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ellular cargo is essential to cellular function and can be defective in pathological states
cer and neurodegeneration. Tools to quantify intracellular traffic are thus necessary for
fundamental cellular process, studying disease mechanisms and testing the effects of
therapeutic pharmaceuticals. In this article we introduce an algorithm called “QuoVadoPro”, that
autonomauisly quantifies the movement of fluorescently tagged intracellular cargo. QuoVadoPro infers
the exten(h:ellular motility based on the variance of pixel illumination in a series of time-lapse
images. Thealgarithm is an unconventional approach to the automatic measurement of intracellular

ow temporal or spatial resolutions and to intracellular cargo with varying shapes or sizes,
ja or endoplasmic reticulum: situations in which conventional methods such as
kymography and garticle tracking cannot be applied. In this article we present a stepwise protocol for
using tMoPro software, illustrate its methodology with common examples, discuss critical

parametﬁabledataanaIysisanddemonstrateitsusewitha previously publishedexample.

BasicPro ~QuoVadoPro, anautonomous tool for measuring intracellular dynamics using temporal
varia
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INTROD N

Intracellmort of proteins and organelles is vital for maintaining cellular organization and
physiology® Il imaging of intracellular structures has revealed an astonishing level of dynamic
moveme eorganization. As local metabolic needs transiently arise within a cell or as
environmm

cell's prote'ﬁrganelles to adapt the cell to the new conditions. In eukaryotes, the rapid movement
and reorg@nization of intracellular cargoes is powered by molecular motors like Kinesin, Dynein and
Myosin, y the cargo on a network of microtubules and actin filaments spanning the entire

cytosol ( Spudich, 2012; Hirokawa, 1998; Miki, Okada, & Hirokawa, 2005; Pilling, Horiuchi,
Lively, 6; Reck-Peterson, Redwine, Vale, & Carter, 2018; Schnapp & Reese, 1989; Titus, 2018;

&
Verheﬁppina, 2011).
Many ence the rates and directions of intracellular traffic. The motors involved and the

principles that govern their movement differ from cargo to cargo and are further shaped by cellular health,
intracellu!r location, and signaling mechanisms. Changes in intracellular trafficking can influence
pathologies like cancer (Caino et al., 2016; Goldenring, 2013; Parachoniak & Park, 2012) and
(Baloh, Schmidt, Pestronk, & Milbrandt, 2007; Collard, Cote, & Julien, 1995;
dstein,2001; Hafezparastetal.,2003; Williamson & Cleveland, 1999). Studyingtherates of
oth in normal and disease states is thus vital to understand an essential cell biological

change, the rapid trafficking of cellular cargoes enables a swift reorganization of the

olyzer is semi-autonomous and utilizes kymography to analyze intracellular trafficking.
Kymolyze ul to measure the speeds, directionality and flux of intracellular cargo in cells where
intracellular movement occurs along a specified path, like that along the aligned microtubules found in
neuronal axons and dendrites. These conditions, however, are not met in most non-neuronal cell lines and in
neuronal cell bodies. In those places, the intracellular cargoes move in short processive runs on
microtubules and actin filaments that have mixed orientations. To analyze such movements characterized
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by shorts runs in heterogeneous directions, we have developed QuoVadoPro. QuoVadoPro is fully

autonomous and uses the variance in pixel occupancy in a series of time lapse images as an indicator of
the exteniof mosment of afluorescently tagged intracellular cargo.

Inthis arti&ibe the algorithm and software of QuoVadoPro. QuoVadoPro is useful to measure
intracﬂuwin most cell types and is especially effective in quantifying movement in cells whose

microtubdles are notin parallel arrays and thus are not readily analyzable by kymography. Traditionally,
automate&detection and tracking is used to quantify intracellular trafficking in such cell lines
(Chenouafd et al..Y2014; Jagaman et al., 2008; Lee et al., 2019; Wasim & Treanor, 2018). Although able to
descriptiv tify motility, object tracking algorithms are often computationally intensive, are
not easilygad le to tracking different organelles, and require images of high temporal and
spatial rw Most significantly, object tracking is not reliable in tracking the movement of

reticular

partially r:ructures such as mitochondria or endoplasmic reticulum (ER). Manually tracking the
movemen, dual mitochondria in every frame of a movie (Caino et al., 2016; Caino et al., 2017) has
overcomeome of the challenges of automated detection and tracking. These approaches however are

extremely low thr;)ughput and may ignore mitochondriain a fused reticulum.

a non-traditional approach that does not employ conventional object detection and

tracking. T uoVadoPro, we infer the motility along an X-Y plane by analyzing the variance in pixel
er time. QuoVadoPro has several advantages over conventional object tracking: it is not
influenced by the heterogeneity of sizes, shapes, or reticular structure of objects to be tracked; it can infer
motility from images with low temporal and spatial resolutions and from images with high object
densitiesWutationally light; and it can be used to monitor the movement of different types of
niRimal user driven changes to input parameters. QuoVadoPro is packaged as an ImageJ based

file formats@m@@Utputs motility scores and 2D motility heatmaps for visual representation.

cargo with

macro set e installed and used through a graphical user interface. It can accept most microscopy

BASIC P*TOC,L 1

QuoVadoPro, an ;tonomous tool to measure intracellular dynamics using temporal variance.

QuoVa ‘4

varianceinp

a new method to quantify intracellular movement. In this algorithm, we use the temporal
illumination by fluorescently taggedintracellularstructurestoinfer on motility within
a cell. It provides a quick, fully autonomous and computationally light way to measure

intracellular movements.
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Time-lapse images of fluorescently tagged intracellular objects with high motility display a high pixel
variance over time. This is because the pixels have a high probability of being transiently occupied by
moving ohjects. Og the other hand, time-lapse images of less motile intracellular objects have pixels that
are eitMly occupied by the objects orare empty; and thereby have low variance inintensity
over time hough not a direct measure of motility, temporal variance in pixel illumination serves
asaproxy ased on this principle, QuoVadoPro can quantify intracellular traffic under diverse
experiggeniakaRdimaging conditions, even in samples that are otherwise poorly analyzed by conventional
methodsSe kymography or automated object tracking. Further, by normalizing the variance in pixel
illuminati he sum of pixel illumination during a time-lapse, QuoVadoPro distinguishes the
processiv@nts from short discontinuous back and forth movements (also referred to as jitters or
i t

jiggle) an he former more heavily.

2,

Thealgori
bundled with co

interface.Inthefirststep, the userselectsanimage seriestobe analyzed (representing atime-lapse of

fluoresce agged intracellular objects). During analysis, the user can choose to have parts of the image
analyzed

sasasetofthree macrosthatcanbeinstalled onFiji (adistribution of Imagel thatis

only used plugins) and can be run sequentially through a user-friendly graphical

(for example, if a single image has two cells that need to be quantified separately) or
analyze theyi sawhole.QuoVadoProthenextractsthe partoftheimage (ifindicated) or usesthe
whole im@ge ate a binary mask of the fluorescently tagged objects in all the frames of the time-

lapse. In the second step, the algorithm analyzes the variance in the binary image stack created in step 1

-dimensional heatmap of movement. A motility value is then derived from such a heatmap
he optionalthird step can be used to automatically collate data from multiple such
ough a re-iterative loop.

asks. The algorithm can thus work robustly irrespective of object shape, size and
ce.Inaddition, QuoVadoPro does not rely on tracking movements of individual objects
from one frame to another and can thus work on images irrespective of frame-to-frame object
displacem@nts (governed by temporal and spatial resolutions and movement speeds of the intracellular
object ures render QuoVadoPro as a versatile software to analyze intracellular traffic with

minimHvision.

Necessary Resources

Hardware:
Works th internet access

Software:

Please read Instructions_Readme file and download folder “QuoVadoPro_<date>.zip” from

https://github.com/ThomasSchwarzLab/QuoVadoPro
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https://github.com/ThomasSchwarzLab/QuoVadoPro

Sampl

https://dri le.com/file/d/1yJZzhlsAGEFrIBoIS0iB6nUDzguzjQcu/view ?usp=sharing
Thesampl, ilas atime lapse image stack of a cos-7 cell expressing afluorescent tag that marks the
mitochgndgkiglaaitarDsRed, addgene:55838)andacytosolicGFP(meGFP-N1,addgene:54767)that helps

visualizetcellboundary. Tousethissamplefile,theusershoulddownloaditintoaseparate folder on
their com ‘ore processing the file through QuoVadoPro.

The cell depictedia the sample file has been used as an example toillustrate the steps and features of
QuoVadoPfrojin figures 1, 2 and 4.

USC

Movie S1isgyi ade fromthe cellshown inthe sample file. The video depicts moving mitochondria in
the cos-7 cell along with its motility heatmap.

N

Protocol tep annotations

d

ninstructions:

m

a. Downloadandinstall FlJl from: https://imagej.net/Fiji/Downloads.

=

uthor

the zipped folder named “QuoVadoPro_<date>.zip” from_https://git

C. Fgom FlJI, go to the following tabs: Plugins > Macros > run. In the file selection window that opens
) he file named installer_QuoVadoPro_.ijm within the downloaded and unzipped
runit.

d. Restart EldIto complete macroinstallation. Following the restart, a new tab should appear as
: Plugins > Macros > QuoVadoPro.

A

e. If images have drift, the optional install of the Fiji registration plugin, StackReg
(https://imagej.net/StackReg) may be needed.
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2. Step 1: Segmentation of objects by local intensity-based thresholding. As the first step in

QuoVadoPro, the user selects a file containing images representing a time-lapse of fluorescently
tagged intracellular objects. The user then has the choice to outline a specific region of interest (ROI) in
thMe the whole image for analysis. All fluorescently tagged objects in the whole image or
defin converted to binary masks. This conversion of objects to binary masks (thresholding or
segm res that the quantification done by QuoVadoPro is independent of absolute
inf@nsitigsahoacreate the binary masks, the fluorescent objects are thresholded based on their signal

overae local background (figure 1). At this step, the user has the option of using multiple tools to
remo ckgroundfromtheimageswhile creatingthe binary masks of the objects.

r s for running Step 1:

SC

a. To ru Step 1 of QuoVadoPro go to the following tabs in FlI:
Plugins>Macros>QuoVadoPro>Stepl_preprocess_Cells_IntensitybasedSegmention. A file

s@lectionwindowwillopentoselectthefilecontainingthemovie(time-lapse)tobeanalyzed.

N

te adoPro uses the bioformats reader in Fiji to open image files. Most microscopy image
fileformats are supported by this reader. In case of an unsupportedfile format, the user should
e as a multipage tiff stack before opening the file in step1.

Me

ote: The user can choose to run step 1 on an already opened file. However, we recommend that
the user opens the file using the file selection window that is triggered at step 1a. This ensures that
oVadoPro can read the metadata and the file location correctly.

i

ing the moviefile, the user is asked to draw a coarse outline marking the cell periphery
utline shouldinclude allthe organellesto be tracked (figure 1A-B). If the movie has
Itiple channels or Z-planes, the macro will ask the user to select one channel and one Z-plane. If

I

norROlisindicated, themacrowillproceedtoanalyzethefullframe ofthecurrently

{

aneand channel. If the user wants to analyze multiple Z-planes, they can choose to
uoVadoPro oneach individual Z-plane or use a single projection of all the Z-planes.

U

uoVadoPro analyzes the movement in one 2D plane (Z-plane). Given the thickness of the
ed and the mode of imaging, the user may choose to supply one Z-plane for analysis or a
projectiomof all the Z-planes. To analyze a projection of all the Z-slices, the user must performthe Z-
projection and save the time-lapse as a multi-image tiff stack prior to running step 1 of
QuoVadoPro. Typically, most cell lines that are used to monitor intracellular trafficking (such as
Cos-7 or U20S) have a relatively thin cytoplasm, most of which can be captured in one optical
section using an epifluorescence microscope, thereby not requiring a Z-projection. However,
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certain cell lines have thicker cytoplasms (for example, dividing HELA cells) where multiple confocal
optical sections are neededto capture the cytoplasm, and thus may need to be projected post-
acquisition and beforeanalysis.

@ ortheROI(ifselectedinstep 1b)isthensubjectedtoalocal backgroundsubtraction
orrectforlocal variationsin background andillumination. The resulting image is then adjusted

O
W aean ardized intensity scale (16-bit). This processing standardizes images of different bit
dhoit,16-bitand32-bit).Theuseristhenaskedtosupplyathresholdintensityvaluefor

s@gmentig the objectsinthe movie, along with additional optional inputs to ensure that
t

C

y masks do notincorporate noise artifacts. The followingvalues are asked for:

ussfan smoothing radius for background removal: Local background correction for each

;

is done by subtracting a background image from the original image. The background
imag@ is generated by smoothing the original image through a gaussian disk of a defined
. When the smoothed background image is subtracted from the original image, diffuse
ound fluorescence is eliminated while retaining the sharp signals in the original image.

3

ixelintheresultingimageisalso normalized foritslocal background.

aussiansmoothingradius” thusdictatesthe strength ofthe backgroundremoval. A

d

| aussiansmoothingradiusresultsinastrongbackgroundcorrection, while ahigher
reducesthestrength of the background correction. By default, the radiusissetto 5

"

ussian smoothing radius necessary for optimal background correction depends onthe
signal to noise ratio of the image. The user should decide on a value empirically. Avalue that

is set too high (low background correction), will cause large diffuse background objects to be
%ed in the binary mask. Conversely, a gaussian radius value that is set too low (high
$ roundcorrection)willcauseoveramplificationof objectedgesandthusmayresultin

sinthe binary mask. To prevent the over-amplification of object edges, the “Gaussian
hingradius” should be set to avalue thatis at minimum equal to the average cross-
sectional distance of the fluorescently tagged objects.

N

oldlevel: Thisvalueisthe threshold intensity used for segmenting the fluorescent

¢

objects after local background subtraction and contrast stretching. As the contrast of the
maggisstretchedtoal6-bitrange, theusercandecideonathresholdanywherefromOto

u_

(maxintensityinal6-bitimage).Thedefaultthresholdissetto5000andtheworking
hatneedstobesetisdictated bythesignaltonoiseratio (SNR) of theimage.
ForimageswithhighSNR,astrongbackgroundsubtractioncanbeapplied.Insuchcases, the

A

ckground intensities are greatly reduced (brought close to zero) and the threshold for
segmentation canthusbe setto alowvalue (justabove the background).

e Iftheimageishighlynoisy(orgrainy),thegaussianradiusforbackgroundremovalshould
besettoahighvalue(i.e.weakbackgroundsubtraction)topreventtheamplificationof
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noise pixels. Inthis case, the background intensities will be equalized throughout the
image, but low levels of noise may remain. The threshold value should thus be set
relatively high, enough to remove any remaining background while retaining the
Hjorescent objects.
[l moothing: Inimages with a high degree of noise, choosing a threshold that completely

M

Il background pixels may not be possible even after local background subtraction.
m mmilsieh cases, the user can choose to select a threshold that captures most of the fluorescent
s objects, even if it retains some of the background pixels. To further remove the background,

er can then utilize the time-smoothing feature in QuoVadoPro. This feature removes

any pixels that were not constantly illuminated in the defined set of frames. The

G

smoothing feature works on the principle that noise pixels will not be detected at
e

S

position in consecutive frames, whereas the position of fluorescent objects will not change as
fast.

lue can be keptas 1 (notime smoothing) forimages with high SNR and increased if
noiseisdetected aftersegmentation. Tousethetimesmoothingfeature(i.e.foranyvalue

&

han 1), the images must have a high temporal resolution (i.e. the frame to frame
ement of each object should be much lower than the size of the object). This ensures

d

t orescently tagged objects illuminate the same pixels in consecutive frames, whereas
pixels donot.

tis important to note that both local background subtraction and time smoothing

M

VadoPro correct for noise pixels that appear randomly due to camera noise or
indistinct background fluorescence. These features however will not eliminate background
caused by unintended fluorescent objects (for example auto-fluorescent cytosolic granules), if

[

um Particle Size: Inaddition to time smoothing, QuoVadoPro gives the user another

<

on to remove noise pixels by filtering the images for a minimum particle size. The

um particle size allows the userto define alower arealimitforall objects detected in

1

arymask.Anyobjectoccupyinganarealessthanthe minimum particlesizeisremoved. By
defaglt, thisvalueissetto 1 pixel. The usercanchoosetoincreaseitif small clustersof pixels

!

are seen to be illuminated in the binary mask due to noise. The minimum size filter should
e USed in conditions where the objects to be masked have a substantially larger area than

L

iseclusters.

No jscussed later, it is important that the binary masks created have minimal noise (pixels
that do not represent fluorescent objects). To ensure optimal noise removal, the user should run
step 1 multiple times and identify the optimal parameters for background removal and
thresholding with every new imaging condition. Once the parameters have been decided, the user
should not change them in between samples of the same experiment.

A
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d. Postsegmentation,themacrowillasktheusertofinetunetheROltobeanalyzed (madeinstep
Wpeciﬁc ROl was selected in step 1b (i.e. the whole frame was considered), the user
shouldclick“OK” andmoveontothe nextstep. However, ifthe userhad selectedanROlinstep

dge of the selection may have been erroneously amplified during background subtraction

and seg ed within the binary mask. This is especially the case if there is high background
M {|JBFESEEACe (for example autofluorescence from growth media) and can introduce artifacts in

t ifications. In this case, the user should amend the selection (ROI) at this step to remove

awrtifacts, if present.

end of step 1, the macro will save the binarized image (figure 1C) and the thresholding

oninafolder created atthe same location as the image, having the same name asthe
g with a time stamp.

3. Step 2 Construction of motility heatmap and quantification. In step 2 of QuoVadoPro, the binarized

nu

vide rom step 1) are used to generate a motility heatmap, depicting the movement of

fluor jects. During this step, the variance in illumination over time and the total time
of illugain (obtained by summation of intensities over time) is calculated for each binary pixel.

T

d

final moti eatmap is constructed as the ratio of an image representing the variance in pixel
ill
Parts of the image containing moving objects display high variance and low sum and thereby appear
as hoSpots on the heatmap. Conversely, parts of the image containing stationary objects have less

M

ure 2A) to an image representing the total time (sum) of pixel illumination (figure 2B).

variatioimmgixe| residence and thereby have low variance and appear as cold spots on the heat map
(figure ixelsthat were never occupied byan object havea sumof zero and are excluded from
thea yareassignedaNAN (notanumber)value. Forrepresentationpurposes, theyappear as

cold pixels on the heatmap.

NMIng thevarianceinpixelilluminationtothetotaltime of pixelillumination (sum)also
allow, oPro to give more weight to processive runs than to back and forthjitters (see
guidelines foRunderstanding results for more details).

T yheatmapisusedtoderiveamotilityscoreforthewholeimage.Tocalculatethe motility
score, thel sitiesoftheheatmap pixelsaresummedandnormalizedtotheobjectarea(derived
fromthenumberofpixelsoccupiedbythebinarymaskinthefirstframe). Thenormalizationwiththe
totalobjectareafactorsoutdifferencesin numberorsize of objects betweenimages.
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Note: Theusershouldnotethatalthoughthe motilityscoreisnormalized forthenumberandarea of
objects, QuoVadoPro should not be utilized to analyze samples with highly varying object numbers
(see commentary for more details).

@ sforrunning Step 2:

a. TL Step 2 of QuoVadoPro go to the following tabs in FlI
mcro»QUOVadoPro>Step2_variance_CaIcuIation. A folder selection window will

o

a

mcanalsoberundirectlyonthebinarizedimagethatisaIreadyopenattheendofstep
1.

hichthe usercanselectthefoldercontainingthebinarizedimage stackcreatedinstep

b. Af ser selects the folder, the macro will automatically find and open the binary image
stack and ask the user about the number of sub-stacks to break the image into. By default, this
v

tas1,whereinthemacrowillprocessalltheimagesinthemovieasasinglestack.In the
C gmoviesormoviesinwhichthe experimentmayhave caused motilitytochange over
ser may want to break up the movie into sub-stacks to gain information on how

tige,
t changed during the course of the movie.

C. Scessing, the macro will create the variance image and divide it by the sumimage as

described before. The final image is represented as a 32-bit heatmap (figure 2C). As this step is
f'gshed,the quantificationisshowninatextwindowandisautomatically saved asatextfilein
t older asthe binaryimage. The macro then asks the userto setadisplay range thatis
20 vertthe32-bitheatmapintoRGBimages.Itisimportantthatalltheimagesaresetto
@ display range within the same experiment. The original variance image and the RGB

i

re stored in the same image folder.

th

4. Step3:Data sollation. At this step, the user can interactively consolidate the quantifications
gene different cells into one table.

Instructiohs for running Step 3:

This article is protected by copyright. All rights reserved.



To run Step 3 of QuoVadoPro go to the following tabs in FlI:
Plugins>Macros>QuoVadoPro>Step3_ CollateDataFiles. A folder selection window will appear. At
thefoldegselectionwindow,theusershouldselectthe parentfoldercontainingthe subfolders
Hantificationtextfiles.Themacrowillautomaticallygothroughthesub-foldersand

r assemble all the data into one table, which the user can then save through a
d » ale 0

GUIDELIhR UNDERSTANDING RESULTS

Explanatiw)tility scores quantified by QuoVadoPro

Qroadm the motility of fluorescent objects based on the variation in pixel illumination. To

guantify tfrom a time-lapse of fluorescently tagged objects, as the first step, QuoVadoPro

converts th cence signal into binary masks (figure 1). At the second step, the algorithm uses the
binarizediimagesto generate amotility heatmap. Each pixelinthe heatmap correspondstotheratio of
thetemp cetothetemporalsumofthatpixelacrossallthebinarizedimagesofthetime-lapse

(figure Z)mte a motility score, the pixel intensities of the heatmap are summed and normalized

tothear asked objects.

ThefEcores as calculated frombinary time-lapseimages canalso be represented by the
follo

va riancE-",,_. '
mﬂfiht‘}' Score = : }_ {—MP”F'-;:’:;WH-?”-:.'."-nrr]p]

UM

T

Mnts thevariance of pixel intensities over

time. su sentsthe sumof pixelintensities over
time.

NPixelSsegme

Pixels having sumume=0are assigned NaN (notanumber) values and are not consideredinthe calculations.

varian

rame represents the number of pixels that were segmented in the first frame (indicating
pccupied by the fluorescent objects)

Forrepresentation, these are shownas cold spotsonthe heatmap.
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The motility scores generated by QuoVadoPro are saved asatextfileinafolder createdinstep 1 of the
algorithm.Thefolderiscreatedatthesamelocationastheimageandhasthesamenameastheimage in
addition i a timstamp. Inthe textfile the following quantification parametersarereported:

ED

1)

- Wd motility score isonan arbitrary scale (i.e. does not have a unit).

re: This value represents the final quantified motility score as detailed above. The

II) NumberofSlices: Thisisthe numberoftime pointsthatwere presentinthetimelapse.
III r of substacks considered: During the analysis of an image stack representing a time
@roadoPro canbreak theimage stackinto multiple sub-stacks (if requested by the user
step2).The “Numberofsubstacks considered” valuerepresentsthe numberofsub-
e original image stack was broken into. If the user has chosen not to break the image
tosmallersubsets thisvaluewillbe statedas 1. Breakingthetimelapseintosmaller
tsisoftenuseful (especially forlongmovies), togetinformation onhow movement
may Have changed during the image acquisition. Once the number of sub-stacks to be
ered is set at Step 2, it should not be changed in between samples of the same

IV dmg parameters: The values represented under this tab are the values that the user
in step 1 of QuoVadoPro - the strength of background subtraction, the threshold value

rimage segmentation and the noise removal parameters.
arpixel intensity and area occupied in heatmaps of each sub-stack: The sum of intensities
ixels from the heatmaps constructed from each sub-stack and the area occupied by the
ob in each sub-stack are shown under this tab. To calculate the motility score for each
-stack,thesumofintensitiesofthe heatmappixelsisnormalizedtothe objectarea.

Qroadohs more weight to processive movements than to back and forth jitters

Normalizi mporal variance to the temporal sum of each binary pixel to construct the motility
heatmaps uoVadoPro to give more weight to processive movements than to short back and forth
jitters. With processive movement, an object transiently illuminates several sets of pixels, each of which

thus havi high ?riance and low sum and appear as hot spots on the image (figure 3A-B, left panels).

When a oves back and forth (i.e. displays non-processive movement), it illuminates the same
set of pix edly (figure 3A-B, right panels). Each pixel illuminated by an object moving back and
forth sho mandalowervariancethan pixels depicting processive movements and thuscreates a
lessintense s n the heatmap.
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COMMENEARY

QroagoPro was designed to measure intracellular movement in systems where kymography cannot be
applied. Kgmography depends on the ability to identify discrete intracellular objects and track them along
a weII—defg. As such, it works well to follow organelles or protein complexes in axons, dendrites,
filopodia @nd al hyphae (Alieva et al., 2019; Bielska et al., 2014; Kerber et al., 2009; Klinman &
Holzbaur, Agaday, Twelvetrees, Moughamian, & Holzbaur, 2014). In more complex systems, such as
non-neurqagl where microtubules and actin filaments (the paths of intracellular traffic) have mixed
orientatimative manual orautomatedsolutions have beenemployedto quantifyintracellular
traffic (Ch et al., 2014; Dokka, Park, Jansen, DeAngelis, & Angelaki, 2019; Jagaman et al., 2008;
Wasim & Treanor@2018). QuoVadoPro takes a unique approach to automatically measure intracellular
movements. Igorithmusesthevariationinpixelilluminationintimelapseimages offluorescently
taggedin objects, as a proxy parameter that can reveal the extent of intracellular movements.
This uniqmch to measuring intracellular movements makes QuoVadoPro suitable for analyzing

intracellul ic in most experimental systems.

easure intracellular movements in an XY plane irrespective of the directions of
thus be used to analyze samples not addressable by kymography. QuoVadoPro can

the movement of complex reticular structures like mitochondria and the ER and where individual
organelles may vary from sub-micronto more than 100um lengths (Bosch & Calvo, 2019; Costantini &
Snapp, Zohman, Webster, Mastronarde, Verhey, & Voeltz, 2010; Koopman, Visch, Smeitink, &
Willems, 20@6mkeonard et al., 2015). This heterogeneity can prevent object tracking algorithms from

faithfully ¢ @

on object detection; it caninfer the movement of cellular structures irrespective of size and shape. In
addition,ggi Eemporal and spatial resolutions and low object densities are prerequisites for object

and therefore tracking the movements of the network. QuoVadoPro does not depend

tracki i . These requirements ensure that individual cellular objects can be reliably assigned in
evernyvie,thusaIIowingthe changesintheirpositionstobetracked. QuoVadoPromaybe
themeth icewhentheseconditionsdonotprevailbecauseitdoesnotneedtotrackthe objects

from frame to fraine. Thus, QuoVadoPro can operate with data sets with low temporal and spatial

resolutio igh object densities.
UnI'keg/ orobjecttrackingalgorithms, however, QuoVadoProis notintended to extractin-

depth parameters describing different features of motility of individual intracellular objects. For
that analysis, the previous methods are preferable if they can be accurately applied. Instead, the
QuoVadoPro algorithm is designed to be a fast and automatic method to provide a proxy readout for
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total motility within a cell. The algorithm is versatile, is computationally light and requires minimal
user input and supervision. It should be stressed, that the variance algorithm is only a proxy for

motility. Drastic differencesinthe shapes of organelles or cellsin between experimental samples canalso
alterth en if these events may not involve motors acting on the cargo.

Critical %rs
H

Toensureffhatathange inthe variance of pixel occupancy faithfully reflectsachangeinintracellular
motility, ing parameters should be carefully noted:

. Rw::: ::':iige acquisition: As QuoVadoPro analyzes the variance of pixel illumination over the
entire sp@n of atime lapse, the total number of frames in the time lapse (as governed by the
i uisition rate) has asignificantimpact on the final motility score. Thus, when comparing
t es, variation in frame rates should be kept to a minimum.

. i valfromimages:Instep1, QuoVadoProgenerates astackofbinarymasksfromatime
la ie of fluorescent objects. The binarization of fluorescence allows the algorithm to omit
ms in absolute fluorescence during quantification. To make the binary masks,

Q ro uses local contrast to segment the fluorescently tagged objects. Accurate
ionsdependonreliably eliminating noise pixels. Thus, images with high signal to noise

ratios referred. The erroneous detection of noise pixels in certain frames can influence the
igure 4A). The user can choose from multiple tools described in step 1, such as

smoothingintimeanddefiningalowerlimitofobjectareatoeliminatenoisepixels(figure4B).

. mberofobjects:Theedgesofobjectsmaybescoredslightlydifferentlyfromframetoframe,
e ationaryobjects.Thisresultsinanincreasedvariance atobjectedges. Thoughthe
a

aweighs processive movementmore heavilythanthisedge-jitterand normalizesfortotal
,thesignalduetoedge-jitter canstill contribute tothe calculatedvariance.Since edge-
jitterscaleswiththenumberofdiscreteobjectsinanimage, thetotalnumberofdiscreteobjects
animpact on the variance. Thus, QuoVadoPro should be used to analyze experimental
ith similar numbers of discrete objects. For example, QuoVadoPro can be used to
Mochondrial movement onlyin cases where the samples do not have large differences
inmi ndrial fission or fusion.
e Cell shap&h Quantification through QuoVadoPro is done on a single plane or on 2-dimensional
p ns of 3-dimensionalimages. Thus, the algorithm s best usedin samples that do not
exhi rge changesin cell shape as that may influence the distribution of objects in the plane or

ionanalyzed.
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Examplanalysis using QuoVadoPro

Asa demhn of QuoVadoPro, we used the algorithm to analyze previously published data of
mitocho al mM@vement in LN229 cells (Caino et al., 2016). The authors in this study show that
mitochondii ement in tumor cells is essential to promote cell invasion and membrane dynamics.

They stu i ondrial movement in the presence and absence of an anchoring protein called
syntaphili The authors manually track individual mitochondria in these cells to demonstrate that

knocking H increases mitochondrial motility. We have re-analyzed the published video of the
LN229 cells usingfQuoVadoPro (figure 5). Our observations indicate a 20% increase of mitochondrial
motility u ckdown of SNPH, similar to the authors’ observation.
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FIGURE LEGENDS:

Figure 1. Example of a Cos-7 cell having fluorescently tagged mitochondria illustrating object

segments: @ ried out during step 1 of QuoVadoPro.
GFPtofacilitate determining the outline of the cell (A) and with a red fluorescent

markelofiEhesmitathondrial matrix, mitoDsRed, is shown (B). The cell was imaged at 3.3Hz for 3 minutes.
I\/Iitochons'a at each time frame are segmented into binary masks by local intensity-based thresholding.
he user has the option to select a region of interest (ROI), like the cell outline (dotted

During thisste

line). All olgjects ollitside the ROI are removed. The images in the time-lapse are then corrected for local

background. owing this, the mitochondria are segmented using a predefined intensity threshold (C).

Due to Imround correction, all mitochondria are faithfully segmented as binary objects,
ti

irrespecti ir individual intensities.

B Mitochondri T e T

20pm
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Figure2. Demonstrationofstep2 ofQuoVadoProforthe Cos-7 cell whosesegmentationwas

illustrated in Figure 1.
Following the binagjzation of images, in step 2, QuoVadoPro calculates the variance (A) and the sum (B) of
each bWer alltime frames. The final motility heatmap (C) is represented as the ratio of variance
oversum ity of each pixel. Pixels that contain a moving object, for example the mitochondrion
that has r&s the edge of the cell (arrow), display low sum and high variance. These pixels will
therefﬁe Wnted as hot points on the heatmap. Pixels that contain a stationary object, will have a
low varia!e butahighsum, andwilltherefore appearascoldpointsonthe heatmap (arrowhead).

JAWVariance of binary image stack

movement

&
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Figure 3. Exampleofneuronalaxonswithfluorescentlytagged mitochondriaanalyzed by
QuoVadoPro, demonstratingthatprocessivemovementsareweighedmorethanbackandforth
movements.
Two GXWS expressing fluorescent tags on mitochondria (mitoDsRed) are shown (A, top panels)
along wit ographs (A, bottom panels). These segments are analyzed by QuoVadoPro, and their
respectiv&ges, sum images and heatmaps along with final motility scores are depicted (B).
One of#Ws processively moving mitochondria (an example of which has been marked by the

arrow), WMheronecontains mitochondriathatarelargelyjigglingbackandforth(anexampleof

which is e the arrowhead). When analyzed over time, pixels containing processive movements
arian

show hig and low sum (arrow, panel B). Binarized pixels depicting back and forth movements

have a highvarignce and a high sum (arrowhead, panel B). The motility heatmaps are constructedasa

ratio of v oler sum. Thus, processive movements create more hot points on the motility heatmaps
compared =processive movements. Heatmaps that contain processively moving objects thus have a
higher moB/ Ity scake than heatmaps of non-processive movements. Horizontal scalebars depict 15um and

Indicate30s.

vertical s

-

A:

Mitochondria

Kymograph

ii?i’ il

PI’OCESSIVE movements Non- processnve movements

-’ —_— et
A
",
-~
e -— e
A
]

Processwe movements Non-processive movements
Motility Score: 242505 Motility Score: 152366

<L

Heatmap Sum Variance Mitochondria
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Figure4. Idpac!o!pixelnoise anddemonstrationofnoiseremovalduringstep 1 ofQuoVadoPro.
? effect of pixel noise on quantification by QuoVadoPro, artificial noise is introduced in

orescent mitochondria (previously shown in figures 1 and 2). When the noise in the
imagesis notfiltered out, the noisepixels areretainedinthe 2D motility heatmap andsignificantly affect
the motilit¥fscore (A). However, whenthe noise pixels arefiltered out, theimpact of noiseis greatly reduced or
eliminated (B). QuoVadoPro gives the user multiple tools to remove image noise during its operationin step
1.InthiseXample @he suchtoolis used, whereinaminimumsizethresholdcanbe declaredforall discrete
objectsint e.Any object below the minimumsizethresholdis eliminated. Since mostimage noiseisin
the form offSol@tedlpixels, the user canchoose aminimumsizethreshold of afew pixels (typically less than 3

pixels), to ow@most of the noise.

A Rawlmage ,-"" .. _ Raw Image +NGise--..

~

Mitochondria

Variance Image

Motility Score: 280443
No noise removal

B RawImage 7 Raw Image T‘Néiﬁe-u.._

< e 3 .

Mitochondria

]
=)
1]
£
o
]
=
el
SE
>N

o e 20um
Motility Score: 137181 Motility Score: 159400
Noise removal: increased minimum particle size threshold
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Figure 5. Demonstration of mitochondrial motility analysis by QuoVadoPro on previously
published example.
To demonstrate the utility and robustness of QuoVadoPro, the algorithm is used to analyze a previously
pub/is}H;ino etal., 2016) of mitochondrial movement in LN229 cells. The mitochondria are

shown (to along with their heatmaps (bottom panels). In concordance with the data previously
obtained acking (Caino et al., 2016), the analysis by QuoVadoPro demonstrates a 20%

increage immdrialmoti/ity uponknockdownofananchoringproteinsyntaphilin (SNPH).

N
Control siRNA

Mitochondria

Variance Image

20um
Motility Score: 276057 Motility Score: 334964

Movie Sl.; e of mitochondrial movement in a Cos-7 cell.
A videcﬁell expressing GFP to mark the cytosol (left panel) along with mitoDsRed to mark the
mitochonfm/e panel)isshown. Thetime lapse image seriesis analyzed by QuoVadoProtogenerate a
motility h

<C

right panel).
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