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Abstract

Objective: This article presents an analysis of different optimization methodologies, which aims to make an objective com-
parison between metaheuristic and convex optimization methods in distribution networks, focusing on the inclusion of
distributed generation (DG). The MATLAB software is used as a tool for implementation and obtaining results. The ob-
jective was to determine the optimal size of the DGs to be integrated into the networks, with the purpose of reducing the
active power losses (objective function).
Methodology: Based on the specialized literature, the methodologies are selected, and the bases and conditions for the
implementation of the optimization techniques are determined. In the case of second-order cone programming (SOCP),
the relaxation of the nonlinear optimal power flow (OPF) problem is performed in order to use convex optimization. Then,
the structures of each technique are established and applied in the MATLAB software. Due to the iterative nature of me-
taheuristic methods, the data corresponding to 100 compilations for each algorithm are collected. Finally, by means of a
statistical analysis, the optimal solutions for the objective function in each methodology are determined, and, with these
results, the different methods applied to the networks are compared.
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Results: By analyzing 33- and 69-node systems, it is demonstrated that metaheuristic methods are able to effectively size
DGs in distribution systems and yield good results that are similar and comparable to SOCP regarding the OPF problem.
Genetic algorithms (GA) showed the best results for the studied implementation, even surpassing the SOCP.
Conclusions: Metaheuristic methods proved to be algorithms with a high computational efficiency and are suitable for
real-time applications if implemented in distribution systems with well-defined conditions. These techniques provide in-
novative ideas because they are not rigid algorithms, which makes them very versatile methods that can be adapted to any
combinatorial optimization problem and software, yielding results even at the convex optimization level.

Keywords: optimal power flow, metaheuristic optimization, second-order cone programming, convex optimization, distri-
buted generation, power flow.

Resumen

Objetivo: Este artículo presenta un análisis de diferentes metodologías de optimización, cuyo fin es realizar una compara-
ción objetiva entre métodos de optimización metaheurística y convexa en redes de distribución con énfasis en la inclusión
de generación distribuida (DG). Se utiliza el software MATLAB como herramienta para la implementación y la obtención
de resultados. El objetivo es determinar el tamaño óptimo de las DG a integrar en las redes, con el fin de reducir las pérdi-
das de potencia activa (función objetivo).
Metodología: A partir de la literatura especializada, se seleccionan las metodologías y se determinan las bases y condi-
ciones para la implementación de las técnicas de optimización. En el caso de la programación cónica de segundo orden
(SOCP), se realiza la relajación del problema de flujo de potencia óptimo (OPF) no lineal para utilizar optimización conve-
xa. Luego, las estructuras de cada técnica se establecen y aplican en el software MATLAB. Debido al carácter iterativo de
los métodos metaheurísticos, se recolectan los datos correspondientes a 100 compilaciones para cada algoritmo. Finalmen-
te, mediante un análisis estadístico, se determinan las soluciones óptimas para la función objetivo en cada metodología y,
con estos resultados, se comparan los diferentes métodos aplicados a las redes.
Resultados: A partir del análisis de sistemas de 33 y 69 nodos, se demuestra que los métodos metaheurísticos son capaces
de dimensionar DGs manera efectiva en sistemas de distribución y dan buenos resultados, similares y comparables a la
SOCP en el problema OPF. El algoritmo genético (GA) mostró los mejores resultados para la implementación realizada,
superando incluso a la SOCP.
Conclusiones: Los métodos metaheurísticos demostraron ser algoritmos de alta eficiencia computacional y son adecuados
para aplicaciones en tiempo real si se implementan en sistemas de distribución con condiciones correctamente definidas.
Estas técnicas aportan ideas innovadoras porque no son algoritmos rígidos, lo que las convierte en métodos muy versá-
tiles que pueden adaptarse a cualquier problema de optimización combinatoria y a cualquier software, dando resultados
incluso a nivel de optimización convexa.

Palabras clave: flujo de potencia óptimo, optimización metaheurística, programación cónica de segundo orden, optimiza-
ción convexa, generación distribuida, flujo de potencia.
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INTRODUCTION

Electrical distribution networks are the largest part of an electrical system and are responsible for

providing electricity to all the end users at medium- and low-voltage levels (Rupolo et al., 2019, Ru-

polo et al., 2020, Hernández et al., 2021). They usually have a radial configuration, with only one

central power source, i.e., a distribution substation (Devabalaji et al., 2015, Zuluaga-Ríos et al., 2021).

Radial structures are preferred since their investment’s costs are low and their protection schemes

are simply coordinated (Lavorato et al., 2011, Vélez et al., 2014). Nowadays, distributions networks

have been adapted for the massive inclusion of renewable technologies, mainly photovoltaic and

wind systems, as well as for battery energy storage systems (Home-Ortiz et al., 2019). The inclusion

of these devices has drastically changed the steady-state behavior of these grids, as the uncertain-

ties in renewable generation require real-time operation tools to guarantee the network’s optimal

operation (Mohagheghi et al., 2018, Tang et al., 2017). The main challenge faced by these real-time

systems is to solve the optimal power flow problem (OPF) with short processing times while ensu-

ring high-quality solutions (Mohagheghi et al., 2018). The OPF problem essentially implies an op-
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timization procedure where the outputs of the distributed generators (DGs) are adjusted to redu-

ce an objective function, typically power loss minimization (Grisales-Noreña et al., 2018), operative

costs reductions (Tamilselvan et al., 2018), or greenhouse gas emissions minimization (Montoya et
al., 2020c). This process finds a steady-state operating point that fulfills operating constraints and sa-

tisfies the demand of the whole system. In the specialized literature, the OPF problem is addressed

using two main routes: i) metaheuristic optimization (Ebeed et al., 2018), and ii) exact mathematical

optimization (Molzahn & Hiskens, 2016, Montoya et al., 2022). The first of these works with nature-

or physics-inspired algorithms in order to determine the optimal power outputs in DGs, which are

used as inputs in conventional power flow methods (Montoya et al., 2020b). This strategy is known

in the literature as the master-slave optimization strategy, which is largely adopted in optimization

problems where power flow solutions are required (Grisales-Noreña et al., 2018). Table 1 reports the

most common metaheuristic methods for addressing the OPF problem.

The second case (exact mathematical optimization) deals with the OPF problem by restructuring

the power balance constraints into convex equivalents in order to ensure that the global optimum is

found (Boyd & Vandenberghe, 2004). This restructuring has great advantages, which are described

below:

• Convex optimization ensures uniqueness in the solution and the global optimum for the model

with well-defined conditions. This is not only interesting with regard to the theoretical formu-

lation, but also in practical terms because, in general, the global optimum is always a desired

point in any problem.

• Convex optimization also has algorithms with high computational efficiency, which makes it

suitable for real-time applications. Furthermore, this formulation can ensure the convergence

of the problem under well-defined conditions.

The main convex formulations are semidefinite programming (Bai et al., 2008), and second-order

cone programming (SOCP) (?). These methods transform power balance equations into convex affine

constraints, thus allowing to efficiently solve the OPF problem via interior point methods (Benson &

Sağlam, 2013).

The two slopes mentioned above for addressing the OPF problem in distribution networks with

high penetration of distributed generation originate the following research question:

Which OPF approach is more efficient and reliable?

This paper compares multiple literature results regarding OPF analysis and the SOCP reformu-

lation of the OPF problem in order to address this question. Numerical results show that the convex

optimization approach is a better way to address OPF problems in distribution networks than meta-

heuristic techniques, as they do not require any parametrization or statistical tests to find the solution.

In addition, SOCP ensures that the global optimum is mathematically found, as was demonstrated in
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Table 1. Methods used in OPF analysis that involve distributed generation

Acronym Optimization method Reference

PSO Particle swarm optimization (Grisales-Noreña et al., 2018, Abido, 2020, Khan et al., 2020)

TSA Tabu search algorithm (Abido, 2020)

GA Genetic algorithms (Radziukynas & Radziukyniene, 2009)

BA Bat algorithm (Radziukynas & Radziukyniene, 2009)

DEA
Differential evolution

algorithm
(Radziukynas & Radziukyniene, 2009, Abou El Ela et al., 2010)

ALO Ant lion optimizer (Mouassa et al., 2017)

SCA Sine-cosine algorithm (Attia et al., 2018, Manrique et al., 2019)

VSA Vortex search algorithm (Montoya et al., 2020b, Montoya et al., 2019)

ACO Ant colony optimization (Raviprabhakaran & Ravichandran, 2016)

KHA Krill herd algorithm (Mukherjee & Mukherjee, 2015)

GO Grasshopper optimization (Taher et al., 2019)

BHO Black hole optimizer (Hasan & El-Hawary, 2014)

FA Firefly algorithm (Khan et al., 2020, Herbadji et al., 2013, Chen et al., 2018)

GSO
Glowworm swarm

optimization
(Salkuti et al., 2019)

TLBO
Teaching-learning-based

optimization
(Bouchekara et al., 2014)

WOA
Whale optimization

algorithm
(Ben Oualid Medani et al., 2018)

GWO Grey wolf optimizer (El-Fergany & Hasanien, 2015, Siavash et al., 2017)

Source: Authors

Farivar & Low, 2013. However, in some cases, it is not possible to use software to implement convex

model, which is why it is also important to study metaheuristic techniques.

This study is organized as follows: Section 2 presents the general OPF formulation using the

branch of the network; Section 3 presents a general review of metaheuristic optimization methods to

solve the OPF problem, which summarizes them through a pseudo-code; Section 4 shows the exact

nonlinear OPF model’s reformulation into a SOCP equivalent by using the hyperbolic relaxation of

the power flow in each distribution line; Section 5 presents the main characteristics of the employed

test feeders, composed of 33 and 69 nodes; Section 6 analyzes the results of the metaheuristics and

convex optimization for solving OPF problems; and Section 7 presents the main conclusions derived

from this study, as well as some possible future works.
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EXACT OPF FORMULATION

The OPF problem for electrical distribution networks is one of the most classic optimization pro-

blems in electrical engineering (Mohagheghi et al., 2018, Khan & Singh, 2017). This problem deals

with determining the subset of power injections in distributed generators aiming to minimize the to-

tal grid power losses. This is generally done for peak load conditions in particular (Grisales-Noreña

et al., 2018). The main complication of this problem is its nonlinear and non-convex structure (Mon-

toya et al., 2022, Lavaei & Low, 2011). Here, an OPF formulation is presented which is based on the

branch power flow formulation that can only be applied to distribution networks with a radial con-

figuration (Farivar & Low, 2013).

To obtain the branch OPF model, let us consider the single-line diagram presented in Figure 1.

In this figure, the variables and parameters have the following meaning: Pij and qij represent the

active and reactive power flow from nodes i to j, leaving from node i; Rij and Xij correspond to the

resistance and reactance parameters of the line; P d
j and Qd

j are are the demand consumptions in node

j, respectively; P dg
j and Qd

j are the active and reactive power generation in node j; Vi and Vj are the

voltage profiles at nodes i and j; pjk and qjk are the active and reactive power flows leaving from

node j; and Iij represents the current that flows from nodes i to j. Note that Iij and Vi are variables

in the complex domain.
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j + jqdg

j

Figure 10. General connection between nodes in a radial grid.Figure 1. General connection between nodes in a radial grid

Souce: Authors.

Based on Figure 1, the active and reactive power balances at each node are defined, except in the

reference (slack source), i. e., ∀j ∈ N ≠ {0}, as follows:

pij −Rij |Iij |2 −
∑

k:(j,k) ∈ E

pjk = P d
j − pdgj , ∀j = 1, 2, I, n, (1)
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qij −Xij |Iij |2 −
∑

k:(j,k)∈ E

qjk = Qj − qdgj , ∀j = 1I . . . , n, (2)

where E is the set that contains all the nodes of the network. Note that, for each distribution line,

it is known that:

Vi − Vj = ZijIij , ∀(i, j) ∈ E , (3)

with Zij = Rij+iXij . In addition, from Tellegen’s theorem, the power flow in each line can be defined

as follows:

Iij =

(
Sij

Vi

)∗
· ∀(i, j) ∈ E . (4)

Now, by substituting Equation (4) into (3) and taking the magnitude square of this expression,

the following is obtained:

Vj = Vi − Zij

(
Sij

Vi

)∗
,

|Vj |2 = |Vi|2 − (ZijS
∗
ij + Z∗

ijSij) + |Zij |2|Iij |2, ∀(i, j) ∈ E
|Vj |2 = |Vi|2 − 2(RijpijXijqij) + (R2

ij +X2
ij)|Iij |2, ∀(i, j) ∈ E . (5)

In addition, from Equation (4), it is known that:

|Iij |2 =
p2ij + q2ij
|Vi|2

, ∀(i, j) ∈ E . (6)

The formulation of the objective function of the OPF problem is typically assigned as the minimi-

zation of power losses in all the branches of the network, which can be formulated as:

ploss =
∑

(j,k)∈E

Rij |Iij |2 (7)

The mathematical formulation (1) to (7) defines the OPF formulation in general terms using the

branch power flow formulation as presented in Montoya et al., 2022. For the sake of simplicity, it is

herein presented it in compact form:

Exact nonlinear OPF model (Model 1):

Ob. Fun. minploss =
∑

(j,k)∈ E

Rij |Iij |2 (8)

sub. To

pij −Rij |Iij |2 −
∑

k:(j,k)∈ E

pjk = Pj − pdgj , ∀j . . . , 2 . . . , n,

qij −Xij |Iij |2 −
∑

k:(j,k)∈E

qjk = Qj − qdgj , . . . = 1, 2, . . . , n,

|Vj |2 = |Vi|2 − 2(Rijpij +Xijqij) + (R2
ij +X2

ij)|Iij |2, ∀(i, j) ∈ E

|Iij |2 =
p2ij + q2ij
|Vi|2

, ∀(i, j) ∈ E
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The main complication in the OPF model (8) corresponds to the nonlinearity introduced by the

division of the square of the apparent power and the magnitude of the voltage profile, as this implies

a strong non-convexity of the solution space, which makes it impossible to ensure that the global

optimum is found via conventional optimization techniques. To address this complication in the

optimization model, the literature shows two ways to solve this problem. The first path is to combine

metaheuristic techniques by means of classical power flow methods in order to solve the problem

iteratively. The second one is reformulating the problem via convex optimization in order to ensure

that the global optimum is found through interior point methods.

Remark 1. The main goal of the OPF model defined in (8) is to define the set of active and reactive power
generations in distributed power sources, i.e., the best values for pdgj and qdgj that allow minimizing the total
grid losses (Farivar & Low, 2013).

SOLUTION WITH METAHEURISTICS

Metaheuristic optimization techniques are essentially nature-inspired optimization methods that

deal with nonlinear non-convex large-scale optimization problems by using a sequential program-

ming structure. These approaches can be classified into two big fields based on their initial inspi-

ration. The first set includes bio-inspired algorithms such as genetic algorithms (Moradi & Abe-

dini, 2012), particle swarm optimization (Grisales-Noreña et al., 2018), the artificial bee colony al-

gorithm (Deshmukh & Kalage, 2018), the krill herd algorithm (Mukherjee & Mukherjee, 2015), the

teaching-based learning optimizer (Bouchekara et al., 2014), ant colony optimization (Raviprabakaran

& Subramanian, 2018), and the bat algorithm (Yuan & Hesamzadeh, 2019), among others. The second

field includes physics- and mathematics-inspired methods such as black hole optimization (Hasan

& El-Hawary, 2014), the supernova optimizer (Hudaib & Fakhouri, 2018), the vortex search algo-

rithm (Yuan & Hesamzadeh, 2019), the hurricane search algorithm (Rhoub & Imrani, 2014), the sine-

cosine algorithm (Attia et al., 2018, Mirjalili et al., 2020), and so on.

The main characteristics of optimization methods based on metaheuristics are listed below:

✓ They work with an initial population that contains some of the problem’s decision variables,

i.e., active and reactive power generation in distributed sources, in the case of the OPF problem.

✓ The objective function is modified into a fitness function that considers restrictions as penalties

in order to explore possible infeasible regions that allow reaching promissory regions in the

solution space with high-quality solutions.

✓ A slave stage is typically used to address the problem associated with equality constraints, i.e.,
the power flow solution in the case of OPF analysis.

✓ These use evolution criteria to explore and exploit the solution space, i.e., in the genetic algo-

rithm, the evolution stage uses selection, recombination, and mutation criteria.
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✓ Two typical stopping criteria are used for finishing the exploration of the solution space: i)

when the maximum number of iterations is reached, and ii) when, during kmax consecutive

iterations, the best solution does not show any improvement.

In general, the main advantage of using metaheuristics optimization methods is their easy imple-

mentation in any programming language while using scalars, vectors, and matrices to represent the

problem. However, the main problems experienced with metaheuristics are i) the optimal parametri-

zation of the problem, i.e., the number of iterations and size of the population, among others; and ii)

the need to perform statistical analyses, as it is not possible to mathematically ensure that the global

optimum is found.

Regarding the application of metaheuristics to OPF solutions, tens of methods can be found in the

current literature, which are also combined with optimal siting and sizing strategies for distributed

generation. Table 1 reports some common approaches available in the literature for OPF analysis. In

general, the application of a metaheuristic optimization method to solve the OPF problem described

in (8) can be summarized as presented in Algorithm 1.

The main aspect of Algorithm 1 is the evaluation of the fitness function, which, in the case of

OPF analysis, is related to the power flow solution. The power flow solution is typically used as an

iterative approach. Some of the most common power flow methods are the Gauss-Seidel, Netwon-

Raphson, and graph-based methods (Montoya & Gil-González, 2020,Shen et al., 2018) and successive

approximations (Montoya & Gil-González, 2020), among others. The power flow solution defines the

direction in which the solution space will be explored in order to find a high-quality solution.

Power flow solution

Because metaheuristic methodologies employ a master-slave type strategy to solve the OPF pro-

blem, in which each set of generated powers must be evaluated by a power flow, this research em-

ploys the successive approximation method (Montoya & Gil-González, 2020). The main features of

this method are presented in the flow diagram shown in Figure 2.

It is important to mention that, in this figure, which shows the sequence of steps to solve the

power flow problem in radial or meshed distribution networks with a single-phase equivalent, the

variables and parameters presented therein have the following interpretation: Y is a matrix defined

in the complex domain containing the nodal admittances of the system; Ydg is a submatrix derived

fromY and corresponds to the section of the network related to the slack node;Ydd is also a submatrix

of Y that corresponds to the demand nodes of the network; V 0
d corresponds to the demand nodes in

the network; V t+1
d corresponds to the unknown voltage variables of all the load nodes present in the

network; Zdd is the inverse matrix of Ydd and corresponds directly to the demand impedances of the

network; Id is the vector containing the network demand currents; D−1
d (V ∗

D) is the inverse diagonal

of the transposed nodal demand voltages; and c refers to the constant defining the stop criterion,

usually with a value of 1× 10−10.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 26 Número 74 • Octubre - Diciembre de 2022 • pp. 87-129

[95]



Comparative Methods for Solving Optimal Power Flow in Distribution Networks Considering Distributed Generators
Bohórquez-Bautista., K.J. Moreno-Arias., D.A . Montoya-Giraldo., O.D. y Gil-González., W.J.

Algorithm 1 General OPF solution methodology using metaheuristics

Source: Authors

Once the power flow problem has been solved using the successive approximation method (Fi-

gure 2), the grid power losses can be calculated as follows:

Sloss = V T
d [YVd]

∗, (9)

where Sloss corresponds to the total apparent power losses of the network.

Implementing the metaheuristic optimizers

To generate the power set (i.e., implementing the master stage of the optimal power flow pro-

blem), the following metaheuristic methods are employed: particle swarm optimization (Lima &

Barán, 2006), the crow search algorithm (Prior et al., 2008), genetic algorithms (Winter, 2005), the sine-

cosine algorithm (Rosli et al., 2020), the vortex search algorithm (Doğan & Ölmez, 2015), and the black

hole optimizer (Grisales-Noreña et al., 2020).

The main characteristic of these combinatorial optimization methods is that they all explore and

exploit the solution space starting from an initial population. This population is essentially the star-

ting point for the algorithm and is generally created randomly throughout the solution space. This

population can be mathematically represented as follows:
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Pi = Pmin
gd + (Pmax

gd − Pmin
gd )r(ni, ngd) (10)

Version July 28, 2022 submitted to Computation 28

BEGIN

Select the AC
test feeder

Calculate Y and
extract Ydd and Ydg

Initialize V0
d as

1∠0◦, t = 0 and
store Zdd = Y−1

dd .

It
d = D−1

d
(
V?

d
)t S?

d

Vt+1
d =

−Zdd

(
It

d +YdgVg

)Increase the
iterative counter t

∣∣∣
∣∣∣Vt+1

d −Vt
d

∣∣∣
∣∣∣ ≤ ε

STOP

no

yes

Figure 2. Flowchart of the proposed power flow method based on successive approximations

Souce: Authors.
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where Pmin
gd and Pmax

gd define the capacity limits of distributed generation, and r is a matrix of

random numbers with dimensions ni rows (number of individuals) and ngd columns (number of

distributed generators).

Once the initial population is established, the implementation methodology is executed for each

of the metaheuristic optimization methods. The work logic of each of the methodologies analyzed in

this research is explained below.

Particle swarm optimization

Particle swarm optimization (PSO) is a metaheuristic method based on the behavior of particles

in nature. It especially focuses on the behavior of flocks of fish and birds (Lima & Barán, 2006). These

particles move within the search space while obeying a set of rules that consider their position and

velocity in order to find global maximum or minimum values (Gutiérrez et al., 2017). In PSO, the

population considers n particles corresponding to candidate solutions. These particles are a vector

of m-dimensional with real values, where m represents the number of optimized parameters. This

indicates that each dimension of the particle is a parameter of the problem space to be optimized. In

each iteration of the execution process, the information of each particle is considered, as well as all

the information associated to the swarm. With this, the evolution of the swarm and the update of the

global minima that will determine the best solution for the objective function is achieved. Once the

initial population is generated as denoted in Equation (10), positions xit and speeds vit are established

in the particle swarm. Each particle knows the best position it has visited (Pbest). This variable works

as an autobiographical local memory, and the best position of the leader Gbest works as a local me-

mory that is determined by the best places visited in the past by the whole group or swarm. The

leader is the particle that presents the best adaptation function in each iteration. The velocity and

position function of each particle at iteration t+ 1 are given by the following formulations:

vit+1 = wtv
i
t + ϕ1r1(Pbest − xit) + ϕ2r2(Gbest −Xi

t) (11)

xi1+t = xit + vit+1, (12)

where wt represents the inertia factor, which in turn represents the degree of influence of the

current speed in the future speed and is responsible for controlling the convergence of the algorithm;

ϕ1 and ϕ2 control the position of the particle and the leader based on the new iteration velocity; and r1

and r2 are random number values in the range of [0,1]. The inertia factor is updated in each iteration

according to the following formulation:

wt = wmax −
(
wmax − wmin

tmax

)
t. (13)

When the power flow has been solved and the objective function has been evaluated for each

particle, the Gbest of each iteration is obtained, which is compared iteration after iteration to finally

obtain the optimal solution to the problem.
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Crow search algorithm

The crow search algorithm (CSA) was developed by Askarzadeh, 2016 and consists of an evolu-

tionary algorithm inspired by the intelligent behavior of crows. These animals are considered to be

among the most intelligent in the world (Prior et al., 2008). Crows are known to watch other birds,

looking for where they hide their food in order to steal it once the owner leaves. If a crow has com-

mitted a theft, it will take extra precautions, such as changing its hiding place to avoid being a future

victim. In fact, they use their own thieving experience to predict the behavior of a potential thief, so

that they can determine the safest way to protect their supplies.

Based on the above, in the crow search algorithm, the population of N individuals (crows) evolves

from a given point (t = 0) up to a maximum number of generations (t = tmax) individual cik(i ∈
[1, . . . N ]). Each is represented by a d-dimensional vector, where each of the dimensions corresponds

to a decision variable of the problem to be solved.

This algorithm considers two states for a new population Ct+1. The first state is when the indi-

vidual knows that it is being followed by a thief, and the second is when the individual does not

know. This behavior is modeled with a knowledge probability factor AP i
t that determines the state of

an individual. In this way, each new individual in the population is generated as shown in Equation

(14): {
cit + rifl(m

j
t − cit) AP i

t ,

Random otherwise
(14)

where ri and rj are random numbers between 0 and 1; fl is a parameter that determines the flight

distance; and mj
t is the memory of individual j at iteration t, which refers to the food cache.

First, the algorithm is initialized like other metaheuristic methods, with the initial population

(bounds and dimensions) and initial parameters (stopping criteria, f , AP ), in accordance with Equa-

tion (10). The next step is to randomly initialize the positions of the individuals and evaluate them

based on the objective function, in order to obtain results for each individual and thus extract the best

solution for the objective function. After this, the evolution (new positions) is generated via Equation

(14). For all individuals, the new positions are evaluated based on the objective function, and the

memory is updated. Finally, the stopping criteria for the iterative process of the algorithm are esta-

blished. These are linked to the implementation of the CSA, so two stopping criteria are generally

used: i) when a value of the objective function is reached in which the best individuals converge to a

value and this does not change throughout the iterations, and ii) when a predetermined number of

iterations is reached.

Genetic algorithm

Genetic algorithms (GAs) are methods based on adaptation that can be used to solve optimiza-

tion search problems. These algorithms are based on the genetic processes of living organisms. By
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mimicking these processes, GAs are able to generate solutions to real-world problems (Winter, 2005).

The optimal evolution that leads to optimal values depends on their proper encoding.

GAs work with a population of individuals, each of which represents a feasible solution to a

given problem. Each individual is assigned a value, or score related to the objective function and the

improvement of the results.

GAs, like the other algorithms, are linked to the implementation of the problem to be addressed,

i.e., each objective function has an adapted GA. The following section shows a base algorithm that

used to adapt to each optimization problem. Each genetic algorithm consists of the following stages:

domain configuration, population evaluation, selection, crossover, and mutation.

Via domain coding, a set of possible input values is obtained, which refers to the domain in

which the function is located. This is equivalent to the genotype, which is the DNA of the organisms

(Mitchell, 1998). The algorithm obtains an initial population as input, with which new populations

are generated; some individuals disappear, and others appear until a solution is reached depending

on the stopping criteria.

With the evaluation of the population, there is a fitness function aiming to minimize the quadratic

error Erms . When this error tends to 0, the fitness tends to 1. The correlation between this function

and the Erms is denoted in Equations (15) and (16):

Erms =

√∑n
i=1(Xreal −Xapprox)2

ni
, (15)

fitness = 2

(
1

Erms+1
− 1

2

)
, (16)

where Erms is the mean square error, X is the value of the target variable of the population, and

ni is the amount of data for the initial population.

Afterwards, the most qualified individuals are selected for reproduction, i.e., the most qualified

individuals of the initial population that will be crossed to obtain a new generation, with a hybrid

code from the most qualified individuals and ambitious characteristics. The crossing begins with the

selected individuals, which consists of recombining the genetic information of the two individuals

(parents), which reproduce and yield a third individual (child) that shares the genetic information

of the other two. It is assumed that the third individual (offspring) obtains the best adaptive charac-

teristics of the population. Finally, there is the mutation, which is an alteration in the child’s genetic

code, causing one of its genes to be randomly modified. This mutation has a low probability, usually

a value of less than 1 % since the fitness function for mutated individuals is low.

Vortex search algorithm

The vortex search algorithm (VSA) is a metaheuristic algorithm inspired by the vortex flow beha-

vior of agitated fluids (Doğan & Ölmez, 2015). The algorithm postulates candidate solutions that are
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generated based on the current best solution by using a Gaussian distribution in each iteration (Gha-

rehchopogh et al., 2021), taking the current best solution as the center, i.e., the center of the hypersphe-

re (Gil-González et al., 2020). The main characteristics of the VSA are presented below.

Generating candidate solutions using some region structures is of vital importance for the success

of metaheuristics based on a central solution. When small changes are made to the current solution,

the region is said to have a strong locality (Doğan & Ölmez, 2015). In contrast, a weak locality is

characterized by a large effect on the solution, which results in a random search within the search

space (Doğan & Ölmez, 2015). Efficient exploration (weak locality) is required in the initial steps,

and, once the algorithm converges to a near optimal solution, further exploitation (strong locality)

is required to adjust the current solution towards the optimal one. This algorithm requires an initial

solution considered to have a two-dimensional problem for the mathematical model (9). An outer

circle of the vortex is taken, which is centered in the first search space µ0 (center of the hypersphere)

and can be calculated via Equation (17)

µ0 =
Xmax +Xmin

2
(17)

where Xmax and Xmin are the upper and lower bounds, respectively. They are d × 1 vectors

that define the bound constraints of the problem whose dimension is d. Note that this dimension

corresponds to the number of DGs to be dispatched in the problem under study. Several regional

solutions Ct(s) (where t represents the iteration rate, which is initially t = 0) are randomly generated

around the initial solution µ0 in d-dimensional space using a Gaussian distribution. Equation (18)

shows the Gaussian distribution (Gharehchopogh et al., 2021):

p(x|µ,Σ) = 1√
(2π)d|Σ|

exp
{
− 1

2
(x− µ)TΣ−1(x− µ)

}
, (18)

where d represents the dimension, x is the vector d × 1 composed of random variables, µ is the

vector d× 1 of sample means, and Σ is the covariance matrix (Scoble, 2015). For this algorithm, Σ can

be calculated using equal variances with zero covariances via Equation (19);

Σ = σ2[I]d×d, (19)

where σ represents the variance of the distribution, and I represents the identity matrix d×d. The

initial standard deviation σ0 of the distribution can be calculated through Equation (20):

σ0 =
Xmax −Xmin

2
(20)

It is important to mention that one of the main characteristics of the VSA is that it works with a

variable radius that decreases as the solution space is explored. This, in order to control the balance

between exploration and exploitation of the solution space (Montoya et al., 2020b). This research

employs the exponential reduction of the radius proposed by Montoya & Gil-González, 2020.
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Sine-cosine algorithm

The sine-cosine algorithm (SCA) is an optimization algorithm that works with trigonometric fun-

ctions as a forward rule to explore and exploit the solution space (Abo-Elnaga & El-Shorbagy, 2020).

As any other optimization technique, the population that will yield multiple random initial solutions

is first created and evaluated regarding the objective function through the sine and cosine rules. With

weighting factors, the SCA advances through the solution space iteratively, taking the best solution

found up to the current iteration as reference (Rosli et al., 2020). The SCA evolution rule is presented

below:

xit+1 = xit + r1 sin(r2)
∣∣r3P i

t − xit
∣∣, r4 <

1

2
, (21)

xit+1 = xit + r1 cos(r2)
∣∣r3P i

t − xit
∣∣, r4 <

1

2
, (22)

In Equations (21) and (22), xit refers to the individual i in iteration t; P i
t is the leading individual

in each iteration, i.e., the best solution in that iteration; and r1, r2, r3 and r4 are parameters specific to

the SCA which define the behavior of the population as follows:

• r1 defines the direction of movement into or out from the area between the current position and

the leader.

• r2 defines how far the movement must be in a range of [0, 2π], as the outward movement of

the area is represented by the positive part of the sine and cosine functions and the inward

movement represents the negative part of these functions.

• r3 defines the weight in order to highlight (r3 > 1) or reduce (r3 < 1) the randomness of the

location in the definition of distance.

• r4, in the range [0, 1], identifies the position based on the comparison between the sine and

cosine functions.

Finally, the parameter r1 can be mathematically defined as follows:

r1 = 1− t

tmax
(23)

To solve the OPF using the SCA, once the initial population is established, the flow is solved, and

the objective function is evaluated while considering the algorithm parameters. In each iteration, a

leader representing the best solution is obtained. This process is repeated until there are no more

updates in the leader’s position, which constitutes a stopping criterion together with the maximum

number of iterations achievable.
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Black-hole optimizer

This metaheuristic optimization algorithm is based on the dynamic interaction that occurs bet-

ween stars and black holes (Velasquez et al., 2019). Its logic follows that applied in the particle swarm

algorithm, making direct reference to the cumulus of stars to which the particles are related. It also

employs a criterion of elimination and generation of stars through a heuristic approach that follows

the concept of event horizon (Grisales-Noreña et al., 2020). The BHO starts its exploration of the solu-

tion space when the initial population is created, which corresponds to the first set of stars randomly

distributed in the solution space.

(Bouchekara, 2013). In the logic of the programmed algorithm, this is defined according to the

number of individuals to be worked with and determined via Equation (10). When stars are in pro-

ximity to a black hole, they experience an intense gravitational force, which is why the particular

behavior of each star may vary depending on its location with respect to the black hole (Bouchekara

et al., 2014). This phenomenon is mathematically represented as follows:

P i
t+1 = P i

t + (PBH
t − P i

t )r(1, ngd) (24)

where PBH refers to the black hole in the population and P i
t represents the individual after the

interaction with the black hole (Grisales-Noreña et al., 2020). Each star that crosses the event horizon

is destroyed, so the survival of each one depends on its position with respect to the hole. To simulate

the possibility of the star being consumed by the black hole, a mathematical formulation is used

which defines the radius of the event horizon and determines the risk range for the star. This is

described as follows:

REH =
f(pBH

t+1)∑ni
i=1 P

i
t+1

(25)

where f(PBH
t+1 ) represents the best value obtained for the objective function of all individuals

in the current population. On the other hand, the denominator represents the sum of the objective

function of all individuals in the population in the current iteration.

The factor that determines whether any star crosses the event horizon depends on the relative

distance between the star and the black hole:

DHBi =
∥∥PBH

t+1 − P i
t+1

∥∥ (26)

If REH > DHBi is satisfied, a new star is then generated to replace the old one, ant the i star is

absorbed (destroyed) by the black hole.

Finally, if no update in the black hole’s position is obtained by solving the flow and evaluating

the objective function at each iteration, the optimal solution of the problem is reached.
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CONVEX OPTIMIZATION

Convex optimization is a field of mathematical optimization that deals with complex optimi-

zation problems by reformulating nonlinear non-convex constraints into convex ones. This, in or-

der to ensure that the global optimum is found via interior point methods (Boyd & Vandenberghe,

2004, Kronqvist et al., 2019). Some of the most common convex optimization problems are listed be-

low:

• Linear programming

• Quadratic programming with affine constraints

• Second-order cone programming

• Semidefinite programming

• Geometric programming

The most common methods for optimal power flow analysis are: quadratic programming (Garcés,

2016), semidefinite programming (Bai et al., 2008, Montoya-Giraldo et al., 2017, Andersen et al., 2013),

and second-order cone programming (Montoya et al., 2020c, Yuan & Hesamzadeh, 2019, Farivar &

Low, 2013, Lavaei & Low, 2011, Baradar et al., 2013, Simiyu et al., 2020).

This study adopts the SOCP formulation by Farivar & Low, 2013 to present the equivalent convex

reformulation of the model (8). To address this SOCP equivalent, let us define the following auxiliary

variables: lij = |Iij |2, vi = |Vi|2 and vj = |Vj |2. Now, let us approximate the hyperbolic relation

between voltages and currents in the last equation of model (8) as a conic constraint, i.e.,

vilij = p2ij + q2ij , ∀(i, j) ∈ E (27)

=
1

4
(vi + lij)

2 − 1

4
(vi − lij)

2, ∀(i, j) ∈ E
(vi + lij)

2 = (2pij)
2 + (2qij)

2 + (vi − lij)
2, ∀(i, j) ∈ E

vi + lij =

∥∥∥∥∥∥∥∥

2pij

2qij

vi − lij

∥∥∥∥∥∥∥∥
, ∀(i, j) ∈ E

Remark 2. Note that (27) is still non-convex due to the equality symbol. However, this symbol can be
relaxed to become a conic convex constraint, as recommended by Farivar & Low, 2013.

The convex equivalent of (27) takes the following form:
∥∥∥∥∥∥∥∥

2pij

2qij

vi − lij

∥∥∥∥∥∥∥∥
≤ vi + lij , ∀(i, j) ∈ E (28)
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Now, with the relaxation presented in Equation (28), the nonlinear non-convex OPF model defi-

ned in (8) takes the SOCP form presented in (29).

SOCP reformulation of the OPF problem (Model 2)

Obj. Fun. minploss =
∑

(j,k)∈ E

Rijlij (29)

Sub. To.

pij −Rijlij −
∑

k:(j,k)∈ E

pjk = Pj − pdgj , ∀j = 1, 2, . . . , n

qij −Xijlij −
∑

k:(j,k)∈ E

qjk = Qj − qdgj , ∀j = 1, 2, . . . , n

vj = vi − 2(Rijpij +Xijqij) + (R2
ij +X2

ij)lij , ∀(i, j) ∈ E∥∥∥∥∥∥∥∥

2pij

2qij

vi − lij

∥∥∥∥∥∥∥∥
≤ vi + lij , ∀(i, j) ∈ E

The main advantage of the SOCP reformulation presented in (29) is that it is mathematically

ensured that the global optimum is found, as demonstrated by Farivar & Low, 2013which implies

that no statistical tests or heuristic parametrizations are required (e.g., the number of iterations of

population sizes, as is the case of metaheuristic optimization methods).

TEST FEEDERS

To compare the methodologies studied in this paper for OPF analysis in distribution networks

regarding distributed generation along the AC grid, two conventional and widely used distribution

grids were used, which are composed of 33 and 69 nodes. These grids are operated with 12,66 kV

at the substation bus and have a radial structure. The single-line diagram for the two test systems is

illustrated in Figure 3.

To evaluate the OPF solution in these test feeders, this research takes the information reported by

Montoya & Gil-González, 2020 regarding the lower and upper limits of the power generated in the

DGs. For the 33-node test feeder, the DGs can provide from 300 to 1.200 kW to the grid, while, in the

69-node test feeder, these outputs range from 0 to 2.000 kW. Three DGs are considered for both test

feeders.
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Figure 10. Single-line diagram of the test feeders: (a) 33- node test feeder, (b) and 69-node test feeders
Figure 3. Single-line diagram of the test feeders: a) 33- node test feeder, b) and 69-node test feeder

Souce: Authors.

COMPUTATIONAL VALIDATIONS

This section compares the performance of the metaheuristics and the SOCP approaches to solve

the OPF problem while considering DGs in radial distribution networks. This validation was carried

out using a personal computer with an AMD Ryzen 7 3700U @ 2.3 GHz and 16 GB RAM while

running a 64-bits version of Windows 10 Home Single Language and the MATLAB programming

environment.

To compare these optimization approaches, the information available for both test feeders in the

literature was considered (Table 2).

In order to carry out the comparison and validation processes, all the relevant information on the

implementation of DG through metaheuristic optimization in each of the distribution systems under

study is first collected. This, in order to observe the results obtained regarding DG size and location

in the networks and perform the corresponding validations. It can be seen that, in the specialized

literature, there are reports with several metaheuristic methodologies that allow reaching the goal of

considerably reducing the active power losses. By observing the data, it is decided to use the node

locations that yield the best results when implementing DGs. This methodology allows conducting

the second part of the validation process. Once the location of the DGs is defined in the networks
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Table 2. Common metaheuristics used in OPF analysis

Acronym Optimization method Reference

GA-PSO
Genetic algorithm and particle swarm

optimization
(Moradi & Abedini, 2012)

LSFSA Loss sensitivity factor simulated annealing (Injeti & Kumar, 2013)

MINLP
Mixed-integer nonlinear programming

formulation
(Kaur et al., 2014)

TBLO Teaching learning-based optimization (Sultana & Roy, 2014)

QOTBLO
Quasi-oppositional teaching learning-based

optimization
(Sultana & Roy, 2014)

HSA-PABC
Harmony search algorithm and particle

artificial bee colony algorithm
(Muthukumar & Jayalalitha, 2016)

RBFNN-PSO
Radial basis function neural network and

particle swarm optimization
(Gupta et al., 2015)

GA-IWD
Genetic algorithm and intelligent water

drops
(Moradi & Abedini, 2016)

AHA Algorithmic heuristic approach (Bayat, & Bagheri, 2019)

KHA Krill herd algorithm (Sultana & Roy, 2016)

PBIL-PSO
Population-based incremental learning and

particle swarm optimization
(Grisales-Noreña et al., 2018)

ABCA Artificial bee colony algorithm (Deshmukh & Kalage, 2018)

HTLBOGWO
Hybrid teaching-learning-based

optimization, grey wolf optimizer
(Nowdeh et al., 2019)

MSSA Mutated salp swarm algorithm (Gholami & Parvaneh, 2019)

CHVSA
Constructive heuristic vortex search

algorithm
(Bocanegra & Montoya, 2019)

GAMS General algebraic modeling system (Montoya & Gil-González, 2020)

CBGA-VSA
Chu and Beasley genetic algorithm and

vortex search algorithm
(Montoya et al., 2020b)

Source: Authors.

(nodes 13, 24, and 30 for the 33-node test feeder) and 69 (nodes 11, 18 and 61 for the 69- node grid)

nodes, these positions are evaluated along with their results through validations using the selected

metaheuristic methods and the SOCP methodology.
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To quantitatively compare the studied methodologies for solving the OPF problem, a statistical

analysis was performed in order to corroborate each of the incidence variables in the metaheuristic

approaches, given the iterative nature of these methodologies and the fact that the same solution

is not always reached after repeated runs. The statistical variables applied are the minimum and

maximum values, the mean, and the standard deviation –all applied to the objective function after

multiple runs of each of the algorithms.

33-node test feeder results found in the literature

Table 3 presents the comparative analysis between the literature reports regarding metaheuristics

and the SOCP model for OPF analysis in AC distribution networks.

Table 3. Optimal location and sizing of DGs in the 33-node test feeder for the proposed and comparative

approaches

Literature information Metaheuristics SOCP

(N◦) Method Node Size (MW) ploss (kW) Size (MW) ploss kW)

(1) GA-PSO {11,16,32} {0,9250,0,8630,1,2000} 103,3600 {0,6683,0,3713,0,9283} 86,0107

(2) LSFSA {6,18,30} {1,1124,0,4874,0,8679} 82,0525 {1,2000,0,4913,0,8055} 81,8853

(3) MINLP {13,24,30} {0,8000,1,0900,1,0500} 72,7862 {0,8018,1,0913,1,0536} 72,7853

(4) TLBO {10,24,31} {0,8246,1,0311,0,8862} 75,5400 {0,9746,1,0909,0,8860} 74,5106

(5) QOTLBO {12,24,29} {0,8808,1,0592,1,0714} 74,1008 {0,8799,1,0629,1,0730} 74,1006

(6) HSA- {14,24,30} {0,7550,1,0730,1,0680} 72,8129 {0,7709,1,0969,1,0658} 72,7896

PABC

(7) GA-IWD {11,16,32} {1,2214,0,6833,1,2135} 110,5100 {0,6683,0,3713,0,9283} 86,0107

(8) AHA {13,24,30} {0,7920,1,0680,1,0270} 72.8340 {0,8018,1,0913,1,0536} 72,7853

(9) KHA {13,25,30} {0,8107,0,8368,0,8410} 75,4116 {0,8117,0,8712,1,0741} 73,5036

(10) MSSA {13,24,30} {0,8010,1,0910,1,0530} 72,7854 {0,8018,1,0913,1,0536} 72,7853

(11) CHVSA {6,14,31} {1,1846,0,6468,0,6881} 78,4534 {1,1892,0,6468,0,6863} 78,4533

(12) CBGA-VSA {13,24,30} {0,8018,1,0913,1,0536} 72,7853 {0,8018,1,0913,1,0536} 72,7853

(13) GAMS {14,24,30} {0,7550,1,0730,1,0680} 72,8129 {0,7709,1,0969,1,0658} 72,7896

Source: Authors

The simulation results presented in Table 3 allow observing that:

• The best solution reported in the literature for OPF analysis with distributed generation has

been reported by the MSSA and the CBGA-VSA when nodes 13, 24, and 30 are considered as
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DG locations. The power losses for these methods reach 72,7853 kW as the optimal solution.

• Methods such as the MINLP and the AHA have the same DG distribution. However, their

optimal power flow solvers are stuck in locally optimal solutions, which are 72,7862 and 72,8340

kW, respectively. This indicates that some combinatorial methods cannot exploit the solution

space adequately.

• For 84,62 % of the comparative methods in Table 3, the SOCP model reaches better solutions,

with the greatest difference being found when the GA-IWD and the SOCP are compared, with

an error of about 24,4493 kW in favor of the latter. Also note that a second big difference is

observed for the GA-PSO approach.

• Only two of the thirteen methods presented in Table 3 (i.e., the MSSA and the CBGA-VSA) find

the global optimal solution of the problem when compared to the SOCP approach. However, it

is important to mention that the power outputs in all the DGs exhibit small variations, which

implies that the problem is multimodal and can have different power combinations with the

same objective function.

Overall, Table 3 shows that the SOCP approach yields better solutions in the 33-node test feeder

when different nodes are considered in the OPF analysis. In addition, the main advantage is that,

when the combination of nodes is the same, the global optimum found is always the same, which is

not possible with metaheuristics due to their random nature.

Results obtained by the 33-node test feeder

An initial population of 30 individuals was established, given that, after performing different

tests, good comparative results were obtained regarding the objective function and the processing

time. A maximum number of iterations tmax of 100 was also defined for the CSA, BH, PSO, VSA, and

SCA. For the GA, a number of 1.000 was defined because the execution structure requires more itera-

tions to reach the expected value regarding the objective function. In addition, to evaluate the results

obtained, each algorithm was executed 100 times in order to perform the corresponding statistical

analysis.

Figures 4 and 5 show the results obtained for the global optimum or objective function and the

processing time, respectively, for each of the methods implemented in the 33-node network.

The optimal size obtained, along with the best solution for each method for each of the imple-

mented DGs, is presented in Table 4.

The statistical values obtained for the maximum value and standard deviation are presented in

Table 5, and the average of the problem’s relevant variables for the 33-node network are presented in

Table 6.
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Figure 4. Objective function (global optimum) in the 33-node system

Souce: Authors.

Figure 5. Processing times in the 33-node system

Souce: Authors.

The results obtained in the validation show that:

• The best solution obtained for the objective function is reported by the SOCP method. It is

also observed that the processing time for this methodology is the lowest. These results allude

directly to the exact or linear structure of the SOCP, so the direct solution is obtained without

iteration.

• For the metaheuristic methodologies, it is observed that the best results are obtained by the

GA with 72,785312 kW and BHO and PSO with 72,78513 kW. These solutions range very close

to the solution obtained with the SOCP method, which shows the efficiency of metaheuristic

optimization.
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Table 4. Optimal DG size for each node of the 33-node test feeder

Method Node 13 (kW) Node 24 (kW) Node 30 (kW)

PSO 801,79617 1.091,31399 1.053,60457

CSA 801,95368 1.091,32611 1.053,86541

AG 801,98661 1.091,73716 1.053,54698

BH 801,95368 1.091,32611 1.053,86541

SAC 802,32702 1.089,44615 1.053,66987

VSA 807,59058 1.081,81856 1.067,89946

SOCP 801,85244 1.091,42711 1.053,79832

Source: Authors

Table 5. Maximum result for the objective function and the standard deviation in the 33-node test feeder

Method Highest value Ploss (kW) Standard deviation

PSO 72,790363 0,0005063

CSA 73,997282 0,2162069

AG 72,707032 0,0003653

BH 72,787123 0,0028179

SAC 72,815086 0,0042461

VSA 73,522477 0,1501963

Source: Authors

• The implementation of the CSA shows the worst results in the validation, with 72,787761 kW.

However, the range of deviation with the six remaining algorithms is very low (around 3 W).

Moreover, the VSA and SCA are very close to the optimum values obtained with the SOCP

reference, even though they do not yield the best results.

• The processing times obtained show a trend in the results for the six metaheuristic techniques,

as these values oscillate between 1,114 and 1,344 s. On the other hand, the SOCP shows better

results, which is clearly due to its convexity. In general, good results are observed for this varia-

ble, which, although it is not decisive in the problem, could be considered to be a good criterion

of choice for ease of processing.
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Table 6. Average of the problem’s interest variables in the 33-node test feeder

Method
Node 13

(kW)

Node 24

(kW)

Node 30

(kW)

Ploss

(kW)

Processing

time (s)

PSO 801,76408 1.090,97745 1.053,70433 72,785373 1,272468

CSA 805,91759 1.087,11468 1.028,35653 73,045624 1,348536

AG 802,33621 1.090,98354 1.053,15222 72,785715 1,274994

BH 802,02359 1.090,96947 1.053,85721 72,785541 1,156852

SCA 802,29906 1.088,34297 1.054,49701 72,786205 1,208374

VSA 800,01247 1.105,81499 1.055,56561 72,984163 1,340017

Source: Authors

• A uniform sizing of DG can be observed among the various methodologies, with the first DG

being of about 800 kW, the second one of 1.090 kW, and the third one of 1.053 kW. These results

coincide with those reported in the analyzed literature, given that the same sizing values were

achieved.

• The standard deviation reported in Table 5 shows satisfactory results. The values are low, which

guarantees that, after successive runs, the dispersion of the data is in a minimum range, which

alludes directly to the accuracy of the methods.

• The averages of the DGs sizing, objective function, and processing times are shown in Table 6.

The values are in low ranges and with direct similarity to the optimum values for each method.

• In general, good results can be observed regarding the penetration of DGs in the network and

their implementation via metaheuristic and exact methodologies. There are reductions close to

66 % in total system losses, going from 210,99 kW to about 72,7850 kW.

69-node test feeder results found in the literature

Table 7 presents the numerical comparison between some metaheuristics reported in the literature

and the SCOP model.

The numerical results reported in Table 7 allow concluding that:

• Only two out of the thirteen methods find the global optimal solution of the OPF problem in

the 69-node test feeder, i.e., 69,4077 kW. These methods are the MSSA and the CBGA-VSA, and

their DGs are located at nodes 11, 18, and 61. The SOCP approach finds the same solution as
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Table 7. Optimal location and sizing of DGs in the 69-node test feeder for the proposed and comparative

approaches

Literature information Metaheuristics SOCP

(N◦) Method Node Size (MW) Ploss (kW) Size (MW) ploss(kW)

(1) GA-PSO {21,61,63} {0,9105,1,1926,0,8849} 84,5909 {0,4866,0,4883,0,3003} 71,9595

(2) LSFSA {18,60,65} {0,4204,1,3311,0,4298} 72,1120 {0,5276,1,3609,0,4540} 76,4762

(3) MINLP {11,17,61} {0,5300,0,3800,1,7200} 69,4090 {0,5267,0,3802,1,7189} 69,4088

(4) TLBO {15,61,63} {0,5919,0,8188,0,9003} 72,4157 {0,5542,1,4772,0,3002} 71,6738

(5) QOTLBO {18,61,63} {0,5334,1,1986,0,5672} 71,6345 {0,5310,1,4808,0,3004} 71,5090

(6) HTLBOGWO {18,61,62} {0,5330,1,0000,0,7730} 71,7281 {0,5310,1,4617,0,3196} 71,5898

(7) GA-IWD {20,61,64} {0,9115,1,3926,0,8059} 80,9100 {0,5027,1,4953,0,2898} 71,4060

(8) AHA {12,21,61} {0,4710,0,3120,1,6890} 69,6669 {0,4953,0,3125,1,7353} 69,5677

(9) KHA {12,22,61} {0,4962,0,3113,1,7354} 69,5730 {0,4960,0,3118,1,7353} 69,5730

(10) MSSA {11,18,61} {0,5260,0,3800,1,7180} 69,4077 {0,5269,0,3801,1,7189} 69,4077

(11) CHVSA {11,17,61} {0,5284,0,3794,1,7186} 69,4088 {0,5267,0,3802,1,7189} 69,4088

(12) GAMS {12,61,64} {0,8131,1,4447,0,2896} 72,7900 {0,8137,1,4446,0,2897} 71,9504

(13) CBGA-VSA {11,18,61} {0,5268,0,3801,1,7190} 69,4077 {0,5269,0,3801,1,7189} 69,4077

Source: Authors

these methods, albeit with small variations in the power injected. This behavior is attributable

to the multimodal behavior of the OPF problem in distribution networks.

• For the remaining 11 methods, when the power losses are compared, it is possible to observe

that the SOCP has the best numerical performance in all the cases. The highest difference occurs

in the case of the GA-PSO with 15,1832 kW, followed by the GA-IWD with 9,5040 kW. These

results confirm that some combinatorial methods are stuck in locally optimal solutions, which

can be attributable to the parametrization of these algorithms, as they can be sensitive to the

number of iterations, population size, or evolution criteria.

In general, the results in Table 7 confirm that the SOCP approach is more reliable for solving the

OPF problem in distribution networks since, mathematically speaking, the global optimal solution is

ensured, which is not possible for metaheuristic optimization methods. To demonstrate this, in the

following section, simulations with the VSA are performed with a statistical focus, and the results are

compared to those of the SOCP approach. This method was selected because it is the most efficient
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technique that has recently been reported in the literature on OPF analysis, which is due to its use of

Gaussian distributions to explore and exploit the solution space (Montoya et al., 2019).

Results obtained by the 69-node test feeder

For the 69-node network, the same considerations were taken into account, namely the number

of individuals, the number of iterations, and the number of algorithm executions.

Figures 6 and 7 present the results obtained for the global optimum or objective function, as well

as the processing times for each of the methods implemented in the 69-node network.

The optimal DG sizes obtained, along with the best solution for each method, are presented in

Table 8.
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Figure 6. Objective function (global optimum) in the 69-node system

Souce: Authors.

Figure 7. Processing times in the 69-node system

Souce: Authors.
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Table 8. DG optimal size for each node in the 69-node test feeder

Method Node 11 (kW) Node 18 (kW) Node 61 (kW)

PSO 528,08899 379,29616 1.718,89968

CSA 523,71161 393,93201 1.710,80861

AG 526,89844 379,90107 1.718,74978

BH 526,85060 380,69604 1.719,15175

SCA 521,04921 383,20855 1.719,49453

VSA 526,32031 371,46626 1.713,36345

SOCP 522,35421 374,53354 1.714,23456

Source: Authors

The statistical values obtained for the maximum value and the standard deviation are presented

in Table 9, and the averages of the problem’s relevant variables for the 69-node system are presented

in Table 10.

Table 9. Maximum and standard deviation in the 69-node test feeder regarding the objective function value

Method Higher value Ploss (kW) Standard deviation (kW)

PSO 74,47234549 0,89754997

CSA 72,69016241 0,685864371

AG 69,56054542 0,000523881

BH 69,56852805 0,002519536

SCA 69,69261281 0,021846751

VSA 70,13257921 0,111839301

Source: Authors

The results obtained in the validation show that:

• As in the 33-node system, the SOCP obtained the best results regarding the objective fun-

ction. A much lower processing time was observed in comparison with the other metaheuristic

methods, which is due to the linear or exact nature of SOCP, as it does not require iteration to

find the best solution.

• With the metaheuristic methods, the GA algorithm, with 69,555992 kW, was the one with the

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 26 Número 74 • Octubre - Diciembre de 2022 • pp. 87-129

[115]



Comparative Methods for Solving Optimal Power Flow in Distribution Networks Considering Distributed Generators
Bohórquez-Bautista., K.J. Moreno-Arias., D.A . Montoya-Giraldo., O.D. y Gil-González., W.J.

Table 10. Average of the problem’s interest variables in the 69-node test feeder

Method Node 11 (kW) Node 18 (kW) Node 61 (kW) Ploss (kW) Proc. time (s)

PSO 550,8664245 410,6438291 1.640,970481 70,17983654 7,126776063

CSA 459,3787818 369,3868411 1.748,294781 70,61552772 6,727355188

AG 526,6663213 379,6927151 1.719,216721 69,55627009 6,742606877

BH 532,2441399 380,8071298 1.715,379311 69,55852607 6,800026994

SCA 520,1028272 380,6536084 1.719,012024 69,56088641 8,122573602

VSA 512,8563583 385,5910131 1.723,311221 69,72104881 7,431164393

Source: Authors

least losses –less than the exact SOCP method. This shows that metaheuristic methods are very

efficient and can reach better answers than exact techniques.

• The GA yields better results regarding loss reduction when compared to the SOCP method. It

also has a longer processing time –almost four times longer than the SOCP. This allows the user

to choose which one would be better when dealing with an optimization problem.

• The CSA method is the one with the greatest deficiency in the reduction of power losses, with

results of 69,564495 kW, and its standard deviation is one of the highest. However, its results

are in a range close to the general results obtained with the different methodologies.

• The GA algorithm has the lowest standard deviation, which makes it the most accurate meta-

heuristic algorithm, unlike the PSO, which is the algorithm with the highest standard deviation

–and therefore the most inaccurate– within the evaluation environment defined in this work.

• It should be noted that the GA is the algorithm that requires the highest number of iterations

(1.000) in order to obtain an optimal result. Nevertheless, its processing times are low due to its

nature, which only requires simple operations, comparisons, and replacements.

• For the 69-node system, the node that requires the most power regarding DG is node 30, with

a power of approximately 1.719 kW, followed by node 13, with about 527 kW, and node 24,

with approximately 385 kW. These results were compared to those reported in the specialized

literature, with the same sizing values for the selected DG locations.

• The standard deviation values presented in Table 9 show that the results were as expected: in

both 33- and 69-node systems, it was demonstrated that the methods are highly accurate, which

is due to their low standard deviation.
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• The averages of the DG sizing value, objective function, and processing time shown in Table 10

are low, with a high similarity to the optimum of each method.

• It can be concluded that the results are good with regard to the penetration of DGs in electrical

networks and their implementation with metaheuristic and exact methodologies. There is a

69 % reduction in the total system losses, going from 225,0718 to about 69,556 kW.

Additional results

In order to observe the direct impact of DG in each of the implemented grids, an additional

analysis is presented, which is a verification of the nodal voltage profiles, as this is an indicator of the

efficiency and operation of the grid, and it evidences the regulatory compliance of electrical systems.

To demonstrate the improvement of this parameter in the networks, the profiles of the original system

were obtained, as well as the profiles of the network subjected to the penetration of DG.

The results obtained for the 33-node network are shown in Figure 8.Version July 28, 2022 submitted to Computation 28
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Figure 8. Voltage profiles for the IEEE 33-node test feeder

Souce: Authors.

The results obtained for the 69-node network are shown in Figure 9.

The results reported in Figures 8 and 9 confirm that DG improves the voltage profiles in the

two networks, achieving more uniform results in each of the system nodes, which ensures greater

efficiency for the network. Before the penetration of DG in the 33-node network, values oscillated

between 0,91 and 1,00 p.u., and most of the nodes had values equal to or lower than 0,95 p.u. The in-

tegration of DG yielded a homogeneous behavior, with oscillations between 0,983 and 1 p.u. Further-

more, in the 69-node network, the voltage profile values at the different nodes initially oscillated

between 0,91 and 1.00 p.u. With the integration of DG, the oscillation range improved, i.e., between

0,992 and 1,00 p.u.
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Figure 9. Voltage profiles for the IEEE 69-node test feeder

Souce: Authors.

CONCLUSIONS AND FUTURE WORK

This paper presented a complete comparison between metaheuristic optimization methods and

the SOCP approach for solving the OPF problem in AC distribution networks. The exact nonlinear

model of the OPF problem and its conic relaxation were presented in order to show the main compli-

cations of its solution. Computational validations showed that the metaheuristic approaches manage

to obtain very good results that are directly comparable to those of the SOCP. Actually, the reported

validations show a great performance of the GA for the two test systems, which makes it the best

methodology used in this study. In general, the range of oscillation of the results obtained with the

studied methodologies shows that the difference between the best and the worst global optimum is

about 10 W. Based on this value, a satisfactory comparison between metaheuristic and convex optimi-

zation is clearly achieved, despite the problems with the iterative processes and the definition of the

corresponding parameters for the metaheuristic techniques. This study shows how these techniques

adequately fit the OPF problem, showing even better solutions than traditional convex optimization.

The daily problems faced by engineers and other professionals are usually of a high comple-

xity, given the amount of data and possible solutions that a problem may have. With this in mind,

combinatorial solutions (metaheuristic methods) allow finding acceptable solutions with reasonable

computation times by applying the knowledge obtained while observing nature. Metaheuristic tech-

niques bring innovative ideas because they are not rigid algorithms, which makes them very versatile

methods that can be adapted to any combinatorial optimization problem software. The task of de-

termining the initial variables of the algorithms is part of the programmer’s criterion, leading to an

infinite number of possible programs that address the same problem, all focused on finding the best

solution to the objective problem in the shortest possible time. As seen in this paper, DG depends on
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many variables such as its topology, the number of generators, and their position, size, and cost. A

programmer’s task is to carefully establish the criteria for the selection of the generators, as the qua-

lity of the solutions to be found depends on it. Metaheuristic methods can be implemented in various

computational tools and adapted to them, thus demonstrating that large programs or licenses are not

required to find an acceptable solution to combinatorial optimization problems.

As future work, the following research could be conducted: i) comparing metaheuristics against

SOCP programming in optimization problems that include binary variables, such as the optimal

location of capacitor banks or the optimal location of DGs in electrical distribution networks, and ii)

comparing both approaches in economic-environmental applications in transmission power systems

with a high penetration of renewable energy and battery energy storage systems.
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[Doğan & Ölmez, 2015] Doğan, B., & Ölmez, T. (2015). A new metaheuristic for numerical function

optimization: Vortex Search algorithm. Information Sciences, 293, 125-145. https://doi.org/

10.1016/j.ins.2014.08.053 ↑Ver página 96, 100, 101

[El-Fergany & Hasanien, 2015] El-Fergany, A. A., & Hasanien, H. M. (2015). Single and multi-

objective optimal power flow using grey wolf optimizer and differential evolution algo-

rithms. Electric Power Components and Systems, 43(13), 1548-1559. https://doi.org/10.1080/

15325008.2015.1041625 ↑Ver página 91

[Ebeed et al., 2018] Ebeed, M., Kamel, S., & Jurado, F. (2018). Optimal power flow using recent opti-

mization techniques. In Classical and recent aspects of power system optimization (pp. 157-183).

Academic Press. https://doi.org/10.1016/B978-0-12-812441-3.00007-0 ↑Ver pági-

na 90

[El-Khattam & Salama, 2004] El-Khattam, W., & Salama, M. M. (2004). Distributed generation tech-

nologies, definitions, and benefits. E lectric Power Systems Research, 71(2), 119-128. https://doi.

org/10.1016/j.epsr.2004.01.006 ↑Ver página

[Farivar & Low, 2013] Farivar, M., & Low, S. H. (2013). Branch flow model: Relaxations and conve-

xification – Part I. IEEE Transactions on Power Systems, 28(3), 2554-2564. https://doi.org/10.

1109/TPWRS.2013.2255317 ↑Ver página 91, 92, 94, 104, 105

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 26 Número 74 • Octubre - Diciembre de 2022 • pp. 87-129

[121]

https://doi.org/10.3390/en11123438
https://doi.org/10.1109/JSYST.2020.2971838
https://doi.org/10.1109/GCWCN.2018.8668633
https://doi.org/10.1016/j.egypro.2015.11.587
https://doi.org/10.1016/j.egypro.2015.11.587
https://doi.org/10.1016/j.ins.2014.08.053
https://doi.org/10.1016/j.ins.2014.08.053
https://doi.org/10.1080/15325008.2015.1041625
https://doi.org/10.1080/15325008.2015.1041625
https://doi.org/10.1016/B978-0-12-812441-3.00007-0
https://doi.org/10.1016/j.epsr.2004.01.006
https://doi.org/10.1016/j.epsr.2004.01.006
https://doi.org/10.1109/TPWRS.2013.2255317
https://doi.org/10.1109/TPWRS.2013.2255317


Comparative Methods for Solving Optimal Power Flow in Distribution Networks Considering Distributed Generators
Bohórquez-Bautista., K.J. Moreno-Arias., D.A . Montoya-Giraldo., O.D. y Gil-González., W.J.

[Garcés, 2016] Garcés, A. (2016). A quadratic approximation for the optimal power flow in po-

wer distribution systems. Electric Power Systems Research, 130, 222-229. https://doi.org/10.

1016/j.epsr.2015.09.006 ↑Ver página 104

[Gharehchopogh et al., 2021] Gharehchopogh, F. S., Maleki, I., & Dizaji, Z. A. (2021). Chaotic vortex

search algorithm: Metaheuristic algorithm for feature selection. Evolutionary Intelligence, 15, 1777-

1808. https://doi.org/10.1007/s12065-021-00590-1 ↑Ver página 101

[Gholami & Parvaneh, 2019] Gholami, K., & Parvaneh, M. H. (2019). A mutated salp swarm algo-

rithm for optimum allocation of active and reactive power sources in radial distribution systems.

Applied Soft Computing, 85, 105833. https://doi.org/10.1016/j.asoc.2019.105833 ↑Ver

página 107

[Gil-González et al., 2020] Gil-González, W., Montoya, O. D., Rajagopalan, A., Grisales-Noreña, L. F.,

& Hernández, J. C. (2020). Optimal selection and location of fixed-step capacitor banks in distri-

bution networks using a discrete version of the vortex search algorithm. Energies, 13(18), 4914.

https://doi.org/10.3390/en13184914 ↑Ver página 101

[Grisales-Noreña et al., 2018] Grisales-Noreña, L. F., González-Montoya, D., & Ramos-Paja, C. A.

(2018). Optimal sizing and location of distributed generators based on PBIL and PSO techniques.

Energies, 11(4), 1018. https://doi.org/10.3390/en11041018 ↑Ver página 90, 91, 92, 94, 107

[Grisales-Noreña et al., 2020] Grisales-Noreña, L. F., Garzón-Rivera, O. D., Ocampo-Toro, J. A.,

Ramos-Paja, C. A., & Rodríguez-Cabal, M. A. (2020). Metaheuristic optimization methods for op-

timal power flow analysis in DC distribution networks. Transactions on Energy Systems and Engi-
neering Applications, 1(1), 13-31. https://doi.org/10.32397/tesea.vol1.n1.2 ↑Ver pági-

na 96, 103

[Gupta et al., 2015] Gupta, S., Saxena, A., & Soni, B. P. (2015). Optimal placement strategy of distri-

buted generators based on radial basis function neural network in distribution networks. Procedia
Computer Science, 57, 249-257. https://doi.org/10.1016/j.procs.2015.07.478 ↑Ver pá-

gina 107

[Hasan & El-Hawary, 2014] Hasan, Z., & El-Hawary, M. E. (2014, November 12-14). Optimal power
flow by black hole optimization algorithm [Conference presentation]. 2014 IEEE Electrical Power and

Energy Conference, Calgary, AB, Canada. https://doi.org/10.1109/EPEC.2014.43 ↑Ver

página 91, 94

[Gutiérrez et al., 2017] Gutiérrez, D., Villa, W. M., & López-Lezama, J. M. (2017). Flujo óptimo reac-

tivo mediante optimización por enjambre de partículas. Información Tecnológica, 28(5), 215-224.

https://doi.org/10.4067/S0718-07642017000500020 ↑Ver página 98

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 26 Número 74 • Octubre - Diciembre de 2022 • pp. 87-129

[122]

https://doi.org/10.1016/j.epsr.2015.09.006
https://doi.org/10.1016/j.epsr.2015.09.006
https://doi.org/10.1007/s12065-021-00590-1
https://doi.org/10.1016/j.asoc.2019.105833
https://doi.org/10.3390/en13184914
https://doi.org/10.3390/en11041018
https://doi.org/10.32397/tesea.vol1.n1.2
https://doi.org/10.1016/j.procs.2015.07.478
https://doi.org/10.1109/EPEC.2014.43
https://doi.org/10.4067/S0718-07642017000500020


Comparative Methods for Solving Optimal Power Flow in Distribution Networks Considering Distributed Generators
Bohórquez-Bautista., K.J. Moreno-Arias., D.A . Montoya-Giraldo., O.D. y Gil-González., W.J.

[Hariharan & Sundaram, 2016] Hariharan, T., & Sundaram, K. M. (2016). Optimal power flow using

firefly algorithm with unified power flow controller. Circuits and Systems, 7(08), 1934. https://

doi.org/10.4236/cs.2016.78168 ↑Ver página

[Herbadji et al., 2013] Herbadji, O., Nadhir, K., Slimani, L., & Bouktir, T. (2013, April 28-30). Optimal
power flow with emission controlled using firefly algorithm [Conference presentation]. 2013 5th Inter-

national Conference on Modeling, Simulation and Applied Optimization (ICMSAO), Hammamet,

Tunisia. https://doi.org/10.1109/ICMSAO.2013.6552559 ↑Ver página 91

[Hernández et al., 2021] Hernández, C., Sánchez-Huertas, W., & Gómez, V. (2021). Optimal power

flow through artificial intelligence techniques. Tecnura, 25(69), 150-170. https://doi.org/10.

14483/22487638.18245 ↑Ver página 89

[Home-Ortiz et al., 2019] Home-Ortiz, J. M., Pourakbari-Kasmaei, M., Lehtonen, M., & Mantovani, J.

R. S. (2019). Optimal location-allocation of storage devices and renewable-based DG in distribu-

tion systems. Electric Power Systems Research, 172, 11-21. https://doi.org/10.1016/j.epsr.

2019.02.013 ↑Ver página 89

[Hudaib & Fakhouri, 2018] Hudaib, A. A., & Fakhouri, H. N. (2018). Supernova optimizer: A no-

vel natural inspired meta-heuristic. Modern Applied Science, 12(1), 32-50. https://doi.org/10.

5539/mas.v12n1p32 ↑Ver página 94

[Injeti & Kumar, 2013] Injeti, S. K., & Kumar, N. P. (2013). A novel approach to identify optimal access

point and capacity of multiple DGs in a small, medium and large scale radial distribution systems.

International Journal of Electrical Power & Energy Systems, 45(1), 142-151. https://doi.org/10.

1016/j.ijepes.2012.08.043 ↑Ver página 107

[Kaur et al., 2014] Kaur, S., Kumbhar, G., & Sharma, J. (2014). A MINLP technique for optimal place-

ment of multiple DG units in distribution systems. International Journal of Electrical Power & Energy
Systems, 63, 609-617. https://doi.org/10.1016/j.ijepes.2014.06.023 ↑Ver página 107

[Khan & Singh, 2017] Khan, B., & Singh, P. (2017). Optimal power flow techniques under charac-

terization of conventional and renewable energy sources: A comprehensive analysis. Journal of
Engineering, 2017, 9539506. https://doi.org/10.1155/2017/9539506 ↑Ver página 92

[Khan et al., 2020] Khan, A., Hizam, H., Abdul-Wahab, N. I., & Othman, M. L. (2020). Solution

of optimal power flow using non-dominated sorting multi objective based hybrid firefly and

particle swarm optimization algorithm. Energies, 13(16), 4265. https://doi.org/10.3390/

en13164265 ↑Ver página 91

[Kronqvist et al., 2019] Kronqvist, J., Bernal, D. E., Lundell, A., & Grossmann, I. E. (2019). A review

and comparison of solvers for convex MINLP. Optimization and Engineering, 20(2), 397-455. https:

//doi.org/10.1007/s11081-018-9411-8 ↑Ver página 104

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 26 Número 74 • Octubre - Diciembre de 2022 • pp. 87-129

[123]

https://doi.org/10.4236/cs.2016.78168
https://doi.org/10.4236/cs.2016.78168
https://doi.org/10.1109/ICMSAO.2013.6552559
https://doi.org/10.14483/22487638.18245
https://doi.org/10.14483/22487638.18245
https://doi.org/10.1016/j.epsr.2019.02.013
https://doi.org/10.1016/j.epsr.2019.02.013
https://doi.org/10.5539/mas.v12n1p32
https://doi.org/10.5539/mas.v12n1p32
https://doi.org/10.1016/j.ijepes.2012.08.043
https://doi.org/10.1016/j.ijepes.2012.08.043
https://doi.org/10.1016/j.ijepes.2014.06.023
https://doi.org/10.1155/2017/9539506
https://doi.org/10.3390/en13164265
https://doi.org/10.3390/en13164265
https://doi.org/10.1007/s11081-018-9411-8
https://doi.org/10.1007/s11081-018-9411-8


Comparative Methods for Solving Optimal Power Flow in Distribution Networks Considering Distributed Generators
Bohórquez-Bautista., K.J. Moreno-Arias., D.A . Montoya-Giraldo., O.D. y Gil-González., W.J.

[Mitchell, 1998] Mitchell, M. (1998). An introduction to genetic algorithms. MIT press. https://doi.

org/9780262133166 ↑Ver página 100

[Lakshmi et al., 2020] Lakshmi, P., Rao, B. V., Devarapalli, R., & Rai, P. (2020, July 10-11). Optimal
power flow with BAT algorithm for a power system to reduce transmission line losses using SVC [Confe-

rence presentation]. 2020 International Conference on Emerging Frontiers in Electrical and Electro-

nic Technologies, Patna, India. https://doi.org/10.1109/ICEFEET49149.2020.9186964

↑Ver página

[Lavaei & Low, 2011] Lavaei, J., & Low, S. H. (2011). Zero duality gap in optimal power flow pro-

blem. IEEE Transactions on Power Systems, 27(1), 92-107. https://doi.org/10.1109/TPWRS.

2011.2160974 ↑Ver página 92, 104

[Lavorato et al., 2011] Lavorato, M., Franco, J. F., Rider, M. J., & Romero, R. (2011). Imposing radia-

lity constraints in distribution system optimization problems. IEEE Transactions on Power Systems,
27(1), 172-180. https://doi.org/10.1109/TPWRS.2011.2161349 ↑Ver página 89

[Lima & Barán, 2006] Lima, J. Q., & Barán, B. (2006). Optimización de enjambre de partículas aplica-

da al problema del cajero viajante bi-objetivo. Inteligencia Artificial. Revista Iberoamericana de Inteli-
gencia Artificial, 10(32), 67-76. ↑Ver página 96, 98

[Manrique et al., 2019] Manrique, M. L., Montoya, O. D., Garrido, V. M., Grisales-Noreña, L. F., & Gil-

González, W. (2019). Sine-cosine algorithm for OPF analysis in distribution systems to size distri-

buted generators. In J. C. Figueroa-García, M. Duarte-González, S. Jaramillo-Isaza, Á. D. Orjuela-

Cañón, & Y. Díaz-Gutierrez (Eds.), WEA 2019: Applied Computer Sciences in Engineering (pp. 28-39).

Springer. https://doi.org/10.1007/978-3-030-31019-6_3 ↑Ver página 91

[Marini et al., 2019] Marini, A., Mortazavi, S. S., Piegari, L., & Ghazizadeh, M. S. (2019). An effi-

cient graph-based power flow algorithm for electrical distribution systems with a comprehen-

sive modeling of distributed generations. Electric Power Systems Research, 170, 229-243. https:

//doi.org/10.1016/j.epsr.2018.12.026 ↑Ver página

[Mirjalili et al., 2020] Mirjalili, S. M., Mirjalili, S. Z., Saremi, S., & Mirjalili, S. (2020). Sine cosine

algorithm: theory, literature review, and application in designing bend photonic crystal wa-

veguides. In S. Mirijalili, J. Song Dong, & A. Lewis (Eds.), Nature-Inspired Optimizers. Studies
in Computational Intelligence (vol. 811, pp. 201-217). Springer. https://doi.org/10.1007/

978-3-030-12127-3_12 ↑Ver página 94

[Mohagheghi et al., 2018] Mohagheghi, E., Alramlawi, M., Gabash, A., & Li, P. (2018). A sur-

vey of real-time optimal power flow. Energies, 11(11), 3142. https://doi.org/10.3390/

en11113142 ↑Ver página 89, 92

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 26 Número 74 • Octubre - Diciembre de 2022 • pp. 87-129

[124]

https://doi.org/9780262133166
https://doi.org/9780262133166
https://doi.org/10.1109/ICEFEET49149.2020.9186964
https://doi.org/10.1109/TPWRS.2011.2160974
https://doi.org/10.1109/TPWRS.2011.2160974
https://doi.org/10.1109/TPWRS.2011.2161349
https://doi.org/10.1007/978-3-030-31019-6_3
https://doi.org/10.1016/j.epsr.2018.12.026
https://doi.org/10.1016/j.epsr.2018.12.026
https://doi.org/10.1007/978-3-030-12127-3_12
https://doi.org/10.1007/978-3-030-12127-3_12
https://doi.org/10.3390/en11113142
https://doi.org/10.3390/en11113142


Comparative Methods for Solving Optimal Power Flow in Distribution Networks Considering Distributed Generators
Bohórquez-Bautista., K.J. Moreno-Arias., D.A . Montoya-Giraldo., O.D. y Gil-González., W.J.

[Molzahn & Hiskens, 2016] Molzahn, D. K., & Hiskens, I. A. (2016). Convex relaxations of optimal

power flow problems: An illustrative example. IEEE Transactions on Circuits and Systems I: Regular
Papers, 63(5), 650-660. https://doi.org/10.1109/TCSI.2016.2529281 ↑Ver página 90

[Montoya-Giraldo et al., 2017] Montoya-Giraldo, O. D., Gil-González, W. J., & Garcés-Ruíz, A. (2017).

Flujo de potencia óptimo para redes radiales y enmalladas empleando programación semidefini-

da. TecnoLógicas, 20(40), 29-42. https://doi.org/10.22430/22565337.703 ↑Ver página 104

[Montoya et al., 2019] Montoya, O. D., Grisales-Noreña, L. F., Amin, W. T., Rojas, L. A., & Campillo,

J. (2019). Vortex search algorithm for optimal sizing of distributed generators in AC distribution

networks with radial topology. In J. C. Figueroa-García, M. Duarte-González, S. Jaramillo-Isaza,

Á. D. Orjuela-Cañón, & Y. Díaz-Gutierrez (Eds.), WEA 2019: Applied Computer Sciences in Engi-
neering (pp. 235-249). Springer. https://doi.org/10.1007/978-3-030-31019-6_21 ↑Ver

página 91, 114

[Montoya et al., 2020a] Montoya, O. D., Gil-González, W., & Giral, D. A. (2020a). On the matricial for-

mulation of iterative sweep power flow for radial and meshed distribution networks with guaran-

tee of convergence. Applied Sciences, 10(17), 5802. https://doi.org/10.3390/app10175802

↑Ver página

[Montoya et al., 2020b] Montoya, O. D., Gil-González, W., & Orozco-Henao, C. (2020b). Vortex search

and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in-

distribution networks: A novel hybrid approach. Engineering Science and Technology, an Internatio-
nal Journal, 23(6), 1351-1363. https://doi.org/10.1016/j.jestch.2020.08.002 ↑Ver pá-

gina 90, 91, 101, 107

[Montoya et al., 2020c] Montoya, O. D., Gil-González, W., Serra, F. M., Hernández, J. C., & Molina-

Cabrera, A. (2020c). A second-order cone programming reformulation of the economic dispatch

problem of BESS for apparent power compensation in ac distribution networks. Electronics, 9(10),

1677. https://doi.org/10.3390/electronics9101677 ↑Ver página 90, 104

[Montoya & Gil-González, 2020] Montoya, O. D., & Gil-González, W. (2020). On the numerical analy-

sis based on successive approximations for power flow problems in AC distribution systems. Elec-
tric Power Systems Research, 187, 106454. https://doi.org/10.1016/j.epsr.2020.106454

↑Ver página 95, 101, 105, 107

[Montoya et al., 2022] Montoya, O. D., Arias-Londoño, A., & Molina-Cabrera, A. (2022). Branch opti-

mal power flow model for DC networks with radial structure: A conic relaxation. Tecnura, 26(71),

30-42. https://doi.org/10.14483/22487638.18635 ↑Ver página 90, 92, 93

[Moradi & Abedini, 2012] Moradi, M. H., & Abedini, M. (2012). A combination of genetic algorithm

and particle swarm optimization for optimal DG location and sizing in distribution systems. Inter-

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 26 Número 74 • Octubre - Diciembre de 2022 • pp. 87-129

[125]

https://doi.org/10.1109/TCSI.2016.2529281
https://doi.org/10.22430/22565337.703
https://doi.org/10.1007/978-3-030-31019-6_21
https://doi.org/10.3390/app10175802
https://doi.org/10.1016/j.jestch.2020.08.002
https://doi.org/10.3390/electronics9101677
https://doi.org/10.1016/j.epsr.2020.106454
https://doi.org/10.14483/22487638.18635


Comparative Methods for Solving Optimal Power Flow in Distribution Networks Considering Distributed Generators
Bohórquez-Bautista., K.J. Moreno-Arias., D.A . Montoya-Giraldo., O.D. y Gil-González., W.J.

national Journal of Electrical Power & Energy Systems, 34(1), 66-74. https://doi.org/10.1016/

j.ijepes.2011.08.023 ↑Ver página 94, 107

[Moradi & Abedini, 2016] Moradi, M. H., & Abedini, M. (2016). A novel method for optimal DG

units’ capacity and location in Microgrids. International Journal of Electrical Power & Energy Systems,
75, 236-244. https://doi.org/10.1016/j.ijepes.2015.09.013 ↑Ver página 107

[Mouassa et al., 2017] Mouassa, S., Bouktir, T., & Salhi, A. (2017). Ant lion optimizer for solving

optimal reactive power dispatch problem in power systems. Engineering Science and Technology,
an International Journal, 20(3), 885-895. https://doi.org/10.1016/j.jestch.2017.03.006

↑Ver página 91

[Mukherjee & Mukherjee, 2015] Mukherjee, A., & Mukherjee, V. (2015). Solution of optimal power

flow using chaotic krill herd algorithm. Chaos, Solitons & Fractals, 78, 10-21. https://doi.org/

10.1016/j.chaos.2015.06.020 ↑Ver página 91, 94

[Muthukumar & Jayalalitha, 2016] Muthukumar, K., & Jayalalitha, S. (2016). Optimal placement and

sizing of distributed generators and shunt capacitors for power loss minimization in radial dis-

tribution networks using hybrid heuristic search optimization technique. International Journal of
Electrical Power & Energy Systems, 78, 299-319. https://doi.org/10.1016/j.ijepes.2015.

11.019 ↑Ver página 107

[Nowdeh et al., 2019] Nowdeh, S. A., Davoudkhani, I. F., Moghaddam, M. H., Najmi, E. S., Abdela-

ziz, A. Y., Ahmadi, A., & Gandoman, F. H. (2019). Fuzzy multi-objective placement of renewable

energy sources in distribution system with objective of loss reduction and reliabilityimprovement

using a novel hybrid method. Applied Soft Computing, 77, 761-779. https://doi.org/10.1016/

j.asoc.2019.02.003 ↑Ver página 107

[Ou, 2012] Ou, T. C. (2012). A novel unsymmetrical faults analysis for microgrid distribution sys-

tems. International Journal of Electrical Power & Energy Systems, 43(1), 1017-1024. https://doi.

org/10.1016/j.ijepes.2012.05.012 ↑Ver página

[Prior et al., 2008] Prior, H., Schwarz, A., & Güntürkün, O. (2008). Mirror-induced behavior in the

magpie (Pica pica): Evidence of self-recognition. PLoS biology, 6(8), e202. https://doi.org/10.

1371/journal.pbio.0060202 ↑Ver página 96, 99

[Radziukynas & Radziukyniene, 2009] Radziukynas, V., & Radziukyniene, I. (2009). Optimization

methods application to optimal power flow in electric power systems. In J. Kallrath, P. M. Par-

dalos, S. Rebennack & M. Scheidt (Eds.) Optimization in the Energy Industry. Energy Systems (pp.

409-436). Springer. https://doi.org/10.1007/978-3-540-88965-6_18 ↑Ver página 91

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 26 Número 74 • Octubre - Diciembre de 2022 • pp. 87-129

[126]

https://doi.org/10.1016/j.ijepes.2011.08.023
https://doi.org/10.1016/j.ijepes.2011.08.023
https://doi.org/10.1016/j.ijepes.2015.09.013
https://doi.org/10.1016/j.jestch.2017.03.006
https://doi.org/10.1016/j.chaos.2015.06.020
https://doi.org/10.1016/j.chaos.2015.06.020
https://doi.org/10.1016/j.ijepes.2015.11.019
https://doi.org/10.1016/j.ijepes.2015.11.019
https://doi.org/10.1016/j.asoc.2019.02.003
https://doi.org/10.1016/j.asoc.2019.02.003
https://doi.org/10.1016/j.ijepes.2012.05.012
https://doi.org/10.1016/j.ijepes.2012.05.012
https://doi.org/10.1371/journal.pbio.0060202
https://doi.org/10.1371/journal.pbio.0060202
https://doi.org/10.1007/978-3-540-88965-6_18


Comparative Methods for Solving Optimal Power Flow in Distribution Networks Considering Distributed Generators
Bohórquez-Bautista., K.J. Moreno-Arias., D.A . Montoya-Giraldo., O.D. y Gil-González., W.J.

[Raviprabhakaran & Ravichandran, 2016] Raviprabhakaran, V., & Ravichandran, C. S. (2016). Enri-

ched biogeography-based optimization algorithm to solve economic power dispatch problem. In

M. Pant, K. Deep, J. Bansal, A. Nagar & K. Das (Eds.), Proceedings of Fifth International Conference
on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing (vol. 437, pp.

875-888). Springer. https://doi.org/10.1007/978-981-10-0451-3_78 ↑Ver página 91

[Raviprabakaran & Subramanian, 2018] Raviprabakaran, V., & Subramanian, R. C. (2018). Enhan-

ced ant colony optimization to solve the optimal power flow with ecological emission. Interna-
tional Journal of System Assurance Engineering and Management, 9(1), 58-65. https://doi.org/

10.1007/s13198-016-0471-x ↑Ver página 94

[Rbouh & El Imrani, 2014] Rbouh, I., & El Imrani, A. A. (2014). Hurricane-based optimization al-

gorithm. AASRI Procedia, 6, 26-33. https://doi.org/10.1016/j.aasri.2014.05.005 ↑Ver

página

[Rosli et al., 2020] Rosli, S. J., Rahim, H. A., Abdul Rani, K. N., Ngadiran, R., Ahmad, R. B., Yahaya,

N. Z., & Andrew, A. M. (2020). A hybrid modified method of the sine cosine algorithm using

latin hypercube sampling with the cuckoo search algorithm for optimization problems. Electronics,
9(11), 1786. https://doi.org/10.3390/electronics9111786 ↑Ver página 96, 102

[Rupolo et al., 2019] Rupolo, D., Mantovani, J. R. S., & Junior, B. R. P. (2019, June 23-27). Medium-
and low-voltage planning of electric power distribution systems with distributed generation, energy storage
sources, and electric vehicles [Conference presentation]. 2019 IEEE Milan PowerTech Milan, Italy.

https://doi.org/10.1109/PTC.2019.8810573 ↑Ver página 89

[Rupolo et al., 2020] Rupolo, D., Pereira Junior, B. R., Contreras, J., & Mantovani, J. R. S. (2020). Mul-

tiobjective approach for medium- and low-voltage planning of power distributionsystems consi-

dering renewable energy and robustness. Energies, 13(10), 2517. https://doi.org/10.1109/

PTC.2019.8810573 ↑Ver página 89

[Salkuti et al., 2019] Salkuti, S. R. (2019). Optimal power flow using multi-objective glowworm

swarm optimization algorithm in a wind energy integrated power system. International Journal of
Green Energy, 16(15), 1547-1561. https://doi.org/10.1080/15435075.2019.1677234 ↑Ver

página 91

[Scoble, 2015] Scoble, M. J. (2005). Book review. Systematic Entomology, 30(3), 497-498. https://

doi.org/10.1111/j.1365-3113.2005.00311.x ↑Ver página 101

[Shen et al., 2018] Shen, T., Li, Y., & Xiang, J. (2018). A graph-based power flow method for balan-

ced distribution systems. Energies, 11(3), 511. https://doi.org/10.3390/en11030511 ↑Ver

página 95

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 26 Número 74 • Octubre - Diciembre de 2022 • pp. 87-129

[127]

https://doi.org/10.1007/978-981-10-0451-3_78
https://doi.org/10.1007/s13198-016-0471-x
https://doi.org/10.1007/s13198-016-0471-x
https://doi.org/10.1016/j.aasri.2014.05.005
https://doi.org/10.3390/electronics9111786
https://doi.org/10.1109/PTC.2019.8810573
https://doi.org/10.1109/PTC.2019.8810573
https://doi.org/10.1109/PTC.2019.8810573
https://doi.org/10.1080/15435075.2019.1677234
https://doi.org/10.1111/j.1365-3113.2005.00311.x
https://doi.org/10.1111/j.1365-3113.2005.00311.x
https://doi.org/10.3390/en11030511


Comparative Methods for Solving Optimal Power Flow in Distribution Networks Considering Distributed Generators
Bohórquez-Bautista., K.J. Moreno-Arias., D.A . Montoya-Giraldo., O.D. y Gil-González., W.J.

[Siavash et al., 2017] Siavash, M., Pfeifer, C., Rahiminejad, A., & Vahidi, B. (2017, May 17-19). An ap-
plication of grey wolf optimizer for optimal power flow of wind integrated power systems [Conference pre-

sentation]. 2017 18th International Scientific Conference on Electric Power Engineering, Kouty nad

Desnou, Czech Republic. https://doi.org/10.1109/EPE.2017.7967230 ↑Ver página 91

[Simiyu et al., 2020] Simiyu, P., Xin, A., Wang, K., Adwek, G., & Salman, S. (2020). Multiterminal

medium voltage DC distribution network hierarchical control. Electronics, 9(3), 506. https://

doi.org/10.3390/electronics9030506 ↑Ver página 104

[Sultana & Roy, 2014] Sultana, S., & Roy, P. K. (2014). Multi-objective quasi-oppositional teaching

learning- based optimization for optimal location of distributed generator in radial distribution

systems. International Journal of Electrical Power & Energy Systems, 63, 534-545. https://doi.org/

10.1016/j.ijepes.2014.06.031 ↑Ver página 107

[Sultana & Roy, 2016] Sultana, S., & Roy, P. K. (2016). Krill herd algorithm for optimal location of

distributed generator in radial distribution system. Applied Soft Computing, 40, 391-404. https:

//doi.org/10.1016/j.asoc.2015.11.036 ↑Ver página 107

[Taher et al., 2019] Taher, M. A., Kamel, S., Jurado, F., & Ebeed, M. (2019). Modified grasshopper

optimization framework for optimal power flow solution. Electrical Engineering, 101(1), 121-148.

https://doi.org/10.1007/s00202-019-00762-4 ↑Ver página 91

[Tamilselvan et al., 2018] Tamilselvan, V., Jayabarathi, T., Raghunathan, T., & Yang, X. S. (2018). Opti-

mal capacitor placement in radial distribution systems using flower pollination algorithm. Alexan-
dria Engineering Journal, 57(4), 2775-2786. https://doi.org/10.1016/j.aej.2018.01.004

↑Ver página 90

[Tang et al., 2017] Tang, Y., Dvijotham, K., & Low, S. (2017). Real-time optimal power flow. IEEE
Transactions on Smart Grid, 8(6), 2963-2973. https://doi.org/10.1109/TSG.2017.2704922

↑Ver página 89

[Topaloglu et al., 2013] Topaloglu, H., Smith, J. C., & Greenberg, H. J. (Eds.) (2013). Theory driven by
influential applications. Informs. https://doi.org/10.1287/educ.2013 ↑Ver página

[Trivedi et al., 2016] Trivedi, I. N., Jangir, P., & Parmar, S. A. (2016). Optimal power flow with enhan-

cement of voltage stability and reduction of power loss using ant-lion optimizer. Cogent Enginee-
ring, 3(1), 1208942. https://doi.org/10.1080/23311916.2016.1208942 ↑Ver página

[Velasquez et al., 2019] Velásquez, O. S., Montoya-Giraldo, O. D., Garrido-Arévalo, V. M., & Grisales-

Noreña, L. F. (2019). Optimal power flow in direct-current power grids via black hole optimization.

Advances in Electrical and Electronic Engineering, 17(1), 24-32. https://doi.org/10.15598/

aeee.v17i1.3069 ↑Ver página 103

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 26 Número 74 • Octubre - Diciembre de 2022 • pp. 87-129

[128]

https://doi.org/10.1109/EPE.2017.7967230
https://doi.org/10.3390/electronics9030506
https://doi.org/10.3390/electronics9030506
https://doi.org/10.1016/j.ijepes.2014.06.031
https://doi.org/10.1016/j.ijepes.2014.06.031
https://doi.org/10.1016/j.asoc.2015.11.036
https://doi.org/10.1016/j.asoc.2015.11.036
https://doi.org/10.1007/s00202-019-00762-4
https://doi.org/10.1016/j.aej.2018.01.004
https://doi.org/10.1109/TSG.2017.2704922
https://doi.org/10.1287/educ.2013
https://doi.org/10.1080/23311916.2016.1208942
https://doi.org/10.15598/aeee.v17i1.3069
https://doi.org/10.15598/aeee.v17i1.3069


Comparative Methods for Solving Optimal Power Flow in Distribution Networks Considering Distributed Generators
Bohórquez-Bautista., K.J. Moreno-Arias., D.A . Montoya-Giraldo., O.D. y Gil-González., W.J.

[Vélez et al., 2014] Vélez, V. M., Hincapié, R. A., & Gallego, R. A. (2014). Low voltage distribution

system planning using diversified demand curves. Electrical Power & Energy Systems, 61, 691-700.

https://doi.org/10.1016/j.ijepes.2014.04.019 ↑Ver página 89

[Winter, 2005] Winter, G. (2005). Origin of the species. Nursing Standard, 19(34), 24-26. https://

doi.org/10.7748/ns.19.34.24.s28 ↑Ver página 96, 100

[Yadav & Mahara, 2018] Yadav, R., & Mahara, T. (2018). An exploratory study to investiga-

te value chain of Saharanpur wooden carving handicraft cluster. International Journal of
System Assurance Engineering and Management, 9(1), 147-154. https://doi.org/10.1007/

s13198-016-0492-5 ↑Ver página

[Yuan et al., 2018] Yuan, Y., Wu, X., Wang, P., & Yuan, X. (2018). Application of improved bat algo-

rithm in optimal power flow problem. Applied Intelligence, 48(8), 2304-2314. https://doi.org/

10.1007/s10489-017-1081-2 ↑Ver página

[Yuan & Hesamzadeh, 2019] Yuan, Z., & Hesamzadeh, M. R. (2019). Second-order cone AC optimal

power flow: Convex relaxations and feasible solutions. Journal of Modern Power Systems and Clean
Energy, 7(2), 268-280. https://doi.org/10.1007/s40565-018-0456-7 ↑Ver página 94, 104

[Zohrizadeh et al., 2020] Zohrizadeh, F., Josz, C., Jin, M., Madani, R., Lavaei, J., & Sojoudi, S. (2020).

Conic relaxations of power system optimization: Theory and algorithms. European Journal of Opera-
tional Research, 287(2), 391-409. https://doi.org/10.1016/j.ejor.2020.01.034 ↑Ver pá-

gina

[Zuluaga-Ríos et al., 2021] Zuluaga-Ríos, C. D., Florián-Ceballos, D. F., Rojo-Yepes, M. Á., &

Saldarriaga-Zuluaga, S. D. (2021). Review of charging load modeling strategies for electric vehi-

cles: Acomparison of grid-to-vehicle probabilistic approaches. Tecnura, 25(70), 51-60. https:

//doi.org/10.14483/22487638.18657 ↑Ver página 89

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 26 Número 74 • Octubre - Diciembre de 2022 • pp. 87-129

[129]

https://doi.org/10.1016/j.ijepes.2014.04.019
https://doi.org/10.7748/ns.19.34.24.s28
https://doi.org/10.7748/ns.19.34.24.s28
https://doi.org/10.1007/s13198-016-0492-5
https://doi.org/10.1007/s13198-016-0492-5
https://doi.org/10.1007/s10489-017-1081-2
https://doi.org/10.1007/s10489-017-1081-2
https://doi.org/10.1007/s40565-018-0456-7
https://doi.org/10.1016/j.ejor.2020.01.034
https://doi.org/10.14483/22487638.18657
https://doi.org/10.14483/22487638.18657
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Exact OPF formulation
	Solution with metaheuristics
	Power flow solution
	Implementing the metaheuristic optimizers
	Particle swarm optimization
	Crow search algorithm
	Genetic algorithm
	Vortex search algorithm
	Sine-cosine algorithm
	Black-hole optimizer


	Convex optimization
	Test feeders
	Computational validations
	33-node test feeder results found in the literature
	Results obtained by the 33-node test feeder
	69-node test feeder results found in the literature
	Results obtained by the 69-node test feeder
	Additional results

	Conclusions and future work
	References

