Proyecciones Journal of Mathematics
Vol. 38, N ${ }^{o}$ 2, pp. 305-314, June 2019.
Universidad Católica del Norte
Antofagasta - Chile

Graceful centers of graceful graphs and universal graceful graphs

H. M. Makadia
Lukhdhirji Engineering College, India
H. M. Karavadiya
Labhubhai Trivedi Institute of Technology, India
and
V. J. Kaneria
Saurashtra University, India
Received: September 2017. Accepted: December 2018

Abstract

In this paper we define graceful center of a graceful graph. We proved any graph G which admits α-labeling has at least four graceful centers. We also defined a new strong concept of universal graceful graph. Some results on ring sum of two graphs for their graceful labeling are proved.

Key words: Graceful center of a graceful graph, universal graceful labeling, ring sum of two graphs.

AMS Subject Classification Number: 05C78.

1. Introduction

In this paper a (p, q) graph G, we mean $|V(G)|=p,|E(G)|=q$ and it is a finite, undirected simple graph. Terms not defined here are used from Harary [3]. Rosa [1] introduced the notion of graceful labeling (β valuation) and α-labeling of a graph. Any graph G, which admits α-labeling is necessarily a bipartite graph; such graph is known as α-graceful graph.

A Graph $G=(V, E)$ is said to be a graceful graph if G admits a function $f: V(G) \longrightarrow\{0,1, \ldots, q\}$ is injective and the induce edge function $f^{\star}: E(G) \longrightarrow\{1,2, \ldots, q\}$ denoted by $f^{\star}(e=u v)=|f(u)-f(v)|$ is bijective, $\forall e=u v \in E$. Here function f is called graceful labeling of graph G.

Let G be a graceful graph with a graceful labeling $f: V(G) \longrightarrow$ $\{0,1,2, \ldots, q\}$. A vertex $v \in V(G)$ is called a graceful center of G if $f(v)=0$ or $f(v)=q$. Any graceful graph G with graceful labeling f has at least two graceful centers. It is obvious that $q-f$ is also a graceful labeling for G and it produce same graceful centers for G. If a graph G has precisely two graceful centers, then they are adjacent in G, as they produce the edge label q under f.

A graph G is said to be a universal graceful graph if for any $v \in V(G)$, v is a graceful center for G with respect to some graceful labeling of G. Also we call G is a universal α-graceful graph if for any $v \in V(G), v$ is a graceful center for G with respect to some α-graceful labeling of G.

Every cycle $C_{n}(n \equiv 0(\bmod 4))$, star $K_{1, n}$ are universal graceful graphs as well they are universal α-graceful graphs. While $C_{n}(n \equiv 3(\bmod 4))$ and wheel W_{n} are universal graceful graphs, but they are not universal α-graceful graphs, as symmetric structure of above said graphs and their graceful labeling are given in Rosa [1], Hoede and Kuiper [2].

Ring sum of two graphs G_{1} and G_{2} denoted $G_{1} \oplus G_{2}$, where $G_{1} \oplus G_{2}=$ $\left(V\left(G_{1}\right) \cup V\left(G_{2}\right), E\left(G_{1}\right) \cup E\left(G_{2}\right)-E\left(G_{1}\right) \cap E\left(G_{2}\right)\right)$. Throughout this paper we consider the ring sum of a graceful graph G with $K_{1, n}$ by considering one vertex v which is a graceful center of G and the apex vertex of $K_{1, n}$ as a common vertex. Rest vertex of G and $K_{1, n}$ are distinct. If $H=G \oplus K_{1, n}$ then $H=\left(V(G) \cup V\left(K_{1, n}\right), E(G) \cup E\left(K_{1, n}\right)\right)$, as $E(G) \cap E\left(K_{1, n}\right)=\phi$. Thus, $|V(H)|=|V(G)|+n$ and $|E(H)|=|E(G)|+n$.

2. Main Results

Theorem-1: Any α-graceful graph G has atleast four graceful centers.
Proof : Let G be an α-graceful graph and $f: V(G) \longrightarrow\{0,1,2, \ldots, q\}$ be an α-labeling for G. Since, f is α-labeling for G then \exists an integer $k(0 \leq k<q)$ such that for any $u v \in E(G), \min \{f(u), f(v)\} \leq k<$ $\max \{f(u), f(v)\}$. Thus, $V(G)$ can be partitioned into two parts
$\mathrm{V}_{1}=\{v \in V(G) / f(v) \leq k\}$ and $V_{2}=V(G)-V_{1}=\{v \in V(G) / f(v)>k\}$.

Take $\left|V_{1}\right|=l$. It is obvious that $\left|V_{2}\right|=p-l$. Moreover, $\exists w_{1}, w_{2} \in V_{1}$ such that $f\left(w_{1}\right)=0, f\left(w_{2}\right)=k$ and $\exists w_{3}, w_{4} \in V_{2}$ such that $f\left(w_{3}\right)=k+1$ and $f\left(w_{4}\right)=q$.

Here w_{1} and w_{4} both are graceful centers for G with respect to α graceful labeling f.

Define $h: V(G) \longrightarrow\{0,1,2, \ldots, q\}$ as follows.
$\mathrm{h}(\mathrm{u})=\mathrm{k}-\mathrm{f}(\mathrm{u}), \forall v \in V_{1}$ and
$h(v)=q+k+1-f(v), \forall v \in V_{2}$.
Note that h is injective, as f is an injective map. Further for any $u v \in E(G)$
$\mathrm{h}^{\star}(u v)=|h(u)-h(v)|$
$=h(v)-h(u)$, assuming $u \in V_{1}$
$=q+k+1-f(v)-k+f(u)$
$=q+1-(f(v)-f(u))$
$=q+1-f^{\star}(u v)$.
Therefore, $h^{\star}: E(G) \longrightarrow\{1,2, \ldots, q\}$ is also a bijection, as f^{\star} is a bijective map. Thus, h is also a graceful labeling for G. Infact h is an α-graceful labeling for G, as $\min \{h(u), h(v)\} \leq k \leq \max \{h(u), h(v)\}, \forall$ $u v \in E(G)$. Since, $h\left(w_{2}\right)=0$ and $h\left(w_{3}\right)=q, w_{2}$ and w_{4} are graceful centers for G with respect to α-labeling h. Thus, G has graceful centers w_{1}, w_{2}, w_{3} and w_{4}. So, G admits atlest four graceful centers.

Remark : A α-graceful graph G with α-labeling f admits three more α-labelings $q-f, h$ and $q-h$, as discussed in last theorem.

Theorem-2 : If G is a graceful graph, then $G \oplus K_{1, n}$ is also a graceful graph, for all $n \in N$.

Proof : Let $f: V(G) \longrightarrow\{0,1,2, \ldots, q\}$ be a graceful labeling for G and $v \in V(G)$ such that $f(v)=0$. i.e. v is a graceful center for G with respect to f.

Let $H=G \oplus K_{1}$ by considering vertex v of G and the apex vertex of $K_{1, n}$ as a common vertex in H. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}=v\right\}$ and $V\left(K_{1, n}\right)=\left\{v, u_{1}, u_{2}, \ldots, u_{n}\right\}$ with v is the apex vertex of $K_{1, n}$. It is obvious that $V(H)=V(G) \cup\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $E(H)=E(G) \cup\left\{v u_{i} / 1 \leq i \leq n\right\}$. i.e. $|V(H)|=p+n$ and $|E(H)|=q+n$.

Without loss of generality we assume here $f(v)=0$. Otherwise $f(v)=q$ and in this case $q-f$ is a graceful labeling for G with $(q-f)(v)=0$. In this case v is also a graceful center for G with respect to $q-f$.

Define $h: V(H) \longrightarrow\{0,1,2, \ldots, q+n\}$ as follows.
$\mathrm{h}(\mathrm{w})=\mathrm{f}(\mathrm{w}), \forall w \in V(G)$ and $h\left(u_{i}\right)=q+i, \forall i=1,2, \ldots, n$.

Note that h is an injective map, as f is injective. Also for any $u w \in$ $E(H), h^{\star}(u w)=f^{\star}(u w) \in\{1,2, \ldots, q\}$, if $u w \in E(G)$ and $h^{\star}(u w)=$ $h^{\star}\left(v u_{i}\right)=q+i, \forall i=1,2, \ldots, n$, if $u w \in E\left(K_{1, n}\right)$ (assuming $u=v$ and $w=u_{i}$, for some $\left.i \in\{1,2, \ldots, n\}\right)$. Therefore range of h^{\star} is $\{1,2, \ldots, q+n\}$ and so, it is a bijective map. Hence, h is a graceful labeling for H and H is a graceful graph, for all $n \in N$.

Corollary-2.1 : $\quad C_{n} \oplus K_{1, t}$ is graceful, where $t \in N$ and $n \equiv 0,3(\bmod$ $4)$.

Corollary-2.2 : $W_{n} \oplus K_{1, t}$ is graceful, $\forall t, n \in N$.

Theorem - 3: If G is a universal graceful graph, then its one vertex super graph $G \oplus K_{2}$ is a graceful graph.

Proof : Let $v \in V(G)$ be any fixed vertex. Since, G is a universal graceful graph, there is a graceful labeling $f: V(G) \longrightarrow\{0,1,2, \ldots, q\}$ such that $f(v)=0$.

Let $H=G \oplus K_{2}$, the ring sum of G with K_{2} by considering vertex v and one pendant vertex of K_{2} as a common vertex.

It is obvious that $|V(H)|=|V(G)|+1$ and $|E(H)|=|E(G)|+1$. Let $V(H)=V(G) \cup\{w\}$. Then we see that $E(H)=E(G) \cup\{v w\}$, as v and w are adjacent vertices of K_{2}.

Define $h: V(H) \longrightarrow\{0,1, \ldots,|E(H)|\}$ as follows.

$$
\mathrm{h}(\mathrm{w})=\mathrm{q}+1 \quad \text { and }
$$

$\mathrm{h}(\mathrm{u})=\mathrm{f}(\mathrm{u}), \forall u \in V(G)$, where $q=|E(G)|$.
It is observed that h is an injective map as f is injective. Moreover
$\mathrm{h}^{\star}(u w)=h(w)-h(v)$
$=q+1-f(v)$
$=q+1-0$
$=q+1$ and for any $u_{1} u_{2} \in V(G)$
$h^{\star}\left(u_{1} u_{2}\right)=\left|h\left(u_{1}\right)-h\left(u_{2}\right)\right|$
$=\left|f\left(u_{1}\right)-f\left(u_{2}\right)\right|$
$=f^{\star}\left(u_{1} u_{2}\right)$.
Therefore, $h^{\star}: E(H) \longrightarrow\{1,2, \ldots,|E(H)|\}$ is bijective and so, h becomes a graceful labeling for H. Thus, $G \oplus K_{2}$ is a graceful graph.

Theorem - 4 : Let G_{1} be a graceful graph and G_{2} be an α-graceful graph. Then ring sum $G_{1} \oplus G_{2}$ by considering graceful center of G_{1} and the graceful center of G_{2} as a common vertex is a graceful graph.

Proof : Let $f_{1}: V\left(G_{1}\right) \longrightarrow\left\{0,1, \ldots, q_{1}\right\}$ be a graceful labeling and $f_{1}\left(w_{1}\right)=0$, for some $w_{1} \in V\left(G_{1}\right)$, where $q_{1}=\left|E\left(G_{1}\right)\right|$. Since, G_{2} is an α-graceful graph, $\exists f_{2}: V\left(G_{2}\right) \longrightarrow\left\{0,1, \ldots, q_{2}\right\}$ a graceful labeling for G_{2} and an integer $k\left(0 \leq k<q_{2}\right)$ such that for each $u v \in E\left(G_{2}\right)$, $\min \left\{f_{2}(u), f_{2}(v)\right\} \leq k<\max \left\{f_{2}(u), f_{2}(v)\right\}$, where $q_{2}=\left|E\left(G_{2}\right)\right|$. Let $f_{2}\left(w_{2}\right)=0$, where $w_{2} \in V\left(G_{2}\right)$. Take $H=G_{1} \oplus G_{2}$ by considering w_{1} and w_{2} as a common vertex. It is obvious that $E(H)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$, $|E(G)|=q_{1}+q_{2}$.

Define $g: V(H) \longrightarrow\left\{0,1, \ldots, q_{1}+q_{2}\right\}$ as follows:
$\mathrm{g}=\mathrm{k}-\mathrm{f}_{2}$ on V_{1},
$g=q_{1}+q_{2}+k+1-f_{2}$ on V_{2} and
$g=k+f_{1}$ on $V\left(G_{1}\right)$, where
$V_{1}=\left\{w \in V\left(G_{2}\right) / f_{2}(w) \leq k\right\}$ and $V_{2}=V\left(G_{2}\right)-V_{1}$.
Since, range of g on $V_{1} \subseteq\{0,1,2, \ldots, k\}$, range of g on $V_{2} \subseteq\left\{q_{1}+k+\right.$ $\left.1, q_{1}+k+2, \ldots, q_{1}+q_{2}\right\}$ and range of g on $V(G) \subseteq\left\{k+1, k+2, \ldots, k+q_{1}\right\}$, g is a one-one map.

Moreover

$$
g^{\star}=f_{1}^{\star} \text { on } E\left(G_{1}\right) \text { and } g^{\star}=q_{1}+f_{2}^{\star} \text { on } E\left(G_{2}\right)
$$

Thus, range of $g^{\star}=\left\{1,2, \ldots, q_{1}, q_{1}+1, \ldots, q_{1}+q_{2}\right\}$ and so, it is a bijective map. Therefore, g is a a graceful labeling for H and so, $H=G \oplus G_{2}$ is a graceful graph.

Theorem - 5: If G_{1} and G_{2} be two α-graceful graphs, then the ring sum $G_{1} \oplus G_{2}$ considering two graceful centers of G_{1} and G_{2} as a common vertex is an α-graceful graph.

Proof : Since, G_{1} and G_{2} both are α-graceful graphs, $\exists f_{i}: V\left(G_{i}\right) \longrightarrow$ $\left\{0,1,2, \ldots, q_{i}\right\}$ graceful labeling for G_{i} and non-negative integer $k_{i}(0 \leq$ $\left.k_{i}<q_{i}\right)$ such that for each $u v \in E\left(G_{i}\right), \min \left\{f_{i}(u), f_{i}(v)\right\} \leq k_{i}<\max \left\{f_{i}(u), f_{i}(v)\right\}$, where $q_{i}=\left|E\left(G_{i}\right)\right|$ and $i=1,2$.

Let $f_{1}\left(w_{1}\right)=0, f_{2}\left(w_{2}\right)=0$, where $w_{i} \in V\left(G_{i}\right), i=1,2$. Take $H=$ $G_{1} \oplus G_{2}$ by considering w_{1} and w_{2} as a common vertex. It is obvious that $E(H)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$ and $|E(H)|=q_{1}+q_{2}$.

Take $V_{1}=\left\{w \in V\left(G_{1}\right) / f_{1}(w) \leq k_{1}\right\}, V_{2}=V\left(G_{1}\right)-V_{1}, V_{3}=\{w \in$ $\left.V\left(G_{2}\right) / f_{2}(w) \leq k_{2}\right\}$ and $V_{4}=V\left(G_{2}\right)-V_{3}$.

Define $g: V(H) \longrightarrow\left\{0,1,2, \ldots, q_{1}+q_{2}\right\}$ as follows.
$\mathrm{g}=\mathrm{k}_{2}-f_{2}$ on V_{3},
$=q_{1}+q_{2}+k_{2}+1-f_{2}$ on V_{4} and
$=k_{2}+f_{1}$ on $V\left(G_{1}\right)$.
Since, range of g on $V_{3} \subseteq\left\{0,1,2, \ldots, k_{2}\right\}$ range of g on $V_{4} \subseteq\left\{q_{1}+k_{2}+\right.$ $\left.1, q_{1}+k_{2}+2, \ldots, q_{1}+q_{2}\right\}$ and range of g on $V\left(G_{1}\right) \subseteq\left\{k_{2}+1, k_{2}+2, \ldots, k_{2}+\right.$ $\left.q_{1}\right\}, g$ is a one-one map. Moreover, $g^{\star}=f_{1}^{\star}$ on $E\left(G_{1}\right)$ and $g^{\star}=g_{1}+f_{2}^{\star}$ on $E\left(G_{2}\right)$ gives range of $g^{\star}=\left\{1,2, \ldots, q_{1}, q_{2}+1, \ldots, q_{1}+q_{2}\right\}$. Therefore, g^{\star} is a bijective map and so, it is a graceful labeling for $H=G_{1} \oplus G_{2}$.

Take $k=k_{1}+k_{2}$. Let $u v \in E(H)$ be any edge.
\Rightarrow Either $u v \in E\left(G_{1}\right)$ or $u v \in E\left(G_{2}\right)$.
Case-I : $1 u v \in E\left(G_{1}\right)$.
Without loss of generality we assume here $u \in V_{1}$ and $v \in V_{2}$. Now $g(u)=k_{2}+f_{1}(u) \leq k_{2}+k_{1}=k$ and $g(v)=k_{2}+f_{1}(v)>k_{2}+k_{1}=k$.
Case-II : $1 u v \in E\left(G_{2}\right)$.
Without loss of generality we assume here $u \in V_{3}$ and $v \in V_{4}$. Now $g(u)=k_{2}-f_{2}(u) \leq k_{2}$ and $g(v)=q_{1}+q_{2}+k_{2}+1-f_{2}(v)=q_{1}+k_{2}+1+$ $\left(q_{2}-f_{2}(v)\right)<k$, as $q_{2}-f_{2}(v) \geq 0$ and $k_{1}<q_{1}$.

Thus, for any case we get $\min \{g(u), g(v)\} \leq k<\max \{g(u), g(v)\}, \forall$ $u v \in E(H)$.

Hence, h is an α-graceful labeling for H and so, $H=G_{1} \oplus G_{2}$ is an α-graceful graph.

Here four graceful centers of $G_{1} \oplus G_{2}$ are $w_{3}, w_{4}, w_{5}, w_{6}$, where $f_{1}\left(w_{3}\right)=$ $k_{1}, f_{1}\left(w_{4}\right)=k_{1}+1, f_{2}\left(w_{5}\right)=k_{2}$ and $f_{2}\left(w_{6}\right)=k_{2}+1, w_{3}, w_{4} \in V\left(G_{1}\right)$, $w_{5}, w_{6} \in V\left(G_{2}\right)$. Because

$$
\mathrm{g}\left(\mathrm{w}_{3}\right)=k_{2}+f_{1}\left(w_{3}\right)=k_{2}+k_{1}=k,
$$

$g\left(w_{4}\right)=k_{2}+f_{1}\left(w_{4}\right)=k_{2}+k_{1}+1=k+1$,
$g\left(w_{5}\right)=k_{2}-f_{2}\left(w_{5}\right)=k_{2}-k_{2}=0$ and
$g\left(w_{6}\right)=q_{1}+q_{2}+k_{2}+1-f_{2}\left(w_{6}\right)=q_{1}+q_{2}$.
Now we give a counter example which is α-graceful but not universal graceful graph; Namely a special type of caterpillar.

A caterpillar is a tree with the property that the removal of its pendant vertices leaves a path. This path is known as spine of the caterpillar. It is denoted by $S\left(n_{1}, n_{2}, \ldots, n_{k}\right)$, where P_{k} is the spine of the given caterpillar and $n_{1}, n_{2}, \ldots, n_{k}$ are number of pendant vertices, which are adjacent with the spine of $S\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.

Theorem-6: Let T be a caterpillar $S(2,0,1)$. Then T be an α-graceful graph, but it is not a universal graceful graph, as the vertex v can not be a graceful center for T with respect to any graceful labeling for T.

Proof : As above tree T is a caterpillar $S(2,0,1)$, it is an α-graceful graph.
Suppose T admits a graceful center v with respect to a graceful labeling f on T if possible. Here $f(v)=0$ and v is adjacent to one vertex whose vertex label is $q=5$. i.e. there are two cases either $f\left(v_{1}\right)=5$ or $f\left(v_{2}\right)=5$. In there both cases remaining four vertices have following 24-24 possibilities are given in following table -1 and table -2 .

From these table f creates one edge label twice and so, in any case f can not be a graceful labeling for T.

Therefore, T is not a universal graceful tree.

$f\left(v_{2}\right)$	$f\left(u_{1}\right)$	$f\left(u_{2}\right)$	$f\left(u_{3}\right)$	Possible four edge labels
1	2	3	4	$1,3,3,2$
1	2	4	3	$1,2,3,1$
1	3	2	4	$1,3,3,2$
1	3	4	2	$1,1,2,1$
1	4	2	3	$1,2,1,3$
1	4	3	2	$1,1,1,2$
2	1	3	4	$2,2,4,2$
2	1	4	3	$2,1,4,1$
2	3	1	4	$2,2,2,4$
2	3	4	1	$2,1,2,1$
2	4	1	3	$2,1,1,4$
2	4	3	1	$2,1,1,2$
3	1	2	4	$3,1,4,3$
3	1	4	2	$3,1,4,1$
3	2	1	4	$3,1,3,4$
3	2	4	1	$3,2,3,1$
3	4	1	2	$3,1,1,4$
3	4	2	1	$3,2,1,3$
4	1	2	3	$4,1,4,3$
4	1	3	2	$4,2,4,2$
4	2	1	3	$4,1,3,4$
4	2	3	1	$4,3,3,2$
4	3	1	2	$4,2,2,4$
4	3	2	1	$4,3,2,3$

Table-1: If $f\left(v_{1}\right)=5$

$f\left(v_{2}\right)$	$f\left(u_{1}\right)$	$f\left(u_{2}\right)$	$f\left(u_{3}\right)$	Possible four edge labels
1	2	3	4	$1,2,1,1$
1	2	4	3	$1,3,1,2$
1	3	2	4	$2,1,1,1$
1	3	4	2	$2,3,1,3$
1	4	2	3	$3,1,1,2$
1	4	3	2	$3,2,1,3$
2	1	3	4	$1,1,2,1$
2	1	4	3	$1,2,2,2$
2	3	1	4	$1,1,2,1$
2	3	4	1	$1,2,2,4$
2	4	1	3	$2,1,2,2$
2	4	3	1	$2,1,2,4$
3	1	2	4	$2,1,3,1$
3	1	4	2	$2,1,3,3$
3	2	1	4	$1,2,3,1$
3	2	4	1	$1,1,3,4$
3	4	1	2	$1,2,3,3$
3	4	2	1	$1,1,3,4$
4	1	2	3	$3,2,4,2$
4	1	3	2	$3,1,4,3$
4	2	1	3	$2,3,4,2$
4	2	3	1	$2,1,4,4$
4	3	1	2	$1,3,4,3$
4	3	2	1	$1,2,4,4$

Table-2: If $f\left(v_{2}\right)=5$

References

[1] A. Rosa, On certain valuation of graph, Theory of Graphs (Rome, July 1966), Goden and Breach, N. Y. and Paris, pp. 349-355, (1967).
[2] C. Hoede and H. Kuiper, All wheels are graceful, Util. Math., 14, pp. 311, (1987).
[3] F. Harary, Graph theory, Narosa Publishing House, New Delhi, (2001).
[4] J. A. Gallian, The Electronics Journal of Combinatorics, 18, DS6, (2015).

H. M. Makadia

Lukhdhirji Engineering College, Morbi-363642
e-mail: makadia.hardik@yahoo.com

H. M. Karavadiya

Labhubhai Trivedi Institute of Technology, Rajkot - 360005
e-mail: hardik.karavadiya2016@gmail.com
and
V. J. Kaneria

Department of Mathematics, Saurashtra University, Rajkot - 360005
e-mail: kaneriavinodray@gmail.com

