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ABSTRACT 

 

Research background: A combination of technology and efficiency gains will drive future intensification programs 

aimed at fostering food and nutrition security in the developing world. Specifically, the adoption of improved varieties 

and use of quality seed alongside good agronomic practices will be critical. 

Purpose of the article: Given the space-time availability of technology, this study investigates how production 

efficiency (technical efficiency, technology gap, and meta technical efficiency) has changed over time and assesses the 

possibility of heterogeneous technology adoption in Ghana.  

Methods: The study constructs a rich nationally representative dataset of dry beans and groundnut farmers that 

constitutes 15 production seasons in Ghana. Using a sample of 10,518 farmers from 10,051 households, a Meta 

Stochastic Frontier (MSF) approach is used to access changes and determinants efficiency and technology adoption.  

Findings & Value added:  We find that farms are operating under heterogeneous technologies along ecological lines 

and that the technology gap has been reducing over time. Improvements in meta technical efficiency could be driven by 

the gains in the technology gap ratio. Technical efficiency levels across the two legumes averaged about 61% and did 

not significantly improve between 1987 to 2017. The key determinants for the observed trends were farmer education, 

mechanization, access to agricultural extension services, and land ownership. Holding ecological technologies constant, 

legume farmers generally performed poorly because of technical inefficiency, implying that a general improvement in 

farmer managerial skills could substantially improve farm output. The study recommends policies/programs be 

formulated on a case-by-case basis; to ensure specificity and wider impacts, if production is to improve. 
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INTRODUCTION 

 

Achieving ‘close to’ potential mean yields of staple crops 

in Sub-Saharan Africa remains elusive among small-scale 

farmers. Available evidence shows that adoption rates and 

national mean yields of several crops have remained low 

(Alliance for a Green Revolution in Africa (AGRA), 

2016; Binswanger-Mkhize and Savastano, 2017). These 

disparities have been attributed to the extreme 

vulnerability of crops to biotic and abiotic stresses (Feed 

the Future, 2013) and the use of inefficient production 

practices and technology gaps (Combary, 2017; 

Nishimizu and Page, 1982). This is against the backdrop 

that governments and non-governmental organizations 

have been promoting initiatives such as breeding and 

supplying yield-enhancing technologies (improved seeds, 

fertilizers, and pesticides) and extension services. 

However, the realization of the impacts of Ag investments 

takes time following adoption. A key policy question thus 

concerns how efficient farmers have been and how this has 

been changing overtime, whether technology adoption is 

heterogeneous, and what factors have influenced 

production efficiency.  

This study examines the temporal and spatial 

dimensions of production efficiency of dry beans (cowpea 

(Vigna unguiculata) and Bambara beans (Vigna 

subterranean)) and groundnut (Arachis hypogaea) 

farmers in Ghana. The paper investigates how production 

efficiency has changed over time and assesses the 

possibility of heterogeneous technology adoption. Using 

the Meta Stochastic Frontier (MSF) approach, the study; 

(1) assesses factor contributions to ecology specific, 

national and meta-frontier efficiencies, (2) quantifies 

temporal pure Technical Efficiency (TE), Technology 

Gap Ratio (TGR), and Meta Technical Efficiency (MTE), 

and (3) evaluates farmer and institutional factors that have 

influenced technical inefficiency and adoption of superior 

technologies. The empirical strategy is implemented using 

a rich nationally representative dataset that covers 15 

production seasons between 1987 and 2017 in Ghana. This 

data presents a unique opportunity to empirically assess 
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the nature of observed legume production patterns in 

Ghana over time. 

 

LITERATURE REVIEW  

 

Production efficiency can be categorized into technical or 

allocative efficiency, with the two combining to form 

economic efficiency (Farrell, 1957). Due to the paucity of 

reliable data on input prices at the farmer level, technical 

efficiency, which deals with how well farmers manage 

inputs to reach potential yields is the most commonly used 

measure. The literature presents two main orientations - 

i.e., output or input - in measuring technical efficiency. 

Output orientation compares the observed output to its 

potential given a set of input and technology while the 

input orientation measure compares observed input levels 

to its minimum potential necessary to produce a given 

output level (Belotti, Daidone, Ilardi, and Atella, 2013). 

These two orientations are empirically implemented either 

using the non-parametric Data Envelopment Analysis 

(DEA), or the Stochastic Frontier Analysis (SFA) 

methods. DEA ignores deviation outside the control of 

farmers (i.e. white noise) while SFA employs 

econometrics and as such incorporates randomness into 

the production process (Belotti et al., 2013). 

Consequently, the SFA approach is used in this study 

because it incorporates randomness and fits the data best. 

The existence of a homogeneous production technology 

and management practices puts all farmers on the 

production frontier. However, deviations can be observed 

that can be attributed to technical inefficiency and/or 

production risk (Bokusheva and Hockmann, 2005). 

Empirical evidence into smallholder production 

efficiency has mostly been static in time (single-season 

analysis) and limited in geographic scope. This kind of 

analysis, therefore, does not allow for spatial and temporal 

analysis of production efficiency and its dynamics. It has 

been noted that failure to account for technological 

differences could lead to falsely attributing production 

shortfalls due to technology gaps to inefficient input use 

(Battese, Rao, and O’Donnell, 2004) leading to 

suboptimal policy prescriptions. A handful of studies on 

Ghana have shown that low production levels for maize 

(Owusu, 2016; Wongnasa and Awunyo-Vitor, 2019), 

rice (Asravor, Wiredu, Siddig, and Onumah, 2019), 

vegetables (Tsiboe, Asravor, and Osei, 2019), and cocoa 

could be attributed to ecological and regional 

technological gaps. Furthermore, some have shown that 

technology gaps could exist along gender differences of 

farm owners and managers (Djokoto et al., 2017) or 

methods of production used by farmers, both 

conventional/organic (Onumah et al., 2013). The only 

studies also on Ghana and focusing on leguminous crops 

do not consider technology gaps but they show that 

production could be improved by reducing technical 

inefficiency (Avea et al., 2016; Awunyo-Vitor, Bakang, 

Gyan, and Cofie, 2013; Etwire, Martey, and Dogbe, 

2013). 

This study differs from earlier empirical studies 

conducted on legumes in Ghana on two fronts: First, the 

possibility for heterogeneous technology adoption is 

considered in explaining the nature of observed 

production. Secondly, production technologies and 

efficiencies were analysed over an extended period 

allowing the study to isolate trends and temporal 

dynamics. By putting the nature, dynamics, and spatial 

distribution of legume production on a solid empirical 

footing, the output from this study offers ground truth that 

informs the policy dialogue and supports crop 

improvement agendas.  

 

DATA AND METHODS  

 

Data and Sample 

The data used comes from three sources; (1) all seven 

Ghana Living Standards Surveys (GLSSs); (2) the first 

and second waves of the Ghana Socioeconomic Panel 

Surveys (GSPS); and (3) the Ghana Africa Research in 

Sustainable Intensification for the Next Generation 

Baseline Evaluation Survey (GARBES). Detailed 

information on the harmonization of these datasets is 

published elsewhere. Except for GSPS, each round of data 

collection has a sample of new households. Thus, the 

study data is a pooled/repeated cross-section dataset of 

Ghanaian legume farmers. The sample used in this study 

was limited to farmers originating from the dry bean and 

groundnut producing households, with yield measured in 

kg/ha above the 5th and below the 95th percentile by 

survey, ecology, and legume. The final sample consists of 

10,518 farmers originating from 10,051 households. 

The data is nationally representative covering all but 

one ecology: Rain Forest, Semi-Deciduous Forest, 

Transitional Zone, Guinea Savanna, and Sudan Savanna, 

of Ghana. The farming systems are highly heterogeneous 

and supportive of many types of farming. Most of the 

cultivated lands and production are in Guinea Savanna and 

Sudan Savanna Zones. Ideally, given their balanced 

annual rainfall and modest temperatures, these two 

ecologies have the optimal conditions for growing 

legumes. Due to data limitations and problems associated 

with thin data, observations from Semi-Deciduous Forest 

and Rain Forest are combined and reported as the Forest 

Zone.  

 

Empirical model specification, model selection and 

estimation 

Suppose environmental, farmer demographics, and factor 

usage in farms define the Stochastic Frontier Production 

(SF) function models for distinct groups. Then the SF 

function representing a group of farmers faced with 

similar circumstances (j) can be expressed as Eq. 1.  

 

𝑦𝑖 = 𝑓𝑗(𝑥𝑖)𝑒𝜀𝑖, 𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖 (1) 

 

Where: 𝑦𝑖 is output and 𝑥𝑖 represent production inputs for 

the ith farmer. Deviations from the frontier are captured by 

𝜀𝑖 that is composed of production risk (𝑣𝑖) and technical 

inefficiency (𝑢𝑖 ). The distributional assumptions of the 

deviations (𝑣𝑖 and 𝑢𝑖) underpin the estimation of Equation 

(1). Generally, 𝑣𝑖 follows a normal distribution with zero 

mean and variance 𝜎𝑣𝑖
2  [𝑣𝑖~𝑁(0, 𝜎𝑣

2)], but 𝑢𝑖 has different 

distributions based on its negative skewness (Belotti et al., 

2013). 
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Eq. 1 implies that production-output-increasing inputs 

simultaneously increase production variability (Just and 

Pope, 1979). However, inputs may have varying effects 

on production output and its variability. The stochastic 

components ( 𝑣𝑖  and 𝑢𝑖 ) could also be influenced by 

exogenous variables other than inputs (Just and Pope, 

1978, 1979). A better model should allow technical 

inefficiency increasing and decreasing effects. As such, 

technical inefficiency is redefined as 𝜎𝑢𝑖
2 = exp(𝒘𝑖𝜶) , 

where 𝒘𝑖 and 𝜶 are, respectively, vectors of explanatory 

variables and parameters (Caudill, Ford and Gropper, 

1995). If the null hypotheses 𝐻𝑜: 𝜶 = 0 is not rejected, 

then there is no statistical justification for the inefficiency 

increasing and decreasing effects (Aigner, Lovell, and 

Schmidt, 1977). Furthermore, the group specific TE of the 

ith farmer is calculated as 𝑇𝐸𝑖 =  𝐸[exp(−𝑢𝑖) |𝜀𝑖̂]. 
Following Huang, Huang, and Liu (2014), under the 

Meta-Stochastic Frontier (MSF) approach, Eq 1. is first 

estimated separately for each group (j), and then in the 

second step, the predicted output levels from the group 

SFs are used as the observation for a pooled SF that 

captures all ecologies to estimate the MSF. In the second 

step, the conventional one-sided error term (𝑢𝑖
𝑀) serves as 

the estimate for any technology gaps amongst the diverse 

groups. The MSF which envelops all group-specific 

frontiers [𝑓𝑗(𝑥𝑖)] is represented as Eq. 2. 
 

𝑓𝑗(𝑥𝑖) = 𝑓𝑀(𝑥𝑖)𝑒−𝑢𝑖
𝑀

, 𝑢𝑖
𝑀~𝑁+(0, exp(𝒘𝑖𝜶)),  (2) 

 

Where: 𝑢𝑖
𝑀  is strictly greater than zero, implying that 

𝑓𝑗(𝑥𝑖) ≤ 𝑓𝑀(𝑥𝑖). The ratio of group j’s frontier to the 

MSF is the technology gap ratio (TGR) that can be defined 

as Eq. 3. 
 

𝑇𝐺𝑅𝑖 =
𝑓𝑗(𝑥𝑖)

𝑓𝑀(𝑥𝑖)
= 𝑒−𝑢𝑖

𝑀
≤ 1  (3) 

 

The TGR depends on the accessibility and adoption 

level of the available MSF which in turn depends on 

farmer-specific circumstances. Each farmer’s meta-

frontier technical efficiency (MTE) is thus estimated as 

Eq. 4. 
 

𝑀𝑇𝐸𝑖 =  𝑓𝑗(𝑥𝑖)[𝑓𝑀(𝑥𝑖)𝑒𝑣𝑖]−1 = 𝑇𝐺𝑅𝑖 × 𝑇𝐸𝑖  (4) 
 

Following Avea et al. (2016) and Etwire et al. 

(2013), the empirical model in this study formulates the 

functional form of the production function as a Translog 

due to its relative flexibility over the Cobb-Douglas form 

(Awunyo-Vitor et al., 2013). Moreover, the Cobb-

Douglas functional form is nested within the Translog, 

which allows us to evaluate it. We run a battery of model 

specification tests including functional form tests, 

skewness, likelihood ratio, variance, and inefficiency 

tests, and model significance to select a suitable model 

(Table 2). The empirical model used in this study is of the 

form of Eq. 5. 
 

ln 𝑦𝑖𝑗𝑡 = 𝛽0𝑟 + ∑ 𝛽𝑘𝑗 ln 𝑥𝑘𝑖𝑗𝑡𝑘 +
1

2
∑ ∑ 𝛽𝑠𝑘𝑗𝑙𝑜𝑔 ln 𝑥𝑘𝑖𝑗𝑡 ln 𝑥𝑠𝑖𝑗𝑡𝑘𝑠 + 𝑣𝑖𝑗𝑡 − 𝑢𝑖𝑗𝑡  

𝑢𝑖𝑗𝑡~𝑁+[0, exp(𝒘𝑖𝑗𝑡𝜶)],  

𝑣𝑖𝑗𝑡~𝑁(0, 𝜎𝑣
2)  (5) 

 

Where: 𝑦𝑗𝑖𝑡 is total production (kg) for the ith farmer in 

ecology j at time t. The variable  𝑥𝑘𝑗𝑖𝑡  represent the kth 

input (total land, seed, family and hired labour, and 

pesticides) used by the ith farmer for production and a trend 

variable.  

Whilst 𝑢𝑖𝑗𝑡 can take on varied distributions, the study 

assumes a half-normal distribution (i.e., 

𝑢𝑖𝑗𝑡~𝑁+[0, exp(𝒘𝑖𝑗𝑡𝜶)]) due to non-convergence in the 

case of other distributions. Following Tsiboe et al. (2019), 

the covariates in 𝒘𝑖𝑗𝑡  control for farmer characteristics 

(age, education, and gender), institutional factors (land 

ownership, credit, and extension), and a trend and constant 

term.  

Based on the likelihood-ratio tests, the null hypothesis 

of the Cobb-Douglas out-performing the Translog 

functional form for the production function (i.e., H0: 𝛽𝑠𝑘𝑗 

= 0) was rejected for all models. This shows that the 

Translog is appropriate for our data. Furthermore, the 

Coelli (1995) and Schmidt and Lin (1984) skewness test 

for ordinary least squares residuals are negative for all the 

models, suggesting that the variation of production in 

these ecologies are negatively skewed. Similarly, the 

Gutierrez et al. (2001) test for the null hypothesis of no 

one-sided error is rejected across most of the models. This 

further validates the strength of estimating the model 

using SFA.  

The parameters of the ecology- and Meta-frontiers 

were estimated via maximum likelihood, using the 

“frontier” command in Stata 16. The elasticity for each 

input is estimated as the first derivative of the frontiers 

with respect to that input, evaluated at the inputs means. 

Thus, production returns to scale (RTS) are estimated as 

the summation of all the input elasticities. The delta 

method is used to estimate the standard errors for all 

parameters. Point estimates of parameters and their 

standard errors were used to evaluate the null hypothesis 

that they were not different from zero. The only exception 

is the RTS, where the relevant null hypothesis was that of 

unity, indicating constant returns to scale.  

 

RESULT AND DISCUSSION 

 

Descriptive statistics  

The average age of a legume farmer was 46 years, and 

women make up about 22% of legume farmers in the 

sample (Table 1). The farmers had an average of two years 

of schooling with the mean years of formal education 

increasing at a rate of 3% per annum. This is consistent 

with the improvement in education due to free basic 

education. The production area for dry beans and 

groundnut averaged one hectare with yields averaging 

535, and 790 kg/ha, respectively. Though mean yields 

significantly improved over the study period, they are less 

than half the yield potential of available technologies 

(Ministry of Food and Agriculture [MOFA], 2017). 

This signifies room for improvement. About 11% of 

farmers reported access to credit and the probability of 

accessing credit declined by 0.1% annually over the study 

period.  
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Model specification tests 

The likelihood ratio test for the null hypothesis that the 

production frontiers for a given legume are similar across 

ecologies is rejected. This supports the fact that dry beans 

and groundnut farmers are operating under heterogeneous 

technologies along ecological lines. The total production 

variance for the model without the inefficiency effects for 

dry bean and groundnuts (Table 2), show that the 

empirical model explains the variation in output for the 

ecology frontiers and the Meta-frontier at varying levels. 

 

Input Elasticity, productivity, and technical change 

We found that land with input elasticities ranging from 

0.42 to 0.53 for dry beans and 0.53 to 0.62 for groundnut, 

was the most important and significant factor in their 

production (Table 3). The highest contribution of land for 

dry beans was in the Guinea Savanna Zone, and the lowest 

was in the Transitional Zone. For groundnut, the highest 

was in the Transitional Zone and the lowest contribution 

was in the Forest Zone. While the contribution of seed, 

hired labour, and pesticides are also significant, their 

spatial heterogeneities are lower than that of land. For both 

legumes, the lowest contribution for hired labour was in 

the Sudan Savanna and highest in Transitional Zones, 

respectively. Finally, family labour is only important in 

the production of beans making the highest and lowest 

contribution in the Sudan Savanna and Transitional Zones, 

respectively. The elasticity estimates are in line with those 

of earlier studies (Avea et al., 2016; Awunyo-Vitor et al., 

2013). Because of the rising demand for land, coupled 

with declining farm size due to growing populations 

(Jayne, Chamberlin, and Muyanga, 2012), improving 

productivity via the enhancements in the responsiveness 

of output to non-land inputs is inevitable. 

Our estimates reveal that the production of both 

legumes is characterized by decreasing returns to scale 

(returns to scale values less than one) (Table 3). This 

implies that the output of both legumes will 

proportionately decrease if all inputs are increased by the 

same proportion. Though for a different legume crop, 

Avea et al. (2016) showed that soybean production in 

Northern Ghana is characterized by constant returns to 

scale. 

Considering the productivity parameter (i.e., the 

constant term), dry beans, and groundnut farmers in the 

Guinea Savanna had the highest productivities estimated 

at 1.56 and 2.19, respectively (Table 3). Guinea Savanna's 

productivity was lower [higher] than the MSF for dry 

beans [groundnuts] but was closer to that of the MSF than 

their peers in other ecologies. Residing in these ecologies 

could partly be exerting a positive influence on observed 

efficiency levels. Thus, observed factor-specific variations 

in ecology frontiers could explain the different positive 

effects on meta-frontier ratios. Comparing the two 

legumes, ecology-specific frontiers and MSF are higher 

for dry beans than for groundnuts. Theoretically, this 

implies that dry bean farmers are performing better than 

groundnut farmers. The overall technical change 

parameter for the MSFs for both legumes is negative 

(- 0.02 for dry beans and -0.03 for ground nuts) and 

statistically significant implying that production 

technologies used have declined over the study period 

(Table 3).  

 

 

Table 1 Summary Statistics of Dry beans and Groundnut Farmers 

Variable Mean (SD) Trend (%) 

Farmera   

Female (dummy) 0.22†(0.415) 0.39*†[0.047] 

Age (years) 45.87†(15.415) 0.19*[0.044] 

Education (years) 2.23†‡(4.229) 3.03*†[0.384] 

Land owned (dummy) 0.66†‡(0.475) 0.63*†‡[0.043] 

Land (ha)a   

Dry beans 1.05†(2.972) 7.78†[53.566] 

Groundnut 1.08†(2.034) -7.63*†[3.730] 

Yield (kg/ha)a   

Dry beans 534.49†(1792.702) 2.71*†[0.635] 

Groundnut 789.91†(1816.972) 0.47*†[0.215] 

Input usea   

Seed (kg/ha) 68.41†‡(631.867) 9.19†‡[227.103] 

Family labour (AE) 3.49†(1.924) 0.22*‡[0.066] 

Hired labour (man-days/ha) 15.07†‡(63.845) 1.96†[4.972] 

Pesticide (Litre/ha) 4.99†‡(23.369) -2.85†‡[343.158] 

Householdb   

Size (AE) 6.07†(3.469) 0.24*[0.070] 

Dependency(ratio) 1.54(1.798) -0.28[0.161] 

Credit(dummy) 0.11(0.313) -0.09*†[0.032] 

Mechanization(dummy) 0.18†(0.382) 1.19*†[0.059] 

Extension(dummy) 0.21†(0.407) 0.57*†[0.049] 
Note: * Indicates significance at p<0.05; † and ‡ indicate significant (p<0.05) variation across ecology and crop, respectively. 
a Farmer sample size; Dry beans [5,763], Groundnut [7,774], Pooled [10,518] 
b Household sample size; Dry beans [5,626], Groundnut [7,497], Pooled [10,051] 

Data Sources: GLSS, GSPS, and GARBES data. 
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Table 2 Hypothesis Tests for Ecology- and Meta- Frontier Models for Dry beans and Groundnut Production  

 Test/statistic  Ecology production frontier National frontier Meta- 

Frontier (MSF) Sudan Savanna  Guinea Savanna  Transitional Zone  Forest Zone  

Dry beans       

Sample size 3,083 1,653 420 334 5,614 5,614 

Log likelihood -3,299 -1,832 -559 -477 -6,538 421 

Cobb-Douglas test 545.73*** 208.32*** 78.76*** 65.71*** 691.94*** 8039.94*** 

Schmidt & Lin (1984) a skewness test -0.05 -0.21 -0.15 -0.35 -0.26 -0.07 

Coelli, (1995) ab skewness test -3.25* -8.27* -1.47 -2.22* -15.94* -117.39* 

Gutierrez (2001) a LR test 2.46 16.29*** 4.77* 12.96*** 65.79*** 18.19** 

Inefficiency variance [𝜎𝑢] 0.50 (0.106) 0.83 (0.072) 1.07 (0.159) 1.50 (0.150) 0.83 (0.037) 0.19 (0.015) 

Total production variance [𝜎2 = 𝜎𝑢
2 + 𝜎𝑣

2] 0.67 (0.071) 1.00 (0.088) 1.64 (0.252) 2.57 (0.366) 1.06 (0.045) 0.09 (0.004) 

Gamma [𝛾 = 𝜎𝑢
2 𝜎2⁄ ] 0.38*** (0.120) 0.69*** (0.063) 0.69*** (0.106) 0.87*** (0.057) 0.64*** (0.032) 0.38*** (0.047) 

Inefficiency function test 40.02*** 23.01** 50.71*** 9.11 94.37*** 497.69*** 

Model significance 4241.82*** 1829.06*** 395.80*** 218.77*** 6285.71*** 82932.27*** 

Groundnut       

Sample size 3,758 2,659 749 330 7,496 7,496 

Log likelihood -3,627 -2,921 -937 -456 -8,318 178 

Cobb-Douglas test 612.86*** 298.19*** 151.14*** 48.84*** 1016.62*** 7785.75*** 

Schmidt & Lin (1984) a Skewness test -0.12 -0.33 -0.15 -0.07 -0.37 0.50 

Coelli, (1995) ab Skewness test -11.26* -16.45* -2.74* -0.44 -31.44* 1803.53 

Gutierrez (2001) a LR test 11.83*** 79.65*** 6.57** 2.70 167.74*** - 

Inefficiency variance [𝜎𝑢] 0.57 (0.058) 1.01 (0.040) 0.99 (0.132) 1.46 (0.277) 0.88 (0.025) 0.00 (0.072) 

Total production  variance [𝜎2 = 𝜎𝑢
2 + 𝜎𝑣

2] 0.63 (0.046) 1.22 (0.064) 1.36 (0.189) 2.52 (0.598) 1.06 (0.035) 0.05 (0.001) 

Gamma [𝛾 = 𝜎𝑢
2 𝜎2⁄ ] 0.52*** (0.068) 0.83*** (0.025) 0.72*** (0.096) 0.84*** (0.125) 0.74*** (0.020) 0.00 (0.005) 

Inefficiency function test 121.11*** 87.39*** 8.14 113.22*** 119.01*** 1016.82*** 

Model significance 5279.34*** 2903.14*** 696.75*** 335.83*** 8171.97*** 84244.32*** 
Significance levels: * p<0.10, ** p<0.05, ***p<0.01 
a Null hypothesis of no one-sided error (i.e. no inefficiency) was tested  
b Values less than the critical value of 1.96 confirms the rejection of the null hypothesis. 

Data Sources: Author rendering of GLSS, GSPS1, and GARBES data. 
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Table 3. Elasticities for Ecology- and Meta- Frontier Models for Dry beans and Groundnut Production  

  
Ecology production frontier 

National frontier Meta-Frontier Sudan Savanna  Guinea Savanna Transitional Zone  Forest Zone  

Beans       

Land elasticity 0.49***(0.017) 0.53***(0.025) 0.42***(0.047) 0.47***(0.075) 0.50***(0.013) 0.50***(0.004) 

Seed elasticity 0.18***(0.010) 0.09***(0.012) 0.09***(0.019) 0.03(0.035) 0.12***(0.006) 0.11***(0.002) 

Family labour elasticity 0.09***(0.028) 0.02(0.040) -0.20**(0.098) -0.06(0.129) 0.04*(0.023) 0.03***(0.009) 

Hired Labour elasticity 0.02***(0.005) 0.01(0.007) 0.09***(0.023) 0.11***(0.027) 0.02***(0.003) 0.02***(0.001) 

Pesticide elasticity -0.03**(0.010) -0.02*(0.011) 0.06***(0.019) 0.00(0.049) -0.01*(0.007) 0.00(0.002) 

Returns to scale 0.75***(0.033) 0.63***(0.046) 0.47***(0.107) 0.54***(0.165) 0.68***(0.027) 0.66***(0.010) 

Productivity 0.81***(0.181) 1.56***(0.424) 1.51**(0.768) 1.11**(0.503) 1.66***(0.218) 2.05***(0.124) 

Annual trend (%) -0.01*(0.004) -0.01*(0.006) 0.03*(0.016) -0.02(0.019) -0.02***(0.003) -0.02***(0.001) 

Groundnut       

Land elasticity 0.56***(0.016) 0.62***(0.022) 0.54***(0.037) 0.53***(0.058) 0.58***(0.012) 0.58***(0.004) 

Seed elasticity 0.17***(0.008) 0.10***(0.007) 0.06***(0.019) 0.04(0.032) 0.13***(0.005) 0.11***(0.002) 

Family labour elasticity 0.02(0.023) 0.01(0.030) -0.11(0.072) -0.03(0.140) 0.00(0.018) 0.00(0.007) 

Hired Labour elasticity 0.01***(0.003) 0.03***(0.004) 0.06***(0.019) 0.10***(0.030) 0.03***(0.003) 0.03***(0.001) 

Pesticide elasticity -0.03***(0.010) -0.01*(0.009) 0.02(0.014) 0.06**(0.031) -0.01(0.006) 0.01***(0.002) 

Returns to scale 0.74***(0.027) 0.75***(0.035) 0.57***(0.076) 0.70**(0.138) 0.73***(0.021) 0.73***(0.007) 

Productivity 0.65***(0.087) 2.19***(0.332) 0.54*(0.317) 0.96**(0.373) 1.33***(0.131) 1.82***(0.092) 

Annual trend (%) -0.01*(0.003) -0.01***(0.004) -0.03**(0.011) 0.03**(0.012) -0.02***(0.002) -0.03***(0.001) 
Note: Significance levels: * p<0.10, ** p<0.05, ***p<0.01 
a Null hypothesis of constant returns to scale was tested. 

Data Sources: GLSS, GSPS, and GARBES data. 
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Technology gap, Technical Efficiency, and Meta-

frontier Technical Efficiency 
The TGR ranged between 0.81 to 0.93 for dry beans and 

0.86 and 0.93 for ground nuts (Figure 1, panel a). On 

average, the TGR was 0.84 and 0.86 indicating a 

technology gap (required to match the best technology) of 

15% and 14% for dry beans and groundnut farmers, 

respectively. Farmers growing temporal dynamics show 

that the TGR increased over the study period for both 

legumes (Figure 2, panel a). The TGR was highest in the 

Forest Zone for dry beans and the Guinea Savanna for 

groundnuts (Figure 1, panel a). These values are higher 

when compared to those of other crops grown in Ghana; 

0.56 and 0.75 for okra and tomato, respectively (Tsiboe et 

al., 2019), 0.73 for rice (Asravor et al., 2019), and 0.79 

for cocoa. These findings suggest that legume farmers, on 

average, perform better than those growing other crops for 

which TGR has been measured in Ghana. The high TGRs 

in this study are not surprising given the low range of 

variance due to the technical inefficiency parameter (𝛾). 

Changing the model specification could influence the size 

of 𝛾 (Table 2), however, this was not the case in this study. 

Also, altering the production function form did not 

significantly improve the size of 𝛾  nor the size of the 

TGRs. This implies that output variation across ecologies 

could also be due to idiosyncrasies such as biotic and 

abiotic shocks. 

Overall, the best and worst performing farmers for dry 

beans were those from the Transition Zone and Forest 

zone with average TE of 0.72 and 0.45, respectively. For 

groundnuts, the highest TE (0.72) was in the Sudan 

Savanna and lowest in the Transitional Zone (0.52) 

(Figure 1, panel b). These variations can be explained by 

changes in production environments, available 

technologies and their usage. According to Asravor et al. 

(2019), TE with differentiated production technology 

varies along ecological lines. For instance, in rice 

production, TE decreases from northern to southern 

Ghana. These differences occur because of variations in 

weather, biotic conditions, and production practices across 

zones. Rainfall, for example, changes from being 

unimodal in the north to bimodal in the south of Ghana. 

Our fitted mean estimates across space and time for the 

study period reveal that dry bean TE has been stable over 

time while that of groundnuts have been declining (Figure 

2 panel b). These findings are consistent with earlier 

estimates that show that legume farmers operated between 

53-89% efficiency levels (Avea et al., 2016; Awunyo-

Vitor et al., 2013; Etwire et al., 2013). 

A major caveat about the TE scores we have discussed 

above is that they do not tell us how farmers perform 

relative to the broader legume-specific sector production 

frontier. Our legume-specific MTE compared to the TE of 

the farmers accounts for these variations. After accounting 

for the ecology-specific differences in production 

technologies, the mean MTE is 0.535 and 0.525 for dry 

bean and groundnut, respectively. The MTE improves 

from Southern to Northern Ghana. Specifically, the most 

technically efficient dry bean and groundnut farmers 

compared to their meta-frontier are those in the Sudan 

Savanna zone with MTE of 0.614 and 0.624 respectively 

(Figure 1, panel c).  

Determinants of Technical Efficiency and Technology 

gap 
In Table 4, negative coefficients imply that the variable 

has an increasing [decreasing] effect on technical 

efficiency [technology gap] and vice versa. Male-headed 

farms have the best technologies and are also more 

efficient. Except for the Transition and Forest Zone and 

MTE for groundnuts, the gender effect is important in all 

ecologies for both crops. Whilst the coefficient for farmer 

education does not affect technical inefficiency, the same 

pushes both dry bean and groundnut farmers away from 

the best production technology.  

Land ownership improves TE and minimizes 

technology gaps for dry bean farmers. This effect is not 

only important at the national level but also in Sudan and 

Guinea Savanna Zones. For groundnuts, land ownership 

has the same effect as that of dry beans except in the 

Transitional Zone (with a technical inefficiency measure 

of 0.4) where it is associated with a decrease in TE. These 

findings suggest that changes in land tenure towards near 

ownership rights would enhance the efficiency of dry bean 

production. For both legumes, mechanization is associated 

with a reduction in technical inefficiency and technology 

gaps. The effect is significant at the national level for dry 

beans and Sudan and Guinea Savanna Zones and the 

national level for groundnuts.  

The effect of credit availability is a reduction in the 

technological gap for the meta frontier of ground nut 

farmers. It is also associated with, an ambiguously 

positive technical inefficiency score which suggests a 

reduction in TE in the Guinea Savanna Zone for 

groundnuts (Table 4). While we will normally expect 

credit to improve TE if farmers invest the credit in TE 

enhancing techniques, we cannot tell for certain how they 

spent their credit in this sample.  Access to agricultural 

extension services is associated with a significant 

improvement in TE in the production of dry beans at the 

national and Sudan Savanna Zone level. For groundnuts, 

extension services were positively associated with TE in 

Sudan and Guinea Savanna Zones and at the national 

level. For the most part, extension services reduced the 

technology gap in all zones but fell short in the Transition 

Zone where it was associated with a negative TE (an 

inefficiency score of 0.39).  

Our study explores the importance of ecological 

variation in explaining differences in production by 

classifying farms based on ecologies. The study finds that 

pesticide, hired labour, mechanization, extension, and 

credit usage significantly varied across ecologies. As 

noted by Antwi-Agyei, et al. (2012) and Armah et al. 

(2011), ecological variations are important in explaining 

farm output, input usage, and crop production. Noting that 

such variations are caused by differences in climate, 

farming systems, and levels of social-economic 

development.  

The study found significant variations in yields across 

ecologies with farmers in the Transitional and Forest Zone 

ecologies reporting the highest yields. The Transitional 

Zone is a major commercial food-producing zone in 

Ghana (Amanor and Pabi, 2007) and has the longest 

growing days and well-balanced annual precipitation 

(MOFA, 2017). Even with this historical significance and 
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conducive environment, operations in the Transitional 

Zone are labour-intensive with the highest average labour 

usage of 20 man-days worked per hectare and the lowest 

level of mechanization. Generally, the levels of 

mechanization remain low (18%) across Ghana with 

Sudan and Guinea Savanna Zones having the highest 

mechanization rates for groundnuts and the Guinea 

Savanna Zone for dry beans. Disparities exist in access to 

extension services across ecologies. About 30% of the 

farmers reported accessing extension services with the 

Transitional Zone having the highest levels of access 

followed by farmers in Guinea Savanna and Forest Zone.  
 

 

 
 

Figure 1. Dry beans and Groundnut Production Technology Level and Technical Efficiency Across Ecologies 
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Figure 2. Temporal Dynamics in Dry beans and Groundnut Production Technology Level and Technical Efficiency  

 

 

DISCUSSION AND POLICY IMPLICATIONS.  

 

The findings from this study have several implications that 

can be inferred at the national and ecology levels. Policies 

will thus have to be formulated on a case-by-case basis, 

for specificity and wider impacts, if production and 

efficiency are to improve. First, we found that holding 

ecological technologies constant, legume farmers 

generally performed poorly because of pure farmer 

technical inefficiency. Furthermore, mean yields obtained 

by farmers remain far below the attainable yields of 

available technologies. This will call for extensive and 

widespread popularization of available legume varieties 

whose adoption and use are still extremely low. Most 

importantly, there is a need to tailor the seed systems of 

different crops to meet supply gaps while staying 

responsive to farmer needs. The seed sector should, be 

bolstered right from the production of Early Generation 

Seed to the production of Quality Declared Seed. Also, 

easing access to agricultural inputs would go a long way 

in improving production.  

Secondly, the observed performance heterogeneity 

across ecologies can be exploited to improve production. 

This can be through leveraging existing good practices and 

creating synergies between and across ecologies. For 

example, farmers could benefit from simple technology 

transfer. The most efficient but technologically 

disadvantaged farmers in the transition zone for beans 

could benefit from technology transfer from their peers in 

the Forest Zones. They could be targeted with yield-

enhancing technologies like improved seed varieties, 

fertilizers, among others. Farmers who are better off in 

terms of technology (e.g., Forest Zone farms) but less 

efficient could benefit from interventions aimed at 

improving farmer managerial practices and skills via 

targeted extension, farmer field schools, and village agents 

peer training programs. The same logic could apply to 

groundnut farmers to improve their production.  

Furthermore, ecological variations in TGR, TE, and 

MTE capture important stresses that may be associated 

with environmental and climatic changes. It is thus 

important that breeding efforts, aimed at producing high-

yielding and productivity enhancing legume varieties and 

management options, take these into account. Specifically, 

breeding and agronomic research should be focused on 

ensuring that the ecological needs of regions are fully 

factored into the development of new and climate-smart 

technologies. The trade-off here is between developing ‘a 

one size fits it all’ and agroecological suited varieties and 

practices for maximum returns.  

Finally, since land; both in terms of ownership and 

farm size, was the greatest contributor to legume 

production, policy should put more effort into the 

development of non-land-based interventions that allow 

legume intensification and yield improvements at the 

intensive margin. This is critical given that farm size in 

Ghana, just like in a host of other countries in sub-Saharan 

Africa is diminishing. Also, programs that hasten land 

ownership through formal documentation should be of 

strategic importance in delivering productivity gains. 

 

CONCLUSIONS  

 

Renewed recognition of the historical role research, 

development, and technology transfer initiatives have had 

on technical and efficiency transformation has spurred 

interest in more focused research and outreach to ensure 

food security and income generation in developing 

countries. Developing tailored breeding and agronomic 

management systems to produce climate-smart, 

efficiency-enhancing, and high productive technologies is 

one such effort. However, given the heterogeneity in the 

production environment and farmer behaviour, it is hard 

to assess gains from such programs. 

This paper employed the Meta-stochastic-frontier 

analysis to a rich nationally representative dataset of dry 

beans and groundnut farmers that spans over three decades 

in Ghana to quantify trends in technical efficiency, 

technology gap, and meta technical efficiency. Factors 

that have affected technical efficiency and technology gap 

are also documented.  



RAAE / Tsiboe et al., 2021: 24 (1) 76-87, doi: 10.15414/raae.2021.24.01.76-87 

  85  
  

 

Table 4. Determinants of Dry beans and Groundnut Technical Inefficiency/ Technology Gap  

  
Ecology production frontier 

National frontier Meta-frontier  
Sudan Savanna  Guinea Savanna  Transitional Zone  Forest Zone  

Dry beans       

Female(dummy) 0.39**(0.155) 0.48***(0.157) 0.68*(0.405) 0.59**(0.259) 0.47***(0.085) 0.45***(0.113) 

Age(ln[years]) -0.12(0.188) -0.10(0.175) 0.33(0.478) 0.82**(0.387) 0.06(0.101) -0.02(0.124) 

Education(ln[years]) -0.02(0.020) 0.03*(0.017) 0.06(0.047) 0.02(0.028) 0.02**(0.010) 0.06***(0.015) 

Land owned(dummy) -0.83***(0.157) -0.30**(0.138) 0.33(0.325) -0.12(0.221) -0.47***(0.074) -0.34***(0.109) 

Mechanization(dummy) -0.27(0.220) -0.21(0.145) -0.45(0.557) -0.21(0.239) -0.21**(0.088) -0.41***(0.154) 

Credit(dummy) 0.19(0.170) 0.29(0.189) 0.41(0.398) 0.04(0.238) 0.20**(0.098) -0.18(0.172) 

Extension(dummy) -0.75***(0.227) -0.16(0.164) -0.04(0.361) 0.17(0.306) -0.24**(0.099) 0.17(0.176) 

Trend -0.02(0.010) -0.03***(0.011) 0.35***(0.099) -0.03(0.025) -0.03***(0.006) -0.16***(0.008) 

Constant -0.71**(0.335) 0.40*(0.222) -8.76***(2.714) 0.96**(0.382) 0.51***(0.131) -0.28*(0.162) 

Groundnut       

Female(dummy) 0.32***(0.112) 0.58***(0.087) 0.11(0.186) 0.04(0.282) 0.42***(0.059) -0.05(0.077) 

Age(ln[years]) 0.29**(0.149) -0.03(0.109) -0.03(0.235) 1.10***(0.418) 0.13*(0.073) -0.08(0.088) 

Education(ln[years]) -0.02(0.015) 0.01(0.012) -0.01(0.022) 0.04(0.041) 0.01*(0.007) 0.02***(0.009) 

Land owned(dummy) -0.77***(0.143) -0.23***(0.083) 0.40**(0.182) -0.17(0.247) -0.25***(0.053) -0.05(0.072) 

Mechanization(dummy) -0.51**(0.231) -0.20**(0.101) -0.04(0.228) -0.05(0.350) -0.26***(0.078) -0.38***(0.120) 

Credit(dummy) -0.25(0.206) 0.23**(0.106) 0.11(0.205) 0.20(0.372) 0.01(0.074) -0.46***(0.120) 

Extension(dummy) -0.40***(0.127) -0.19**(0.092) 0.39**(0.193) -0.16(0.314) -0.15**(0.064) -0.27**(0.120) 

Trend 0.04***(0.010) -0.04***(0.006) 0.00(0.017) 0.24***(0.067) -0.01(0.005) -0.16***(0.009) 

Constant -2.15***(0.294) 0.77***(0.142) -0.46(0.686) -4.86***(1.857) -0.06(0.126) -0.54***(0.101) 
Significance levels: * p<0.10, ** p<0.05, ***p<0.01. Data Sources: GLSS, GSPS, and GARBES data. 
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Whilst causes of low legume yields have mostly been 

attributed to biotic and abiotic stresses, this study supplies 

more knowledge arguing that low legume yields are 

observed because of farmer inefficiencies in using 

available technologies and production resources. Earlier 

studies relying on data limited to single seasons and 

specific regions in Ghana show that this is likely to be true. 

Thus, by overcoming the limitation of its predecessors, 

this paper supplies a holistic insight to facilitate 

understanding of the spatial and temporal dimensions of 

legume production technology and technical inefficiency 

in Ghana. 

The results show that across the study period, dry bean 

TE has been stable over time while that of groundnuts has 

been declining. MTE for dry beans has been increasing at 

an increasing rate while that of groundnuts has been 

increasing at a decreasing rate. Farmers use technology 

that is about 15% short of the best available technology. 

However, holding ecological technologies constant, the 

study finds mean efficiency levels of 62 and 60% for dry 

beans and groundnut, respectively. The overall trend 

shows that the improvement in MTE could be driven by 

the decline in the TGR. Most importantly, bean and 

groundnut farmers are using heterogeneous technologies 

along ecological lines. 

Taken as a whole, achieving desired yield levels to 

meet supply shortfalls will require interventions 

specifically tailored to farm production abilities and 

production circumstances. Blanket interventions aimed at 

improving productivity and efficiency will perpetuate the 

status quo. Thus, a careful assessment of all intended 

interventions before dissemination will generate more 

optimal outcomes of policy.  

Due to data limitation, this research did not identify 

the best technologies [managerial practices, inputs, and 

Varieties] used by farmers but only indicates where such 

technologies and practices could be located. The study 

thus recommends this for future research to ensure that 

specific technologies and managerial practices are fronted. 

Where modern technologies are limited, the output from 

this study could provide valuable information on where 

dry bean and groundnut productivity could be increased 

by reducing technical inefficiency and/or technological 

gaps. 
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