Supporting information

•Thestructures of cyclic aminals from aldehydes and "roofed" mono-N-sulfonyl cis-diamines

Laksana Anugerah Adhi^a, Satoshi Fukuda^b and Yukiharu Fukushi^{a,*}

^aResearch Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, Japan, ^bFaculty of Agriculture, Hokkaido University, Sapporo, Japan

•Schemes, tables, and figures, and Spectral data

•Table S1 Selected chemical shifts, $\Delta\delta$ of geminal methyl protons ...

•Fig. S2 Partial NOESY spectrum (500 MHz; $CDCl_3$) for **2a** and the conformation of **2a**.

•Table S3 R_f values of diastereomeric aminals form racemic reagent (2-5)

•Table S4. Proton and carbon chemical shifts (d in ppm) for myrtenal moieties and selected mother skeleton of **2b (aminal)**, **2b (imine)**, **2c** and myrtenal **7**.

•Table S5. Proton and carbon chemical shifts (d in ppm) for myrtenal moieties and selected mother skeleton of **3b**, **3c**, **4b**, **4c**, **5b**, and **5c**.

•Table S6 Proton and carbon chemical shifts (δ in ppm) for lilial moieties of **5d**, **5e**, and lilial **6**.

•Fig. S7 Possible epimerization mechanism from **5e** to **5d**.

•Fig. S8 ¹H NMR and ¹³C spectra for **1**.

- •Fig. S9 ¹H NMR and ¹³C spectra for **1a,b**.
- •Fig. S10 COSY (above) and NOESY (below) spectra for 1a,b
- •Fig. S11 ¹H NMR and ¹³C spectra for **2; RDA-Ms**.
- •Fig. S12 ¹H NMR and ¹³C spectra for **4**; **RDA-1Np**s.
- •Fig. S13 ¹H NMR and ¹³C spectra for **5**; **RDA-2Nps**.
- •Fig. S14 ¹H and ¹³C NMR spectra for **2a**.
- •Fig. S15 ¹H NMR and ¹³C spectra for compound **4a**.
- •Fig. S16 ¹H NMR and ¹³C spectra for **5a**.
- •Fig. S17 ¹H NMR and ¹³C spectra for **2b**.
- Fig. S18 COSY (above) and NOESY (below) spectra for 2b
- •Fig. S19 ¹H and ¹³C NMR spectra for **2c**.
- •Fig. S20 COSY (above) and NOESY (below) spectra for 2c.
- •Fig. S21 ¹H and ¹³C NMR spectra for **3b**.
- •Fig. S22 ¹H NMR and ¹³C spectra for **3c**
- •Fig. S23 ¹H NMR and ¹³C spectra for **5d**.
- •Fig. S24 ¹H NMR and ¹³C spectra for **5e**.

Table S1 (A) Selected chemical shifts, $\Delta\delta$ of geminal methyl protons, and coupling constants for "roofed" aminals (1a, 1b and 2a-5a), and their structures. (B) Stable conformations for 1a and 1b. (C) Structure of 2a.

1	۸	<u> </u>	
	д		
14	L 1	• /	

	1a	1b	2a	3a	4 a	5a			
¹ H NMR									
cominal Ma	0.64	0.75	0.82	0.79	0.82	0.81			
gemma me	0.04	0.75	-0.01	0.03	0.02	0.05			
Δδ	0	0	0.83	0.76	0.80	0.76			
methine	1.34	1.31	2.22	2.39	2.58	2.50			
${}^{3}J_{\rm HH}({\rm Hz})$	5.2	7.5	3.1	3.5	2.7	3.1			
¹³ C NMR				-					
	17.00	10.12	19.44	19.50	19.60	19.53			
gemma me	17.00	19.12	11.18	11.37	11.29	11.41			
Δδ	0	0	8.26	8.13	8.31	8.21			
methine	30.81	33.19	28.21	28.31	28.74	28.36			

[270 MHz/67.5 MHz or 500 MHz/126 MHz (¹H/¹³C)] in CDCl₃

(B)

(C)

1a (endo)

Fig. S2 Partial NOESY spectrum (500 MHz; $CDCl_3$) for **7a** and the conformation of **7a**.

Table S3 R_f values of diastereomeric aminals form racemic reagent (2-5) and aldehydes (S1-S5).

Reagents/aldehydes	S1	S2	S3 (6)	S4	S5 (7)
	B 0.45/0.49	B 0.57/0.68	B 0.63/0.73	B 0.61/0.72	B 0.55/0.63
2; RDA-Ms	C 0.44/0.47	C 0.58/0.60	C 0.59/0.65	C 0.59/0.66	C 0.57/0.68
	A 0.30/0.36	A 0.35/0.45	A 0.39/0.53	A 0.33/0.46	A 0.33/0.36
3; RDA-Ts	E 0.56/0.62	E 0.43/0.58	D 0.40/0.57	D 0.49/0.53	E 0.41/0.43
	A 0.34/0.41	A 0.39/0.47	A 0.41/0.54	A 0.36/0.46	A 0.34/0.41
4; RDA-1Nps	E 0.56/0.62	E 0.42/0.58	D 0.41/0.56	D 0.51/0.57	E 0.39/0.52
	A 0.39/0.45	A 0.44/0.53	A 0.49/0.63	A 0.43/0.52	A 0.41/0.45
5; RDA-2Nps	E 0.61/0.69	E 0.51/0.66	D 0.50/0.67	D 0.43/0.57	E 0.50/0.57

Silica-gel TLC plate: Merck 60F₂₅₄5715

Solvent combinations: A: Hexane/EtOAc (2:1), B: EtOAc, C: CHCl₃/MeOH (10:1), D: Toluene/EtOAc (20:1), E: Toluene/EtOAc (10:1).

Table S4. Proton and carbon chemical shifts (d in ppm) for myrtenal moieties and selected mother skeleton of **2b (aminal)**, **2b** (**imine**), **2c** and myrtenal **7**.

Ductor	2b	2b	2.0	Myrtenal	
Proton	(aminal)	(imine)	20		
H-1	1.13	2.59	0.72	2.85	
H-3	5.10	6.11	5.60	6.70	
H-4n	2.13	2.49	2.26	2.52	
H-4x	2.05	2.39	2.09	2.58	
H-5	1.94	2.12	1.95	2.18	
H-7n	0.85	1.07	1.06	1.04	
H-7x	2.13	2.40	2.19	2.48	
8-CH ₃	1.14	1.24	1.04	1.33	
9-CH ₃	0.67	0.68	0.58	0.73	
H-10	4.57	7.96	4.64	9.43	
SO₂Me	2.85	2.68	2.84	-	
-NH-	1.2	-1.8	1.17	-	
SO ₂ -NH-	-	4.94	-	-	
N-Me	-	-	-	-	
C _{9'} -H	4.37	4.04	4.39	-	
C _{10'} -H	4.68	4.50	4.73	-	
С _{11′} -Н	3.89	3.93	3.86	-	
C ₁₂ '-H	3.76	3.74	3.77	-	

Carbon	2b (aminal)	2b (imine)	2c	Myrtenal
1	41.7	39.8	38.9	38.18
2	144.6	148.3	142.7	151.36
3	122.6	136.9	125.2	147.66
4	31.07	32.5	31.3	33.04
5	40.6	40.8	40.5	40.74
6	37.5	37.8	37.0	37.42
7	32.3	31.11	31.7	31.12
8	25.85	25.80	25.7	25.70
9	21.4	21.2	21.3	20.92
10	82.5	163.6	82.7	191.21
SO ₂ Me	37.7	40.9	37.7	-
N-Me	-	-	-	-
9'	48.0	51.5	47.8	-
10'	49.3	53.0	49.3	-
11'	64.2	54.5	63.8	-
12'	60.5	67.9	60.3	-

2b aminal 1

2b aminal 1 :2b aminal 2 : 2b (E)-imine= 71 : 8 : 21

2 (12S)-RDA-Ms

Ducton	3b	3b	30	4b	4b	40	5b	5b	50
Proton	(aminal)	(imine)	50	(aminal)	(imine)	40	(aminal)	(imine)	50
H-1	0.98	2.58	0.87	1.24	2.61	0.82	1.02	2.58	0.88
H-3	5.22	6.01	5.50	5.07	6.05	5.53	5.24	5.85	5.56
H-4n	2.13	2.45	2.29	2.02*	2.38*	2.20	2.15	2.24	2.32
H-4x	2.13	2.45	2.07	1.95*	2.47*	2.05	2.09	2.37	2.09
H-5	1.95	2.14	1.93	1.91	2.22	1.88	1.95	2.12	1.94
H-7n	0.85	1.04	1.19	0.72	1.04	0.78	0.86	1.02	1.16
H-7x	2.08	2.39	2.19	2.08	2.39	2.01	2.09	2.38	2.18
8-CH3	1.15	1.27	1.03	1.18	1.27	0.99	1.16	1.27	1.04
9-CH ₃	0.77	0.78	0.56	0.73	0.71	0.53	0.792	0.787	0.56
H-10	4.25	7.58	4.13	4.66	7.83	4.69	4.36	4.51	4.23
-NH-	1.	25	1.07	1.0-	-1.5	1.06	1.	28	1.10
SO ₂ NH	-	5.42	-	-	5.54	-	-	5.52	-
SO ₂ Me	-	-	-	-	-	-	-	-	-
Me (Ts)	2.40	2.36	2.39	-	-	-	-	-	-
С9'-Н	4.28	3.93	4.30	4.26	3.98	4.25	4.27	3.92	4.29
C ₁₀ [,] -H	4.76	4.49	4.89	4.12	4.14	4.30	4.79	4.51	4.94
С ₁₁ ,-Н	3.55	3.66	3.47	3.77	3.80	3.77	3.66	3.72	3.59
С ₁₂ '-Н	3.42	3.39	3.44	3.51	3.58	3.56	3.40	3.36	3.43

Table S5. Proton and carbon chemical shifts (δ in ppm) for myrtenal moieties and selected mother skeleton of **3b**, **3c**, **4b**, **4c**, **5b**, and **5c**.

* exchangeable

Table S5 (continued)

Carbon	3b (aminal)	3b (imine)	3c	4b (aminal)	4b (imine)	4c	5b (aminal)	5b (imine)	5c
1	40.7	39.9	39.3	41.8	40.0	39.3	40.8	39.9	39.4
2	144.4	148.4	143.6	144.4	148.4	143.3	144.3	148.3	143.5
3	122.3	136.4	123.7	122.2	136.4	123.4	122.5	136.5	124.0
4	31.1	32.5	31.2	41.0	32.5	31.2	31.1	32.4	31.3
5	40.8	41.7	40.4	40.7	40.5	40.3	40.75	40.8	40.4
6	37.9	37.5	36.8	37.9	37.6	36.8	37.9	37.5	36.8
7	32.3	31.2	31.5	32.1	31.1	31.1	32.3	31.2	31.5
8	25.9	25.8	25.7	26.0	26.0	25.7	25.9	25.8	25.7
9	21.5	21.5	21.3	21.3	20.9	21.2	21.5	21.1	21.3
10	82.8	163.4	82.8	82.2	163.7	82.5	82.9	163.5	82.9
SO ₂ Me	-	-	-	-	-	-	-	-	-
Me (Ts)	21.5	21.1	21.5	-	-	-	-	-	-
C _{9'}	47.9	53.0	47.6	47.9	52.8	48.9	47.9	52.9	47.6
C _{10'}	49.7	51.1	49.6	49.0	50.0	47.6	49.6	51.1	49.7
C ₁₁ ,	64.3	54.0	63.8	64.3	66.9	63.8	64.3	54.1	63.9
C ₁₂ '	60.2	67.0	60.3	60.6	54.3	60.5	60.2	67.0	60.4

3b (aminal 1) : **3b** (aminal 2, data not shown) : **3b** (*E*)-imine = 80 : 5 : 15 **4b** (aminal 1) : **4b** (aminal 2, data not shown) : **4b** (*E*)-imine = 67 : 10 : 23 **5b** (aminal 1) : **5b** (aminal 2, data not shown) : **5b** (*E*)-imine = 75 : 7 : 18

Table S6 Proton and carbon chemical shifts (δ in ppm) for lilial (S3) moieties of 5d, 5e, and lilial 6.

	5d	5e	$Dd = d_{5d} - d_{5e}$	lilial (6)			
Proton		-		-			
C1-H	3.76	3.92	-0.16	9.71			
C ₂ -H	2.81	2.59	0.22	2.66			
C ₂ -CH ₃	0.15	0.71	-0.56	1.09			
C ₃ -H _R	2.39*	0.88	1.51	3.06*			
C ₃ -H _S	2.42*	2.16	0.26	2.57*			
C _{2',6'} -H	7.11	6.94	0.17	7.10			
С _{3',5'} -Н	7.28	7.20	0.08	7.30			
C _{4'} -t-Bu	1.34	1.29	0.05	1.30			
Carbon		-	-	-			
C ₁	81.9	84.5	-2.6	204.5			
C ₂	35.5	35.9	-0.4	48.0			
C ₂ -CH ₃	10.2	16.4	-6.2	13.3			
C ₃	39.9	31.38	8.52	36.1			
C _{1'}	137.1	137.6	-0.5	135.7			
C _{2',6'}	128.7	128.7	0.0	125.4			
C _{3',5'}	125.2	124.9	0.3	126.8			
C _{4'}	148.7	148.3	0.4	149.2			
t-Bu (Me)	31.5	31.41	0.09	31.3			
t-Bu (C)	34.4	34.3	0.1	34.4			
* exchangeable							

Fig. S7 Possible epimerization mechanism from **5e** to **5d**.

Fig. S8 ¹H NMR and ¹³C spectra for **1**. (500 MHz/126MHz, CDCl₃)

Fig. S9 ¹H and ¹³C NMR spectra for **1a**,**b**.(500 MHz/126MHz, CDCl₃)

Fig. S10 COSY (above) and NOESY (below) spectra for 1a,b (500 MHz, CDCl₃)

Fig. S11 ¹H NMR and ¹³C spectra for **2**; **RDA-Ms**. (500 MHz/126MHz, CDCl₃)

Fig. S12 ¹H NMR and ¹³C spectra for **4**; **RDA-1Nps**. (500 MHz/126MHz, CDCl₃)

Fig. S13 ¹H NMR and ¹³C spectra for **5**; **RDA-2Nps**. (500 MHz/126MHz, CDCl₃)

Fig. S14 ¹H and ¹³C NMR spectra for **2a** (500 MHz/126MHz, CDCl₃)

Fig. S16 ¹H NMR and ¹³C spectra for **5a**. (500 MHz/126MHz, CDCl₃)

Fig. S17 ¹H NMR and ¹³C spectra for **2b**. (500 MHz/126MHz, CDCl₃)

Fig. S18 COSY (above) and NOESY (below) spectra for 2b (500 MHz, CDCl₃)

Fig. S19 ¹H and ¹³C NMR spectra for **2c**. (500 MHz/126MHz, $CDCl_3$)

Fig. S20 COSY (above) and NOESY (below) spectra for 2c. (500 MHz, CDCl₃)

Fig. S21 ¹H NMR and ¹³C spectra for **3b**. (500 MHz/126MHz, $CDCl_3$)

Fig. S22 ¹H NMR and ¹³C spectra for **3c** (500 MHz/126MHz, $CDCI_3$)

Fig. S23 ¹H NMR and ¹³C spectra for **5d**. (500 MHz/126MHz, CDCl₃)

Fig. S24 ¹H NMR and ¹³C spectra for **5e**. (500 MHz/126MHz, CDCl₃)