inspiration from emulating the optimization behavior of a flock of birds in solving 
complex mathematical problems. Visualize a swarm of birds that collectively determine a landing 
site while flying over an area. This decision-making process optimizes food supply and minimizes 
the risk of predators. In this context, bird movements resemble choreography; they fly in unison until 
they indicate the ideal landing place, and the entire flock lands simultaneously (Shami et al., 2022). 
The classical version of PSO determines a variable represented by a vector X as shown in Equation 8.

 X =  [ X  1  ,  X  2  ,  X  3  , … … ,  X  n  ] .  (8)

Vector X represents the initial population of 600 race tracks (n = 600 in this case). The goal is 
to minimize the value of   f (  X )    , which indicates a better performance based on the chosen evaluation 
criteria for race track quality. The fitness function, f (X), evaluates a race track’s quality on the basis 
of various survival criteria.

In a swarm of P particles, each particle has a position vector   X  i  
t   (Equation 9) and a population 

velocity vector    V  i  
t   (Equation 10) at iteration T.

  X  i  
t  =   (    x  i1,     x  i2  ,  x  i3  , … … ..  x  in   )     

T
 .  (9)

  V  i  
t  =   (    v  i1,     v  i2  , v, … … ..  v  in   )     

T
 .  (10)

These vectors are updated across the dimension j, which corresponds to the number of segments 
in each track. This update is governed by Equations 11 and 12, where i = 1, 2, 3, . . ., P and j = 1, 
2, 3, . . ., n. In this context, each segment was updated on the basis of the information obtained from 
Equation 11.

The acceleration coefficient C1 dictates the extent to which information is extracted from the 
best segment in the track so far in the iteration, whereas C2 determines the global information of the 
population by examining the best track in the current iteration to enhance the current track; therefore, 
the improvement applied for each segment in the track is shown in Equation 12. However, in our 
study, C1 is assigned a value of 2 for both versions, C2 are assigned a value of 4 for PSO#1 and a 
value of 5 for PSO#2.

  V  ij  
t + 1  = ω  V  ij  

t  +  C  1    r  1  
t   ( pbest  ij   −  X  ij  

t  )   C  2    r  2  
t   ( gbest  ij   −  X  ij  

t  ) .  (11)

In Equation 11, the parameters are defined as follows:

• ω is the inertia weight;
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•   V  ij  
t + 1   is the updated velocity of track i in segment j at iteration t + 1;

•   V  ij  
t    is the current velocity of track i in segment j at time t;

• C1 and C2 are acceleration coefficients, determining the influence of personal best (best segment; 
pbest) and global best (gbest) information on the best track in the population; and

•   r  1  
t    and   r  2  

t    are random values between 0 and 1 generated at each iteration to introduce stochasticity.

  VX  ij  
t + 1  =  X  ij  

t   +  V  ij  
t + 1 .  (12)

Choosing an appropriate value for ω is crucial for the performance of the PSO algorithm. The 
typical range of ω is between 0 and 1, and in our case is 0.3. However, the selection of ω may depend 
on the specific optimization problem and the behavior we want the algorithm to exhibit.

RESULTS

Our aim was to compare the performance of three different metaheuristic search algorithms 
on a PCG task, specifically, the generation of tracks for a racing game. We evaluated each selected 
metaheuristic method in terms of its efficiency and effectiveness. Usually, the fitness value of the 
tracks drops between 1,600 and 100 points, depending on the scale considered in this study, as 
described in Equations 3 and 4.

The maximum iteration number (200) and population size (600) are the same to permit 
comparisons of the performance of all methods equitably; however, the lack of convergence criteria 
is noted. As in many real-world applications, there may be benefits in running the algorithms until 
convergence is detected. In addition, each method was examined 10 times. We took into consideration 
the average of their outputs for each algorithm. We also evaluated the best values, mean values, worst 
values, and standard deviations.

GA Application Results
The application of the GA is discussed in the “GA Implementation” section, and the results 

presented here relate to the performance of the three different selection approaches that we 
implemented. Figure 12 shows the improvement in the fitness function over the 200 generations for 
which the algorithm was run using the mixed selection approach. In the figure, the line indicates 
the average fitness for each generation across 10 runs of the algorithm. The error bars indicate the 
variation in individual runs relative to the average.

The convergence of the algorithm is typical of evolutionary approaches, showing a relatively quick 
initial convergence in the first 50 generations and then a gradual improvement over the remaining 
generations. The initial randomly generated tracks in the first generation have fitness values in the 
1,200–1,400 range, which is fairly consistent with all the results in this study, and the final tracks 
have an average fitness of approximately 200, although with a relatively large variation around that 
value for each of the individual runs.

Figure 12. Genetic algorithm average convergence (mix)
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Figure 13 displays the results of using GA with a biased selection method. Although the initial 
average fitness is comparable to that in Figure 12, the initial convergence is slightly slower and the 
final fitness values are higher, with an average value of approximately 400.

Figure 14 shows the results of using the tournament selection approach, where the average initial 
fitness is again comparable with the previously presented results. However, in this case the initial 
convergence was much faster. Considering the number of generations required to reach the final 
average fitness achieved using the biased selection approach, tournament selection reaches a fitness 
value of 400 after an average of 30 generations, compared with the 50 generations required using 
the mix selection approach. Although the final average fitness shows no real difference from that 
achieved using the mixed selection method, the variability across multiple runs is significantly lower.

ABC Application Results
Figure 15 depicts the results of multiple runs of the ABC algorithm, which shows a marked 

difference from any of the GA results. The initial speed of convergence is much slower, and although 
no attempt has been made to quantify this, if convergence were to be considered a form of exponential 
decay, then the lambda value of the curve would be much lower than that of GA convergence. The 
initial average fitness value is marginally higher than the results for the different GA implementations, 
and the convergence is slower, reaching the previously indicated threshold value of 400 in just over 
80 iterations. However, unlike the GA implementations, the convergence is less asymptotic, and 
improvement continues over the entire 200 iterations, leading to a final average fitness value of more 
than 100 points. More important, the variability across multiple runs is virtually nonexistent, implying 
that this performance is consistent and that multiple runs are not required to find a good solution.

PSO Application Results
Similar to the GA implementation, two variations of the PSO algorithms were implemented with 

two different values of the C2 acceleration coefficient in Equation 11, which influences the extent 
to which the search extracts information from the global position. For both implementations, the 

Figure 13. Genetic algorithm average convergence (biased)

Figure 14. Genetic algorithm average convergence (tournament)
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value assigned to C1 was 2. The first implementation, denoted as PSO#1, used a C2 value of 4, and 
the second implementation, denoted as PSO#2, used a C2 value of 5. Figure 16 depicts the results of 
the first implementation (PSO#1). Compared with both the GA and ABC results, PSO shows a very 
fast initial convergence, reaching the threshold fitness value of 400 points in just 10 iterations. The 
convergence curve then becomes almost asymptotic but shows slow and steady improvement over 
the remaining iterations, leading to a final average fitness of less than 200. Overall, the final fitness 
quality and variability around the average are comparable to the best results achieved using a GA.

Figure 17 presents the results for the second PSO implementation (PSO#2), with a higher 
emphasis on global position information. These results show little significant variation in the 
convergence behavior, reaching the 400 threshold value in slightly over 10 iterations and only a 
marginal improvement in the final average fitness function value and variability. It is worth noting 
that these results arise from an initial population fitness that is slightly lower than the other results, 
which may have influenced the overall convergence.

Metaheuristics Results Comparison
The results presented in Figures 12–17 provide a visual representation of the performance of 

the algorithms and an initial indication of their relative merits. Table 1 presents more information 
regarding the quality of the solutions obtained for each algorithm across multiple runs. These data 
essentially correspond to the variation observed in each figure at the 200 iteration mark.

In relation to the best solution found by each algorithm across the 10 runs, the overall best solution 
was found by PSO#1, with a fitness value of 106.88. Comparing absolute values has little meaning 
in the context of the fitness function because there is no real means of determining whether a fitness 
value of 115.86 results in a significantly different quality of race tracks. However, there is a relatively 
clear difference between the best fitness values resulting from both the ABC and PSO algorithms, in 
particular when compared with the biased selection implementation of the GA.

Figure 15. Artificial bee colony convergence

Figure 16. Particle swarm optimization convergence (PSO#1)

Figure 17. Particle swarm optimization convergence (PSO#2)
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Although the aim of this study was not to attempt to determine an optimal race track, it is worth 
considering the output of each algorithm in terms of the race tracks produced. Figure 18 shows the 
best tracks produced by applying the GA, ABC, and PSO algorithms.

A comparison of the ABC solution with the solution produced by GA using biased selection 
reveals a clear difference in terms of track curvature, with the ABC algorithm being significantly 
more curved. Race tracks clearly are not necessarily suitable for use in a game because of abrupt 
changes in direction; however, the intention of this research was not to produce the optimal race track. 
The fitness function appears to drive the solution to a specified goal even though the goal may be 
flawed. This confirms that the insights derived from these results can be applied to scenarios with 
improved fitness functions.

Figure 19 provides further insight into the performance of the algorithms. Although ABC achieved 
the best results in terms of the mean value of fitness, it also exhibited the slowest convergence speed. 
At first, the ABC algorithm showed slower convergence, but it significantly improved later and 
maintained a consistent performance with minimal variability.

It is important to note that, on the basis of their raw values, both ABC and PSO appear competitive. 
Although PSO might have a slight advantage in quickly reaching the absolute best solution, ABC 
tends to achieve a better average fitness over time. Further studies are required to determine their 
strengths and weaknesses definitively. Interestingly, both ABC and PSO belong to the SI algorithm 

Table 1. Comparison of different algorithms

Metric GA(Mix) GA(Biased) GA(Tournament) ABC PSO#1 PSO#2

Worst 299.47 443.28 225.63 138.67 243.64 194.60

Best 121.75 304.30 137.74 113.98 106.88 115.86

M 233.09 370.10 182.90 125.90 175.50 166.40

SD 52.35 46.13 25.28 8.73 38.92 23.17

Note. GA = genetic algorithm; ABC = artificial bee colony; PSO = particle swarm optimization.

Figure 18. Comparison of resulting tracks

Note. GA = genetic algorithm; ABC = artificial bee colony; PSO = particle swarm optimization.
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category. This common classification suggests that this type of algorithm is well suited to problems 
related to PCG.

DISCUSSION AND FUTURE DIRECTIONS

In this study, we investigated the performance of various computational algorithms for generating 
race tracks for video games. Our primary focus was to challenge the prevalent reliance on GAs by 
exploring alternative methods. Our findings show that GAs’ selection strategy significantly affects 
their effectiveness. Selection methods that prioritize rapid convergence might initially identify suitable 
tracks but may limit the exploration of the design space, potentially leading to repetitive layouts. 
Conversely, methods that promote broader exploration can lead to slower convergence but potentially 
discover more diverse and engaging track layouts. Future work could explore the systematic evaluation 
of different selection strategies tailored to race track generation with GAs.

Compared to GAs, PSO offers a faster convergence rate, making it advantageous in scenarios 
with limited computational resources or real-time content generation requirements. However, the 
optimal performance relies on careful tuning of the inertia weight parameter. A higher initial value 
encourages exploration, allowing particles to explore a wider range of potential track layouts. As the 
optimization process progresses, gradually reducing this parameter focuses on the search for promising 
regions identified by successful particles. Future research could investigate adaptive mechanisms that 
dynamically adjust this parameter based on observed convergence behavior.

The ABC algorithm exhibits a high degree of repeatability in generating high-quality tracks. This 
consistency might be valuable for applications in which reliable and consistent track generation is a 
priority; however, ABC’s initial convergence tends to be slower than that of PSO. Future studies could 
explore hybrid approaches that combine the strengths of ABC with other algorithms. For example, 
an initial exploration phase using PSO followed by exploitation with ABC can leverage the benefits 
of both, achieving faster initial convergence while maintaining ABC’s high repeatability.

It is important to understand that there is no “best” algorithm overall, and the selection of an 
algorithm involves trading off the characteristics of the algorithm and matching them to a given 
problem. The findings of this study suggest that game developers using PCG for race tracks should 
explore alternatives to GAs. The optimal choice depends on the trade-off between the factors. For 
scenarios with limited computational resources or real-time generation needs, PSO offers faster 

Figure 19. All the results for all the algorithms based on the average fitness

Note. ABC = artificial bee colony; GA = genetic algorithm; PSO = particle swarm optimization.
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convergence, whereas for high- quality, diverse, and engaging tracks the ABC algorithm or a hybrid 
approach that leverages its strengths might be more suitable.

This study has several limitations. Although a range of comparative studies exist in other 
domains, similar investigations are currently limited to PCG for video games. This study highlights 
the potential of alternative algorithms with different performance characteristics, warranting further 
exploration. Our current evaluation focused on a single metric (curvature), but future work should 
incorporate additional metrics, such as computational efficiency, scalability with increasing track 
complexity, and user studies for subjective assessments. Validation efforts will involve comparing 
the generated tracks with real-world designs and incorporating expert evaluations from racing game 
designers or professional drivers.

In addition, the current fitness function will be expanded to consider a broader range of design 
aspects through penalties or rewards for monotonous sections, environmental obstacles, and aesthetic 
qualities. Future studies should also consider more systematic investigations of different population 
sizes and their effect on algorithm performance; use the same number of evaluations for all algorithms, 
to ensure fair comparisons; and incorporate statistical tests, such as analysis of variance, to determine 
the statistical significance of observed differences.

This study provides insights into the performance of various algorithms for race track generation 
in video games. We highlight the importance of considering alternatives beyond GAs and the need for 
further exploration of evaluation metrics, validation procedures, and more intricate fitness functions 
to achieve optimal results in PCG for race tracks.

CONCLUSION

In this study, we measured and compared efficacious algorithms and their achievements in PCG 
tasks in various settings to determine the best race track, specifically, we evaluated GA, ABC, and 
PSO. We also tested GA using different selection approaches, along with PSO, in two different settings, 
and we developed a mathematical method that assumes an evaluation function to select the best 
track. The results were significant in showing that other metaheuristic approaches could considerably 
change search-based PCG. This study contributes to the literature by expanding our knowledge of 
how different algorithms are suited to PCG, clearing the way for further studies to determine the 
most suitable algorithms for games. This study provides a basis for developing recommendations 
for the selection of these methods. The goal is to ensure that the resulting games have the potential 
to satisfy both the needs of both the designer and the player.
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