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LOCAL DEFECT-CORRECTION METHOD BASED ON MULTILEVEL
DISCRETIZATION FOR STEKLOV EIGENVALUE PROBLEM

Fei Xu, Liu Chen and Qiumei Huang*

Abstract. In this paper, we propose a local defect-correction method for solving the Steklov eigenvalue
problem arising from the scalar second order positive definite partial differential equations based on the
multilevel discretization. The objective is to avoid solving large-scale equations especially the large-scale
Steklov eigenvalue problem whose computational cost increases exponentially. The proposed algorithm
transforms the Steklov eigenvalue problem into a series of linear boundary value problems, which are
defined in a multigrid space sequence, and a series of small-scale Steklov eigenvalue problems in a coarse
correction space. Furthermore, we use the local defect-correction technique to divide the large-scale
boundary value problems into small-scale subproblems. Through our proposed algorithm, we avoid
solving large-scale Steklov eigenvalue problems. As a result, our proposed algorithm demonstrates
significantly improved the solving efficiency. Additionally, we conduct numerical experiments and a
rigorous theoretical analysis to verify the effectiveness of our proposed approach.
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1. Introduction

Owing to continuous advancements in computer technology and computing technology, computational sci-
ence and engineering has become the third approach for conducting scientific and engineering research after
experimentation and theoretical analysis. Currently, increasing practical applications require efficient computa-
tional methods to cope with the increasing scale and difficulty of computing. In practice, the Steklov eigenvalue
problem with eigenvalue parameters in boundary conditions is a significant problem in the current field of
computational science and engineering. Steklov eigenvalue problems refer to eigenvalue problems for which
the eigenvalue parameter appears in the (Robin type) boundary condition, and can in general be formulated
for any partial differential equations. Numerous physical and engineering models, such as those involving the
vibrations of pendulums [2], surface waves [7], the dynamics of liquids in moving containers [16, 24, 44], and
the stability of mechanical oscillators immersed in viscous media [39], have been reduced to solve the Steklov
eigenvalue problem. Besides, the non-selfadjoint Steklov eigenvalue problems have important applications in
the inverse scattering theory to reconstruct the index of refraction of an inhomogeneous media [15, 54]. This
is precisely because the Steklov eigenvalue problem has a broad range of vital applications in various fields
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of engineering and physics. Therefore, research regarding this problem has crucial theoretical significance and
significant application value.

Extensive research on the Steklov eigenvalue problem has been conducted owing to its wide range of applica-
tions. Currently, various research results have been obtained through algorithm design and theoretical analysis.
Chatelin [17] and Ciarlet [19] analyzed the finite element method for the Steklov eigenvalue problems arising
from the second order positive definite partial differential equations and obtained optimal error estimates. Based
on the standard finite element error estimates obtained by the researchers mentioned above, many efficient algo-
rithms can be analyzed. For instance, Andreev and Todorov [3] and Bramble and Osborn [11] analyzed the use
of the conforming finite element method to solve the Steklov eigenvalue problem. Other examples of numerical
experiments conducted to solve the Steklov eigenvalue problem can be found in the works of [4,5,26,27,30,32,43]
which solve the Steklov eigenvalue problems arising from the scalar second order positive definite partial differ-
ential equations, and works of [8,38] which solve the Steklov eigenvalue problems arising from the fourth order
positive definite partial differential equations and in the references cited therein.

The multigrid method was first proposed by Fedorenko based on the finite difference method in the 1960s.
However, this method did not attract significant attention at that time. In the 1970s, scientists gradually began
to pay attention to the multigrid method, thereby attracting a large number of researchers seeking to conduct
further studies on algorithms and theories [12, 13, 48]. Currently, the multigrid method has resulted in the
development of a complete theoretical system. The error order of the approximate solution obtained using
the multigrid method is equivalent to the theoretical order determined through finite element discretization.
However, the computational cost involved is only proportional to the unknowns in the discrete equation. The
multigrid method is composed of two main components: Smoothing step on the current mesh and error correction
step on the coarse mesh. The smoothing step can efficiently eliminate the high-frequency components of the
error. Then the smooth part of the error can be corrected on the coarse mesh. There also exist studies on the
application of the multigrid method to solve eigenvalue problems. Xu and Zhou [52] proposed a two-grid method
for tackling eigenvalue problems. Their proposed method must solve an eigenvalue problem on a coarse mesh
and a linear boundary value problem on a fine mesh. If the size of the coarse mesh is equal to the square root
of the fine mesh, the optimal estimate can be derived. Based on the approach mentioned above, Lin and Xie
[34] proposed a multilevel correction method for solving the eigenvalue problem. They extended the feature by
which the two-grid method can only be corrected once to an arbitrary number of corrections. More detailed
information regarding multilevel correction can be found in the works of [18,31,33,46,47,49].

Over the recent years, the development of local defect-correction methods (or local and parallel methods) has
progressed rapidly because its use is significantly convenient in large-scale scientific and engineering computing.
This computational technique for solving linear elliptic equations was first proposed by Xu and Zhou [51]. The
local defect-correction method is designed based on the understanding of the local and global properties of the
finite element solution. The global behavior of a solution is mainly governed by low-frequency components while
the local behavior is mainly governed by high-frequency components. The local defect-correction method uses
a coarse mesh to approximate the low-frequency components and then uses a fine mesh to correct the resulted
residue through some local procedures. To date, it has been applied to a variety of mathematical models, such
as those presented in the works of [9,10,20–23,28,29,35–37,40–42,51,55–58], etc. Xu and Zhou [53] used a local
defect-correction finite element algorithm to solve Laplace eigenvalue problem. Their technique was based on
the two-grid finite element discretization scheme and the local defect correction technique for solving elliptic
boundary value problems. For eigenvalue problems with Dirichlet boundary conditions, the algorithm has already
been analyzed, see [33,50]. But the algorithm was not successfully extended to solve Steklov eigenvalue problems
in a long time. This is because the local defect-correction technique will generate a series of local subdomains
whose boundaries will remain in the interior of the overall computing domain Ω. We need to assemble the
local solutions to form the final global solution. For eigenvalue problems with Dirichelet boundary condition,
this is quite simple. But because Steklov eigenvalue problem has the variable in the boundary, thus the inner
boundaries of these subdomains will cause many troubles, then this process can not be used any more for Steklov
eigenvalue problem in a long time. Based on the approach mentioned above, Bi et al. [10] attempted to solve
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Figure 1. 𝐺 ⊂⊂ 𝐷 ⊂ Ω.

the Steklov eigenvalue problem by combining two-grid discretization with a local defect correction algorithm.
However, there exists a strict constrain on the mesh size ratio between coarse mesh and fine mesh for two-grid
method. In this study, we design an efficient local defect-correction method for solving the Steklov eigenvalue
problems from the scalar second order positive definite partial differential equations. We eliminate the effect of
the boundaries of the subdomains based on some new local estimates. Our proposed method is based on the local
defect-correction technique and the multilevel correction algorithm. The objective is to avoid solving large-scale
equations, such as large-scale Steklov eigenvalue problems, whose computational cost increases exponentially
with mesh refinement. Through our algorithm, we simply must solve some linear boundary value problems in a
multigrid space sequence and some small-scale Steklov eigenvalue problems in a coarse correction space, whereby
the dimensions are small and remain unchanged. Additionally, the linear boundary value problem defined in
each level of the multigrid space sequence is solved using the local defect-correction technique. Because the main
computational work of this algorithm is controlled by the linear boundary value problem, which can be solved
efficiently using the local defect-correction technique, its efficiency in solving the Steklov eigenvalue problem
can be significantly improved. Additionally, to verify the validity of the results of our theoretical analysis, we
further develop the theoretical works of [10,51,53] to adapt these to our algorithmic framework.

The remainder of this paper is organized as follows: In the next section, we introduce the basic theory
regarding the finite element method, the elliptic boundary value problem, and the local a priori error estimates.
In Section 3, we introduce the Steklov eigenvalue problem to be solved in this study. In Section 4, we present
the local defect-correction method based on multilevel discretization for solving the Steklov eigenvalue problem
and the corresponding theoretical analysis. In Section 5, we describe the numerical experiments conducted to
validate our theoretical analysis. Finally, we present the concluding remarks in the last section.

2. Finite element method for solving the elliptic boundary value problem

In this section, we introduce the basic notations and preliminary estimates of the finite element method. Ω
denotes a bounded domain with a Lipschitz-continuous boundary in R𝑑(𝑑 ≥ 1). 𝐻𝑠(Ω) denotes the standard
Sobolev space [1], and ‖ · ‖𝑠,Ω and ‖ · ‖𝑠,𝜕Ω denote the corresponding norms on Ω and 𝜕Ω, respectively. In this
study, we use 𝐶 to denote a generic positive constant, which may be different at its different occurrences. For
convenience, in this study, we use 𝑥 . 𝑦 to denote 𝑥 ≤ 𝐶𝑦. For the three nested domains 𝐺 ⊂ 𝐷 ⊂ Ω, we use
𝐺 ⊂⊂ 𝐷 to denote dist(𝜕𝐷∖𝜕Ω, 𝜕𝐺∖𝜕Ω) > 0 (see Fig. 1).

In this section, we introduce the finite element method for solving the following elliptic boundary value
problem with Neumann boundary condition:{︂

𝐿𝑢 := −∇ · (𝒜∇𝑢) + 𝜑𝑢 = 0, in Ω,
(𝒜∇𝑢) · 𝑛 = 𝑓, on 𝜕Ω, (2.1)

where 𝒜 ∈ (𝐿∞(Ω))𝑑×𝑑 denotes a symmetric and uniformly positive definite matrix function, and 𝜑 denotes a
nonnegative function bounded from above and below by positive constants.

The weak form of (2.1) is defined by: Find 𝑢 ∈ 𝐻1(Ω) such that

𝑎(𝑢, 𝑣) = 𝑏(𝑓, 𝑣), ∀𝑣 ∈ 𝐻1(Ω),
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where
𝑎(𝑢, 𝑣) =

∫︁
Ω

(𝒜∇𝑢 · ∇𝑣 + 𝜑𝑢𝑣) dΩ, 𝑏(𝑓, 𝑣) =
∫︁
𝜕Ω

𝑓𝑣 d𝑠.

Obviously, 𝑎(·, ·) is a symmetric, continuous, and 𝐻1(Ω)-elliptic bilinear form.
To use the finite element method, we generate a shape-regular triangulation 𝒯ℎ(Ω) for the computing domain

Ω. We use ℎ𝐾 to denote the diameter of the mesh element 𝐾 ∈ 𝒯ℎ(Ω), and we use ℎ(𝑥) to denote the diameter
of the mesh element that includes 𝑥.

Based on the triangulation 𝒯ℎ(Ω), we define a finite element space 𝑆ℎ(Ω) as follows:

𝑆ℎ(Ω) =
{︀
𝑣 ∈ 𝐶

(︀
Ω̄
)︀

: 𝑣|𝐾 ∈ 𝒫𝑘,∀𝐾 ∈ 𝒯ℎ(Ω)
}︀
, (2.2)

which is composed of piecewise polynomials whose degree is not greater than 𝑘. Then 𝑆ℎ(Ω) ⊂ 𝐻1(Ω).
Given any subset 𝐺 ⊂ Ω, we use 𝑆ℎ(𝐺) and 𝒯ℎ(𝐺) to denote the restriction of 𝑆ℎ(Ω) and 𝒯ℎ(Ω) to G, and

we define the following spaces:

𝐻1
Γ(𝐺) =

{︀
𝑣 ∈ 𝐻1(𝐺) : supp 𝑣 ⊂⊂ 𝐺

}︀
(2.3)

and

𝑆0
ℎ(𝐺) =

{︀
𝑣 ∈ 𝑆ℎ(Ω) : supp 𝑣 ⊂⊂ 𝐺

}︀
. (2.4)

In this paper, we use 𝐺 ⊂⊂ 𝐷 to denote dist(𝜕𝐷∖𝜕Ω, 𝜕𝐺∖𝜕Ω) > 0 (see Fig. 1). Thus, for any 𝑣 ∈ 𝐻1
Γ(𝐺), 𝑣

equals zero on the boundary 𝜕𝐺∖𝜕Ω, and 𝑣 may not equal zero on the boundary 𝜕𝐺 ∩ 𝜕Ω. Besides, 𝐻1
Γ(𝐺)

consists of all functions 𝑣 ∈ 𝐻1(𝐺) for which the extension by zero to Ω∖𝐺 is in 𝐻1(Ω)
Based on the works of [14,19,51,53], we obtain the following fractional norm property for the finite element

space.

Lemma 2.1. For any subset 𝐺 ⊂ Ω, the following estimate holds true

inf
𝑣∈𝑆0

ℎ(𝐺)
‖𝑤 − 𝑣‖1,𝐺 . ‖𝑤‖1/2,𝜕𝐺∖𝜕Ω, ∀𝑤 ∈ 𝑆ℎ(𝐺). (2.5)

For the theoretical analysis, we introduce the following quantity:

𝜌Ω(ℎ) = sup
𝑓∈𝐿2(𝜕Ω),‖𝑓‖0,𝜕Ω=1

inf
𝑣ℎ∈𝑆ℎ(Ω)

‖𝑇𝑓 − 𝑣ℎ‖1,Ω, (2.6)

where the operator 𝑇 : 𝐿2(𝜕Ω) → 𝐻1(Ω) by

𝑎(𝑇𝑓, 𝑣) = 𝑏(𝑓, 𝑣), ∀𝑣 ∈ 𝐻1(Ω). (2.7)

Similarly, we also introduce the following quantity:

𝑟Ω(ℎ) = sup
𝑓∈𝐿2(Ω),‖𝑓‖0,Ω=1

inf
𝑣ℎ∈𝑆ℎ(Ω)

‖𝑇 ′𝑓 − 𝑣ℎ‖1,Ω, (2.8)

where the operator 𝑇 ′ : 𝐿2(Ω) → 𝐻1(Ω) by

𝑎(𝑇 ′𝑓, 𝑣) = (𝑓, 𝑣), ∀𝑣 ∈ 𝐻1(Ω). (2.9)

Based on the finite element space, we define the projection operator 𝑃ℎ : 𝐻1(Ω) → 𝑆ℎ(Ω) by

𝑎(𝑢− 𝑃ℎ𝑢, 𝑣) = 0, ∀𝑣 ∈ 𝑆ℎ(Ω). (2.10)

We can then derive the following estimates for the projection operator.
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Lemma 2.2. The following estimates for the projection operator hold true

‖(𝐼 − 𝑃ℎ)𝑇𝑓‖1,Ω . 𝜌Ω(ℎ)‖𝑓‖0,𝜕Ω, ∀𝑓 ∈ 𝐿2(𝜕Ω),

‖(𝐼 − 𝑃ℎ)𝑇 ′𝑓‖1,Ω . 𝑟Ω(ℎ)‖𝑓‖0,Ω, ∀𝑓 ∈ 𝐿2(Ω),

‖𝑢− 𝑃ℎ𝑢‖0,𝜕Ω . 𝜌Ω(ℎ)‖𝑢− 𝑃ℎ𝑢‖1,Ω, ∀𝑢 ∈ 𝐻1(Ω)

‖𝑢− 𝑃ℎ𝑢‖0,Ω . 𝑟Ω(ℎ)‖𝑢− 𝑃ℎ𝑢‖1,Ω, ∀𝑢 ∈ 𝐻1(Ω). (2.11)

Proof. From the definition of projection operator in (2.10), there holds

‖𝑢− 𝑃ℎ𝑢‖1,Ω . inf
𝑣ℎ∈𝑆ℎ

‖𝑢− 𝑣ℎ‖1,Ω, ∀𝑢 ∈ 𝐻1(Ω). (2.12)

Denote 𝑓 = 𝑓/‖𝑓‖0,𝜕Ω, then we can derive

‖(𝐼 − 𝑃ℎ)𝑇𝑓‖1,Ω = ‖(𝐼 − 𝑃ℎ)𝑇𝑓‖1,Ω‖𝑓‖0,𝜕Ω

. inf
𝑣ℎ∈𝑆ℎ

‖𝑇𝑓 − 𝑣ℎ‖1,Ω‖𝑓‖0,𝜕Ω

. 𝜌Ω(ℎ)‖𝑓‖0,𝜕Ω.

Similarly, denote 𝑓 = 𝑓/‖𝑓‖0,Ω, we can also derive

‖(𝐼 − 𝑃ℎ)𝑇 ′𝑓‖1,Ω = ‖(𝐼 − 𝑃ℎ)𝑇 ′𝑓‖1,Ω‖𝑓‖0,Ω
. inf

𝑣ℎ∈𝑆ℎ
‖𝑇 ′𝑓 − 𝑣ℎ‖1,Ω‖𝑓‖0,Ω

. 𝑟Ω(ℎ)‖𝑓‖0,Ω.

Then we derive the first two estimates. The left two estimates can also be proved easily through the Aubin–
Nitsche technique. �

Next, we further develop the works of [51, 53] to adapt to the Steklov eigenvalue problem to be solved in
this study. For each Ω0 ⊂ Ω, we assume that the finite element space used in this study satisfies the following
conditions:
A.1. There exists 𝛾 > 1 such that

ℎ𝛾Ω . ℎ(𝑥), ∀𝑥 ∈ Ω, (2.13)

with ℎΩ = max𝑥∈Ω ℎ(𝑥).

A.2. Inverse Estimate. For any 𝑣 ∈ 𝑆ℎ(Ω0),

‖𝑣‖1,Ω0 . ‖ℎ−1𝑣‖0,Ω0 . (2.14)

A.3. Superapproximation. For 𝐺 ⊂ Ω, let 𝜔 ∈ 𝐶∞
(︀
Ω̄
)︀

with (supp 𝜔∖(𝜕𝐺 ∩ 𝜕Ω)) ⊂⊂ 𝐺. Then for any 𝑤 ∈
𝑆ℎ(𝐺), there exists 𝑣 ∈ 𝑆0

ℎ(𝐺) such that⃦⃦
ℎ−1
𝐺 (𝜔𝑤 − 𝑣)

⃦⃦
1,𝐺
. ‖𝑤‖1,𝐺. (2.15)

Let

𝑎0(𝑢, 𝑣) =
∫︁

Ω

(𝒜∇𝑢 · ∇𝑣) dΩ. (2.16)

From Lemma 3.1 of [51], we can prove the following lemmas:
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Lemma 2.3. Let 𝐷 ⊂⊂ Ω0 ⊂ Ω, 𝜔 ∈ 𝐶∞
(︀
Ω̄
)︀

with (supp 𝜔∖(𝜕Ω0 ∩ 𝜕Ω)) ⊂⊂ Ω0, then

𝑎0(𝜔𝑤, 𝜔𝑤) ≤ 2𝑎
(︀
𝑤,𝜔2𝑤

)︀
+ 𝐶‖𝑤‖20,Ω0

, ∀𝑤 ∈ 𝐻1(Ω). (2.17)

Lemma 2.4. Suppose that 𝑓 ∈ 𝐿2(𝜕Ω) and 𝐷 ⊂⊂ Ω0 ⊂ Ω. If 𝑤 ∈ 𝑆ℎ(Ω0) satisfies the following:

𝑎(𝑤, 𝑣) = 𝑏(𝑓, 𝑣), ∀𝑣 ∈ 𝑆0
ℎ(Ω0), (2.18)

then we have the following local estimate

‖𝑤‖1,𝐷 . ‖𝑤‖0,Ω0
+ ‖𝑓‖0,𝜕Ω∩𝜕Ω0

. (2.19)

Proof. Let 𝑝 ≥ 2𝛾 − 1 be an integer and Ω𝑗 (𝑗 = 1, 2, · · · , 𝑝) be a domain sequence satisfying

𝐷 ⊂⊂ Ω𝑝 ⊂⊂ Ω𝑝−1 ⊂⊂ · · · ⊂⊂ Ω1 ⊂⊂ Ω0.

Next, choose 𝐷1 ⊂ Ω satisfying 𝐷 ⊂⊂ 𝐷1 ⊂⊂ Ω𝑝, 𝜔 ∈ 𝐶∞
(︀
Ω̄
)︀

such that 𝜔 = 1 on 𝐷1 and
(supp 𝜔 ∖ (𝜕Ω𝑝 ∩ 𝜕Ω)) ⊂⊂ Ω𝑝. Then from A.3., there exists 𝑣 ∈ 𝑆0

ℎ(Ω𝑝) such that⃦⃦
𝜔2𝑤 − 𝑣

⃦⃦
1,Ω𝑝
. ℎΩ0‖𝑤‖1,Ω𝑝

. (2.20)

Based on (2.20) and trace inequality, we can further derive

|𝑏(𝑓, 𝑣)| =
⃒⃒⃒⃒∫︁
𝜕Ω

𝑓𝑣 d𝑠
⃒⃒⃒⃒

=

⃒⃒⃒⃒
⃒
∫︁
𝜕Ω𝑝∩𝜕Ω

𝑓𝑣 d𝑠

⃒⃒⃒⃒
⃒

. ‖𝑓‖0,𝜕Ω𝑝∩𝜕Ω‖𝑣‖0,𝜕Ω𝑝∩𝜕Ω

. ‖𝑓‖0,𝜕Ω0∩𝜕Ω‖𝑣‖1,Ω𝑝

. ‖𝑓‖0,𝜕Ω0∩𝜕Ω

(︀
ℎΩ0‖𝑤‖1,Ω𝑝

+ ‖𝜔𝑤‖1,Ω
)︀
. (2.21)

From (2.17), (2.18), (2.20) and (2.21), there holds

‖𝜔𝑤‖21,Ω . 𝑎0(𝜔𝑤, 𝜔𝑤) + ‖𝑤‖20,Ω0
. 𝑎(𝑤,𝜔2𝑤) + ‖𝑤‖20,Ω0

= 𝑎(𝑤,𝜔2𝑤 − 𝑣) + ‖𝑤‖20,Ω0
+ 𝑏(𝑓, 𝑣)

. ‖𝑤‖1,Ω𝑝‖𝜔2𝑤 − 𝑣‖1,Ω𝑝 + ‖𝑤‖20,Ω0
+ ‖𝑓‖0,𝜕Ω∩𝜕Ω0(ℎΩ0‖𝑤‖1,Ω𝑝 + ‖𝜔𝑤‖1,Ω)

. ℎΩ0‖𝑤‖21,Ω𝑝
+ ‖𝑤‖20,Ω0

+ ‖𝑓‖0,𝜕Ω∩𝜕Ω0(ℎΩ0‖𝑤‖1,Ω𝑝
+ ‖𝜔𝑤‖1,Ω)

. ‖𝑓‖0,𝜕Ω∩𝜕Ω0‖𝜔𝑤‖1,Ω + ℎΩ0‖𝑤‖21,Ω𝑝
+ ‖𝑤‖20,Ω0

+ ‖𝑓‖20,𝜕Ω∩𝜕Ω0
.

Then we have
‖𝜔𝑤‖1,Ω . ℎ

1
2
Ω0
‖𝑤‖1,Ω𝑝

+ ‖𝑤‖0,Ω0 + ‖𝑓‖0,𝜕Ω∩𝜕Ω0 . (2.22)

Because we have 𝜔 = 1 in 𝐷, from (2.22), we can derive the following estimate

‖𝑤‖1,𝐷 . ℎ
1
2
Ω0
‖𝑤‖1,Ω𝑝

+ ‖𝑤‖0,Ω0 + ‖𝑓‖0,𝜕Ω∩𝜕Ω0 . (2.23)

For 𝐷 ⊂⊂ Ω𝑝, we derive the estimate (2.23). Similarly, since Ω𝑗 ⊂⊂ Ω𝑗−1 for 𝑗 = 1, 2, · · · , 𝑝, we can deduce the
following estimate using the same way as that for (2.23):

‖𝑤‖1,Ω𝑗
. ℎ

1
2
Ω0
‖𝑤‖1,Ω𝑗−1 + ‖𝑤‖0,Ω0 + ‖𝑓‖0,𝜕Ω∩𝜕Ω0 , 𝑗 = 1, 2, · · · , 𝑝. (2.24)

Combining (2.23), (2.24), A1 and A.2, we can get the following estimate

‖𝑤‖1,𝐷 . ℎ
𝑝+1
2

Ω0
‖𝑤‖1,Ω0 + ‖𝑤‖0,Ω0 + ‖𝑓‖0,𝜕Ω∩𝜕Ω0

. ℎ
𝑝+1
2

Ω0
‖ℎ−1𝑤‖0,Ω0 + ‖𝑤‖0,Ω0 + ‖𝑓‖0,𝜕Ω∩𝜕Ω0

. ‖𝑤‖0,Ω0 + ‖𝑓‖0,𝜕Ω∩𝜕Ω0 ,

where the Neumann series is adopted to obtain the above estimate. This completes the proof. �
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3. Finite element method for solving the Steklov eigenvalue problem

In this study, we consider the following Steklov eigenvalue problem:{︂−∇ · (𝒜∇𝑢) + 𝜑𝑢 = 0, in Ω,
(𝒜∇𝑢) · 𝑛 = 𝜆𝑢, on 𝜕Ω.

(3.1)

The weak form of (3.1) is as follows: Find (𝜆, 𝑢) ∈ R×𝐻1(Ω) such that 𝑏(𝑢, 𝑢) = 1 and

𝑎(𝑢, 𝑣) = 𝜆𝑏(𝑢, 𝑣), ∀𝑣 ∈ 𝐻1(Ω). (3.2)

From the work of [6, 17], we know that the Steklov eigenvalue problem (3.2) has an eigenvalue sequence, as
follows:

0 < 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑘 ≤ · · · , (3.3)

and the associated eigenfunction sequence:

𝑢1, 𝑢2, · · · , 𝑢𝑘, · · · , (3.4)

which satisfies
𝑏(𝑢𝑖, 𝑢𝑗) = 𝛿𝑖𝑗 .

Based on the finite element method, we should solve the discrete approximation of (3.2) as follows: Find
(𝜆̄ℎ, 𝑢̄ℎ) ∈ R× 𝑆ℎ(Ω) such that 𝑏(𝑢̄ℎ, 𝑢̄ℎ) = 1 and

𝑎(𝑢̄ℎ, 𝑣ℎ) = 𝜆̄ℎ𝑏(𝑢̄ℎ, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑆ℎ(Ω). (3.5)

From the work of [6, 17], we know that (3.5) also has an eigenvalue sequence, which is expressed as follows:

0 < 𝜆̄1,ℎ ≤ 𝜆̄2,ℎ ≤ · · · ≤ 𝜆̄𝑘,ℎ ≤ · · · ≤ 𝜆̄𝑁ℎ,ℎ, (3.6)

and it has a corresponding eigenfunction sequence, which is expressed as follows:

𝑢̄1,ℎ, 𝑢̄2,ℎ, · · · , 𝑢̄𝑘,ℎ, · · · , 𝑢̄𝑁ℎ,ℎ, (3.7)

where 𝑏(𝑢̄𝑖,ℎ, 𝑢̄𝑗,ℎ) = 𝛿𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑁ℎ (𝑁ℎ denotes the dimension of 𝑆ℎ(Ω)).
We then define the eigenfunction set with respect to the eigenvalue 𝜆𝑖 in the following way:

𝑀(𝜆𝑖) =
{︁
𝑤 ∈ 𝐻1(Ω), 𝑤 is an eigenfunction of (3.2), which corresponds to 𝜆𝑖, ‖𝑤‖0,𝜕Ω = 1

}︁
. (3.8)

From the works of [6, 17], we obtain the following error estimates for the Steklov eigenvalue problem (3.2).

Lemma 3.1. For any eigenpair approximation (𝜆̄𝑖,ℎ, 𝑢̄𝑖,ℎ) of (3.5), there exists an eigenfunction 𝑢𝑖 of the
Steklov eigenvalue problem (3.2), which corresponds to 𝜆𝑖, such that ‖𝑢𝑖‖0,𝜕Ω = 1 and

‖𝑢𝑖 − 𝑢̄𝑖,ℎ‖1,Ω . 𝛿ℎ(𝜆𝑖), (3.9)
‖𝑢𝑖 − 𝑢̄𝑖,ℎ‖0,𝜕Ω . 𝜌Ω(ℎ)𝛿ℎ(𝜆𝑖), (3.10)

|𝜆𝑖 − 𝜆̄𝑖,ℎ| . 𝛿2ℎ(𝜆𝑖), (3.11)

where
𝛿ℎ(𝜆𝑖) = sup

𝑤∈𝑀(𝜆𝑖)

inf
𝑣∈𝑆ℎ(Ω)

‖𝑤 − 𝑣‖1,Ω.
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Figure 2. 𝐺 ⊂⊂ 𝐷 ⊂ Ω.

4. Local defect-correction method based on multilevel discretization for
solving the Steklov eigenvalue problem

In this section, we introduce the local defect-correction method based on multilevel discretization for solving
the Steklov eigenvalue problem. To describe the algorithm, we need to construct a multigrid mesh sequence. 𝒯𝐻
represents a coarse triangulation of the domain Ω. We then construct an initial mesh 𝒯ℎ1 which can be chosen
as 𝒯𝐻 or as a uniform refinement of 𝒯𝐻 . We can then construct a mesh sequence 𝒯ℎ𝑘

, 𝑘 = 2, 3, · · · , 𝑛, where
we obtain 𝒯ℎ𝑘

from 𝒯ℎ𝑘−1 through a one-time uniform refinement, which means that all the mesh elements of
𝒯ℎ𝑘−1 are refined at the same time. We then obtain a mesh sequence that satisfies the following:

𝒯𝐻(Ω) ⊂ 𝒯ℎ1(Ω) ⊂ · · · ⊂ 𝒯ℎ𝑘
(Ω) ⊂ 𝒯ℎ𝑘+1(Ω) ⊂ · · · ⊂ 𝒯ℎ𝑛

(Ω),

Based on the mesh sequence, we can then construct the corresponding finite element space sequence that satisfies
the following:

𝑆𝐻(Ω) ⊂ 𝑆ℎ1(Ω) ⊂ · · · ⊂ 𝑆ℎ𝑘(Ω) ⊂ 𝑆ℎ𝑘+1(Ω) ⊂ · · · ⊂ 𝑆ℎ𝑛(Ω). (4.1)

In this section, we first elucidate how to execute the algorithm in one level of the finite element space, after
which we propose a complete algorithm for the multigrid space sequence.

4.1. One step of the local defect-correction method

In this subsection, we demonstrate how to perform the local defect-correction method in the finite element
space 𝑆ℎ𝑘+1(Ω). Based on the coarsest triangulation 𝒯𝐻(Ω), we divide Ω into a number of disjoint subdomains
𝐷1, · · · , 𝐷𝑚 such that

⋃︀𝑚
𝑗=1𝐷𝑗 = Ω̄, 𝐷𝑖 ∩𝐷𝑗 = ∅, after which we enlarge and reduce each 𝐷𝑗 to obtain Ω𝑗 and

𝐺𝑗 , which both align with 𝒯𝐻(Ω). We then derive a sequence of subdomains 𝐺𝑗 ⊂⊂ 𝐷𝑗 ⊂ Ω𝑗 ⊂ Ω, 𝑗 = 1, · · · ,𝑚
and 𝐺𝑚+1 = Ω ∖ (

⋃︀𝑚
𝑗=1𝐺𝑗) (see Fig. 2).

In this study, the decomposition is assumed to satisfy the following:

𝑚∑︁
𝑗=1

‖𝑣‖2𝑙,Ω𝑗
. ‖𝑣‖2𝑙,Ω and

𝑚∑︁
𝑗=1

‖𝑣‖2𝑙,𝜕Ω𝑗∩𝜕Ω . ‖𝑣‖
2
𝑙,𝜕Ω. (4.2)

Next, we briefly discuss the hidden coefficient of (4.2). Whether the coefficient depends on 𝑚 or not, the
theoretical analysis is still valid for the presented algorithm. But for a given problem in practice, it is easy to
guarantee that the coefficient is bounded by a constant as long as we control the enlarged regions appropriately.
(4.2) is trivially satisfied with constant 𝑚. But this is a quite rough estimate or a result for the extreme case
Ω𝑗 = Ω. In practice, we will not use such a strategy because if Ω𝑗 is too large, the solving efficiency will be
deteriorated.

If 𝐷𝑗 ⊂ Ω𝑗 , then there exist many strategies to derive Ω𝑗 . Though the theoretical analysis still holds true if
the coefficient is 𝑚, we suggest to slightly enlarge 𝐷𝑗 such that (4.2) can be bounded by a constant which is
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independent of 𝑚, which can be done by controlling the enlarged regions appropriately. Especially, if we just
choose Ω𝑗 = 𝐷𝑗 , then (4.2) holds true with the coefficient equaling 1.

We construct a domain decomposition to transform the large-scale equation into some small-scale subprob-
lems. We construct 𝐺𝑗 ⊂⊂ 𝐷𝑗 ⊂ Ω𝑗 because when we solve the subproblem in Ω𝑗 , we will adopt the zero
boundary condition which is different from the exact solution, so we need to choose the value of approximate
solution defined in the inner domain 𝐺𝑗 as the approximation. In the theoretical analysis, each subproblem is
analyzed independently, then the final global solution is a combination of these subproblems. Similar to the
classical domain decomposition method, the increase of 𝑚 will lead to the improvement of solving efficiency.

Assuming that an eigenpair approximation (𝜆ℎ𝑘
, 𝑢ℎ𝑘

) ∈ R× 𝑆ℎ𝑘(Ω) has been obtained, we demonstrate how
to obtain a more accurate approximation (𝜆ℎ𝑘+1 , 𝑢ℎ𝑘+1) ∈ R× 𝑆ℎ𝑘+1(Ω) in Algorithm 4.1.

Algorithm 4.1. One Step of the local defect-correction method.

(1) Solve the following linear boundary value problem in each subdomain: Find 𝑒𝑗ℎ𝑘+1
∈ 𝑆0

ℎ𝑘+1
(Ω𝑗), 𝑗 =

1, 2, · · · ,𝑚 such that

𝑎
(︁
𝑒𝑗ℎ𝑘+1

, 𝑣ℎ𝑘+1

)︁
= 𝜆ℎ𝑘

𝑏
(︀
𝑢ℎ𝑘

, 𝑣ℎ𝑘+1

)︀
− 𝑎
(︀
𝑢ℎ𝑘

, 𝑣ℎ𝑘+1

)︀
, ∀𝑣ℎ𝑘+1 ∈ 𝑆0

ℎ𝑘+1
(Ω𝑗). (4.3)

Set 𝑢̃𝑗ℎ𝑘+1
= 𝑢ℎ𝑘

+ 𝑒𝑗ℎ𝑘+1
∈ 𝑆ℎ𝑘+1(Ω𝑗).

(2) Solve the following boundary value problem in 𝐺𝑚+1: Find 𝑢̃𝑚+1
ℎ𝑘+1

∈ 𝑆ℎ𝑘+1(𝐺𝑚+1) such that

𝑢̃𝑚+1
ℎ𝑘+1

|𝜕𝐺𝑗∩𝜕𝐺𝑚+1 = 𝑢̃𝑗ℎ𝑘+1
, 𝑗 = 1, · · · ,𝑚 and

𝑎
(︁
𝑢̃𝑚+1
ℎ𝑘+1

, 𝑣ℎ𝑘+1

)︁
= 𝜆ℎ𝑘

𝑏
(︀
𝑢ℎ𝑘

, 𝑣ℎ𝑘+1

)︀
, ∀𝑣ℎ𝑘+1 ∈ 𝑆0

ℎ𝑘+1
(𝐺𝑚+1). (4.4)

(3) Construct 𝑢̃ℎ𝑘+1 ∈ 𝑆ℎ𝑘+1(Ω) such that 𝑢̃ℎ𝑘+1 = 𝑢̃𝑗ℎ𝑘+1
in 𝐺𝑗 , 𝑗 = 1, · · · ,𝑚+ 1.

(4) Define a new space 𝑆𝐻,ℎ𝑘+1 = 𝑆𝐻(Ω) + span{𝑢̃ℎ𝑘+1} and solve the following small-scale Steklov eigenvalue
problem: Find (𝜆ℎ𝑘+1 , 𝑢ℎ𝑘+1) ∈ R× 𝑆𝐻,ℎ𝑘+1(Ω) such that 𝑏(𝑢ℎ𝑘+1 , 𝑢ℎ𝑘+1) = 1 and

𝑎
(︀
𝑢ℎ𝑘+1 , 𝑣𝐻,ℎ𝑘+1

)︀
= 𝜆ℎ𝑘+1𝑏

(︀
𝑢ℎ𝑘+1 , 𝑣𝐻,ℎ𝑘+1

)︀
, ∀𝑣𝐻,ℎ𝑘+1 ∈ 𝑆𝐻,ℎ𝑘+1(Ω). (4.5)

Summarize the above four steps into(︀
𝜆ℎ𝑘+1 , 𝑢ℎ𝑘+1

)︀
= Correction

(︀
𝑆𝐻(Ω), 𝜆ℎ𝑘

, 𝑢ℎ𝑘
, 𝑆ℎ𝑘+1(Ω)

)︀
.

Next, we can prove rigorously that the new approximate eigenpair (𝜆ℎ𝑘+1 , 𝑢ℎ𝑘+1) ∈ R × 𝑆ℎ𝑘+1(Ω) obtained
by Algorithm 4.1 is more accurate than the given approximation (𝜆ℎ𝑘

, 𝑢ℎ𝑘
) ∈ R× 𝑆ℎ𝑘(Ω).

Theorem 4.2. Assume the given eigenpair approximation (𝜆ℎ𝑘
, 𝑢ℎ𝑘

) ∈ R× 𝑆ℎ𝑘(Ω) satisfies

‖𝑢− 𝑢ℎ𝑘
‖1,Ω . 𝜀ℎ𝑘

(𝜆), (4.6)
‖𝑢− 𝑢ℎ𝑘

‖0,𝜕Ω . 𝜌Ω(𝐻)𝜀ℎ𝑘
(𝜆), (4.7)

|𝜆− 𝜆ℎ𝑘
| . 𝜀2ℎ𝑘

(𝜆). (4.8)

If Assumptions A.1–A.3 hold, then the new approximation (𝜆ℎ𝑘+1 , 𝑢ℎ𝑘+1) ∈ R× 𝑆ℎ𝑘+1(Ω) obtained using Algo-
rithm 4.1 satisfies ⃦⃦

𝑢− 𝑢ℎ𝑘+1

⃦⃦
1,Ω
. 𝜀ℎ𝑘+1(𝜆), (4.9)⃦⃦

𝑢− 𝑢ℎ𝑘+1

⃦⃦
0,𝜕Ω

. 𝜌Ω(𝐻)𝜀ℎ𝑘+1(𝜆), (4.10)

|𝜆− 𝜆ℎ𝑘+1 | . 𝜀2ℎ𝑘+1
(𝜆), (4.11)

where 𝜀ℎ𝑘+1(𝜆) := (𝜌Ω(𝐻) + 𝑟Ω(𝐻))𝜀ℎ𝑘
(𝜆) + 𝜀2ℎ𝑘

(𝜆) + 𝛿ℎ𝑘+1(𝜆).
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Proof. From the error estimate (3.9) presented in Lemma 3.1 and triangle inequality, there holds⃦⃦
𝑢− 𝑢ℎ𝑘+1

⃦⃦
1,Ω
.
⃦⃦
𝑢− 𝑢̃ℎ𝑘+1

⃦⃦
1,Ω

≤
⃦⃦
𝑢− 𝑃ℎ𝑘+1𝑢

⃦⃦
1,Ω

+
⃦⃦
𝑢̃ℎ𝑘+1 − 𝑃ℎ𝑘+1𝑢

⃦⃦
1,Ω
, (4.12)

and ⃦⃦
𝑢̃ℎ𝑘+1 − 𝑃ℎ𝑘+1𝑢

⃦⃦2

1,Ω
=

𝑚∑︁
𝑗=1

⃦⃦⃦
𝑢̃𝑗ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦2

1,𝐺𝑗

+
⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦2

1,𝐺𝑚+1

, (4.13)

where the hidden constant in (4.12) depends on the exact eigenpair.
Next, we will divide the proof into four parts. In Part 1, we will prove the estimate for∑︀𝑚
𝑗=1

⃦⃦⃦
𝑢̃𝑗ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦2

1,𝐺𝑗

. In Part 2, we will prove the estimate for
⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦2

1,𝐺𝑚+1

. In Part 3, we

will prove the estimate for
⃦⃦
𝑢̃ℎ𝑘+1 − 𝑃ℎ𝑘+1𝑢

⃦⃦
1,Ω

. In Part 4, we will give the final conclusion based on the above
three parts and the standard finite element error estimates.

Part 1. From (2.10), (3.2) and (4.3),we have

𝑎
(︁
𝑢̃𝑗ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢, 𝑣
)︁

= 𝑏(𝜆ℎ𝑘
𝑢ℎ𝑘

− 𝜆𝑢, 𝑣), ∀𝑣 ∈ 𝑆0
ℎ𝑘+1

(Ω𝑗), 𝑗 = 1, 2, · · · ,𝑚.

Then from Lemma 2.4, we can derive⃦⃦⃦
𝑢̃𝑗ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1,𝐺𝑗

.
⃦⃦⃦
𝑢̃𝑗ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

0,Ω𝑗

+ ‖𝜆ℎ𝑘
𝑢ℎ𝑘

− 𝜆𝑢‖0,𝜕Ω∩𝜕Ω𝑗

.
⃦⃦⃦
𝑢̃𝑗ℎ𝑘+1

− 𝑢ℎ𝑘

⃦⃦⃦
0,Ω𝑗

+
⃦⃦
𝑢ℎ𝑘

− 𝑃ℎ𝑘+1𝑢
⃦⃦

0,Ω𝑗
+ ‖𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢‖0,𝜕Ω∩𝜕Ω𝑗

.
⃦⃦⃦
𝑒𝑗ℎ𝑘+1

⃦⃦⃦
0,Ω𝑗

+
⃦⃦
𝑢ℎ𝑘

− 𝑃ℎ𝑘+1𝑢
⃦⃦

0,Ω𝑗
+ ‖𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢‖0,𝜕Ω∩𝜕Ω𝑗

, (4.14)

where the hidden coefficient depends on the coefficient 𝒜 and 𝜑, and is independent of 𝑘 and mesh size.
We will estimate the first term

⃦⃦⃦
𝑒𝑗ℎ𝑘+1

⃦⃦⃦
0,Ω𝑗

of (4.14) based on Aubin–Nitsche technique: Given any 𝜓 ∈

𝐿2(Ω𝑗), there exists 𝑤 ∈ 𝐻1
Γ(Ω𝑗) such that

𝑎(𝑣, 𝑤) = (𝑣, 𝜓), ∀𝑣 ∈ 𝐻1
Γ(Ω𝑗). (4.15)

The associated discrete equations can be defined by: Given any 𝜓 ∈ 𝐿2(Ω𝑗), there exist 𝑤𝑗𝐻 ∈
𝑆0
𝐻(Ω𝑗), 𝑤

𝑗
ℎ𝑘+1

∈ 𝑆0
ℎ𝑘+1

(Ω𝑗) such that

𝑎
(︁
𝑣𝐻 , 𝑤

𝑗
𝐻

)︁
= (𝑣𝐻 , 𝜓), ∀𝑣𝐻 ∈ 𝑆0

𝐻(Ω𝑗), (4.16)

𝑎
(︁
𝑣ℎ𝑘+1 , 𝑤

𝑗
ℎ𝑘+1

)︁
=
(︀
𝑣ℎ𝑘+1 , 𝜓

)︀
, ∀𝑣ℎ𝑘+1 ∈ 𝑆0

ℎ𝑘+1
(Ω𝑗). (4.17)

Meanwhile, we know the following standard finite element error estimates hold true⃦⃦⃦
𝑤 − 𝑤𝑗ℎ𝑘+1

⃦⃦⃦
1,Ω𝑗

. 𝑟Ω𝑗
(ℎ𝑘+1)‖𝜓‖0,Ω𝑗

, (4.18)⃦⃦⃦
𝑤 − 𝑤𝑗𝐻

⃦⃦⃦
1,Ω𝑗

. 𝑟Ω𝑗
(𝐻)‖𝜓‖0,Ω𝑗

. (4.19)

From (2.10), (3.2), (3.5), (4.3), (4.16), (4.17) and 𝑆0
𝐻(Ω𝑗) ⊂ 𝑆0

ℎ𝑘
(Ω𝑗) ⊂ 𝑆0

ℎ𝑘+1
(Ω𝑗), we have(︁

𝑒𝑗ℎ𝑘+1
, 𝜓
)︁

= 𝑎
(︁
𝑒𝑗ℎ𝑘+1

, 𝑤𝑗ℎ𝑘+1

)︁
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= 𝑏
(︁
𝜆ℎ𝑘

𝑢ℎ𝑘
, 𝑤𝑗ℎ𝑘+1

)︁
− 𝑎
(︁
𝑢ℎ𝑘

, 𝑤𝑗ℎ𝑘+1

)︁
= 𝑏
(︁
𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢,𝑤𝑗ℎ𝑘+1

)︁
+ 𝑎
(︁
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

, 𝑤𝑗ℎ𝑘+1

)︁
= 𝑏
(︁
𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢,𝑤𝑗ℎ𝑘+1

− 𝑤𝑗𝐻

)︁
+ 𝑏
(︁
𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢,𝑤𝑗𝐻

)︁
+ 𝑎
(︁
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

, 𝑤𝑗ℎ𝑘+1

)︁
= 𝑏
(︁
𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢,𝑤𝑗ℎ𝑘+1

− 𝑤𝑗𝐻

)︁
+ 𝑎
(︁
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

, 𝑤𝑗ℎ𝑘+1
− 𝑤𝑗𝐻

)︁
. (4.20)

Taking 𝜓 = 𝑒𝑗ℎ𝑘+1
in (4.20), combining (4.18), (4.19) and (4.20), we have⃦⃦⃦

𝑢̃𝑗ℎ𝑘+1
− 𝑢ℎ𝑘

⃦⃦⃦2

0,Ω𝑗

=
(︁
𝑒𝑗ℎ𝑘+1

, 𝑒𝑗ℎ𝑘+1

)︁
= 𝑏
(︁
𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢,𝑤𝑗ℎ𝑘+1

− 𝑤𝑗𝐻

)︁
+ 𝑎
(︁
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

, 𝑤𝑗ℎ𝑘+1
− 𝑤𝑗𝐻

)︁
. ‖𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢‖0,𝜕Ω∩𝜕Ω𝑗

⃦⃦⃦
𝑤𝑗ℎ𝑘+1

− 𝑤𝑗𝐻

⃦⃦⃦
0,𝜕Ω∩𝜕Ω𝑗

+
⃦⃦
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

⃦⃦
1,Ω𝑗

⃦⃦⃦
𝑤𝑗ℎ𝑘+1

− 𝑤𝑗𝐻

⃦⃦⃦
1,Ω𝑗

.

(︂⃦⃦⃦
𝑤 − 𝑤𝑗ℎ𝑘+1

⃦⃦⃦
1,Ω𝑗

+
⃦⃦⃦
𝑤 − 𝑤𝑗𝐻

⃦⃦⃦
1,Ω𝑗

)︂(︁⃦⃦
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

⃦⃦
1,Ω𝑗

+ ‖𝜆ℎ𝑘
𝑢ℎ𝑘

− 𝜆𝑢‖0,𝜕Ω∩𝜕Ω𝑗

)︁
. 𝑟Ω𝑗

(𝐻)
⃦⃦⃦
𝑢̃𝑗ℎ𝑘+1

− 𝑢ℎ𝑘

⃦⃦⃦
0,Ω𝑗

(︁⃦⃦
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

⃦⃦
1,Ω𝑗

+ ‖𝜆ℎ𝑘
𝑢ℎ𝑘

− 𝜆𝑢‖0,𝜕Ω∩𝜕Ω𝑗

)︁
,

which yields ⃦⃦⃦
𝑢̃𝑗ℎ𝑘+1

− 𝑢ℎ𝑘

⃦⃦⃦
0,Ω𝑗

. 𝑟Ω𝑗
(𝐻)

(︁⃦⃦
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

⃦⃦
1,Ω𝑗

+ ‖𝜆ℎ𝑘
𝑢ℎ𝑘

− 𝜆𝑢‖0,𝜕Ω∩𝜕Ω𝑗

)︁
. (4.21)

Here, the hidden coefficient is inherited from (4.18) which depends on the coefficient 𝒜 and 𝜑, but is
independent of 𝑘 and mesh size.
Combining (4.14) and (4.21), we can derive the following estimate⃦⃦⃦
𝑢̃𝑗ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1,𝐺𝑗

. 𝑟Ω𝑗 (𝐻)
⃦⃦
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

⃦⃦
1,Ω𝑗

+
⃦⃦
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

⃦⃦
0,Ω𝑗

+‖𝜆ℎ𝑘
𝑢ℎ𝑘

− 𝜆𝑢‖0,𝜕Ω∩𝜕Ω𝑗
. (4.22)

Part 2. In this part, we come to estimate
⃒⃒⃒
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃒⃒⃒
1,𝐺𝑚+1

. Based on (2.10), (3.2) and (4.4), there holds

𝑎
(︁
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢, 𝑣ℎ𝑘+1

)︁
= 𝑏
(︀
𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢, 𝑣ℎ𝑘+1

)︀
, ∀𝑣ℎ𝑘+1 ∈ 𝑆0

ℎ𝑘+1
(𝐺𝑚+1). (4.23)

Let 𝑎𝐺𝑚+1(·, ·) denote the restriction of 𝑎(·, ·) on 𝐺𝑚+1. For any 𝑣 ∈ 𝑆0
ℎ𝑘+1

(𝐺𝑚+1), there holds⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦2

1,𝐺𝑚+1

. 𝑎𝐺𝑚+1

(︁
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢, 𝑢̃
𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
)︁

. 𝑎𝐺𝑚+1

(︁
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢, 𝑢̃
𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢− 𝑣
)︁

+ 𝑏(𝜆ℎ𝑘
𝑢ℎ𝑘

− 𝜆𝑢, 𝑣)

.
⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1,𝐺𝑚+1

⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢− 𝑣
⃦⃦⃦

1,𝐺𝑚+1

+ ‖𝜆ℎ𝑘
𝑢ℎ𝑘

− 𝜆𝑢‖0,𝜕Ω∩𝜕𝐺𝑚+1
‖𝑣‖0,𝜕Ω∩𝜕𝐺𝑚+1

.
⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1,𝐺𝑚+1

⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢− 𝑣
⃦⃦⃦

1,𝐺𝑚+1

+ ‖𝜆ℎ𝑘
𝑢ℎ𝑘

− 𝜆𝑢‖0,𝜕Ω∩𝜕𝐺𝑚+1
‖𝑣‖1,𝐺𝑚+1

.
⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1,𝐺𝑚+1

inf
𝜓∈𝑆0

ℎ𝑘+1
(𝐺𝑚+1)

⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢− 𝜓
⃦⃦⃦

1,𝐺𝑚+1

+ ‖𝜆ℎ𝑘
𝑢ℎ𝑘

− 𝜆𝑢‖0,𝜕Ω∩𝜕𝐺𝑚+1

(︂⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1,𝐺𝑚+1
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+ inf
𝜓∈𝑆0

ℎ𝑘+1
(𝐺𝑚+1)

⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢− 𝜓
⃦⃦⃦

1,𝐺𝑚+1

)︃
. (4.24)

Further using Lemma 2.1 and trace theorem, (4.24) can be written as⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦2

1,𝐺𝑚+1

.
⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1,𝐺𝑚+1

⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1/2,𝜕𝐺𝑚+1∖𝜕Ω

+ ‖𝜆ℎ𝑘
𝑢ℎ𝑘

− 𝜆𝑢‖0,𝜕Ω∩𝜕𝐺𝑚+1

(︂⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1,𝐺𝑚+1

+
⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1/2,𝜕𝐺𝑚+1∖𝜕Ω

)︂
.
⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1,𝐺𝑚+1

(︂⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1/2,𝜕𝐺𝑚+1∖𝜕Ω

+‖𝜆ℎ𝑘
𝑢ℎ𝑘

− 𝜆𝑢‖0,𝜕Ω∩𝜕𝐺𝑚+1

)︂
+ ‖𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢‖20,𝜕Ω∩𝜕𝐺𝑚+1

+
⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦2

1/2,𝜕𝐺𝑚+1∖𝜕Ω
, (4.25)

where the hidden coefficient depends on the coefficient 𝒜, 𝜑 and Ω, but is independent of 𝑘 and mesh size.
Set

𝑥 :=
⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1,𝐺𝑚+1

,

𝑚 :=
⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦

1/2,𝜕𝐺𝑚+1∖𝜕Ω
+
⃦⃦⃦
𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢

⃒⃒⃒
0,𝜕Ω∩𝜕𝐺𝑚+1

,

𝑛 :=
⃦⃦⃦
𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢

⃒⃒⃒2
0,𝜕Ω∩𝜕𝐺𝑚+1

+
⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦2

1/2,𝜕𝐺𝑚+1∖𝜕Ω
.

Then (4.25) can be simplified to
𝑥2 ≤ 𝐶𝑚𝑥+ 𝐶𝑛,

so we obtain

𝑥 ≤ 𝐶𝑚+
√
𝐶2𝑚2 + 4𝐶𝑛

2
. 𝑚+

√
𝑛. (4.26)

Since ⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦2

1
2 ,𝜕𝐺𝑚+1∖𝜕Ω

.
𝑚∑︁
𝑗=1

⃦⃦⃦
𝑢̃𝑗ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦2

1
2 ,𝜕𝐺𝑗

.
𝑚∑︁
𝑗=1

⃦⃦⃦
𝑢̃𝑗ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦2

1,𝐺𝑗

. (4.27)

Combining (4.26) and (4.27), we can derive

⃦⃦⃦
𝑢̃𝑚+1
ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦2

1,𝐺𝑚+1

.
𝑚∑︁
𝑗=1

⃦⃦⃦
𝑢̃𝑗ℎ𝑘+1

− 𝑃ℎ𝑘+1𝑢
⃦⃦⃦2

1,𝐺𝑗

+ ‖𝜆ℎ𝑘
𝑢ℎ𝑘

− 𝜆𝑢‖20,𝜕Ω∩𝜕𝐺𝑚+1
, (4.28)

where the hidden coefficient depends on the coefficient 𝒜, 𝜑 and Ω, but is independent of 𝑘 and mesh size.
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Part 3. From (4.2), (4.13), (4.22) and (4.28), we obtain

⃦⃦
𝑢̃ℎ𝑘+1 − 𝑃ℎ𝑘+1𝑢

⃦⃦2

1,Ω
.

𝑚∑︁
𝑗=1

(︁
𝑟2Ω𝑗

(𝐻)
⃦⃦
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

⃦⃦2

1,Ω𝑗
+
⃦⃦
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

⃦⃦2

0,Ω𝑗

)︁
+ ‖𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢‖20,𝜕Ω

. 𝑟2Ω(𝐻)
⃦⃦
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

⃦⃦2

1,Ω
+
⃦⃦
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

⃦⃦2

0,Ω
+ ‖𝜆ℎ𝑘

𝑢ℎ𝑘
− 𝜆𝑢‖20,𝜕Ω

. 𝑟2Ω(𝐻)‖𝑢ℎ𝑘
− 𝑢‖21,Ω + 𝑟2Ω(𝐻)

⃦⃦
𝑢− 𝑃ℎ𝑘+1𝑢

⃦⃦2

1,Ω
+
⃦⃦
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

⃦⃦2

0,Ω

+ |𝜆− 𝜆ℎ𝑘
|2 + ‖𝑢ℎ𝑘

− 𝑢‖20,𝜕Ω. (4.29)

Next, we come to estimate
⃦⃦
𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

⃦⃦2

0,Ω
involved in (4.29),⃦⃦

𝑃ℎ𝑘+1𝑢− 𝑢ℎ𝑘

⃦⃦
0,Ω

≤
⃦⃦
𝑃ℎ𝑘+1𝑢− 𝑢

⃦⃦
0,Ω

+ ‖𝑢− 𝑃𝐻,ℎ𝑘
𝑢‖0,Ω + ‖𝑃𝐻,ℎ𝑘

𝑢− 𝑢ℎ𝑘
‖0,Ω

. 𝑟Ω(ℎ𝑘+1)𝛿ℎ𝑘+1 + 𝑟Ω(𝐻)‖𝑢− 𝑃𝐻,ℎ𝑘
𝑢‖1,Ω + ‖𝑃𝐻,ℎ𝑘

𝑢− 𝑢ℎ𝑘
‖1,Ω

. 𝑟Ω(ℎ𝑘+1)𝛿ℎ𝑘+1 + 𝑟Ω(𝐻)‖𝑢− 𝑢ℎ𝑘
‖1,Ω + ‖𝑃𝐻,ℎ𝑘

𝑢− 𝑢ℎ𝑘
‖1,Ω, (4.30)

where the projection operator 𝑃𝐻,ℎ𝑘
: 𝐻1(Ω) → 𝑆𝐻,ℎ𝑘 is defined by

𝑎(𝑢− 𝑃𝐻,ℎ𝑘
𝑢, 𝑣) = 0, ∀𝑣 ∈ 𝑆𝐻,ℎ𝑘 . (4.31)

Based on (4.31), we can derive the following estimate

‖𝑃𝐻,ℎ𝑘
𝑢− 𝑢ℎ𝑘

‖21,Ω . 𝑎(𝑃𝐻,ℎ𝑘
𝑢− 𝑢ℎ𝑘

, 𝑃𝐻,ℎ𝑘
𝑢− 𝑢ℎ𝑘

)

= 𝑎(𝑢− 𝑢ℎ𝑘
, 𝑃𝐻,ℎ𝑘

𝑢− 𝑢ℎ𝑘
)

= 𝑏(𝜆𝑢− 𝜆ℎ𝑘
𝑢ℎ𝑘

, 𝑃𝐻,ℎ𝑘
𝑢− 𝑢ℎ𝑘

)

.
(︁
‖𝑢− 𝑢ℎ𝑘

‖0,𝜕Ω + |𝜆− 𝜆ℎ𝑘
|
)︁
‖𝑃𝐻,ℎ𝑘

𝑢− 𝑢ℎ𝑘
‖1,Ω, (4.32)

that is

‖𝑃𝐻,ℎ𝑘
𝑢− 𝑢ℎ𝑘

‖1,Ω . ‖𝑢− 𝑢ℎ𝑘
‖0,𝜕Ω + |𝜆− 𝜆ℎ𝑘

|
. 𝜌Ω(𝐻)‖𝑢− 𝑢ℎ𝑘

‖1,Ω + |𝜆− 𝜆ℎ𝑘
|. (4.33)

From (4.29), (4.30) and (4.33), we have⃦⃦
𝑢̃ℎ𝑘+1 − 𝑃ℎ𝑘+1𝑢

⃦⃦
1,Ω
. (𝜌Ω(𝐻) + 𝑟Ω(𝐻))‖𝑢ℎ𝑘

− 𝑢‖1,Ω + 𝑟Ω(𝐻)
⃦⃦
𝑢− 𝑃ℎ𝑘+1𝑢

⃦⃦
1,Ω

+ |𝜆− 𝜆ℎ𝑘
|+ 𝑟Ω(ℎ𝑘+1)𝛿ℎ𝑘+1(𝜆). (4.34)

where the hidden coefficient depends on the coefficient 𝒜, 𝜑, Ω and the exact eigenpair, but is independent
of 𝑘 and mesh size.

Part 4. Then from (4.8), (4.12) and (4.34), there holds⃦⃦
𝑢− 𝑢̃ℎ𝑘+1

⃦⃦
1,Ω
.
⃦⃦
𝑢− 𝑃ℎ𝑘+1𝑢

⃦⃦
1,Ω

+ |𝜆− 𝜆ℎ𝑘
|+ (𝜌Ω(𝐻) + 𝑟Ω(𝐻))‖𝑢ℎ𝑘

− 𝑢‖1,Ω + 𝑟Ω(ℎ𝑘+1)𝛿ℎ𝑘+1(𝜆)

. (𝜌Ω(𝐻) + 𝑟Ω(𝐻))𝜀ℎ𝑘
(𝜆) + 𝜀2ℎ𝑘

(𝜆) + 𝛿ℎ𝑘+1(𝜆)
. 𝜀ℎ𝑘+1 ,

where 𝜀ℎ𝑘+1 := (𝜌Ω(𝐻) + 𝑟Ω(𝐻))𝜀ℎ𝑘
(𝜆) + 𝜀2ℎ𝑘

(𝜆) + 𝛿ℎ𝑘+1(𝜆), and the hidden coefficient depends on the
coefficient 𝒜, 𝜑, Ω and the exact eigenpair, but is independent of 𝑘 and mesh size.
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From Lemma 3.1, we have ⃦⃦
𝑢− 𝑢ℎ𝑘+1

⃦⃦
1,Ω
.
⃦⃦
𝑢− 𝑢̃ℎ𝑘+1

⃦⃦
1,Ω
. 𝜀ℎ𝑘+1 . (4.35)

Since
𝜌Ω(𝐻) = sup

𝑓∈𝐿2(𝜕Ω),‖𝑓‖0,𝜕Ω=1

inf
𝑣ℎ∈𝑆𝐻,ℎ𝑘+1

‖𝑇𝑓 − 𝑣ℎ‖1,Ω ≤ 𝜌Ω(𝐻),

further using Lemma 3.1 and (4.35), we can obtain⃦⃦
𝑢− 𝑢ℎ𝑘+1

⃦⃦
0,𝜕Ω

. 𝜌Ω(𝐻)
⃦⃦
𝑢− 𝑢ℎ𝑘+1

⃦⃦
1,Ω

≤ 𝜌Ω(𝐻)
⃦⃦
𝑢− 𝑢ℎ𝑘+1

⃦⃦
1,Ω
,

and ⃒⃒
𝜆− 𝜆ℎ𝑘+1

⃒⃒
.
⃦⃦
𝑢− 𝑢ℎ𝑘+1

⃦⃦2

1,Ω
. 𝜀2ℎ𝑘+1

(𝜆).

Then we complete the proof.

�

4.2. Local defect-correction method based on multilevel discretization

Based on Algorithm 4.1, we come to propose the local defect-correction method based on multilevel discretiza-
tion for solving the Steklov eigenvalue problem in this subsection. Suppose 𝒯ℎ𝑘

(Ω) is obtained from 𝒯ℎ𝑘−1(Ω)
through regular refinement such that the mesh sizes satisfy ℎ𝑘 = 1

𝑞ℎ𝑘−1, 𝑘 ≥ 2, and the following relationship
holds true for a p-order finite element method:

𝛿ℎ𝑘
(𝜆) ≈ 1

𝑞𝑝
𝛿ℎ𝑘−1(𝜆), 𝑞 > 1. (4.36)

Based on Algorithm 4.1, we can obtain the following local defect-correction algorithm.

Algorithm 4.3. Local defect-correction method based on multilevel discretization.

(1) Find (𝜆ℎ1 , 𝑢ℎ1) ∈ R× 𝑆ℎ1(Ω) such that 𝑏(𝑢ℎ1 , 𝑢ℎ1) = 1 and

𝑎(𝑢ℎ1 , 𝑣ℎ1) = 𝜆ℎ1𝑏(𝑢ℎ1 , 𝑣ℎ1), ∀𝑣ℎ1 ∈ 𝑉ℎ1 .

(2) For 𝑘 = 1, · · · , 𝑛− 1, we obtain a new eigenpair approximation
(︀
𝜆ℎ𝑘+1 , 𝑢ℎ𝑘+1

)︀
∈ R× 𝑆ℎ𝑘+1(Ω) through:(︀

𝜆ℎ𝑘+1 , 𝑢ℎ𝑘+1

)︀
= Correction

(︀
𝑆𝐻(Ω), 𝜆ℎ𝑘

, 𝑢ℎ𝑘
, 𝑆ℎ𝑘+1(Ω)

)︀
.

End For.
Finally, we obtain (𝜆ℎ𝑛

, 𝑢ℎ𝑛
) ∈ R× 𝑆ℎ𝑛(Ω) in the finest space.

Theorem 4.4. If Assumptions A.1–A.3 hold, there exists an eigenfunction 𝑢 ∈ 𝑀(𝜆) such that the resultant
eigenpair approximation (𝜆ℎ𝑛

, 𝑢ℎ𝑛
) of Algorithm 4.3 has the following error estimate:

‖𝑢− 𝑢ℎ𝑛‖1,Ω . 𝛿ℎ𝑛(𝜆), (4.37)
‖𝑢− 𝑢ℎ𝑛

‖0,𝜕Ω . 𝜌Ω(𝐻)𝛿ℎ𝑛
(𝜆), (4.38)

|𝜆− 𝜆ℎ𝑛
| . 𝛿2ℎ𝑛

(𝜆), (4.39)

when the mesh size of 𝒯𝐻 is small enough such that 𝐶𝑞𝑝(𝜌Ω(𝐻) + 𝑟Ω(𝐻)) < 1 for a mesh independent constant
𝐶 which only depends on the coefficient 𝒜, 𝜑, Ω and the exact eigenpair.
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Proof. Since we solve the Steklov eigenvalue problem directly in the initial space 𝑉ℎ1 , using Lemma 3.1, there
exists an eigenfunction 𝑢 ∈𝑀(𝜆) such that

‖𝑢− 𝑢ℎ1‖1,Ω . 𝛿ℎ1(𝜆), (4.40)
‖𝑢− 𝑢ℎ1‖0,𝜕Ω . 𝜌Ω(ℎ1)𝛿ℎ1(𝜆), (4.41)

|𝜆− 𝜆ℎ1 | . 𝛿2ℎ1
(𝜆). (4.42)

Let 𝜀ℎ1(𝜆) := 𝛿ℎ1(𝜆). From Theorem 4.2, the following estimates hold for 1 ≤ 𝑘 ≤ 𝑛− 1 :

𝜀ℎ𝑘+1(𝜆) . (𝜌Ω(𝐻) + 𝑟Ω(𝐻))𝜀ℎ𝑘
(𝜆) + 𝜀2ℎ𝑘

(𝜆) + 𝛿ℎ𝑘+1(𝜆)
. (𝜌Ω(𝐻) + 𝑟Ω(𝐻))𝜀ℎ𝑘

(𝜆) + 𝛿ℎ𝑘+1(𝜆). (4.43)

Using (4.43) iteratively, we have

𝜀ℎ𝑛
(𝜆) . (𝜌Ω(𝐻) + 𝑟Ω(𝐻))𝜀ℎ𝑛−1(𝜆) + 𝛿ℎ𝑛

(𝜆)
. (𝜌Ω(𝐻) + 𝑟Ω(𝐻))2𝜀ℎ𝑛−2(𝜆) + (𝜌Ω(𝐻) + 𝑟Ω(𝐻))𝛿ℎ𝑛−1(𝜆) + 𝛿ℎ𝑛(𝜆)

.
𝑛∑︁
𝑘=1

(𝜌Ω(𝐻) + 𝑟Ω(𝐻))𝑛−𝑘𝛿ℎ𝑘
(𝜆). (4.44)

From Theorem 4.2, (4.36) and (4.44)

‖𝑢− 𝑢ℎ𝑛
‖1,Ω . 𝜀ℎ𝑛

(𝜆) .
𝑛∑︁
𝑘=1

(𝜌Ω(𝐻) + 𝑟Ω(𝐻))𝑛−𝑘𝛿ℎ𝑘
(𝜆)

.
𝑛∑︁
𝑘=1

(𝑞𝑝(𝜌Ω(𝐻) + 𝑟Ω(𝐻)))𝑛−𝑘𝛿ℎ𝑛
(𝜆)

.
𝛿ℎ𝑛

(𝜆)
1− 𝑞𝑝(𝜌Ω(𝐻) + 𝑟Ω(𝐻))

. 𝛿ℎ𝑛(𝜆),

which is just the desired result (4.37). The remaining two results (4.38) and (4.39) can be obtained directly
from Lemma 3.1. �

4.3. Estimate of computational work

In Algorithm 4.3, we use a local defect-correction scheme to solve the Steklov eigenvalue problem. As a
result, solving the Steklov eigenvalue problem requires almost the same work as solving the corresponding linear
boundary value problem. In this subsection, we aim to present the computation work of Algorithm 4.3. Let

𝑁 𝑗
𝑘 = dim 𝑆0

ℎ𝑘
(Ω𝑗) and 𝑁𝑘 = dim 𝑆ℎ𝑘(Ω) for 𝑘 = 1, · · ·𝑛, 𝑗 = 1, · · · ,𝑚+ 1.

The following then holds

𝑁 𝑗
𝑘 ≈

(︂
1
𝑞

)︂𝑑(𝑛−𝑘)
𝑁 𝑗
𝑛 and 𝑁 𝑗

𝑘 ≈
(︂
𝑁𝑘
𝑚

)︂
for 𝑘 = 1, · · · , 𝑛, 𝑗 = 1, · · · ,𝑚+ 1. (4.45)

Theorem 4.5. We assume that solving the Steklov eigenvalue problem in the coarsest spaces 𝑆𝐻(Ω) and
𝑆ℎ1(Ω) requires work 𝑂(𝑀𝐻) and 𝑂(𝑀ℎ1), respectively, and solving the boundary value problem in each
space 𝑆0

ℎ𝑘
(Ω𝑗) requires work 𝑂(𝑁 𝑗

𝑘), where 𝑘 = 1, · · · , 𝑛, 𝑗 = 1, · · · ,𝑚 + 1. If Assumptions A.1–A.3
hold, then the computational work of each computing node involved in Algorithm 4.3 can then be controlled
using 𝑂(𝑁𝑛/𝑚+𝑀𝐻 log𝑁𝑛 +𝑀ℎ1). Furthermore, the computational work becomes 𝑂(𝑁𝑛/𝑚) provided that
𝑀𝐻 ≪ 𝑁𝑛/𝑚,𝑀ℎ1 ≤ 𝑁𝑛/𝑚.
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Proof. Let us use 𝑊𝑘 to denote the computational work of Algorithm 4.3 in finite element space 𝑆ℎ𝑘(Ω). Then
we have

𝑊1 = 𝑂(𝑀ℎ1) and 𝑊𝑘 = 𝑂(𝑁𝑘/𝑚+𝑀𝐻) for 𝑘 ≥ 2. (4.46)

Using (4.45) and (4.46), the total work of Algorithm 4.3 can be estimated as follows:

Total work = 𝑂

(︃
𝑀ℎ1 +

𝑛∑︁
𝑘=2

(𝑁𝑘/𝑚+𝑀𝐻)

)︃

= 𝑂

(︃
𝑛∑︁
𝑘=2

𝑁𝑘/𝑚+ (𝑛− 1)𝑀𝐻 +𝑀ℎ1

)︃

= 𝑂

(︃
𝑛∑︁
𝑘=2

(︂
1
𝑞

)︂𝑑(𝑛−𝑘)
𝑁𝑛/𝑚+ (𝑛− 1)𝑀𝐻 +𝑀ℎ1

)︃
= 𝑂(𝑁𝑛/𝑚+𝑀𝐻 log𝑁𝑛 +𝑀ℎ1). (4.47)

Then we derive the desired result. Additionally, if 𝑀𝐻 ≪ 𝑁𝑛/𝑚,𝑀ℎ1 ≤ 𝑁𝑛/𝑚, equation (4.47) can be controlled
by 𝑂(𝑁𝑛/𝑚). �

5. Numerical result

In this section, we propose two numerical experiments to demonstrate the efficiency of Algorithm 4.3.

5.1. Example 1

In the first example, using Algorithm 4.3, we solve the following Steklov eigenvalue problem in the computing
domain Ω = (0, 1)2: Find (𝜆, 𝑢) ∈ R×𝐻1(Ω) such that{︂−∆𝑢+ 𝑢 = 0, in Ω,

∇𝑢 · 𝑛 = 𝜆𝑢, on 𝜕Ω.
(5.1)

In the first step, we divide the computing domain Ω into four disjoint subdomains 𝐷1, 𝐷2, 𝐷3, 𝐷4 which
satisfy ∪4

𝑗=1𝐷̄𝑗 = Ω̄, 𝐷𝑖 ∩ 𝐷𝑗 = ∅. Herein, we set 𝐷1 = (0.0, 0.5) × (0.0, 0.5), 𝐷2 = (0.5, 1.0) × (0.0, 0.5),
𝐷3 = (0.0, 0.5)× (0.5, 1.0), 𝐷4 = (0.5, 1.0)× (0.5, 1.0). We then set 𝐺𝑗 and Ω𝑗 satisfying 𝐺𝑗 ⊂⊂ 𝐷𝑗 ⊂ Ω𝑗 ⊂ Ω.
Herein, we set Ω1 = (0.0, 0.625) × (0.0, 0.625), Ω2 = (0.375, 1.0) × (0.0, 0.625), Ω3 = (0.0, 0.625) × (0.375, 1.0),
Ω4 = (0.375, 1.0)×(0.375, 1.0),𝐺1 = (0.0, 0.375)×(0.0, 0.375),𝐺2 = (0.625, 1.0)×(0.0, 0.375),𝐺3 = (0.0, 0.375)×
(0.625, 1.0), 𝐺4 = (0.625, 1.0)× (0.625, 1.0), and 𝐺5 = Ω∖(∪4

𝑗=1𝐺̄𝑗).
In this example, we investigate the first eigenvalue. We use the linear finite element space which comprises

piecewise linear polynomials on a nested multigrid mesh sequence. The mesh sequence is produced through
uniform refinement. Therefore, the refinement index is 𝑞 = 2. In our numerical experiment, the coarsest space
𝑆𝐻(Ω) is the same as the initial space 𝑆ℎ1(Ω). The corresponding mesh size is set to 𝐻 = ℎ1 = 1/8. The initial
mesh is presented in Figure 3.

In this experiment, both Algorithm 4.3 and the direct finite element method (i.e. solve the Steklov eigenvalue
problem directly in the final finite element space) are used to solve the Steklov eigenvalue problem (5.1). The
corresponding numerical error estimates are presented in Figure 3, which shows that Algorithm 4.3 can derive
an optimal estimate similar to that derived using the direct finite element method.

5.2. Example 2

In the second example, we solve the following Steklov eigenvalue problem by Algorithm 4.3 in the computing
domain Ω = (0, 1)3: Find (𝜆, 𝑢) ∈ R×𝐻1(Ω) such that{︂−∇ · (𝒜∇𝑢) + 𝜑𝑢 = 0, in Ω,

(𝒜∇𝑢) · 𝑛 = 𝜆𝑢, on 𝜕Ω,
(5.2)
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Figure 3. The initial mesh (left) and error estimates (right) of Algorithm 4.3 for Example 1.

where

𝒜 =

⎛⎜⎜⎝
1 +

(︀
𝑥1 − 1

2

)︀2 (︀
𝑥1 − 1

2

)︀(︀
𝑥2 − 1

2

)︀ (︀
𝑥1 − 1

2

)︀(︀
𝑥3 − 1

2

)︀(︀
𝑥1 − 1

2

)︀(︀
𝑥2 − 1

2

)︀
1 +

(︀
𝑥2 − 1

2

)︀2 (︀
𝑥2 − 1

2

)︀(︀
𝑥3 − 1

2

)︀(︀
𝑥1 − 1

2

)︀(︀
𝑥3 − 1

2

)︀ (︀
𝑥2 − 1

2

)︀(︀
𝑥3 − 1

2

)︀
1 +

(︀
𝑥3 − 1

2

)︀2
⎞⎟⎟⎠,

and
𝜑 = 𝑒(𝑥1− 1

2 )(𝑥2− 1
2 )(𝑥3− 1

2 )·

In the first step, we divide the computing domain Ω into eight disjoint subdomains 𝐷1, · · · , 𝐷8 which sat-
isfy ∪8

𝑗=1𝐷̄𝑗 = Ω̄, 𝐷𝑖 ∩ 𝐷𝑗 = ∅. Herein, we set 𝐷1 = (0.0, 0.5) × (0.0, 0.5) × (0.0, 0.5), 𝐷2 = (0.5, 1.0) ×
(0.0, 0.5) × (0.0, 0.5), 𝐷3 = (0.0, 0.5) × (0.5, 1.0) × (0.0, 0.5), 𝐷4 = (0.5, 1.0) × (0.5, 1.0) × (0.0, 0.5), 𝐷5 =
(0.0, 0.5) × (0.0, 0.5) × (0.5, 1.0), 𝐷6 = (0.5, 1.0) × (0.0, 0.5) × (0.5, 1.0), 𝐷7 = (0.0, 0.5) × (0.5, 1.0) × (0.5, 1.0),
𝐷8 = (0.5, 1.0) × (0.5, 1.0) × (0.5, 1.0). Then set 𝐺𝑗 and Ω𝑗 satisfying 𝐺𝑗 ⊂⊂ 𝐷𝑗 ⊂ Ω𝑗 ⊂ Ω. Herein, we set
Ω1 = (0.0, 0.625)× (0.0, 0.625) × (0.0, 0.625), Ω2 = (0.375, 1.0) × (0.0, 0.625) × (0.0, 0.625), Ω3 = (0.0, 0.625)×
(0.375, 1.0) × (0.0, 0.625), Ω4 = (0.375, 1.0) × (0.375, 1.0) × (0.0, 0.625), Ω5 = (0.0, 0.625) × (0.0, 0.625) ×
(0.375, 1.0), Ω6 = (0.375, 1.0) × (0.0, 0.625) × (0.375, 1.0), Ω7 = (0.0, 0.625) × (0.375, 1.0) × (0.375, 1.0),
Ω8 = (0.375, 1.0)× (0.375, 1.0)× (0.375, 1.0), 𝐺1 = (0.0, 0.375)× (0.0, 0.375)× (0.0, 0.375), 𝐺2 = (0.625, 1.0)×
(0.0, 0.375) × (0.0, 0.375), 𝐺3 = (0.0, 0.375) × (0.625, 1.0) × (0.0, 0.375), 𝐺4 = (0.625, 1.0) × (0.625, 1.0) ×
(0.0, 0.375), 𝐺5 = (0.0, 0.375) × (0.0, 0.375) × (0.625, 1.0), 𝐺6 = (0.625, 1.0) × (0.0, 0.375) × (0.625, 1.0),
𝐺7 = (0.0, 0.375)×(0.625, 1.0)×(0.625, 1.0), 𝐺8 = (0.625, 1.0)×(0.625, 1.0)×(0.625, 1.0) and 𝐺9 = Ω∖

(︀
∪8
𝑗=1𝐺̄𝑗

)︀
.

In this example, we investigate the first eigenvalue. We also use the linear finite element space on the mesh
sequence that produced through uniform refinement, so the refinement index 𝑞 = 2. In our numerical experiment,
the coarsest space 𝑆𝐻(Ω) is the same as the initial space 𝑆ℎ1(Ω). The corresponding mesh size is set to be
𝐻 = ℎ1 = 1/8. The initial mesh is presented in Figure 4.

In this experiment, both Algorithm 4.3 and the direct finite element method are used to solve the Steklov
eigenvalue problem (5.2). The corresponding numerical error estimates are presented in Figure 5, which shows
that Algorithm 4.3 can derive an optimal estimate similar to that derived using the direct finite element method.

In this example, we present the computational time of Algorithm 4.3 to demonstrate the efficiency. In order
to show the efficiency of Algorithm 4.3, we also test the direct finite element method, the two-grid method for
Steklov eigenvalue problems designed in [45] and the the full multigrid method for Steklov eigenvalue problems
designed in [49]. The corresponding results are depicted in Figure 5. Figure 5 intuitively shows that Algorithm 4.3
has a linear complexity, making it significantly more advantageous than the direct finite element method, the
two-grid method and the full multigrid method.

In addition, we also test Algorithm 4.3 for the 10 smallest eigenvalues. Figure 6 demonstrates the correspond-
ing error estimates and computational time for Algorithm 4.3, the direct finite element method, the two-grid
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Figure 4. The initial mesh of Algorithm 4.3 for Example 2.

Figure 5. Errors (left) and computational time (right) of Algorithm 4.3 for Example 2.

Figure 6. Errors (left) and computational time (right) of Algorithm 4.3 for Example 2.

method [45] and the full multigrid method [49], which shows that Algorithm 4.3 can still work for multiple
eigenvalues. Besides, Algorithm 4.3 can derive the optimal error estimates with the linear complexity and Algo-
rithm 4.3 is more efficient than other adopted algorithms. For this example with mesh size 107, our method
is about 10 times faster than the direct finite element method, 4 times faster than the two-grid method and 2
times faster than the full multigrid method.
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6. Concluding remark

In this study, we design a local defect-correction method based on multilevel discretization for solving the
Steklov eigenvalue problem arising from the scalar second order positive definite partial differential equations.
It is well known that solving large-scale Steklov eigenvalue problems directly in the finite element space is quite
time-consuming. Through the novel algorithm presented in this study, solving efficiency can be improved using
two approaches. The first approach is to avoid solving large-scale Steklov eigenvalue problem by transforming it
into linear boundary value problems in a multigrid space sequence and small-scale Steklov eigenvalue problems
in a low-dimensional correction space. The second approach involves decomposing the linear boundary value
problem into small-scale equations through the local defect-correction technique. Rigorous theoretical analysis
are proposed in this paper and some numerical results are presented to support our theoretical results.

As we can see in our numerical experiments, Algorithm 4.3 can be extended to solve the multiple eigenvalues.
For completeness, we give the following local defect-correction method to solve the multiple eigenvalue 𝜆 with
multiplicity 𝑞, i.e. 𝜆𝑖 = 𝜆𝑖+1 = · · · = 𝜆𝑖+𝑞−1. Similarly, we first give a type of one correction step for the given
eigenpair approximations {𝜆ℓ,ℎ𝑘

, 𝑢ℓ.ℎ𝑘
}𝑖+𝑞−1
ℓ=𝑖 .

Algorithm 6.1. One Step of the local defect-correction method for multiple eigenvalues.

(1) For ℓ = 𝑖, · · · , 𝑖 + 𝑞 − 1, solve the following linear boundary value problem in each subdomain: Find
𝑒𝑗ℓ,ℎ𝑘+1

∈ 𝑆0
ℎ𝑘+1

(Ω𝑗), 𝑗 = 1, 2, · · · ,𝑚 such that

𝑎
(︁
𝑒𝑗ℓ,ℎ𝑘+1

, 𝑣ℎ𝑘+1

)︁
= 𝜆ℓ,ℎ𝑘

𝑏
(︀
𝑢ℓ,ℎ𝑘

, 𝑣ℎ𝑘+1

)︀
− 𝑎
(︀
𝑢ℓ,ℎ𝑘

, 𝑣ℎ𝑘+1

)︀
, ∀𝑣ℎ𝑘+1 ∈ 𝑆0

ℎ𝑘+1
(Ω𝑗). (6.1)

Set 𝑢̃𝑗ℓ,ℎ𝑘+1
= 𝑢ℓ,ℎ𝑘

+ 𝑒𝑗ℓ,ℎ𝑘+1
∈ 𝑆ℎ𝑘+1(Ω𝑗), ℓ = 𝑖, · · · , 𝑖+ 𝑞 − 1.

(2) For ℓ = 𝑖, · · · , 𝑖+ 𝑞 − 1, solve the following boundary value problem in 𝐺𝑚+1: Find 𝑢̃𝑚+1
ℓ,ℎ𝑘+1

∈ 𝑆ℎ𝑘+1(𝐺𝑚+1)

such that 𝑢̃𝑚+1
ℓ,ℎ𝑘+1

|𝜕𝐺𝑗∩𝜕𝐺𝑚+1 = 𝑢̃𝑗ℓ,ℎ𝑘+1
, 𝑗 = 1, · · · ,𝑚 and

𝑎
(︁
𝑢̃𝑚+1
ℓ,ℎ𝑘+1

, 𝑣ℎ𝑘+1

)︁
= 𝜆ℓ,ℎ𝑘

𝑏
(︀
𝑢ℓ,ℎ𝑘

, 𝑣ℎ𝑘+1

)︀
, ∀𝑣ℎ𝑘+1 ∈ 𝑆0

ℎ𝑘+1
(𝐺𝑚+1). (6.2)

(3) Construct 𝑢̃ℓ,ℎ𝑘+1 ∈ 𝑆ℎ𝑘+1(Ω) such that 𝑢̃ℓ,ℎ𝑘+1 = 𝑢̃𝑗ℓ,ℎ𝑘+1
in 𝐺𝑗 , ℓ = 𝑖, · · · , 𝑖+ 𝑞 − 1, 𝑗 = 1, · · · ,𝑚+ 1.

(4) Define a new finite element space 𝑆𝐻,ℎ𝑘+1 = 𝑆𝐻(Ω)+span
{︀
𝑢̃𝑖,ℎ𝑘+1 , · · · , 𝑢̃𝑖+𝑞−1,ℎ𝑘+1

}︀
and solve the following

small-scale Steklov eigenvalue problem: Find
(︀
𝜆ℓ,ℎ𝑘+1 , 𝑢ℓ,ℎ𝑘+1

)︀
∈ R×𝑆𝐻,ℎ𝑘+1(Ω), ℓ = 𝑖, · · · , 𝑖+ 𝑞− 1, such

that 𝑏
(︀
𝑢ℓ,ℎ𝑘+1 , 𝑢ℓ,ℎ𝑘+1

)︀
= 1 and

𝑎
(︀
𝑢ℓ,ℎ𝑘+1 , 𝑣𝐻,ℎ𝑘+1

)︀
= 𝜆ℓ,ℎ𝑘+1𝑏

(︀
𝑢ℓ,ℎ𝑘+1 , 𝑣𝐻,ℎ𝑘+1

)︀
, ∀𝑣𝐻,ℎ𝑘+1 ∈ 𝑆𝐻,ℎ𝑘+1(Ω). (6.3)

Summarize the above four steps into{︀
𝜆ℓ,ℎ𝑘+1 , 𝑢ℓ,ℎ𝑘+1

}︀𝑖+𝑞−1

ℓ=𝑖
= Correction

(︁
𝑆𝐻(Ω), {𝜆ℓ,ℎ𝑘

, 𝑢ℓ,ℎ𝑘
}𝑖+𝑞−1
ℓ=𝑖 , 𝑆ℎ𝑘+1(Ω)

)︁
.

Based on Algorithm 6.1, we can obtain the following local defect-correction algorithm based on multilevel
discretization for multiple eigenvalues.

Algorithm 6.2. Local defect-correction method based on multilevel discretization.

(1) Find (𝜆ℓ,ℎ1 , 𝑢ℓ,ℎ1) ∈ R× 𝑆ℎ1(Ω), ℓ = 𝑖, · · · , 𝑖+ 𝑞 − 1, such that 𝑏(𝑢ℓ,ℎ1 , 𝑢ℓ,ℎ1) = 1 and

𝑎(𝑢ℓ,ℎ1 , 𝑣ℎ1) = 𝜆ℓ,ℎ1𝑏(𝑢ℓ,ℎ1 , 𝑣ℎ1), ∀𝑣ℎ1 ∈ 𝑉ℎ1 .
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(2) For 𝑘 = 1, · · · , 𝑛−1, we obtain the new eigenpair approximation
(︀
𝜆ℓ,ℎ𝑘+1 , 𝑢ℓ,ℎ𝑘+1

)︀
∈ R×𝑆ℎ𝑘+1(Ω) through:{︀

𝜆ℓ,ℎ𝑘+1 , 𝑢ℓ,ℎ𝑘+1

}︀𝑖+𝑞−1

ℓ=𝑖
= Correction

(︁
𝑆𝐻(Ω), {𝜆ℓ,ℎ𝑘

, 𝑢ℓ,ℎ𝑘
}𝑖+𝑞−1
ℓ=𝑖 , 𝑆ℎ𝑘+1(Ω)

)︁
.

End For.
Finally, we obtain (𝜆ℓ,ℎ𝑛 , 𝑢ℓ,ℎ𝑛) ∈ R× 𝑆ℎ𝑛(Ω), ℓ = 𝑖, · · · , 𝑖+ 𝑞 − 1 in the finest space.

We can also give the error analysis for Algorithm 6.2 in a similar way to that used in Section 4 based on the
conclusions for multiple eigenvalues [6, 18].

Acknowledgements. This work is supported in part by the National Science Foundation of China (Grant Nos. 11801021,
11971047), General projects of science and technology plan of Beijing Municipal Education Commission (Grant No.
KM202110005011).

References

[1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).

[2] H. Ahn, Vibrations of a pendulum consisting of a bob suspended from a wire: the method of integral equations. Quart. Appl.
Math. 39 (1981) 109–117.

[3] A. Andreev and T. Todorov, Isoparametric finite-element approximation of a Steklov eigenvalue problem. IMA J. Numer.
Anal. 24 (2004) 309–322.

[4] M.G. Armentano, The effect of reduced integration in the Steklov eigenvalue problem. ESAIM: M2AN 38 (2004) 27–36.

[5] M.G. Armentano and C. Padra, A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58 (2008)
593–601.
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