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Abstract

In this paper we define graceful center of a graceful graph. We
proved any graph G which admits α-labeling has at least four graceful
centers. We also defined a new strong concept of universal graceful
graph. Some results on ring sum of two graphs for their graceful
labeling are proved.
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1. Introduction

In this paper a (p, q) graph G, we mean |V (G)| = p, |E(G)| = q and
it is a finite, undirected simple graph. Terms not defined here are used
from Harary [3]. Rosa [1] introduced the notion of graceful labeling (β-
valuation) and α-labeling of a graph. Any graphG, which admits α-labeling
is necessarily a bipartite graph; such graph is known as α-graceful graph.

A Graph G = (V,E) is said to be a graceful graph if G admits a
function f : V (G) −→ {0, 1, . . . , q} is injective and the induce edge function
fB : E(G) −→ {1, 2, . . . , q} denoted by fB(e = uv) =| f(u) − f(v) | is
bijective, ∀ e = uv ∈ E. Here function f is called graceful labeling of graph
G.

Let G be a graceful graph with a graceful labeling f : V (G) −→
{0, 1, 2, . . . , q}. A vertex v ∈ V (G) is called a graceful center ofG if f(v) = 0
or f(v) = q. Any graceful graph G with graceful labeling f has at least
two graceful centers. It is obvious that q − f is also a graceful labeling for
G and it produce same graceful centers for G. If a graph G has precisely
two graceful centers, then they are adjacent in G, as they produce the edge
label q under f .

A graph G is said to be a universal graceful graph if for any v ∈ V (G),
v is a graceful center for G with respect to some graceful labeling of G.
Also we call G is a universal α-graceful graph if for any v ∈ V (G), v is a
graceful center for G with respect to some α-graceful labeling of G.

Every cycle Cn (n ≡ 0 (mod 4)), star K1,n are universal graceful graphs
as well they are universal α-graceful graphs. While Cn (n ≡ 3 (mod 4))
and wheel Wn are universal graceful graphs, but they are not universal
α-graceful graphs, as symmetric structure of above said graphs and their
graceful labeling are given in Rosa [1], Hoede and Kuiper [2].

Ring sum of two graphs G1 and G2 denoted G1⊕G2, where G1⊕G2 =³
V (G1)∪V (G2), E(G1)∪E(G2)−E(G1)∩E(G2)

´
. Throughout this paper

we consider the ring sum of a graceful graph G with K1,n by considering
one vertex v which is a graceful center of G and the apex vertex of K1,n as
a common vertex. Rest vertex of G and K1,n are distinct. If H = G⊕K1,n

then H =
³
V (G) ∪ V (K1,n), E(G) ∪ E(K1,n)

´
, as E(G) ∩ E(K1,n) = φ.

Thus, |V (H)| = |V (G)|+ n and |E(H)| = |E(G)|+ n.
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2. Main Results

Theorem - 1 : Any α-graceful graph G has atleast four graceful centers.

Proof : Let G be an α-graceful graph and f : V (G) −→ {0, 1, 2, . . . , q}
be an α-labeling for G. Since, f is α-labeling for G then ∃ an integer
k (0 ≤ k < q) such that for any uv ∈ E(G), min{f(u), f(v)} ≤ k <
max{f(u), f(v)}. Thus, V (G) can be partitioned into two parts

V1 = {v ∈ V (G)/f(v) ≤ k} and
V2 = V (G)− V1 = {v ∈ V (G)/f(v) > k}.

Take |V1| = l. It is obvious that |V2| = p− l. Moreover, ∃ w1, w2 ∈ V1
such that f(w1) = 0, f(w2) = k and ∃ w3, w4 ∈ V2 such that f(w3) = k+1
and f(w4) = q.

Here w1 and w4 both are graceful centers for G with respect to α-
graceful labeling f .

Define h : V (G) −→ {0, 1, 2, . . . , q} as follows.
h(u)= k-f(u), ∀v ∈ V1 and

h(v) = q + k + 1− f(v),∀v ∈ V2.

Note that h is injective, as f is an injective map. Further for any
uv ∈ E(G)

hB(uv) = |h(u)− h(v)|
= h(v)− h(u), assuming u ∈ V1
= q + k + 1− f(v)− k + f(u)
= q + 1− (f(v)− f(u))
= q + 1− fB(uv).

Therefore, hB : E(G) −→ {1, 2, . . . , q} is also a bijection, as fB is a
bijective map. Thus, h is also a graceful labeling for G. Infact h is an
α-graceful labeling for G, as min{h(u), h(v)} ≤ k ≤ max{h(u), h(v)}, ∀
uv ∈ E(G). Since, h(w2) = 0 and h(w3) = q, w2 and w4 are graceful
centers for G with respect to α-labeling h. Thus, G has graceful centers
w1, w2, w3 and w4. So, G admits atlest four graceful centers.

Remark : A α-graceful graph G with α-labeling f admits three more
α-labelings q − f, h and q − h, as discussed in last theorem.

Theorem-2 : If G is a graceful graph, then G⊕K1,n is also a graceful
graph, for all n ∈ N .
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Proof : Let f : V (G) −→ {0, 1, 2, . . . , q} be a graceful labeling for G and
v ∈ V (G) such that f(v) = 0. i.e. v is a graceful center for G with respect
to f .

Let H = G ⊕ K1 by considering vertex v of G and the apex vertex
of K1,n as a common vertex in H. Let V (G) = {v1, v2, . . . , vp = v} and
V (K1,n) = {v, u1, u2, . . . , un} with v is the apex vertex ofK1,n. It is obvious
that V (H) = V (G)∪{u1, u2, . . . , un} and E(H) = E(G)∪{vui/1 ≤ i ≤ n}.
i.e. |V (H)| = p+ n and |E(H)| = q + n.

Without loss of generality we assume here f(v) = 0. Otherwise f(v) = q
and in this case q − f is a graceful labeling for G with (q − f)(v) = 0. In
this case v is also a graceful center for G with respect to q − f .

Define h : V (H) −→ {0, 1, 2, . . . , q + n} as follows.
h(w)=f(w), ∀w ∈ V (G) and

h(ui) = q + i,∀i = 1, 2, . . . , n.
Note that h is an injective map, as f is injective. Also for any uw ∈

E(H), hB(uw) = fB(uw) ∈ {1, 2, . . . , q}, if uw ∈ E(G) and hB(uw) =
hB(vui) = q + i, ∀ i = 1, 2, . . . , n, if uw ∈ E(K1,n) (assuming u = v and
w = ui, for some i ∈ {1, 2, . . . , n}). Therefore range of hB is {1, 2, . . . , q+n}
and so, it is a bijective map. Hence, h is a graceful labeling for H and H
is a graceful graph, for all n ∈ N .

Corollary - 2.1 : Cn ⊕K1,t is graceful, where t ∈ N and n ≡ 0, 3 (mod
4).

Corollary - 2.2 : Wn ⊕K1,t is graceful, ∀ t, n ∈ N .

Theorem - 3 : If G is a universal graceful graph, then its one vertex
super graph G⊕K2 is a graceful graph.

Proof : Let v ∈ V (G) be any fixed vertex. Since, G is a universal graceful
graph, there is a graceful labeling f : V (G) −→ {0, 1, 2, . . . , q} such that
f(v) = 0.

Let H = G ⊕K2, the ring sum of G with K2 by considering vertex v
and one pendant vertex of K2 as a common vertex.

It is obvious that |V (H)| = |V (G)| + 1 and |E(H)| = |E(G)| + 1. Let
V (H) = V (G) ∪ {w}. Then we see that E(H) = E(G) ∪ {vw}, as v and w
are adjacent vertices of K2.

Define h : V (H) −→ {0, 1, . . . , |E(H)|} as follows.
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h(w)=q+1 and
h(u)=f(u), ∀u ∈ V (G),where q = |E(G)|.

It is observed that h is an injective map as f is injective. Moreover
hB(uw) = h(w)− h(v)
= q + 1− f(v)
= q + 1− 0
= q + 1 and for any u1u2 ∈ V (G)
hB(u1u2) = |h(u1)− h(u2)|
= |f(u1)− f(u2)|
= fB(u1u2).

Therefore, hB : E(H) −→ {1, 2, . . . , |E(H)|} is bijective and so, h be-
comes a graceful labeling for H. Thus, G⊕K2 is a graceful graph.

Theorem - 4 : Let G1 be a graceful graph and G2 be an α-graceful
graph. Then ring sum G1 ⊕ G2 by considering graceful center of G1 and
the graceful center of G2 as a common vertex is a graceful graph.

Proof : Let f1 : V (G1) −→ {0, 1, . . . , q1} be a graceful labeling and
f1(w1) = 0, for some w1 ∈ V (G1), where q1 = |E(G1)|. Since, G2 is
an α-graceful graph, ∃ f2 : V (G2) −→ {0, 1, . . . , q2} a graceful labeling
for G2 and an integer k(0 ≤ k < q2) such that for each uv ∈ E(G2),
min{f2(u), f2(v)} ≤ k < max{f2(u), f2(v)}, where q2 = |E(G2)|. Let
f2(w2) = 0, where w2 ∈ V (G2). Take H = G1 ⊕ G2 by considering w1
and w2 as a common vertex. It is obvious that E(H) = E(G1) ∪ E(G2),
|E(G)| = q1 + q2.

Define g : V (H) −→ {0, 1, . . . , q1 + q2} as follows:
g=k-f2 on V1,

g = q1 + q2 + k + 1− f2 on V2 and
g = k + f1 on V (G1), where
V1 = {w ∈ V (G2)/f2(w) ≤ k} and V2 = V (G2)− V1.

Since, range of g on V1 ⊆ {0, 1, 2, . . . , k}, range of g on V2 ⊆ {q1 + k +
1, q1+k+2, . . . , q1+q2} and range of g on V (G) ⊆ {k+1, k+2, . . . , k+q1},
g is a one-one map.

Moreover

gB = fB1 on E(G1) and gB = q1 + fB2 on E(G2).

Thus, range of gB = {1, 2, . . . , q1, q1 + 1, . . . , q1 + q2} and so, it is a
bijective map. Therefore, g is a a graceful labeling forH and so,H = G⊕G2
is a graceful graph.
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Theorem - 5 : If G1 and G2 be two α-graceful graphs, then the ring sum
G1⊕G2 considering two graceful centers of G1 and G2 as a common vertex
is an α-graceful graph.

Proof : Since, G1 and G2 both are α-graceful graphs, ∃ fi : V (Gi) −→
{0, 1, 2, . . . , qi} graceful labeling for Gi and non-negative integer ki (0 ≤
ki < qi) such that for each uv ∈ E(Gi), min{fi(u), fi(v)} ≤ ki <max{fi(u), fi(v)},
where qi = |E(Gi)| and i = 1, 2.

Let f1(w1) = 0, f2(w2) = 0, where wi ∈ V (Gi), i = 1, 2. Take H =
G1 ⊕G2 by considering w1 and w2 as a common vertex. It is obvious that
E(H) = E(G1) ∪E(G2) and |E(H)| = q1 + q2.

Take V1 = {w ∈ V (G1)/f1(w) ≤ k1}, V2 = V (G1) − V1, V3 = {w ∈
V (G2)/f2(w) ≤ k2} and V4 = V (G2)− V3.

Define g : V (H) −→ {0, 1, 2, . . . , q1 + q2} as follows.
g=k2 − f2 on V3,

= q1 + q2 + k2 + 1− f2 on V4 and
= k2 + f1 on V (G1).

Since, range of g on V3 ⊆ {0, 1, 2, . . . , k2} range of g on V4 ⊆ {q1+ k2+
1, q1+k2+2, . . . , q1+q2} and range of g on V (G1) ⊆ {k2+1, k2+2, . . . , k2+
q1}, g is a one-one map. Moreover, gB = fB1 on E(G1) and gB = g1 + fB2 on
E(G2) gives range of g

B = {1, 2, . . . , q1, q2 + 1, . . . , q1 + q2}. Therefore, gB
is a bijective map and so, it is a graceful labeling for H = G1 ⊕G2.

Take k = k1 + k2. Let uv ∈ E(H) be any edge.

⇒ Either uv ∈ E(G1) or uv ∈ E(G2).
Case−I : ıuv ∈ E(G1).

Without loss of generality we assume here u ∈ V1 and v ∈ V2. Now
g(u) = k2 + f1(u) ≤ k2 + k1 = k and g(v) = k2 + f1(v) > k2 + k1 = k.
Case−II : ıuv ∈ E(G2).

Without loss of generality we assume here u ∈ V3 and v ∈ V4. Now
g(u) = k2 − f2(u) ≤ k2 and g(v) = q1 + q2 + k2 + 1− f2(v) = q1 + k2 + 1+
(q2 − f2(v)) < k, as q2 − f2(v) ≥ 0 and k1 < q1.

Thus, for any case we get min{g(u), g(v)} ≤ k < max{g(u), g(v)}, ∀
uv ∈ E(H).

Hence, h is an α-graceful labeling for H and so, H = G1 ⊕ G2 is an
α-graceful graph.

Here four graceful centers of G1⊕G2 are w3, w4, w5, w6, where f1(w3) =
k1, f1(w4) = k1 + 1, f2(w5) = k2 and f2(w6) = k2 + 1, w3, w4 ∈ V (G1),
w5, w6 ∈ V (G2). Because

g(w3) = k2 + f1(w3) = k2 + k1 = k,
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g(w4) = k2 + f1(w4) = k2 + k1 + 1 = k + 1,
g(w5) = k2 − f2(w5) = k2 − k2 = 0 and
g(w6) = q1 + q2 + k2 + 1− f2(w6) = q1 + q2.

Now we give a counter example which is α-graceful but not universal
graceful graph; Namely a special type of caterpillar.

A caterpillar is a tree with the property that the removal of its pendant
vertices leaves a path. This path is known as spine of the caterpillar. It is
denoted by S(n1, n2, . . . , nk), where Pk is the spine of the given caterpillar
and n1, n2, . . . , nk are number of pendant vertices, which are adjacent with
the spine of S(n1, n2, . . . , nk).

Theorem - 6 : Let T be a caterpillar S(2, 0, 1). Then T be an α-graceful
graph, but it is not a universal graceful graph, as the vertex v can not be
a graceful center for T with respect to any graceful labeling for T .

Proof : As above tree T is a caterpillar S(2, 0, 1), it is an α-graceful graph.
Suppose T admits a graceful center v with respect to a graceful labeling

f on T if possible. Here f(v) = 0 and v is adjacent to one vertex whose ver-
tex label is q = 5. i.e. there are two cases either f(v1) = 5 or f(v2) = 5. In
there both cases remaining four vertices have following 24−24 possibilities
are given in following table−1 and table−2.

From these table f creates one edge label twice and so, in any case f
can not be a graceful labeling for T .

Therefore, T is not a universal graceful tree.

Marisol Martínez
fig-1




312 H. M. Makadia, H. M. Karavadiya and V. J. Kaneria

f(v2) f(u1) f(u2) f(u3) Possible four edge labels

1 2 3 4 1,3,3,2

1 2 4 3 1,2,3,1

1 3 2 4 1,3,3,2

1 3 4 2 1,1,2,1

1 4 2 3 1,2,1,3

1 4 3 2 1,1,1,2

2 1 3 4 2,2,4,2

2 1 4 3 2,1,4,1

2 3 1 4 2,2,2,4

2 3 4 1 2,1,2,1

2 4 1 3 2,1,1,4

2 4 3 1 2,1,1,2

3 1 2 4 3,1,4,3

3 1 4 2 3,1,4,1

3 2 1 4 3,1,3,4

3 2 4 1 3,2,3,1

3 4 1 2 3,1,1,4

3 4 2 1 3,2,1,3

4 1 2 3 4,1,4,3

4 1 3 2 4,2,4,2

4 2 1 3 4,1,3,4

4 2 3 1 4,3,3,2

4 3 1 2 4,2,2,4

4 3 2 1 4,3,2,3

Table-1: If f(v1) = 5



Graceful centers of graceful graphs and universal graceful graphs 313

f(v2) f(u1) f(u2) f(u3) Possible four edge labels

1 2 3 4 1,2,1,1

1 2 4 3 1,3,1,2

1 3 2 4 2,1,1,1

1 3 4 2 2,3,1,3

1 4 2 3 3,1,1,2

1 4 3 2 3,2,1,3

2 1 3 4 1,1,2,1

2 1 4 3 1,2,2,2

2 3 1 4 1,1,2,1

2 3 4 1 1,2,2,4

2 4 1 3 2,1,2,2

2 4 3 1 2,1,2,4

3 1 2 4 2,1,3,1

3 1 4 2 2,1,3,3

3 2 1 4 1,2,3,1

3 2 4 1 1,1,3,4

3 4 1 2 1,2,3,3

3 4 2 1 1,1,3,4

4 1 2 3 3,2,4,2

4 1 3 2 3,1,4,3

4 2 1 3 2,3,4,2

4 2 3 1 2,1,4,4

4 3 1 2 1,3,4,3

4 3 2 1 1,2,4,4

Table-2: If f(v2) = 5
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