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Abstract

In this paper, we find survival rate estimates, parameter estimates, variance
covariance for some probability distribution models like, Exponential, Inverse
Gaussian, Gompertz, Gumbels and Weibull distributions using least-squares
estimation method. We found these estimates for the case when partial
derivatives were not available and for the case when partial derivatives were
available. The first case when partial derivatives were not available, we used
the simplex optimization (Nelder and Meads ([6],[7]) and Hooke and Jeeves
([4],[5])) methods and the case when first partial derivatives were available we
applied the Quasi — Newton optimization (Davidon-Fletcher-Powel (DFP) and
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods. The medical data
sets of 21 Leukemia cancer patients with time span of 35 weeks ([3]) were
used.

Keywords: Exponential, Inverse Gaussian, Gompertz, Gumbel and Weibull
distribution models, Nelder and Mead, Hooke and Jeeves, DFP and BFGS
optimization methods, Parameter estimation, Least Square method, Kaplan-
Meier estimates, Parameter estimates, Survival rate Estimates, Variance-
Covariance Matrix.

1. INTRODUCTION

The method of linear least-squares requires that a straight line be fitted to a set of data

points such that the sum of squares of the vertical deviations from the points to be
minimized ([1],[2]).
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The objective function is a sum of squared residuals - the term 'least-squares' derives
from the function:

m m
2 b 2
Fo= 2= 200" = ) (1.1)

Where ro= yo — y®t =12, m, is a residual vector.

The objective function is the sum of the squares of the deviations between the
observed values and the corresponding estimated values ([1],[2],[9]]). The maximum
absolute discrepancy between observed and estimated values is minimized using
optimization methods.

We treated Kaplan-Meier estimates (KM (¢;)) ([20], [3]) as the observed values (); bs)

of the objective function and the survivor rate estimates (S(#;)) of some distribution

models as the estimated value ()7 St) of the objective function F. We considered the

objective function for the models of the form

F(t,a,b) = X7 fi(KM(t;) — S(t;, a, b))? (1.2)

where f, is the number of failures at time ¢, and m is the number of failure groups.

We find numerical value of the function at initial point (a,,b,) and is used in
numerical optimization search methods to find the minimum point (a*,b*)

(parameters estimates).

2. NUMERICAL RESULTS FOR DIFFERENT PROBABILITY
DISTRIBUTION MODELS USING LEAST-SQUARES METHOD AND
APPLYING NELDER AND MEADS AND HOOKE AND JEEVES
OPTIMIZATION SEARCH METHODS

Table 1: Parameter Estimates and Optimal Function Value for the Exponential,
Inverse Gaussian, Gompertz, Gumbel and Weibull Distribution Models using Nelder
and Meads, and Hooke and Jeeves methods.

Nelder and Meads Method
. Inverse- Gompertz Gumbel .
Exponential Gaussian Model Model Weibull
Parameters 3 14283F-02 0.31317817 | 0.020989099 | 0.079469520 30.00336
Estimates ) 0.01823842 | 0.037910900 | 0.009399999 1.203254
Optimal
Functional | 3.71878E-03 | 0.03804917 | 0.035096464 | 0.030966696 0.003355
value
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Hooke and Jeeves Method
. Inverse- Gompertz Gumbel .
Exponential Gaussian Model Model Weibull
Parameters 3.14389F-02 0.419982779| 0.031560815 | 0.08008377 26.60585
Estimates ' 710.219999999 | 0.045794945 | 0.00934490 1.496967
Optimal
Functional | 3.70689E-03 | 0.04643498 | 0.03664972 | 0.03094435 0.066557
value

Table 2: Comparison of Survival Rate estimates for the Exponential, Inverse Gaussian,
Gompertz, Gumbel and Weibull Distribution Models using Nelder and Meads, and
Hooke and Jeeves methods.

Failure | Number Nelder and Meads Method
Time of .| Inverse- |Gompertz | Gumbel . Kaplan
(Weeks) | Failures |Exponentiall o oon | Model | Model | Ve Meier
0 1 1 1 1 1 1 1
6 3 0.828142 | 0.877412 | 0.86616 |0.828057 |0.86573|0.85714
7 1 0.802520 | 0.841704 | 0.84333 |0.815132 |0.84066 | 0.80722
10 1 0.7303127 | 0.744553 | 0.77433 |0.771117 | 0.76598 | 0.75294
13 1 0.66460169 | 0.664633 | 0.70497 |0.718565 [0.69381 | 0.69019
16 1 0.60480320 | 0.599291 | 0.63587 | 0.656881 |0.62543| 0.62745
22 1 0.50086347 | 0.499796 | 0.50116 |0.506870 | 0.50236|0.53815
23 1 0.4853670 | 0.486228 | 0.47947 |0.47895210.48371|0.44817
1 - Nelder and Meads Method B Exponential
M Inverse- Gaussian
0.8 - W Gompertz Model
B Gumbel Model
] 0.6 = Weibull
£
2 04
2
e« 0.2
2
g 0
@ 0.00 6.00 7.00 10.00 13.00 16.00 22.00 23.00
Time (Weeks)
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Table 3: Comparison of Survival Rate estimates Using Nelder and Meads, and Hooke
and Jeeves Optimization methods

Failure | Number Hooke and Jeeves Method
Lime of | Gompertz | Gumbel Kapl
Weeks) | Failures . nverse- ompertz umbe . aplan
( ) Exponential Gaussian Model Model Weibull Meier
0 1 1 1 1 1 1 1
3 0.8280900 | 0.888879 | 0.8544705 | 0.826505 0.89801 0.85714
1 0.8024607 0.853157 | 0.8307175 | 0.813581 0.87327 0.80722
10 1 0.7302349 | 0.753023 | 0.7605747 | 0.769623 0.79365 0.75294
13 1 0.6645097 | 0.668558 | 0.6923736 | 0.717234 0.71014 0.69019
16 1 0.6047002 0.598642 | 0.6264513 | 0.655845 0.62683 0.62745
22 1 0.5007462 0.49138 0.5027187 | 0.506848 0.47125 0.53815
23 1 0.4852482 | 0.476720 | 0.4832757 | 0.479145 | 0.44748 0.44817
Hooke and Jeeves Method = Exponential
1 q M Inverse- Gaussian
B Gompertz Model
" 0.8 + ® Gumbel Model
2 = Weibull
-E 0.6 M Kaplan Meier
e 04
&
S 0.2
2
<
3 0

0.00 6.00 7.00 10.00 13.00 16.00 22.00 23.00

Time (Weeks)
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3. PROBABILITY DISTRIBUTION MODELS USING LEAST-SQUARES
METHODS AND APPLYING QUASI-NEWTON METHODS (DFP AND
BFGS METHODS)

For a practical application of the least-squares estimation method, when partial
derivatives of the objective function F are available. We used Davidon-Fletcher-
Reeves (DFP), ([13,14]) and Broyden-Fletcher and Shanno (BFGS), ([9.14,15]),
methods to find the parameter estimates and survivor rate estimates for different
probability distribution models.

3.1  Exponential Distribution Model

The exponential distribution ([22]) is a very commonly used distribution in reliability
and life testing. The single-parameter exponential pdf is

f(t) = Aexp(—At),t =2 0,A>0 (3.1)
The reliability (or survivor) function of the exponential distribution is
S =1-F(t) =1— [, f(x)dx (3.2)
Or S(t) = exp(—At). (3.3)
_ IO _
H) =10=1 (34)

Where A parameter is the constant failure rate (or hazard rate). To apply these
optimization methods, we need to find the first partial derivatives of the objective
function F of eq. (1.3).

aF as(t; as(t
=231 £ (S(t) — KM () =52 where 22 = —t5(1). (3.5)
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3.2 Inverse Gaussian Distribution Model

The pdf for the Inverse Gaussian distribution, f(t)=

(d — vt)?
NPY ﬁt3 d exp ( 2Pt )’

/ a?
or f(t) = L p[—ﬂ{(pt—l)z}] where t >0, k= ﬁp ng,

The survivor function for the inverse Gaussian distribution model ([16,17]) at time ¢,

is S(t) = @(—\/% (pt — 1)) — e’ (—\/pzt (pt + 1)), where @ is the standard

normal distribution function and S(t;, ay, By) is the survivor function ([17]) at the
starting point (g, Bo)-

3.3 Gompertz Distribution Model

The survivor function for the two-parameter Gompertz distribution ([13], [15]) is

S() = exp(g(l—exp(at))j. (3.6)

To find the parameter estimates for the Gompertz distribution model using least-
squares estimation procedures, we consider the objective function F as

= Zlf (S(1;) - KM(1,))? (3.7)

where KM (t) is the Kaplan-Meier estimate for the failure time ¢.

For the DFP and BFGS optimization methods, we find the first partial derivatives of
the objective function F, we have

Z_ ZZf,(S(z) KM(t;)) —> (t) (3.8)
s
and 5— 22 70 - kM) =2 (t) (3.9)
s b
where % - —a—2(1+ exp(at)(at - 1)) S()
A(t) 1
and — = 5(1 — exp(ar)) S(7).

Using eq.(3.7), eq.(3.8) and eq.(3.9) in the DFP and the BFGS optimization method,
we can find the estimated value of the parameters for which the least-squares function
gives the minimum value for Gompertz distribution model ([8,9,10]).
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3.4 Gumbel Distribution Model

The survivor function for the two-parameter Gumbel distribution model ([18]) is
b
S() = exp[—(—)exp(at)j. (3.10)
a
We construct the least-squares estimation function for the Gumbel distribution model

F = gﬁ(sm)—KM(z,-»z (3.11)

where KM (t) is again the Kaplan-Meier estimate for the failure time ¢.

To find the parameter estimates, we used the DFP and the BFGS optimization
methods ([19]-[24]). These optimization methods require only first partial derivatives
of the objective function F

5— ZZf,(S(z) KM(t;)) =" ( ) (3.12)
and E_ 2Zf,(S(z) KM(1)) —= (t) (3.13)
where %Et) = a%exp(at)(l—exp(at)) S(1)
and %St) = —éexp(at) S(¢) .

Now using eq.(3.11), eq.(3.12) and eq.(3.13) in the DFP and the BFGS optimization
method, we can find the estimated value of the parameters for which the least-squares
function gives the minimum value for Gumbel distribution model ([10,11]).

3.5 Weibull Distribution Model

We know that the survivor function for the two-parameter Weibull distribution ([9],
. Y
[10]) is S(r) = exp —(;) , (3.14)

where « 1is the scale parameter and S is the shape parameter. To find the parameter
estimates for the Weibull distribution model using least-squares estimation

m
procedures, we consider the objective function F as F = Z fi(S(¢;) - KM (tl-))2
i=1
(3.15)

where KM(t) is the Kaplan-Meier estimate for the failure time ¢.
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To apply DFP and BFGS optimization methods, we find first partial derivatives of the
objective function F', we have

F S as(t;)
== 2§ﬁ(5(t,.)—KM(zi)) ~ (3.16)
F I as(t;)
and 5 2513(5(@)—1{1\4(@))—% , (3.17)
s@  (B)tY () t) ()’
where E = (0{)(0{) S(f) and % = —In(;) (;) S(t) .

Using the objective function eq.(3.15), and the first partial derivatives eq.(3.16) and
€q.(3.17) in the DFP and the BFGS optimization method, we can find the estimated
value of the parameters for which the least-squares function gives the minimum value
for Weibull distribution model ([24,25,26]).

The numerical results for the above said probability distribution models are presented
in the table-4 and table-5.

Table 4: Parameter Estimates and Optimal Function Values, Gradient and the
variance-covariance’s for the Exponential, Inverse Gaussian, Gompertz, Gumbel and
Weibull Distribution Models using DFP method.

DFP Method
Exponential Inverse- Gompertz Gumbel Model Weibull
Gaussian Model
Parameter
Estimates 2 96463F-2 0.18341065 0.018866 0.08415445 30.75038
(a* b*) ’ 0.01220035 0.025292 0.00930334 1.12722
Optimal
Functional 5.055E-03 | 0.565086E-02 0.003055 0.006062 0.00321109
value
Gradient at
* 9 766E-08 -0.63533E-05 0.962E-06 0.9039E-09 -0.2713E-05
(a b ) ’ -0.46768E-04 0.648E-05 0.8884E-08 -0.2142E-04
Variance-
p 6.2405 0.3346
Covariance at
o x 8 1389E-04 0.0826 -0.0186 | 0.022389 -0.0009 | 1737. -73.95
(a b ) ’ 0.3346 0.0181 | -0.0186 .00478 | -0.0009 0.00012 | -73.95 4.27
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Table 5: Parameter Estimates and Optimal Function Values, Gradient and the
variance-covariance’s for the Exponential, Inverse Gaussian, Gompertz, Gumbel and
Weibull Distribution Models using BFGS method.

BFGS Method
Exponential Inverse- Gompertz Gumbel Model Weibull
Gaussian Model
Parameter
Estimates 2 964389F-2 0.18346625 0.01886325 0.08415415 30.75490
(a* b*) ’ 0.01220656 0.02529981 0.00930323 1.12708
Optimal
Func'luonal 5.055E-03 0.56508E-02 0.00305524 0.00606156998 | 0.00321109491
value
Gradient at
. 1.264E-05 -0.271E-06 0.9623E-06 -0.12160E-07 0.10014E-07
(‘1 b ) ' 0.595E-05 0.64881E-05 -0.23565E-07 0.16052E-05
Variance-
Covariance 8 1396E-04 6.0991 0.3257 | 0.0842 -0.0187 | 0.0211 -0.0009 | 2253.58 -83.71
at (a*,b*) ’ 0.3257 0.0175| -0.0187 0.0048 | -0.0009 0.00012 -83.71 4.46

5. CONCLUSION

The Survival rate estimates for the 21 Leukemia patients for the period of 35 week
under observations were compared using parametric distribution models and non-
parametric Kaplan Meier Model ([1]). We found that the results for the distribution
models were approximately same for both the cases when the derivatives of an
objective function were not available (Using the Hooke and Jeeves, and Nelder and
Meads method) and when first partial derivatives of the objective function were
available (using Quasi-Newton method (DFP and BFGS methods)) and are also
comparable with the non-parametric model. For the parametric models like
(Exponential, Gompertz, Gumbel, Inverse and Weibull), we can find the parametric
estimate, variance — covariance, optimal function values and some other useful
information in different tables and graphical representations.
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