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Abstract

Fatigue crack initiation in ductile alloys like austenitic stainless steels is mainly due to the occurrence of localized
deformation in persistent slip bands (PSB). The presence of PSB is classically related to the orientation of the surface
grains. In fact, the local fields in a grain does not depend on the local orientation only. The aim of the present paper is
to investigate the consequences of this observation, and to propose an analysis, where the neighborhood of the grain also
plays a significant role. The study is made on a 316 stainless steel. Finite element computations using a crystal plasticity
model are performed to simulate an aggregate submitted to a cyclic tension–compression loading. Various configurations
of grain orientations (“clusters”) are studied at the free surface of the aggregate. A statistical analysis of the results
is carried out to extract significant information concerning the local strain and stress fields, including the most critical
arrangements of grain orientations. The introduction of local fields in classical fatigue life prediction models provides an
explanation of the experimental scatter.
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1. Introduction

Fatigue crack initiation is classically predicted by macro-
scopic models, where the critical variables are functions of
macroscopic stress and strain. The various regimes asso-
ciated with crack propagation were characterized a long
time ago (see for instance [1]). Stage I (initiation) and
stage II (propagation) were first introduced. Then crack
nonpropagatation was characterized through the fatigue
limit [2]. However, it has been shown that initiation and
micro-propagation can occur below this criterion as long as
the crack does not cross microstructural barriers [3]. The
propagation rate is then affected by the local geometry,
and cannot be predicted by linear elastic fracture mechan-
ics using global variables [4, 5]. The very early stages
of initiation and propagation of Microstructurally Short
Cracks (MSC), with lengths on the order of a few grains,
are mainly governed by the material microstructure. In-
deed, in the case of FCC metals, surface roughness, grain
or phase boundaries, inclusions, plastic incompatibilities
and persistent slip bands (PSB) are the main causes of
MSC nucleation. The elastic–plastic anisotropy is a source
of deviation of local crack growth driving force. In High
Cycle Fatigue (HCF), initiation occurs generally on the
component surface [6] and this phase can represent more
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than 80% of the total component life. Considering a clean
and finely polished metal specimen, the local mechanisms
responsible for MSC initiation and micro-propagation are
restricted to PSBs or elastic anisotropy and plastic incom-
patibilities at boundaries. Thus, they are defined on a
microscale and they are closely related to grain orienta-
tion.

Intrusion and extrusions related to slip planes have
been observed on the specimen surface after fatigue load-
ing. A crack can initiate at the base of these steps once
their height reaches about 1 µm. A model introduced by
Essmann et al. that is based on dislocation movement and
annihilation explains this local mechanism [7]. Removing
the induced surface roughness by periodical polishing in-
creases fatigue life as shown on single crystals by Basinsiki
et al. [8]. At each cycle, oxidation takes place on the
surface extrusion and the oxides are absorbed during the
reverse loading phase. This will induce slip irreversibility,
decohesion hence crack can initiate easily from this sin-
gularities. This environment effect has been highlighted
by experimental fatigue testing in air and vacuum where
fatigue life is longer [9]. Since MSC are related to PSB
and surface extrusion, their direction is governed by crys-
tal plasticity and follow slip planes containing slip systems
in the surface grains. Crack paths have been correlated to
crystal orientation measured by Electron BackScattered
Diffraction (EBSD). Based on Schmid factor values and ne-
glecting neighborhood influence, studies first showed that
surface extrusions are related to primary slip systems acti-
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vation [10]. The dependence of initiation and propagation
sites location on plastic strain amplitude has been high-
lighted [11, 12].

The microstructure is also the source of a competition
between transgranular and intergranular cracks [13]. On
the one hand, in the case of low amplitude fatigue of poly-
crystalline materials, transgranular cracks are predomi-
nant. Certain misorientations can decrease the transgran-
ular crack growth and lead to intergranular crack growth
[14]. On the other hand, at higher strains, a strong mis-
orientation can cause initiation on the surface along grain
boundaries [15, 16]. The parameters like crystal orienta-
tion, grain size and shape have to be taken into account to
reproduce local strain heterogeneities which govern crack
initiation. Taking account of all these observations (see
also for instance [17, 18]), it is now useful to comple-
ment the experimental data by relevant numerical investi-
gations. To have a better understanding of the local mech-
anisms influencing crack formation, the study is focused
on the orientation of the grain with mesoscopic modeling.
The purpose of this paper is to get an improved under-
standing of the local stress and strain fields. Simulation of
a real 3D microstructure with hundreds of finely meshed
grains including a real crack loaded for several thousands
of cycles is still out of reach; this is why authors develop
representative examples on reduced microstructures. Two
dimensional meshes are used for instance on single crystal,
bicrystals [19] and polycrystals [20, 21]. As an example, 27
grains are used in [22] and 12 grains are used in [23]. Such
a low number of grains does not correspond to a represen-
tative volume or surface element, so that the conclusions
are qualitative only. It remains that the damaging effect
arising from boundaries between hard and soft region is
actively studied in the literature [22, 24]. 2D Meshes us-
ing Voronöı tessellation, are introduced to investigate the
propagation of a microcrack [25, 26]. Using a crystal plas-
ticity model, they showed that the crack propagation was
directed by two primary slip planes. The crack tip open-
ing exhibits large changes due to the orientation of the
grains in the vicinity [27, 28]. It is also shown that cracks
will preferably initiate from the “soft” grains where cracks
first start [29]. So, the investigations are more directed
toward the orientation of each grain, or to grain boundary
misorientation. The aim of this paper is to introduce a
new element in the discussion, pointing out the fact that
stress redistribution operates on grain clusters more than
on individual grains or grain pairs. Stress distributions are
rather complex, and their development must be studied in
a statistical framework. This was for instance considered
in a recent paper [30] where authors perform dozens of
FE computations, to characterize the tails of the curves.
Nevertheless, this study uses a ruled mesh, the grains rep-
resented by a Voronöı tessellation being only mapped by
a multimaterial element procedure. It does not conform
grain boundaries. In the present paper, FEA is used to
study the effect of particular grain “clusters” located at
the free surface of the aggregate to show how the different

grains interact with each other. A statistical study is per-
formed to characterize the influence of the neighborhood
on soft or hard grains, oriented for easy or hard slip. The
combination of clustering effect and a statistical treatment
has not been tried previously in the literature according to
authors’ best knowledge. Such a study is significant only
with a large number of FE samples. This is why 2D com-
putations have been performed. It has been shown that
they could provide realistic results if compared with real
experiments [22]. The multiaxial state of stress will be
studied. A crystal plasticity model with nonlinear kine-
matic hardening is introduced in a regular 2D mesh which
conforms grain boundaries. The results from microscale
are finally used in a classical fatigue life prediction model
to predict local crack initiation.

The paper is organized as follows. First, the numerical
model is presented (constitutive equations, FE mesh and
boundary conditions). Next, a careful study of the stress
redistribution is made for the case of randomly oriented
grains and then for specific local arrangements. Finally,
the local fields are introduced in a very simple crack initi-
ation rule to predict crack initiation.

2. Description of the numerical model

2.1. Crystal plasticity model

A crystal plasticity model is introduced in the finite
element code ZeBuLoN [31]. Small strain assumption is
used. This assumption is reasonable, since, in our past
experience, the amount of rotation of a slip plane is around
1◦ for 1% macroscopic strain. In our computations, there
is no local ratchetting, since the loading is symmetric and
the local strain remains lower than 5%. Each grain is
considered as a single crystal and the displacement fields
are supposed to be continuous at grain boundaries. Stress
discontinuities can therefore appear at these sites. The
partition of the strain rate tensor introduces an elastic
and a viscoplastic part:

ε̇
∼

= ε̇
∼

e + ε̇
∼

p = C
∼

∼

−1 : σ̇
∼

+ ε̇
∼

p (1)

Cubic elasticity is defined by the fourth order stiffness ten-
sor C

∼

∼

, so that elasticity itself is the source of residual inter-

granular stresses. As confirmed by the literature, this ef-
fect is important for small strains, as long as plastic strains
do not become predominant. Its introduction is manda-
tory to reach a good agreement with experimental results
[32]. We decided to introduce cubic elasticity to capture
the stress heterogeneity at the onset of plastic flow. The
resolved shear stress τ s is computed on slip system s by
means of the orientation tensor m

∼

s :

τ s = σ
∼

: m
∼

s (2)

with m
∼

s =
1

2

(

ls ⊗ ns + ns ⊗ ls
)

(3)

Here, ns is the normal to the slip plane, and ls is the slip
direction. The viscoplastic slip rate γ̇s is given by a power
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function of the resolved shear stress, then the viscoplastic
strain rate tensor is defined as the sum of the contributions
of all the slip systems.

v̇s =

〈

|τ s − xs| − R0 − rs

K

〉n

(4)

γ̇s = v̇ssign
(

τ s − xs
)

(5)

ε̇
∼

p =
∑

s

γ̇sm
∼

s (6)

where K and n are the parameters which define viscosity,
R0 is the critical resolved shear stress, xs and rs are respec-
tively the kinematic hardening and the isotropic hardening
variables. These variables depend on two state variables,
namely αs and ρs as described by equations 7 to 10. This
framework offers a unique set of active slip systems, and
avoids complex procedures attached to the definition of
slip activity for the time independent plastic case [33].

xs = cαs (7)

rs = bQ
∑

r

hsrρ
r (8)

α̇s =
(

sign(τ s − xs) − dαs
)

v̇s (9)

ρ̇s =
(

1 − bρs
)

v̇s (10)

The material parameters are c, d (kinematic harden-
ing), Q, b (isotropic hardening). The interaction matrix
hsr introduces self-hardening (diagonal terms) and latent
hardening between the different slip systems. All the val-
ues used in the FE simulation are listed in Tab. 1. With
these prescribed values, the viscous effect is negligible.

The purpose of the paper is to exhibit the effect of clus-
ters of grains on the initiation of MSC. A series of extreme
situations have then been created, in order to provide the
best illustration of the phenomena. Since the paper is re-
stricted to a numerical study, it was decided to perform 2D
computations only. A generalized plane strain assumption
is used, and only one active slip system is allowed in each
grain. Even though this is a strong idealization of the real
material behavior, Zouhal et al. showed that in polycrys-
talline materials the number of active slip systems tends
to 1 after a certain number of cycles [34]. Furthermore,
it has also been shown that in the case of HCF single slip
activation occurs at the surface during the crack initiation
phase [35], which is the main purpose of this paper. As
displayed in Fig. 1, the vectors n and l are both located in
the plane (x1,x2), and θ is the angle between x1 and the
slip direction, so that:

l = (cos θ sin θ 0) n = (− sin θ cos θ 0) (11)

According to this notation, a grain is called “hard” for
θ = 0◦ (zero resolved shear stress if computed with the
macroscopic stress tensor) and “soft” for θ = 45◦ (max-
imum resolved shear stress if computed with the macro-
scopic stress tensor).

−→n

−→x2

−→
l

θ

−→x1

Figure 1: Single slip system and definition of crystallographic orien-
tation θ.

The accumulated viscoplastic strain p and its related
grain average 〈p〉g, which are regarded as primary variables
in this paper, are written as:

p =
∑

s

∫ t

t0

v̇s dt (12)

〈p〉g =
1

V

∫

V

p dV (13)

2.2. Fatigue criteria

Three different criteria are introduced taking account
of the local state and depending on the slip systems activ-
ity. The reason why we are choosing these three models is
that we wish to have a purely strain dependent criterion,
a purely stress dependent criterion, and a mixed solution.

(i) In the criterion suggested by Fatemi and Socie [36],
the plane with the maximum shear strain amplitude is
critical. The fatigue life prediction is done by means
of the maximum shear strain amplitude and the max-
imum normal stress

∆γSF = max
s

(

∆γs

2

(

1 + kSF max
t

σs
n(t)

σy

)

)

(14)

where ∆γs is the maximum range of shear strain on
the slip system s, σs

n is the normal stress to the slip
plane of the slip system s, σy is the initial value of
the critical resolved shear stress (i.e. R0) and kSF is
a material parameter.

(ii) The stress dependent criterion is inspired by the clas-
sical HCF model proposed by Dang Van [37]. The
original formulation introduces an equivalent stress

σDV = max
s

(

max
t

(

τ s
r (t) + kDV P (t)

)

)

(15)

where P is the hydrostatic pressure, τ s
r the resolved

shear stress recentered on the slip system s

τ s
r (t) = τ s(t)−

1

2

(

max
t

(

τ s(t)
)

+min
t

(

τ s(t)
)

)

(16)

kDV is a material parameter.

(iii) the accumulated viscoplastic strain p
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Elastic constants
C1111 = 160GPa
C1122 = 78GPa
C1212 = 110GPa
Flow parameters
K = 10MPa.s−n

n = 10
Isotropic hardening

R0 = 40MPa
Q = 10MPa

b = 20
Kinematic hardening

c = 15 000 MPa
d = 500

Fatigue prediction
kDV = 0.2
kSF = 1

σy = R0 = 40MPa

Table 1: Material parameters.

2.3. Finite element mesh and boundary conditions

The mesh consists of a polycrystalline aggregate made
of 71 grains, 10,561 nodes and 5178 generalized plane strain
elements with a quadratic interpolation. All the grains
have a regular hexagonal shape, so that there is no trouble
produced by a variable shape or size. As shown in Fig. 2,
the grains at the boundaries can be “open” (a hexagon
cut by the surface) or “closed” (a full hexagon touches the
surface). The differences between these two types of grains
will be investigated later.

Symmetry conditions are applied at the bottom (u2 =
0) and the right side (u1 = 0) of the mesh, as displayed
in Fig. 2. A cyclic displacement corresponding to a ±2%
average strain is applied to the top of the aggregate for 10
cycles. The left edge is a free surface.

3. Results and discussion

3.1. Random aggregates

Before considering specific clusters, a preliminary study
is made on realizations with randomly oriented grains. Its
purpose is to illustrate the polycrystal effect in the aggre-
gate. A large number of FE analyses have been made (800
different cases) in order to elaborate a statistical view to-
wards the aggregate response. The accumulated viscoplas-
tic strain in each grain, p, is computed, then its volume
average is calculated for each class of crystallographic ori-
entation. The result is reported in Fig. 3, where the value
obtained for the polycrystal is compared to the value ob-
tained for the single crystal, which is obtained by apply-
ing the same loading on a single grain mesh. In this last
case, for a tensile component σ, the resolved shear stress
on the unique slip system is σ sin(2θ)/2, so that there is
no plastic strain when θ is close to 0◦ or 90◦, since the
Schmid factor tends to zero. This is no longer true for

3

2

1

u2 =
t

u2 = 0

grain

closed
grain

u1 = 0

open

Core grains

Grains involved in BC’s

Surface grains

Figure 2: Mesh and boundary conditions.

4



0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90

〈p
〉g

Crystallographic orientation θ (◦)

Single crystal
All the grains
Surface grains
Closed surface grains
Open surface grains
Core grains
Grains involved in BC’s

Figure 3: Accumulated plastic strain versus grain orientation for
different types of grains.

the polycrystalline aggregates. Different types of grains
(various locations, various geometries and relative sizes...)
are examined and compared to the single crystal simula-
tions. The single crystal data are normalized to get the
same average value over all orientation as in the case of
the polycrystal. All the curves are plotted on the same
graph to summarize the results in Fig. 3. They are plot-
ted separately in Fig. 4 to show the standard deviation for
each class of crystallographic orientation.

When compared to the single crystal case, the distribu-
tion of the accumulated plastic shear strain of the aggre-
gates (taken in average, for each class of grain orientation)
presents a smaller range, as shown in Fig. 4a. On one
hand, due to the multiaxiality of the local stress field that
is a consequence of the stress redistribution, it becomes
possible to get non zero p even when θ = 0◦. The value
obtained for 0◦ and 90◦ is quite high (more than one third
of the maximum value, obtained for θ = 45◦). On the
other hand, for soft grains (θ = 45◦), p is lower than the
single crystal (Fig. 4a). The curves are symmetric with
respect to θ = 45◦, since one could exchange the role of ns

and ls, due to the small strain assumption.
By restricting the plot either to surface grains (Fig. 4b)

or to core grains (Fig. 4e), the curves have still the same
shape. Nevertheless, it can be observed that the scatter
is larger for the surface grains. The number of surface
grains in the mesh is 11. Since 800 FEA have been made,
this allows us to compute the average of plastic strain on
8800 surface grains, so that the resulting number is statis-
tically valid. It can then be concluded that the scatter is
intrinsically larger at the surface of the aggregates. This
conclusion was already pointed out in previous studies on
3D aggregates [38]. This is due to the free boundary condi-
tion which enhances heterogeneities. The opposite is true
for grains affected by boundary conditions (Fig. 4f). In-
deed, they present a weaker cumulated viscoplastic strain
when θ is close to 0◦ and 90◦. The decrease of p for θ

(a) Hard grains (θ < 1◦ and θ > 89◦).

p
Type Min Mean Max Std deviation
All 0.0013 1.0615 5.3454 1.3310

Surface 0.0013 1.3066 5.3454 1.6670
Closed 0.0138 1.2273 3.9266 1.5448
Open 0.0013 1.4217 5.3454 1.8139
Core 0.0186 1.1366 4.1086 1.3427
BC 0.0138 0.7317 3.9995 1.0229

(b) Soft grains (44◦ < θ < 46◦).

p
Type Min Mean Max Std deviation
All 0.2052 2.9489 9.2971 3.3312

Surface 0.2052 2.9622 8.2779 3.4329
Closed 0.2052 3.2016 8.2779 3.6571
Open 0.3923 2.6689 7.9762 3.1020
Core 0.5503 2.8254 6.7021 3.1023
BC 0.2052 3.0787 9.2971 3.5734

Table 2: Statistical data of accumulated plastic strain p at Gauss
point scale.

= 0◦ with respect to Fig. 4a is about 50%. So, these ini-
tial observations are enough to confirm the effects of the
surrounding grains on the local redistribution.

A more careful observation is then made, concerning
the shape of the surface grains. Closed grains are consid-
ered in Fig. 4c and open grains in Fig. 4d. The first ones
are represented by a full hexagon, meanwhile the second
ones are only made by one half. First, the scatter ob-
served in Fig. 4b for all the surface grains is present for
both classes of grains. Nevertheless, there is a clear effect
of the shape of the grains. Indeed, closed grains tend to
follow the same behavior as the other grains around 0◦ but
present a higher value of p near 45◦. For some cases, val-
ues larger than those obtained for the single crystal are
found. These grains are the most deformed in the distri-
bution. On the other hand, the distribution plotted for
open grains is quite flat. They have the highest values of
p for θ = 0◦ or 90◦, and very low values for θ = 45◦. In
fact, they are unable to “impose their own behavior”, and
follow the influence of the neighborhood.

A statistical approach on the Gauss point values inside
the soft and hard grains is also given. The analysis of
cumulative distributions (see Fig. 5) and statistical data
(given in Tab. 2) confirms that surface grains are very often
the location of largest slip values. It reveals also, on the
one hand, that through all hard grains, the open surface
ones are the most critical. On the other hand, through
soft grains, the most critical are the closed surface ones.

This preliminary study confirms that the highest vari-
ability around the mean value is obtained at the surface.
As a consequence, the maximum values are also reached
at the surface for all the variables (in terms of stress or
strain). A straightforward consequence is that it will be
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(c) Closed surface grains
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(d) Open surface grains
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(e) Core grains
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Figure 4: Plastic behavior of different types of grains and comparison with single crystal.
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(b) Soft grains (44◦ < θ < 46◦).

Figure 5: Cumulative distribution functions of accumulated plastic strain for different types of grains.

the place for crack initiation. In the next section, the study
focuses on groups of grains at the free surface, to explore
the most critical cluster configurations.

3.2. Clustering effect

Different sets of orientations corresponding to extreme
configurations are tested to put forward the influence of
the crystallographic orientation. They correspond to ex-
treme cluster configuration with soft or hard grains inside
a hard or soft matrix. Many clusters were studied, but
only two geometric arrangements are retained. For each
of them, the grain in the middle is characterized by an
angle θ1, meanwhile all the surrounding grains have an
angle θ2 (Fig. 6). The arrangement shown in Fig. 6a has
a hexagonal (“closed”) grain surrounded by seven grains.
Figure 6b shows the case of an “open” grain surrounded by
three grains. The values taken by angle θ1 is either 0◦ or
45◦. The angle θ2 is then respectively equal to 45◦ or 0◦.
In addition, a series of computations are performed with
random values for θ2. Eight types of clusters are then de-
fined. Each name is built by gathering the information for
the middle grain, and a letter for the shape (C for closed;
O for open), a number for the orientation (0 or 45) and
another number or letter for the orientation of the exter-
nal grains (0, 45, or R for random). The ∗ symbol is used
as a wild card to replace each of these symbols (for in-
stance ∗–45–0 refers to both C–45–0 and O–45–0 clusters,
and C–45–∗ corresponds to C–45–0 and C–45–45 and C–
45–R). All the other grains in the aggregate are randomly
oriented, and a series of different realizations have been
made, to reflect the statistical aspect of the problem. So,
for instance a hard (0◦) open central grain within a soft
surrounding will be noted O–0–45.

3.2.1. Study of the strain fields

The prescribed macroscopic strain is ±2%. The accu-
mulated slip in each cycle is zero if θ = 0◦ and about 0.15

Figure 6: Angles setting the specific configurations for (a) closed and
(b) open grains.

if θ = 45◦. After 10 cycles, the expected average value is
1.5 but at the integration point scale it reaches 15. That
is 10 times more than the average value. This is a classical
result, showing that strain is strongly localized in bands
or at grain boundaries.

Figures 7 and 8, respectively, show the C-45-0 and O–
45–0 cluster types. In both cases, a soft grain is embedded
in a hard surrounding. Twenty realizations are consid-
ered for the rest of the aggregate. Each figure recalls the
geometrical distribution of the grain orientations, and il-
lustrates three typical cases, by comparing the contour of
the Schmid factor and the corresponding field of accumu-
lated viscoplastic shear strain. The far field depends on
the arrangement of the randomly chosen orientations. The
structure of the localization bands changes for the various
realizations. It is worth noting that they do not necessar-
ily follows the softest grains (with the highest values of the
Schmid factor). There are two types of strain localization:
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Figure 7: Cluster C-45-0 : Maps corresponding to different realizations.
Entire maps of (a) Schmid factor and (b) cumulated viscoplastic strain. (c) Local clusters maps of cumulated viscoplastic strain.

8



0

0.1

0.2

0.3

0.4

0.5

(a)

0

1.5

3

4.5

6

7.5

9

10.5

12

13.5

15

(b)

(c)
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(i) the presence of a chain of soft (or almost soft) grains
with a general direction not far from 45◦ with respect
to the tensile axis promotes localization zones located
in the center of the grains: this is “type 1”, or primary
plasticity, as found in the single crystal.

(ii) the juxtaposition of one soft and one hard grain cre-
ates a zone with slip incompatibilities, and a “type
2” band, near the grain boundary, which will be the
source of intergranular stresses.

The local fields in the cluster are shown for the 20
computations in Fig. 7c and 8c. They appear to be also
dependent on the distribution in the rest of the aggregate.
It demonstrates that the response of the central grain de-
pends on the surrounding grains in the cluster, and that
the response of the cluster depends also on the rest of the
aggregate.

For most of the calculations, the central grain remains
highly deformed (type 1 plasticity). Nevertheless, in some
cases, the hard neighborhood prevents flow in the central
grain (see for instance computations 6, 13, 16 for the closed
grains in Fig. 7c and 1, 3, 17 for the open grains in Fig. 8c).
Type 2 plasticity is also present, as observed in clusters 1,
4, 14 in Fig. 7c, and 12, 14 in Fig. 8c, where hard grains
are crossed by localization bands. Also, it can be seen that
open grains present more scatter than the closed ones.

Figures 9 and 10 respectively show the C–0–45 and O–
0–45 cluster types. The general aspect of the aggregate is
the same as the two preceding figures. In the clusters, the
grains at 45◦ show a localization band, that goes around
the hard grain, for the open as well as for the closed case.
There is either one or two bands, depending on the ori-
entation of the neighboring grains in the aggregate. As
observed for clusters 1 and 12 in Fig. 9c, and 3, 9, 18 in
Fig. 10c, plasticity may be present in the central grain.
For each case, the band seems to emerge due to the strain
state in the surrounding grains.

A more quantitative view is provided in Fig. 11 which
shows the distribution of the accumulated plastic slip. It is
based on 100 different computations for each cluster. The
distribution is plotted by using either the values at Gauss
points or the averaged values in the grains. It confirms
that the strain remains small in hard grains (Fig. 11e and
Fig. 11f). Nevertheless, rather large accumulated slip can
be also found, especially for the open grains (Fig. 11f).
The grains presenting the highest cumulated plastic slip
belong to the C–45–0 clusters (Fig. 11a). Introducing open
grains instead of closed ones leads to less plastic flow. As
observed from Fig. 11b, the shape of the distribution func-
tion exhibits a significant number of Gauss points (and of
grains) in the smaller class (0 < p < 1). The average value
for open grains is also smaller than the value obtained for
closed grains (1.5 versus 2.3).

After having considered organized clusters (0–45 or 45–
0), the same number of calculations (100 computations in
each case) have been performed for the four types of clus-
ters with randomly distributed grains around the core of

the cluster. The central grains are either closed (C–0–
R, C–45–R), or open (O–0–R, O–45–R). The conclusions
are similar to those obtained for the four previous compu-
tations, but all the trends are less marked. The “perfect
0–45 misorientation” found in the organized cluster magni-
fies the effects. This is especially true for clusters with the
large “closed” grain, where the average value in Fig. 11g is
larger than the corresponding one in Fig. 11e and the aver-
age value in Fig. 11c is smaller than the value in Fig. 11a.
Instead of decreasing like for closed grain, the amount of
plasticity in soft open grains becomes larger when one con-
siders random neighbors orientation (Fig. 11d) instead of
hard one (Fig. 11b).

The results obtained by plotting the average values in
the elements confirms the graphs made with Gauss points
values. This is summarized in Fig. 12. The ranking of the
different curves is the same, the smallest values of the ac-
cumulated slip is found in C–0–45 clusters, and the highest
values in C–45–0. The next curves in each case correspond
to the open clusters (namely O–0–45 and 0–45–0). The
four random cases follow the same scheme, so that, from
the smallest to the highest amount of slip, one can write

C–0–45 < O–0–45 < C–0–R < O–0–R < ...
... < O–45–0 < O–45–R < C–45–R < C–45–0

The following conclusions come from the preceding ob-
servations:

(i) the most important parameter governing plastic slip
at the local scale remains the crystallographic orien-
tation of the central grain θ1;

(ii) closed grains are able to impose their proper behavior,
so that they are approaching the response of the single
crystal. On the contrary, open grains are prone to
cluster effect;

(iii) setting the orientation of the first neighbors of the
surrounding grains to a prescribed value is not suffi-
cient to unify its response for the various aggregates,
nevertheless, this tends to magnify the cluster effect.

After the orientation of the central grain, the critical pa-
rameter is the geometry of the grain. The orientation of
the external grains in the cluster is also a significant pa-
rameter.

3.2.2. Local multiaxiality

Figure 13 presents the local stress multiaxiality for the
central grain of each cluster during the whole simulation,
e.g. the 10 cycles. σ22 is the normal component in the ten-
sile direction. σ11 is the normal component in the direction
of the free surface, which is equal to zero at the surface of
the aggregate. It is worth noting that the value of σ11 in-
creases rapidly inside the grain due to grain–grain incom-
patibilities. It was decided to plot the average of these
stress components in each grain, and it can be observed
that the average in the grain is far from zero. The pur-
pose of the graph is to underline the difference between the
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Figure 9: Cluster C-0-45 : Maps corresponding to different realizations.
Entire maps of (a) Schmid factor and (b) cumulated viscoplastic strain. (c) Local clusters maps of cumulated viscoplastic strain.
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Figure 12: Cumulative distribution functions of cumulated viscoplastic strain for different types of clusters based on central grain (a) Gauss
points values and (b) grain averages.

two types of aggregate (soft grain surrounded by hard ma-
terial or hard grain surrounded by soft material). Twenty
curves corresponding to various realizations are shown for
each of the eight cases. For all of them, the general aspect
is a parallelogram.

The main difference between the results for the differ-
ent types of clusters comes again from the orientation of
the central grain θ1. Indeed, for soft central grains (C–45–0
in Fig. 13a, O–45–0 in Fig. 13b, C–45–R in Fig. 13c, O–
45–R in Fig. 13d), curves show two vertical lines since the
11 component does not change during elastic part of the
strain path. The cycles are closed by two lines whose slope
is equal to 1. During plastic flow, the increments of both
components are equal, and a positive value for σ22 gener-
ates the same amount of tensile stress on σ11. This is veri-
fied for the “ideal” cases C–45–0 and O–45–0, but also for
the clusters with randomly generated external grain orien-
tations (C–45–R and O–45–R). The open/closed character
of the central grain is not sensitive.

Such a slope is easily recovered by a simplistic model,
formed of six generalized plane strain finite elements (see
Fig.14) which emulates the local behavior of the clusters.
The grain 0 (central grain of the cluster) is surrounded
by five elements representing the first layer of grains. All
the edges remain parallel to their initial direction so that
the stress tensors are uniform in each element. A pressure
is applied on the top and bottom boundaries of the mesh.
One element (number 0) has an elastoplastic behavior, the
other five remain elastic. Assuming that grains 1 and 5
are strong enough to avoid plastic flow, their transverse
strain remains negligible. In this case, the strain and stress
tensors of grain 0 can be expressed as

ε
∼

=





≈ 0 0 0
ε 0

0



⇒ σ
∼

=





σ1 0 0
σ2 0

≈ σ1





The yield function becomes σ1 − σ2 = R0 and a slope of

1 is found in each ∗–45–∗ configuration. This slope of 1 is
found for any type of plasticity (crystal plasticity or von
Mises), and any value of Poisson’s ratio (the elasticity is
assumed to be isotropic and uniform in the six elements).

For hard central grains (C–0–45 in Fig. 13e, O–0–45
in Fig. 13f, C–0–R in Fig. 13g, O–0–R in Fig. 13h), there
is much more scatter in the various responses. It can be
observed that the ratio σ22/σ11 is negative. A slope of –1
is marked as a reference on each plot. Unlike the case of
the soft embedded grain, the difference between the open
grains and the closed grains is noticeable. The component
σ11 remains low for open grains (the free surface effect is
seen in the whole grain) so that the slope σ22/σ11 has a
large value. It was not the case for the O–45–0 and the
O–45–R cases, where the central grain is weak, and the
stress transfer is rapidly imposed by the external grains.

This last observation can be explained by means of the
simple six element model (Fig.14). Assuming that grain 0
remains elastic and the other five become plastic, the slope
is exactly –1 for crystal plasticity or von Mises plasticity
model. The value of the slope depends on Poisson’s ratio.
Considering crystal plasticity in the surrounding grains,
the strain and stress tensors in the central grain are close
to

ε
∼

=





−ε 0 0
ε 0

0



⇒ σ
∼

=





−σ 0 0
σ 0

0





So σ11 = −σ22 and a negative slope of –1 is found.

4. Fatigue life prediction

The FE analysis is now performed for different loading
amplitudes (±0.3%, ±0.5%, ±1% and ±2%). The three
criteria presented in section 2.2 are evaluated by post-
processing of the 10th cycle of the problem (stabilized cy-
cle). As earlier, the study is made on random aggregates
and clusters.
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Figure 13: σ22/σ11 multiaxiality inside the central grain of different clusters. Pictures related to one soft grain inside hard grains are in the
left hand column, those with one hard grain inside soft grains are on the right.
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4.1. Fatigue on random aggregates

Fifty computations (i.e. total of 3550 grains) were per-
formed for each loading amplitude. Figure 15 shows the
values of the criteria depending on grain orientation at
each loading level.

For the three criteria, the influence of the grain ori-
entation is more important at low strain range than at
large strain range. This is related to the strain localiza-
tion that is more active at lower strain amplitudes. The
Dang Van equivalent stress [37] does not present large vari-
ations (Fig. 15a–15d). Nevertheless, since the exponent of
the power law in stress dependent fatigue models is high,
the effect on life prediction is comparable for this approach
and for the strain dependent models (Socie–Fatemi [36],
Fig. 15e–15h or cumulated slip, Fig. 15i–15l). For all cri-
teria, grains with slip planes at 45◦ with respect to the ten-
sile axis are the most critical. The other remarkable effect
concerns the location of crack initiation. Critical values of
both σDV and γSF are higher for the core grains. They do
not predict surface crack initiation. In this case they can
then hardly be used as a micromechanichal model to rep-
resent local physical phenomena. On the other hand, the
variable p is maximum around 45◦ for the surface grains –
open or closed – and is a good candidate.

4.2. Fatigue on clusters

For each loading level, 20 computations were performed
for each clusters. Only ∗–0–45 and ∗–45–0 configurations
are shown in order to have a clear view of the results. Fig-
ure 16 reports the cumulative distributions of the fatigue
criteria values at the Gauss point scale inside the central
grain of the clusters. Each criterion produces an important
scatter at the intragranular level, as shown by the values

at the Gauss points. This scatter is present even inside
the central grain of the same cluster. The criteria distri-
butions present higher values for C–45–0 clusters whereas
C–0–45 clusters have the lowest. This confirms that the
C–45–0 configuration is the most critical and conversely
that C–0–45 is the safer. At lower loading levels, the re-
sults for open or closed clusters are quite similar while the
results for soft and hard clusters are rather different (see
Fig. 16a, 16e and 16i). But when the load becomes larger,
both trends are reversed. Closed clusters become more
critical than open ones and the gap between soft and hard
grains decreases (see Fig. 16d, 16h and 16l).

5. Conclusions

The main purpose of the study was to build a sim-
plified framework, representative of the local behavior of
polycrystals, in order to analyse the stress redistribution
and the local multiaxiality under one-dimensional cyclic
loading. What is expected is a new view toward phys-
ically consistent critical variables, to be introduced in a
new class of multiscale fatigue damage models.

It has been shown that crystal orientation is not the
only critical parameter that characterizes grain behavior.
The other points of interest are grain location (surface,
core) and the neighboring grains. Local failure must then
be considered as the result of a cluster effect, for which the
most critical configurations must be determined.

The other original point is the analysis of the local
multiaxial stress states. Under a global one-dimensional
tension loading, soft grains embedded in a hard surround-
ing are submitted to a high hydrostatic stress. Considering
the same macroscopic loading, hard grains embedded in a
soft surrounding experience shear stress states. This will
have important consequences for the local crack initiation
model.

The evaluation of various macroscopic models tends
to demonstrate that they cannot be just fed by variables
defined on a microscale. The only acceptable result (ini-
tiation at the surface of the specimen) is obtained with
the accumulated plastic slip. In fact, a criterion taking
into account the amount of extrusion will be defined in
the future. Authors’ opinion is that a model describing
macroscopic initiation must combine accumulated slip for
micro initiation and a combination of the maximum princi-
pal stress and shear stress for the micro-propagation. This
conjecture will be verified in a forthcoming study. The
investigations will use a finer mesh, and a 3D geometry.
Twelve octahedral slip systems will be considered. The
results will be compared with experimental observations
on 316L stainless steel.
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Figure 16: Cumulative distribution functions of fatigue criteria in the central grain of clusters for different loading amplitudes (gauss point
values).
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