
Research Article
A Decision-Making Method Providing Sustainability to
FPGA-Based SoCs by Run-Time Structural Adaptation toMode of
Operation, Power Budget, and Die Temperature Variations

Dimple Sharma and Lev Kirischian

Electrical and Computer Engineering Department, Ryerson University, 245 Church Street, Toronto, ON M5B 2K3, Canada

Correspondence should be addressed to Dimple Sharma; dimple.sharma@ryerson.ca

Received 2 March 2021; Revised 19 July 2021; Accepted 13 August 2021; Published 1 September 2021

Academic Editor: Gokhan Memik

Copyright © 2021 Dimple Sharma and Lev Kirischian. *is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

One of the growing areas of application of embedded systems in robotics, aerospace, military, etc. is autonomous mobile systems.
Usually, such embedded systems have multitask multimodal workloads. *ese systems must sustain the required performance of
their dynamic workloads in presence of varying power budget due to rechargeable power sources, varying die temperature due to
varying workloads and/or external temperature, and varying hardware resources due to occurrence of hardware faults. *is paper
proposes a run-time decision-making method, called Decision Space Explorer, for FPGA-based Systems-on-Chip (SoCs) to
support changing workload requirements while simultaneously mitigating unpredictable variations in power budget, die
temperature, and hardware resource constraints. It is based on the concept of Run-Time Structural Adaptation (RTSA); whenever
there is a change in a system’s set of constraints, Explorer selects a suitable hardware processing circuit for each active task at an
appropriate operating frequency such that all the constraints are satisfied. Explorer has been experimentally deployed on the ARM
Cortex-A9 core of Xilinx Zynq XC7Z020 SoC. Its worst-case decision-making time for different scenarios ranges from tens to
hundreds of microseconds. Explorer is thus suitable for enabling RTSA in systems where specifications of multiple objectives must
be maintained simultaneously, making them self-sustainable.

1. Introduction

As the famous proverb goes, “necessity is the mother of
invention,” considering the aspect of “necessity,” over the
past few decades, human necessity has significantly increased
in every walk of life. *ere is a necessity to delegate much of
the human workload to autonomous and mobile systems,
from routine chores to industrial robotics, to aerospace, to
defense, and to many other areas where presence of humans
is not efficient, or is unsafe or even dangerous for humans.
*e requirement is not just delegation of workload, it is
delegation with the assurance of system reliability and
workload security, and an endeavor to carry out functions
and reach places beyond human limits. A few examples of the
said “necessity” are need for self-driven cars and driver
assistance systems, robotic systems for flexible
manufacturing, civil and military drones, different types of

satellites and autonomous planetary mission spacecraft,
unmanned submarine systems, etc. A common aspect in all
these fields of applications is high complexity. All the ap-
plications require continuous processing of several high-
performance data-stream workloads such as video-streams,
communication data-streams, LiDAR or RADAR data-
streams, and acoustical and audio-streams, which usually
have strict performance constraints. *e requirement does
not end at being multitask applications. Since most of these
applications require systems to be autonomous and mobile,
they need to cater to different situations and scenarios. *is
means that the systems may need to change the number of
active tasks, their functions, priorities, and/or performance
specifications due to any scheduled/sudden external/internal
event or interrupt. *us, we are looking at the need to have
autonomous and mobile systems that can support complex,
high-performance, multitask multimodal applications!

Hindawi
International Journal of Reconfigurable Computing
Volume 2021, Article ID 5512938, 29 pages
https://doi.org/10.1155/2021/5512938

mailto:dimple.sharma@ryerson.ca
https://orcid.org/0000-0001-5544-9057
https://orcid.org/0000-0002-3836-6281
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5512938

Considering the latter part of the saying, “necessity is the
mother of invention,” there has been a great technological
advancement in the recent past and is still progressing to
support the growing needs and complexity of applications.
Programmable Logic Devices (PLDs), especially Field Pro-
grammable Gate Arrays (FPGAs), have progressed signifi-
cantly in terms of the number and types of resources, and the
capabilities being integrated in them. A recent advancement
is System-on-Programmable-Chip (SoPC) devices, where
instruction-based processors and reconfigurable logic
(FPGA) are integrated together on a single die. As the name
SoPC suggests, entire systems can be built on a single chip;
algorithmically intensive tasks can be mapped on the se-
quential processors and time critical/high-speed tasks can be
mapped on the reconfigurable logic. *e most important
feature that makes these devices capable of supporting to-
day’s applications and even future applications is Dynamic
Partial Reconfiguration (DPR). DPR allows configuring and
reconfiguring dynamically, portions of the reconfigurable
region of the SoPC/FPGA die, called Partially Reconfig-
urable Regions (PRRs). With this feature, tasks can be
programmed and reprogrammed while other tasks are
functioning. *us, SoPC devices are suitable platforms to
develop complex multitask multimodal applications.

Although SoPC devices are the choice to support today’s
applications, they face a set of challenges when used to
develop autonomous and mobile systems operating in dif-
ferent environmental conditions. If the requirements of
multitask multimodal applications are static, i.e., the tasks,
their modes, and events for switching modes are well de-
fined, the complexity of system development boils down to
management, i.e., mapping and scheduling of tasks in a
given static set of power budget, hardware resource, and
temperature conditions. A lot of research efforts have been
observed in this area. Several Real-Time Operating Systems
(RTOSs), mapping and scheduling algorithms, optimization
algorithms to minimize power/die temperature and maxi-
mize performance, etc. have been developed, and the
functionality of which depends on the implementation
platform and application being supported. *is is discussed
in detail in Section 2. However, when autonomous and
mobile systems are considered, they face a different set of
challenges where research has not yet dug deep. *e re-
quirements of their multitask multimodal workloads are
dynamic, i.e., events for switching modes are not always
predictable, and so are the other conditions such as available
hardware resources, power budget, and external/on-chip
temperature. For example, an Advanced Driver Assistance
System (ADAS) may need to dynamically carry out tasks
related to collision avoidance at a high performance if there
is a sudden possibility of collision with an object or pe-
destrian; otherwise, it may carry out at a reduced perfor-
mance or may not execute them at all. *is means the
system’s mode, i.e., number of tasks and their performance
specifications can change dynamically depending on several
unpredictable events. In terms of hardware resources, there
is a static limit on the total amount of resources available on
the FPGA/SoPC device chosen depending on the area, mass,
or weight specifications of the system. *e resources

available for a task to function at a certain time can also
dynamically vary depending on resources occupied by other
executing tasks at that time and/or the occurrence or res-
toration of hardware faults caused due to radiation, thermal
cycling effects, aging, etc. Similarly, although the system has
a fixed maximum power budget, the available budget at a
certain time can vary dynamically depending on factors such
as the set of tasks functioning at that time, reduction of fuel
or available solar power, and fault of power generator or
solar panel(s) or other sources of power. *ere can be
changes in the external and on-chip temperatures resulting
in dynamic variations in the difference between the two
temperatures. *is can result in thermal stress, which may
cause hardware faults and affect system reliability. *us, the
challenge faced by autonomous and mobile systems is that
they must be capable of sustaining the performance re-
quirements of their dynamic multitask multimodal work-
load while simultaneously adapting to the dynamic changes
in the power budget, die temperature, and hardware re-
source conditions. All of this must be catered to in run-time,
while the system is running, and every time there is a change
in the said requirements. When a system can sustain itself to
these multiobjective requirements, it can continue func-
tioning. A failure to meet the requirements could cause
system shutdown, which could affect other dependent
systems too.

*e above aspects and associated problems are also
common for all animals which can be considered as self-
regulating natural mobile and autonomous systems. *e
similarity of self-regulating processes in the animals and in
the machines was first pointed in the classical Norbert
Wiener’s book “Cybernetics: or Control and Communica-
tion in the animal and in the Machine” [1]. *e evolution of
wild life has found the mechanism for mitigation of envi-
ronmental changes and stress for animals, which is their
ability for run-time and overgeneration adaptation. *e
same concept can be used for autonomous self-controlled
machines working in the real environment. *ere are three
types of adaptation: behavioral, parametric, and structural.
Behavioral and parametric adaptations can be implemented
by changing the set of active tasks and/or their modes of
operation. However, the behavioral and parametric adap-
tations would be sufficient for systems only in cases when
performance, power consumption, thermal conditions, etc.
are either not constrained or have fixed limits. When the set
of constraints themselves is dynamic, these types of adap-
tations are not always sufficient. Changes in the set of tasks
and/or their modes of operation can affect performance and
response time, increase power consumption, and even re-
duce reliability of the system. Also, external factors such as
radiation, overheating, or overcooling can cause faults in
parts of the system or the entire system. In the case of
systems on long missions, internal factors such as aging of
electronic circuits and degradation of elements in power
supplies also can cause system faults.*us, in the case of self-
dependent autonomous mobile systems, their own dynamic
workload and the external and internal factors together
cause system constraints to be dynamic. *e only mecha-
nism that can mitigate all these factors is structural

2 International Journal of Reconfigurable Computing

adaptation of the system. Structural adaptation of a system is
based on changes in the system’s functional elements and
interconnections between them. It requires reconfiguration
of the functional elements and their associated intercon-
nects. *is process of structural reconfiguration needs to be
carried out dynamically, whenever system constraints
change, and in a time dictated by the mitigation time limit. If
the structural adaptation time exceeds this limit, the system
or its part(s) can permanently fail. *erefore, Run-Time
Structural Adaptation (RTSA) is required. RTSA consists of
two time periods: (a) period of decision-making on what
should be the system’s new configuration and (b) reconfi-
guration time itself. Reconfiguration time mostly depends
on the component base (e.g., type of FPGA device and
method of bitstream loading). *us, the focus of this re-
search is on the decision-making process for RTSA and the
time overhead associated with this process. It is obvious that
structural adaptation follows the system’s mode of operation
(e.g., set of required tasks and their current mode) and the
current set of constraints. In other words, RTSA follows the
behavioral and parametric adaptation.

*us, RTSA is the solution to the above-discussed
problem [2–4]. With RTSA, systems can change their task
structures to satisfy the changing set of constraints. In [5], it
has been shown that, for a given task algorithm, several
implementation variants can be obtained. *is means each
task can be implemented in the form of different dedicated
hardware circuits, which exhibit different resource utili-
zation, operating frequency, performance, and power
consumption characteristics. Implementation variants of a
task can be referred to as Application-Specific Processing
circuit (ASP circuit) variants of that task. A task with a
specific performance can have ASP circuit variants with
different combinations of frequency and resource utiliza-
tion, and hence different power consumption, to provide
the same performance. If the application specifications
permit, a task can have a range of allowed performance
specifications, instead of a fixed performance constraint. In
such a case, the task also has ASP circuit variants with
different combinations of frequency and resource utiliza-
tion, and hence different power consumption, to provide
different performance outcomes within the allowed limits.
All the ASP circuit variants of each task are stored in the
form of partial configuration bit-files in system memory.
*us, with the availability of different ASP circuit variants,
a suitable variant for each active system task can be con-
figured based on the existing set of constraints, so that all
the system requirements are satisfied. *is set of suitable
variants of active tasks is called a system configuration. For
example, assuming the availability of spare hardware re-
sources, in a low power budget scenario, ASP circuit
variants for tasks can be reconfigured such that they occupy
more hardware resources and operate at a reduced fre-
quency to reduce power consumption. Alternatively, if the
available number of resources reduces due to occurrence of
a hardware fault, tasks can operate at a higher frequency
while occupying a smaller area such that the faulty region
can be avoided. In either case, the performance specifi-
cations of tasks are maintained. *us, with this flexibility of

form, a system can efficiently adapt to all its dynamically
varying constraints.

Although RTSA is the solution to the problem at hand,
the issue here is as follows: field-deployed mission critical
multitask multimodal systems are complex systems with
multiple tasks and their modes, where each task is imple-
mented as an ASP circuit. To enable such systems with RTSA,
each task has several ASP circuit variants. Since the number
of tasks and their modes of operation can be quite large, from
tens to hundreds, the decision space to be explored for RTSA
can be very large. For example, a system with a total of 64
tasks, 64 ASP circuit variants per task, 25 modes, and 20 tasks
per mode will have a decision space of 􏽑19

n�064 � 6420 system
configurations per mode. *e total number of system con-
figurations on the decision space for all possiblemodes will be
25modes × 6420 system configurations permode � 25 × 2120
system configurations!*is decision space is too large for it to
be stored as a set of configuration bit-files in the associated
memory subsystem. Also, carrying out RTSA for such sys-
tems means that, if there is any dynamic change in the
system’s set of constraints, one suitable system configuration
will need to be selected in run-time and within a small
permitted adaptation time which could be in units of seconds
or even less, from this tremendously large decision space of
system configurations such that all the constraints at that
time are satisfied. *e system will also need to repeat this
procedure every time there is a change in its set of constraints,
which is mostly unpredictable as discussed above. Certainly,
it is not possible to exhaustively evaluate each configuration
at run-time to find a solution that satisfies a multiobjective
constraint set. *erefore, a run-time multiobjective Decision
Space Exploration method must be used which can solve the
issue of memory requirement for storing a tremendously
large decision space and the issue of identifying a suitable
system configuration for adaptation from the decision space
within a time permissible at run-time.

In most cases, multiobjective decision space exploration
is considered in high-level synthesis of digital system ar-
chitectures. *us, it is represented in the form of Design
Space Exploration (DSE), a design-time process applied
when a system structure needs to be selected from multiple
solutions in the system-design phase [6, 7]. Since these
methods are used to find this optimum architecture which
remains fixed for the entire lifetime of the system, they need
to be accurate for this one-time process and do not require
finding the optimum architecture in run-time. *ey are,
therefore, iterative and involve detailed evaluation of a large
number of candidate solutions [6, 8–15]. As a result, they
have large exploration times. Although this is acceptable for
a design-time process, methods with large exploration times
cannot be adopted for use in real-time scenarios. *us, there
is a need to devise a method, which can drastically reduce the
set of variants on the decision space thus reducing the ex-
ploration time and making it acceptable for run-time ad-
aptation. Such a method should be able to select the best
system configuration that satisfies the multiple constraints
whenever there is a change in the set of requirements.

*e initial approaches for creating the run-time deci-
sion-makingmethod for RTSA have been presented in [2, 3].

International Journal of Reconfigurable Computing 3

*ese methods allow run-time adaptation to system
workload variations and variations in power budget con-
sidering variations in hardware resource constraints due to
hardware faults. *ey are, however, limited by not con-
sidering one external factor. *ey do not consider simul-
taneous mitigation of off-chip and on-chip thermal factors
and thermal cycling along with other system constraints.
*ermal cycling is one of the common factors causing
hardware faults in flip-chip technology-based FPGAs
nowadays. Also, the SoPC die has faster thermal dynamics as
compared to the off-chip thermal dynamics, i.e., FPGA
package connected to the power dissipation units (e.g., heat
sink and board layers) [4]. *is can result in thermal in-
stability of the SoPCs, thus affecting system reliability.
Additionally, functionality of the task circuits can also be
affected if the die temperature exceeds certain specifications.
*us, it is necessary to maintain the die temperature in the
desired range while simultaneously adapting to changes in
workload, power budget, and hardware resource conditions.
*is aspect of simultaneous thermal regulation is not
considered in the methods presented in [2, 3]. Also, these
methods assume that all the tasks function on a common
system frequency. However, in practical applications, tasks
can run at different individual frequencies. *e ability to
operate on different frequencies is also a benefit for RTSA. It
becomes possible to change the frequency of a required
individual task alone for RTSA instead of changing the
common frequency for all the tasks and finding ASP circuit
variants for each task at that frequency.

*is paper proposes a run-time decision-makingmethod
for SoPCs deployed on the partially reconfigurable FPGA
devices using flip-chip technology. *is method is called
Decision Space Explorer (referred as Explorer in the rest of
the paper) to carry out RTSA to mitigate dynamic changes in
any multitask multimodal workload, power budget, FPGA
die temperature variations and thermal cycling, and avail-
able hardware resources. *e novelty of the proposed
method is that it incorporates simultaneous mitigation of
several interdependable factors (e.g., thermal conditions and
power budget) while allowing individual tasks of the
workload to run on their independent frequencies. When-
ever there is a change in the system’s aforementioned set of
constraints, Explorer, the run-time decision space explo-
ration method, explores, evaluates, and selects ASP circuit
variants for each task at their individual operating fre-
quencies such that the resultant system configuration fits in
the available hardware resources, the critical tasks of the
system’s required mode operate at their required perfor-
mance, the other noncritical tasks operate within the per-
mitted performance specifications, the system’s power
consumption is lower than the power budget, and its die
temperature is maintained within the permitted range!
Explorer achieves this by selecting an ASP circuit variant for
every task individually instead of selecting a system con-
figuration as a whole. *erefore, characteristics of only ASP
circuit variants of individual tasks need to be stored and not
of entire system configurations. *is approach translates the
decision space of product of the decision space of individual
tasks, into a linear decision space of sum of the decision

space of individual tasks. For the example system considered
with 64 tasks and 64 ASP circuit variants each, the total
decision space will be 􏽐63

n�064 � 64 × 64 � 4096 only! *e
decision space is reduced by a factor of 25 × 2108! *is
tremendous reduction in the decision space drastically re-
duces the system’s memory requirements to store the
configuration bitstreams; only 4096 configuration bit-files
need to be stored. Furthermore, since tasks are allowed to
operate at their respective frequencies, ASP circuit variants
of only some tasks of a mode need to be explored for RTSA.
*is further reduces the exploration time within the reduced
decision space, making the proposed method a proper fit for
run-time multiobjective structural adaptation.

Along with the proposed decision-making approach,
there is another aspect of the method that can be considered
as novel. *is is the mechanism of evaluating potential
configurations in run-time. It uses mathematical models that
can predict the power consumption and die temperature for
the set of ASP circuits, i.e., system configuration under test.
*e model coefficients are dynamic in nature; they are self-
calibrated by the system whenever there are changes in (a)
the SoC platform (e.g., FPGA type and package and PCB
layers to which FPGA is connected), (b) the application
being supported (e.g., ASP circuit specifics such as utiliza-
tion of CLB-slices, Block RAM, and DSP-modules), (c)
environmental changes (e.g., external temperature in system
compartment), or (d) aging (e.g., FPGA die, BGA con-
nections due to oxidizing, and vibration/acceleration). In
other words, multiobjective RTSA is based on self-adapta-
tion of evaluationmodels to multiple factors which influence
the performance of the SoPC deployed on a particular FPGA
platform. *e proposed approach is based on direct mea-
surements of power consumption and on-chip temperature
using the temperature sensor and hard-core Analog-to-
Digital Converter(s) (ADC) embedded in the FPGA device.
*us, the model coefficients are always accurate and up-to-
date for the system. Due to this, the system configuration
chosen by Explorer for RTSA can be considered as an ac-
curate and suitable solution. For example, if a field-deployed
autonomous system experiences cold weather conditions
instead of a warm climate due to season change, it changes
the behavior of the SoC’s power consumption and die
temperature. *is means the power consumption of a
particular system configuration and the resultant die tem-
perature will be different than it was in a warmer envi-
ronmental condition. *e system self-calibrates its model
coefficients such that they correspond to the current envi-
ronmental scenario. When Explorer uses these updated
coefficients to predict the power consumption and die
temperature of candidate configurations during evaluation
for RTSA, the selected solution is accurate. If the model
coefficients remained static and were not updated, Explorer’s
solution would be according to the static set of coefficients.
*us, the solution’s accuracy would become dependent on
the difference between the static coefficients used and the
actual coefficients which should have been used.*us, use of
dynamic models to predict power consumption and die
temperature helps Explorer to always provide accurate so-
lutions for RTSA.

4 International Journal of Reconfigurable Computing

Also, since the proposed method deals with mitigation of
both, die temperature and power consumption, which are
interrelated [16], there can be situations where both can be
satisfied, or when the requirements are contradicting each
other. Complex processing is required to decide whether
both can be satisfied or one of the two needs to be prioritized
during RTSA, depending on different scenarios. Explorer
includes this complexity in its decision-making process.
Experimental implementation of Explorer on the ARM
Cortex-A9 core of the Xilinx Zynq ZX7Z020 device shows
that the execution time is in the order of microseconds.
*us, in the knowledge of the authors, the proposed deci-
sion-making method is the only method that can enable
multiobjective decision space exploration in the range of
microseconds. *erefore, it allows structural adaptation to
dynamic changes in multiple interrelated constraints, in
run-time, for FPGA-based multitask multimodal systems,
thus making them self-sustainable!

*e paper has the following structure: Section 2 discusses
the present-day power/thermal/fault management methods
and design space exploration methods used for embedded
systems. It analyzes them from the perspective of multi-
objective RTSA. Section 3 provides an overview on the static
infrastructure required to efficiently carry out RTSA in
systems, which has been detailed in [17–19]. Section 4
presents an overview on the run-time power consumption
and die temperature estimation models for FPGA-based
devices, which can be derived using methods presented in
[3, 4, 16, 20]. *ese models are used by Explorer to evaluate
potential system configurations while exploring solutions for
RTSA. Section 5 describes the system characteristics/pa-
rameters that are required for Explorer to function properly.
Section 6 presents details of the different decision paths that
Explorer follows under different cases in order to find a
suitable system configuration that satisfies the set of system
constraints at that time. Section 7 demonstrates how Ex-
plorer performs its run-time decision-making to select the
appropriate solution for RTSA, using different example
scenarios. Section 8 presents an analysis of the worst-case
execution time of Explorer for the example considered in
Section 7 and validates its suitability for RTSA. Section 9
concludes the paper.

2. Literature Review

Since the focus of this paper is on multiobjective run-time
structural adaptation, the related research publications have
been observed from two perspectives:

(a) Existing methods for power/thermal/fault manage-
ment in embedded systems: this part of the study
observes and analyzes why the currently used
techniques cannot directly be applied to achieve run-
time adaptation to multiple objectives, namely, dy-
namic workload, power budget, die temperature, and
hardware resource constraints, in multitask multi-
modal systems.

(b) Existing design space exploration methods for em-
bedded systems: the present-day research efforts in

the area of decision-making methods for structural
adaptation are mostly associated with DSE for SoC
architecture and optimization. As discussed in the
Introduction section, RTSA is the solution for
FPGA-based multitask multimodal systems to sus-
tain themselves against multiple changing con-
straints.*is part of the literature study observes and
analyzes why currently used methods are difficult to
adopt to achieve RTSA for the said class of systems.

A look into the present-day research efforts shows that
there are several methods used for run-time adaptation to
different parameters. Methods such as power gating [21, 22],
Dynamic Voltage and Frequency Scaling (DVFS) and DFS
[23–26], dynamic scheduling techniques [25, 27–30] and
dynamic mapping techniques [25, 31–33], and dynamic task
migration are used for power and/or thermal aware work-
load management. Methods such as Triple Modular Re-
dundancy (TMR) and scrubbing [34–36], Built-in Self-Test
(BIST) procedures [37], device reprogramming to avoid
damaged regions [38], dynamic scheduling and mapping
[39–41], run-time relocation based methods [42, 43], and
variant-basedmethods [44–47] are commonly usedmethods
for fault management. Many systems deployed on FPGAs/
SoPCs make use of RTOS or similar management systems to
adapt to different dynamic system parameters. *e basic
functions of these RTOSs have been outlined in the liter-
ature; they carry out task scheduling, task mapping and
allocation, intertask communication, task to RTOS com-
munication, task configuration, etc. [48, 49]. R3TOS
[39, 50, 51], BORPH [52], CAP-OS [53], ReConOS [54],
Operating System for Reconfigurable Systems (OS4RS) [55],
and references [39, 54, 56–61] are some examples of RTOSs
or management methods that cater to different types of
systems, those which support hardware or software tasks
alone and those which include both. *ey carry out the same
functions outlined in the literature; their extent and com-
plexity depends on the system structure and the type of
workload being supported.

*e following can be found from the different adaptation
methods observed above:

(a) Most RTOSs and management methods are directed
towards instruction-based processor-centric sys-
tems; for SoCs, these methods focus on the hard- or
soft-core processors associated with the SoCs. *ese
methods therefore depend on the nature of the tasks
which have their specific deadlines, worst-case ex-
ecution time, slack times, etc. Hence, they are well
suited for algorithmically intensive tasks performed
by sequential processors. Considering autonomous
and mobile systems, which are the focus of this
paper, they process multiple multimodal data-stream
processing tasks, which are implemented as dedi-
cated hardware circuits. Since these tasks are con-
tinuously processing incoming data streams, their
characteristics are not similar to the algorithmically
intensive tasks. *erefore, it is difficult to use the
above observed methods to manage the type of tasks
considered here.

International Journal of Reconfigurable Computing 5

(b) *e observed methods cannot enable run-time ad-
aptation to all the parameters: workload perfor-
mance, power, thermal, and resource constraints.
*ey carry out workload management to satisfy only
one or two parameters. *is is because the effort is to
optimize a single parameter keeping all the other
constraints fixed. For example, the system’s power
consumption is minimized under fixed task-per-
formance and resource constraints. Adaptation to
multiple dynamic parameters requires varying the
parameter to be prioritized based on need. *is
means that, if the system’s power budget is low, its
power consumption must be reduced in accordance
with the new power budget by adjusting the per-
formance of the tasks accordingly. *is reduced
power consumption needs not be the system’s
minimum power consumption. It must be just below
the new constraint such that the other system pa-
rameters are also satisfied. Alternatively, if executing
a set of tasks is imperative, task performance is
prioritized. In this case, performance of noncritical
tasks is adjusted such that performance of the critical
tasks remains at the required value and the overall
power consumption of the system and die temper-
ature are within the set limits at that time. Since the
observed methods are mainly single parameter op-
timization methods, they cannot achieve a balanced
adaptation to multiple dynamic parameters.here.

(c) *e observed run-time adaptation methods manage
tasks with fixed implementation circuits. In other
words, only a procedural way of adaptation is
available by rescheduling the tasks (flexibility of
time) and reallocating/remapping them on different
available processing, memory, and communication
resources (flexibility of space). With this, it may not
always be possible to satisfy dynamically varying
environmental constraints. For example, the mini-
mum power consumption achieved by rescheduling
the tasks may satisfy a fixed power budget constraint.
However, when the power budget constraint itself is
dynamic, the obtained minimum power consump-
tionmay be higher than a new reduced power budget
of the system. To be able to satisfy multiple dynamic
system and environmental parameters, there must a
higher level of flexibility. To achieve this, tasks must
have different implementation variants, i.e., ASP
circuit variants (flexibility of form). In turn, this
dictates the need for RTSA, as discussed in the In-
troduction section. Since the existing methods lack
this flexibility of form, they cannot be directly ap-
plied for run-time multiobjective adaptation.

*e idea of using different implementation versions of
tasks for run-time adaptation is gaining consideration, and
some research work can be seen in this direction. *e use of
task implementation variants is observed for systems sup-
porting software tasks [62–64], hardware tasks [65–67], and
those supporting both, software and hardware tasks [68].
However, these methods target adaptation to individual

parameters and not multiobjective adaptation process. Also,
for most methods, the number of possible scenarios to adapt
to which the different variants are used is not many and is
predefined or predictable. *erefore, these methods do not
need to consider development of associated decision-mak-
ing mechanisms due to the simplified process of variant
selection. *us, although these methods use the concept of
variants, they cannot be applied for run-time adaptation to
multiple dynamic unpredictable constraints.

It is understood from the above observation of the lit-
erature and the Introduction section that RTSA seems to be
the potential solution for FPGA-based systems to be self-
sustainable against (a) multitask and multimodal workloads
with unpredictable combination of tasks activated for par-
allel execution, (b) unpredictable variations of external to
SoC and environmental factors, and (c) unpredictable
variation of hardware resource constraints caused by
transient or permanent hardware faults. To practically de-
ploy RTSA, a run-time decision-making method is required
which can select a suitable configuration at run-time that
satisfies the system’s set of constraints whenever there is
change in any of the constraints. *e currently adopted
design space exploration methods are observed from this
perspective. Heuristic methods, evolutionary algorithms, or
their combinations are mostly adopted for design space
exploration and multiobjective optimization in the domain
of embedded system design. In the case of embedded sys-
tems, heuristic methods have mostly been applied at system
level for design of processor systems, memory subsystems,
SoC/MPSoC platforms, etc. Pareto Simulated Annealing
(PSA) [8], sensitivity-based local search multiobjective de-
sign space exploration [69], Discrete Particle Swarm Opti-
mization (DPSO) [9], and Ant Colony Optimization
[10, 70–72] are some examples of such heuristic methods.
Evolutionary algorithms (EAs) are commonly used in
component-level and system-level design for embedded
systems. *ey make use of EAs such as Greedy Evolutionary
Multiobjective Optimization (GEMO) [73], Strength Pareto
Evolutionary Algorithm-2 (SPEA2) [11, 12], Genetic Al-
gorithm (GA) [74–77], and Nondominated Sorting Genetic
Algorithm II (NSGA-II) [13–15]. Use of methods involving
Design of Experiments (DoE) and Resource Surface Mod-
eling (RSM) is also observed for design space exploration
[78, 79].

From the observed design space exploration methods for
embedded systems, it can be analyzed that they are mostly
design-time processes and are carried out while choosing/
designing a suitable system architecture based on design
specifications. Since the heuristic methods and evolutionary
algorithms are used to find an optimum architectural so-
lution that will last for the entire lifetime of the system, they
ensure that the process is extremely accurate. *ey, there-
fore, involve a large number of iterations and detailed
evaluation of multiple configurations in every iteration for
every system objective, which may take seconds to many
hours per configuration depending on the application.*us,
they have very large exploration times ranging from hours to
days. DoE- and RSM-based methods also involve iterative
learning of models while generating optimal solutions. As a

6 International Journal of Reconfigurable Computing

result, use of actual synthesis or detailed simulations is
inevitable for these methods, making them unsuitable to be
adopted for run-time decision space exploration.

*us, from a review of the literature, it can be seen that in
general, there is a lack of methods which can enable RTSA in
autonomous and mobile systems. For RTSA, a noniterative
method is required, which can explore and evaluate a very
large decision space against multiple objectives to select a
suitable solution within the mode-switching time available
with the system, in the order of units of seconds or even less,
such that it closely satisfies all the system constraints. It must
be able to do so every time the system requires to adapt due
to the changing set of constraints, i.e., changing workload,
power, thermal, or hardware resource constraints. *us,
there is a need to formulate a decision-making method
which achieves this aforementioned goal so that systems can
carry out RTSA to unpredictable changes in multiple in-
ternal and external factors, whenever the need arises, and
thus can be self-sustainable.

*is paper proposes a novel run-time decision-making
method, called Decision Space Explorer, which meets the
said requirements. With the approach used by the method,
the huge decision space of system configurations to be
explored is tremendously reduced. Whenever there is a
change in the system’s set of constraints, Explorer scans
through a small number of candidate configurations from
the already reduced decision space and selects an appro-
priate configuration that satisfies the system’s mode, power
budget, die temperature, and available hardware resource
conditions, all within a time frame permissible for RTSA.
Explorer uses mathematical models to predict the power
consumption and die temperature for the candidate con-
figurations in run-time. *e models are dynamic in nature;
the coefficients get self-updated whenever required; in sit-
uations such as system updates, changes in environmental
conditions, and aging. *is allows Explorer to select an
accurate solution for RTSA at any given time on any partially
reconfigurable FPGA-based hardware platform.

3. MACROS Framework

A system capable of RTSA must have an underlying ar-
chitecture that supports the RTSA process. It must allow a
system to dynamically change its configuration within a time
span allowed by the application running on the system,
usually within units of seconds or even less. Such a
framework, called the “Multimode Adaptive Collaborative
Reconfigurable self-Organized System” (MACROS) frame-
work, has been developed, and details of which can be found
in [17–19]. *is section provides a brief overview on the
MACROS framework.

*e basic architecture of MACROS framework is shown
in Figure 1. It consists of three main parts: (a) several
identical PRRs called slots on the FPGA, (b) a Distributed
Communication and Control Infrastructure (DCCI), and (c)
a Bitstream and Configuration Management system (BCM).
Partial bitstreams that can be configured in the PRRs/slots of
the FPGA are referred as Collaborative Macro-Functional
Units (CMFUs). A CMFU consists of two parts: ASP circuit/

component of a task, and a control circuit called Co-Op unit.
*e portion of a task’s ASP circuit that occupies a PRR is
called an ASP component. *e Co-Op unit is responsible for
control and communication on behalf of the ASP circuit/
component it is associated with. *e CMFUs can be static or
dynamic. Static CMFUs are always needed by the SoPC
because these CMFUs provide application-specific interface
to the sensors, actuators, external memory modules, etc. In
contrast to static CMFU(s), dynamic CMFUs correspond to
the tasks that form the current system mode. *e DCCI, in
essence a crossbar, implements the on-chip communication
and control capabilities. *e communication ports of the
DCCI, which connect to one slot each, have control circuits
called Local Connection Control Units (LCCUs). *ese
LCCUs communicate with the Co-Op units of CMFUs to
establish the needed communication links and synchroni-
zation. Finally, the BCM is responsible for all configuration
activities in the system; it contains interfaces to bitstream
storage memories and one of the FPGA configuration in-
terfaces. With the help of this architecture, components of
an ASP circuit can self-integrate to form a functional task
and the different tasks can self-integrate to form a functional
system mode. *e BCM deploys the required CMFUs in the
system through DPR. Individual CMFUs, with the help of
their Co-Op units and the corresponding LCCUs in the
DCCI, manage their own connectivity and synchronization
with the CMFUs of the same or other tasks. *e CMFUs can
decide for themselves when they need to be connected to/
disconnected from the system and when their activity needs
to be initiated or terminated. All this information is hard-
coded in the Co-Op units of the CMFUs at design time.

*us, the process of RTSA becomes seamless when the
static MACROS framework is deployed on the FPGA, and
the ASP circuit variants of all the tasks are appropriately
packed into CMFUs/partial bitstreams at design time. At the
time of run-time adaption, the system only needs to select
the appropriate variants of active system tasks, and the rest is
taken care of by the MACROS framework.

4. Dynamic Run-Time Power Consumption and
Die Temperature Estimation Models

To carry out multiobjective RTSA, Explorer needs to evaluate
potential system configurations to choose the appropriate one
that closely satisfies all the constraints. *is means that Ex-
plorer needs to know how much power a system configu-
ration would consume and how it will affect the temperature
when it is configured on the SoPC die. One possible solution
is to store the power consumption and die temperature for all
the possible system configurations in a Look-Up-Table (LUT)
during system-design phase. Using the same example of the
system having a total of 64 tasks, 64 variants per task, and 25
modes and 20 tasks per mode, this wouldmeanmeasuring the
power consumption and die temperature of 25modes × 6420
configurations per mode during system-design phase and
feeding these values in a very large LUT. If there are changes
in the functionality of some tasks, addition of some tasks,
changes in the hardware platform, or in environmental
conditions, the values of power consumption and die

International Journal of Reconfigurable Computing 7

temperature stored in the LUTwill not hold true. *is means
that the LUT will need to be updated; that is, the power
consumption and die temperature for all the system con-
figurations will need to be measured again and stored in the
LUT. It is impractical to store a LUT of such a large size and
also repeatedly update the LUTevery time there is a change in
some internal or external factor. *us, measuring and storing
the power consumption and die temperature of all the pos-
sible system configurations in LUTs is not a feasible solution.
It is necessary to have dynamic analytical models which can
estimate the power consumption and die temperature of
system configurations under evaluation at run-time. *e
models need to be simple enough to allow prediction in a run-
time scenario and accurate enough to serve the purpose of
adaptation. *e model coefficients are dynamic; the system
updates/calibrates these coefficients whenever the need arises.
*is way, all the possible unpredictable changes are taken care
of. *us, dynamic run-time models help accurate evaluation
of candidate configurations under consideration so that an
accurate solution can be chosen for RTSA.

It has been demonstrated in [4, 16] that while modeling
the TPC and DT of a FPGA for a configuration, it is the

Saturated TPC (STPC) and Saturated DT (SDT) that need to
be modeled.*emethod to derive the SDT EstimationModel
(SDTEM) and the STPC Estimation Model (STPCEM) for a
FPGA/SoC device is presented in [16]. *e STPCEM esti-
mates the STPC of the FPGA/SoC under consideration with
the help of the Dynamic Power Consumption Estimation
Model (DPCEM). *e SDTEM in turn estimates the SDT in
terms of the STPC of the system. *e method to derive the
DPCEM is presented in [3, 20], which results in a linear
equation that estimates the DPC of the FPGA/SoC in terms of
the operating frequency of the tasks and the reconfigurable
resources of the FPGA, namely, Logic, BRAM, and DSP slices
[80, 81] used by the tasks.*e following equations summarize
how the DPC, STPC, and SDTof a FPGA can be estimated at
run-time for a system configuration of multiple tasks running
at different frequencies with the models derived using the
methods presented in [3, 16, 20].

Equation (13) in [3] represents the DPCEMof a FPGA that
estimates the DPC for a system configuration with Nc tasks
such that all the tasks operate at the same frequency at a point
of time and have the same model coefficients. It is as follows:

DPC(FPGA)(mW) �
Fcc

Fmin
× CLS × 􏽘

Nc−1

n�0
NLS + CBS × 􏽘

Nc−1

n�0
NBS + CDS × 􏽘

Nc−1

n�0
NDS + CF

⎛⎝ ⎞⎠, (1)

Power/Clock Distribution Networks

Sy
ste

m
 I/

O
 B

an
ks

Sy
ste

m
 I/

O
 B

an
ks

Cr
os

sb
ar

BCM

DCCI

Dynamic
CMFUj

Dynamic
CMFUj+3

Dynamic
CMFUj+2

Dynamic
CMFUj+1

Static
CMFUi+2

Static
CMFUi

Static
CMFUi+1

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Slot 6

FPGA

LCCU LCCU

LCCU LCCU

LCCU

LCCU

LCCULCCU

LCCU

Figure 1: Architecture of MACROS framework.

8 International Journal of Reconfigurable Computing

where Fcc is the operating frequency, Fmin is the minimum
operating frequency of the tasks, and CLS, CBS, and CDS are
the coefficients relating DPC to the number of Logic slices
NLS, BRAM slices NBS, and DSP slices NDS, respectively. CF

is the frequency-dependent constant that represents the
DPC of the total IOBs used by the tasks.

In equation (1), since all the tasks are operating at the
same frequency and have the same model coefficients, the
resource utilization of the system configuration is the sum of
the resource utilization of the ASP circuit variants of the
individual tasks. However, in general, in multitask appli-
cations, individual tasks of a configuration can operate at

different frequencies and they may or may not have the same
model coefficients. Due to this, resource utilization of in-
dividual tasks cannot be summed up together.*erefore, the
DPC of the system configuration with Nc tasks operating at
different frequencies is obtained as

DPC(FPGA)(mW) � DPC Task1() + DPC Task2() + · · · + DPC TaskNc
(􏼁

,

(2)

where the DPC of each task can be obtained using equation
(7) of [3] as

DPC Taskn()(mW) �
Fccn

Fmin
× CLSn × NLSn + CBSn × NBSn + CDSn × NDSn + CFn(􏼁, (3)

where Fccn is the operating frequency of Taskn and CLSn,
CBSn, and CDSn are the coefficients relating DPC of the task to
the number of Logic slices NLSn, BRAM slices NBSn, and DSP
slices NDSn, respectively used by Taskn. CFn is the frequency-
dependent constant that represents the DPC of the IOBs
used by Taskn.

*us, equations (2) and (3) together represent the
DPCEM of a FPGA for a system configuration with multiple
tasks operating at different frequencies. Once DPC is esti-
mated using this DPCEM, it can be incorporated in the
STPCEM equation; that is, equations (4) and (5) of [16]
combined together, to estimate the STPC of the system
configuration, shown as follows:

STPC(FPGA)(W) � SPC(W) + SPP(W) + DPC(W) + R(W),

(4)

where SPC is the system’s static power consumption, SPP is
the power consumption of the hard-core processor on the
SoPC if any, and R is the rise in TPC to reach STPC. SPC,
SPP, and R are one-time offline measurements, and the DPC
is estimated using the DPCEM; that is, equations (2) and (3)
combined together.

Once STPC is estimated using this STPCEM, it can be
incorporated in the SDTEM equation, i.e., equation (7) of
[16] to estimate the SDT of the system configuration as
follows:

SDT °C(􏼁 � M × STPC(W) + C, (5)

where M is the slope which relates the SDTand STPC, and C

is a constant. STPC can be estimated from equation (4).
It can be seen that the DPCEM, STPCEM, and SDTEM

are linear equations. Explorer can, therefore, estimate the
STPC and SDT of the FPGA/SoC device for candidate
system configurations with a very small execution time,
which is apt for run-time evaluation of possible solutions
and selection of an appropriate one that closely satisfies all
the system constraints.

5. System Description for Explorer Functioning

With the MACROS framework and the run-time STPC and
SDT estimation models in place, this section describes the
system characteristics/parameters that are required for
proper functioning of Explorer. Let the system have a total of
N tasks, denoted as Tj, where j � 0 toN − 1. Let M be the
number of modes of operation, denoted as Mm, where
m � 0 toM − 1. Let Nm be the number of tasks in a system
mode Mm. Each task in a mode Mm has a certain priority,
Pk, where k � 0 toNm − 1. *e task with priority P0 has the
highest priority, and the one with priority P(Nm−1) has the
least priority. Characteristics of tasks in each mode are
stored in a “Mode-LUT.” Each system task has several ASP
circuit variants for RTSA. *e number of ASP circuit var-
iants of a task Tj is referred as Vj. Characteristics of the ASP
circuit variant of all the tasks, i.e., their resource utilization,
operating frequency, and performance, are stored in a
“Variant-LUT.” Consider an example of a multitask mul-
timodal system having a total of 6 tasks (N � 6), T0 to T5,
and three modes (M � 3), M0 to M2. *e number of tasks in
each mode is represented as N0 to N2. *e Mode-LUT for
this example is shown in Table 1. *e table shows the
following:

(i) *e number of tasks in each mode
(ii) *e set of tasks that form the mode along with their

priorities
(iii) Range of permitted performance specification of

each task in each mode, i.e., maximum performance
hspec to minimum permitted performance lspec

(iv) *e existence condition EC for every task, which
determines whether a task in a mode can be
eliminated during system operation or not

For example, mode M2 of the system has N2 � 3 tasks.
*e mode involves tasks T0, T1, and T3 in the same order of
priority.*is means P0 � T0, P1 � T1, and P2 � T3.*e hspec
and lspec values provided in the Mode-LUT are relative with

International Journal of Reconfigurable Computing 9

respect to the minimum values. For example, performance
of T0 is measured in frames per second (fps). If the maxi-
mum and minimum frame rates are 240 fps and 30 fps, they
can be referred in a relative scale of 8 to 1.*us, in mode M2,
as shown in Table 1,T0 has hspec � lspec � 8, whichmeans it is
a critical task that always needs to operate at 240 fps.
Similarly, if performance of T3 is measured in Mbps and if
the maximum and minimum permitted data rate is 16 and
2Mbps, respectively, they can also be referred on a relative
scale of 8 to 1. In mode M2, T3 has hspec � 8 and lspec � 2,
which means it can have an output data rate in the range of
16Mbps and 4Mbps. From the values of EC of the tasks, T0
and T1 cannot be eliminated during system operation, while
T3 can be eliminated.

For the considered example, each task T0 to T5 has 10
ASP circuit variants, i.e., V0 toV5 � 10. Table 2 represents
the Variant-LUT for the tasks. It stores the performance,
operating frequency, number of FPGA slots, Logic slices,
BRAM slices, and DSP slices occupied by each variant of
each task.

Some other system parameters required for Explorer
operation are as follows:

(i) *e current performance of a task is expressed by
the parameter called Current Possible Performance
(CPP). Since a task’s performance can be modified
between hspec and lspec during RTSA, CPP refers to
the performance of a task at which Explorer is
attempting to find an ASP circuit variant for that
task during RTSA.

(ii) Since the ASP circuit variants can operate at dif-
ferent frequencies, the current operating frequency
of a task Tj is referred as Fj.

(iii) Since tasks can be eliminated to adapt to the existing
constraints, the active number of tasks in a mode
Mm may not always be equal to Nm. A track of the
active number of tasks is maintained by a parameter
Na, where Na ≤Nm.

(iv) While the performance constraints (hspec to lspec) for
the system tasks can be obtained from the Mode-
LUT, the system also stores the other constraints in a
set called Constraint Set. *e constraints include the
current required mode Mm, the power budget in
terms of permitted total power consumption (PTPC),

permitted die temperature range (PDTR)
(Tlow − Thigh), and available hardware resources in
terms of number of slots Ns. An example of the
Constraint Set is shown in Table 3. *is set of con-
straints is dynamic; that is, it is updated in run-time
whenever there is a change in some or all the con-
straints. Change in system mode may be required
either due to events such as position of the system
(e.g., orbital position of a satellite requiring execution
of a set of tasks) or unpredictable events such as
approach to/collision with an object (e.g., pedestrian
appearing in front of a self-driven car), etc. PTPC
depends on the power consumption of the current set
of executing tasks and the available power (e.g., solar/
wind energy for rechargeable batteries). PTPC can
drop/rise due to factors such as more/less power
consumed by the tasks in the current system mode, a
possible fault/fault restoration in the power generator,
absence/abundance of solar or wind energy to re-
charge the power sources, etc. PDTR depends on
factors such as PTPC [16], current die temperature,
off-chip, i.e., on-board temperature, and external
environmental temperature. PDTR can rise or fall
depending on PTPC and the difference between the
on-chip and off-chip temperatures. Usually, since
power consumption and die temperature are related,
a rise/fall in PTPC does result in a rise/fall in the
PDTR, and the amount of which depends on the
other factors which influence the PDTR. Ns can
dynamically change due to occurrence or restoration
of hardware faults.

(v) *e system stores the DPCEM, STPCEM, and
SDTEM coefficients for the current application and
FPGA/SoPC device onwhich the system is developed.
*ese coefficients are used by Explorer to evaluate the
power consumption and die temperature of candidate
system configurations during the RTSA process.

6. Explorer Functioning

On system start-up, Explorer functions to find the system
configuration that sets the system in its default mode and
which satisfies the default values in the Constraint Set. It is
then invoked whenever there is a change in the set of

Table 1: An example of Mode-LUT for Explorerv3.

Mode No. of tasks (Nm)
P � 0 P � 1 P � 2 P � 3

hspec lspec hspec lspec hspec lspec hspec lspec
EC EC EC EC

M0 N0 � 4
T2 T5 T0 T4

8 8 8 8 8 8 8 4
1 1 0 0

M1 N1 � 4
T3 T2 T5 T1

8 8 8 2 8 2 8 2
1 0 0 0

M2 N2 � 3
T0 T1 T3

8 8 8 8 8 2
1 1 0

10 International Journal of Reconfigurable Computing

Table 2: An example of Variant-LUT for Explorer.

Variant no. No. of slots Fsys (MHz) Performance Logic slices BRAM slices DSP slices

T0 − 0 1 240 8 3093 43 30
T0 − 1 2 120 8 6062 79 54
T0 − 2 1 120 4 3093 43 30
T0 − 3 3 60 8 11877 142 101
T0 − 4 2 60 4 6062 79 54
T0 − 5 1 60 2 3093 43 30
T0 − 6 5 30 8 23259 270 193
T0 − 7 3 30 4 11877 142 101
T0 − 8 2 30 2 6062 79 54
T0 − 9 1 30 1 3093 43 30
T1 − 0 1 240 8 2061 22 82
T1 − 1 2 120 8 4040 36 158
T1 − 2 1 120 4 2061 22 82
T1 − 3 3 60 8 7914 67 304
T1 − 4 2 60 4 4040 36 158
T1 − 5 1 60 2 2061 22 82
T1 − 6 5 30 8 15499 121 589
T1 − 7 3 30 4 7914 67 304
T1 − 8 2 30 2 4040 36 158
T1 − 9 1 30 1 2061 22 82
T2 − 0 1 240 8 5003 27 24
T2 − 1 2 120 8 9806 44 37
T2 − 2 1 120 4 5003 27 24
T2 − 3 3 60 8 19212 79 66
T2 − 4 2 60 4 9806 44 37
T2 − 5 1 60 2 5003 27 24
T2 − 6 5 30 8 37623 142 122
T2 − 7 3 30 4 19212 79 66
T2 − 8 2 30 2 9806 44 37
T2 − 9 1 30 1 5003 27 24
T3 − 0 1 240 8 4009 17 47
T3 − 1 2 120 8 7858 27 86
T3 − 2 1 120 4 4009 17 47
T3 − 3 3 60 8 15395 43 159
T3 − 4 2 60 4 7858 27 86
T3 − 5 1 60 2 4009 17 47
T3 − 6 5 30 8 30148 76 298
T3 − 7 3 30 4 15395 43 159
T3 − 8 2 30 2 7858 27 86
T3 − 9 1 30 1 4009 17 47
T4 − 0 1 240 8 5088 39 51
T4 − 1 2 120 8 9972 68 82
T4 − 2 1 120 4 5088 39 51
T4 − 3 3 60 8 19338 122 148
T4 − 4 2 60 4 9972 68 82
T4 − 5 1 60 2 5088 39 51
T4 − 6 5 30 8 38162 228 274
T4 − 7 3 30 4 19338 122 148
T4 − 8 2 30 2 9972 68 82
T4 − 9 1 30 1 5088 39 51
T5 − 0 1 240 8 2567 33 73
T5 − 1 2 120 8 5011 53 131
T5 − 2 1 120 4 2567 33 73
T5 − 3 3 60 8 9857 92 255
T5 − 4 2 60 4 5011 53 131
T5 − 5 1 60 2 2567 33 73
T5 − 6 5 30 8 19104 164 497
T5 − 7 3 30 4 9857 92 255
T5 − 8 2 30 2 5011 53 131
T5 − 9 1 30 1 2567 33 73

International Journal of Reconfigurable Computing 11

constraints. Based on the changes observed in the Constraint
Set, Explorer follows different decision flows which are
discussed below.

6.1. Constraint_Monitor Flow. Explorer uses this flow,
shown in Figure 2, when it is invoked due to dynamic
changes in the Constraint Set, i.e., changes in the system
mode, power budget, die temperature, and/or hardware
resources. Based on the change observed in the Constraint
Set, Explorer follows one of the flows discussed in this
section. It is to be noted that Explorer can be invoked only
when it has completed one flow cycle; that is, it has come out
of the flow that it was currently working on. *erefore, if
there are multiple changes in the Constraint Set, the order of
priority is as follows: change of mode followed by change in
number of available slots, followed by power budget change
and die temperature constraint change. If a change in mode
is required, the active set of tasks must be modified
according to the new required mode. *erefore, Explorer
must cater to this change first. If there is a hardware fault or
it is restored, it affects the available number of slots. *is can
reduce the hardware resources available for the executing
tasks or it can make space for tasks to function at a better
performance. *erefore, change in hardware resource
constraint needs to be considered before power budget and
die temperature constraints. It has been discussed in the
Temperature_Analysis Flow that for the system’s survival,
meeting the PTPC constraint has a higher preference over
the PDTR constraint. *erefore, change in the PTPC is
catered to before change in PDTR. Based on this discussion,
the following cases are possible:

(i) If there is a request for change in system mode,
Explorer goes to the Mode_Change Flow to find a
suitable system configuration for the set of tasks that
form the mode. If there are simultaneous changes in
resource, power budget, and/or die temperature
constraints, the system configuration for the new
mode is selected based on the new constraints.

(ii) If there is a change in the available hardware re-
sources due to occurrence of a hardware fault,
Explorer goes to the Hardware_Fault Flow to adapt
the system to the reduced hardware resources.
Alternatively, if a hardware fault is restored, Ex-
plorer goes to the Hardware_Fault_Recovery Flow
to adapt to the increased hardware resources. If
there are simultaneous changes in power budget
and/or die temperature constraints, they are catered
to, in the said flows, after the hardware resource
constraint is satisfied.

(iii) If the PTPC has dropped, Explorer checks if the
STPC of the current configuration (CSTPC) meets
the new PTPC constraint. If it satisfies the new

PTPC specification, Explorer goes to the Temper-
ature_Analysis Flow to see if the PDTR requirement
is met. However, if CSTPC > PTPC, it means the
current system configuration fails the new power
budget restriction. Explorer goes to the Reduc-
e_System_DPC Flow to find a candidate configu-
ration with lower Estimated STPC (ESTPC). Once
such a configuration is found and evaluated for the
PTPC constraint using the Power_Analysis Flow,
Explorer goes to the Temperature_Analysis Flow to
see if the PDTR requirement is met.

(iv) If power budget has increased, Explorer needs to
find a configuration such that CSTPC < ESTPC
< PTPC. *is means that the ESTPC of the new
candidate configuration must be higher than the
TPC of the current configuration, but lower than the
new PTPC constraint. To achieve this, Explorer
jumps to the Increased_Power_Budget Flow. Once
such a configuration is found and evaluated for the
PTPC constraint using the Power_Analysis Flow,
Explorer goes to the Temperature_Analysis Flow to
see if the PDTR requirement is met.

(v) If there is no change in PTPC, but there is a change
in the PDTR, Explorer goes to the Temper-
ature_Analysis Flow to see where the die temper-
ature of the current configuration stands with
respect to the new PDTR and accordingly decide the
next steps to be taken.

6.2.Mode_Change Flow. Explorer comes to this flow, shown
in Figure 3, during the system start-up in default mode or
when it invoked to change the mode of operation while the
system is running. Explorer extracts the PTPC, PDTR, and
Ns from the Constraint Set. Explorer then extracts the tasks
that form the mode Mm, their priorities, and performance
specifications from the Mode-LUT. It sets Na � Nm, the
CPP of each task in the mode Mm to its hspec and frequency
of every task Tj to its maximum operating frequency Fj max.
It then jumps to the Find_System_Configuration Flow to
select ASP circuit variants for all the tasks in the mode Mm

such that the resultant configuration establishes system
parameters that are closest to the Constraint Set.

6.3. Find_System_Configuration Flow. *is decision flow,
shown in Figure 4, helps Explorer to select a suitable system
configuration, i.e., ASP circuit variants for the tasks in the
active set, which are appropriate according to the existing set
of constraints. *e search begins from the task with highest
priority P0. Explorer jumps to the Find_Task_Variant Flow
to find a suitable ASP circuit variant for that task. Once a
variant is selected and Explorer is back to this flow, it moves
to the next task, i.e., task with priority P1, and repeats the
process. *is continues up to the last active task, i.e., task
with priority PNa−1. Once the ASP circuit variants of all the
tasks are selected, the set forms the candidate system con-
figuration to be evaluated against the power budget and
temperature constraints. Note that selection of a candidate

Table 3: An example of Constraint Set for Explorer.

Mode Mi PTPC (W) PDTR (°C) Ns

M0 6 68–70 8

12 International Journal of Reconfigurable Computing

implies that it meets the hardware resource constraint.
Explorer therefore goes to the Power_Analysis Flow for the
required verification.

6.4.Find_Task_VariantFlow. Explorer uses this flow, shown
in Figure 5, to select a suitable ASP circuit variant for a task
Tj under consideration from its Variant-LUT. Starting from
the top of the LUT, Explorer checks if the frequency of the
ASP circuit variant is equal to the required frequency Fj, if
performance of the ASP circuit variant is equal to CPP of the
task, and if it fits in the available number of slots on the
FPGA. If no variant is selected due to lack of available
number of spare slots, Explorer goes to the Space_Adjust-
ment Flow to create space for the task. If there is no variant
selected due to any other reason, there is an error. *is can
happen only if there is some error while defining the system
and task specifications during design time. Once an ASP
circuit variant that matches all the conditions is found,
Explorer returns to the flow that had invoked the Find_-
Task_Variant Flow.

6.5. Power_Analysis Flow. *is flow, shown in Figure 6, is
used to evaluate whether a candidate system configuration
meets the PTPC constraint. Explorer extracts the resource
utilization of the system configuration from the Variant-

LUT, and the STPCEM coefficients to estimate the STPC of
this configuration. If ESTPC ≤ PTPC, the configuration
meets the power budget constraint. It then goes to the
Temperature_Analysis Flow and checks whether the can-
didate configuration satisfies the PDTR. On the other hand,
if ESTPC > PTPC, the candidate configuration does not
satisfy the PTPC constraint. Explorer therefore goes to the
Reduce_System_DPC Flow to begin the search for another
system configuration which has a lower ESTPC to satisfy the
PTPC.

6.6. Temperature_Analysis Flow. *is flow, shown in Fig-
ure 7, is used to evaluate whether a system configuration
meets the PDTR constraint. Explorer comes to this flow
either after evaluating a candidate system configuration for
the power budget constraint using the Power_Analysis Flow
or it approaches this flow directly if there is a change in only
the PDTR in the Constraint Set. In the former case, Explorer
uses the SDTEM coefficients to estimate the die temperature
(ESDT) that the configuration would result in, while in the
latter case, Explorer evaluates the SDT of the current con-
figuration (CSDT) against the PDTR constraint. If
Tlow ≤ ESDT/CSDT≤Thigh, the configuration satisfies the
PDTR constraint and is, therefore, selected as the new
system configuration. Explorer then waits for the next

Go to Mode_Change Flow

Constraint_Monitor Flow

Is
there a mode

change?

Y

N

N N

N

N

Has Ns changed? Has Ns increased?
Y Y

Y

N

Y

Y

(decreased)

Go to Hardware_Fault Flow

Go to Hardware_Fault_Rcovery
Flow

Go to Increased_Power_Budget
Flow

(PTPC has dropped)

Has PTPC
increased?

Has PTPC
changed?

(implies PDTR has
changed)

Is
CSTPC <= PTPC?Go to Temperature_Analysis Flow

Go to Reduce_System_DPC Flow

Figure 2: Constraint_Monitor flow of Explorer.

International Journal of Reconfigurable Computing 13

instance it is invoked. If ESDT/CSDT<TLow, the system will
still have to accept the configuration as the new system
configuration. *is is because, to increase the die temper-
ature, a candidate configuration which has a higher ESTPC
will need to be found. Such a configuration will fail the
power budget constraint. If the system works on a config-
uration that does not meet the PTPC constraint, it may not

be able to survive for the required amount of time and may
die down before the system can be recharged. To avoid this,
power budget constraint gets a priority over the die tem-
perature constraint. *erefore, in case of contradicting
constraints, the system sticks to the configuration that meets
the PTPC requirement. If ESDT/CSDT>THigh, the candi-
date configuration fails the PDTR constraint. Explorer goes
to the Reduce_System_DPC Flow to begin the search for
another system configuration which has a lower ESTPC and
hence lower ESDT to satisfy the PDTR. Finding a config-
uration which has lower ESTPC than the current candidate
does not affect the system, as that configuration will also
satisfy the power budget constraint. In fact, it will increase
the time the system can survive without being recharged.*e
only cost could be degradation in the performance of some
less critical tasks if enough slots are not available to maintain
their performance.

6.7. Space_Adjustment Flow. When the frequency Fj of a
task Tj is reduced to reduce the system’s power con-
sumption, the corresponding ASP circuit variant will occupy
more slots if the task performance needs to bemaintained. In
such a scenario, it is possible that enough spare slots are not
available to accommodate the ASP circuit variant. Explorer
uses this flow, shown in Figure 8, to cater to the issue. It tries
to reduce the performance, i.e., CPP, of task Tj by a step

Mode_Change Flow

Extract PTPC, PDTR and Ns from Constraint
Set

Extract characteristics of tasks of required
mode Mm from Mode-LUT

For each task Tj, Set CPP = hspec and Fj = Fj_max

Go to Find_System_Configuration Flow

Figure 3: Mode_Change flow of Explorer.

Find_System_Configuration Flow

Go to task with highest priority Po

Go to Find_Task_Variant Flow

(Assuming successful return from
Find_Task_Variant Flow)

Go to Power_Analysis Flow
Y

N

Is
task priority

= P (Na-1)?

Go to next lower priority task

Figure 4: Find_System_Configuration flow of Explorer.

Find_Task_Variant Flow

Go to first variant of task Tj under
consideration in Variant-LUT

Go to next variant

Is
variant frequency

= Fj ?

N

N

N

N

Y

Y

Y

Y

Is
variant

performance
= CPP ?

Does
variant fit in

available slots?

Variant selected

Go to originating flow

Go to Space_Adjustmebt Flow

Error

Is
it the last
variant?

Figure 5: Find_Task_Variant flow of Explorer.

14 International Journal of Reconfigurable Computing

(within the specified performance range), so that another
ASP circuit variant that occupies lesser slots could be
configured in the available space. It goes to the Find_Variant
Flow to select such an ASP circuit variant. However, if the
CPP of task Tj is already at lspec, Explorer saves the task
priority Ps and goes to the task with a higher priority. It
reduces the CPP of this task by a step to find an ASP circuit
variant that can take up lesser number of slots so that space is
created for the task Tj with priority Ps in consideration. If
such an ASP circuit is found, Explorer goes back to the task
with priority Ps and tries to find an ASP circuit variant that
can fit in the new created space using the Find_Variant Flow.
If an ASP circuit variant for task Tj is found, Explorer goes
back to the original flow that had invoked this flow. While
working with tasks of higher priority than Ps to create free
slots, if all the tasks right up to P0 are operating at lspec, as a
result of which CPP of none of the tasks can be lowered
further, the task with least priority, P(Na−1), among the active
set of tasks needs to be eliminated. Note that a task with
priority Ps may or may not be the one with least priority
P(Na−1). If the EC of the least priority task� 0, the task is
removed. If EC� 1, Explorer throws an error. *is again
indicates erroneous specifications during system-design
time. It is to be noted that when a task is removed, there can
be a big drop in power consumption of the resultant system
configuration. *is means, although Explorer came to this
flow while in the process of reducing the system’s STPC, the

big drop in STPC due to the task removal may result in
ESTPC of the configuration being way lower than the PTPC
constraint. *is could, therefore, reverse the situation; that
is, the PTPC constraint could now act as an increased power
budget constraint. To cater to this possibility, Explorer goes
to the Increased_Power_Budget Flow when a task is re-
moved from a configuration.

6.8. Reduce_System_DPC Flow. *is flow, shown in
Figure 9, is used to find a system configuration that has a
lower ESTPC as compared to the current one so that the
system’s power consumption is reduced and the PTPC
and/or PDTR constraints are met. Explorer begins with
the least priority task. It reduces the frequency Fj of the
task by a step and goes to the Find_Variant Flow to look
for an ASP circuit variant at that frequency and at the
same performance or a reduced one if enough spare slots
are not available. If such a variant is found, a new can-
didate system configuration is obtained. Explorer goes to
the Power_Analysis Flow to evaluate the ESTPC of this
configuration with respect to PTPC. If a variant is not
found, Explorer follows the different paths in the
Find_Variant Flow depending on the situation. For ex-
ample, if a variant is not selected due to lack of available
spare slots, Explorer goes to the Space_Adjustment Flow,
as discussed in the Find_Variant Flow description. While
trying to reduce frequency Fj of the task, if Fj is at its
minimum value, Explorer tries to reduce the performance
of the task. It reduces CPP by a step and goes to the
Find_Variant Flow just as discussed above. If the task is
already at its lspec, it goes to a higher priority task to reduce
its frequency or CPP by a step like in the case of the least

Power_Analysis Flow

Extract resource utilization of candidate
system configuration from Variant-LUT

Extract DPCEM and STPCEM coefficients

Estimate STPC of candidate system
configuration using STPCEM (and DPCEM)

N
Is ESTPC <=

PTPC ?

Y

Y
Is

this an increased
power budget

condition ?

Go to Temperature_Analysis Flow

N

Go to Increased_Power_Budget
Flow

Go to Reduce_System_DPC Flow

Figure 6: Power_Analysis flow of Explorer.

Temperature_Analysis Flow

Extract SDTEM coefficients

Estimate SDT for candidate system
configuration using SDTEM

Is
Tlow <= ESDT <= Thigh

or
ESDT<Tlow?

(When Explorer comes to this Flow
from Constraint_Monitor Flow,
CSDT is used in place of ESDT)

N

Y

Go to Reduce_System_DPC Flow

Select candidate as new system configuration

Wait for next time Explorer is invoked

Figure 7: Temperature_Analysis flow of Explorer.

International Journal of Reconfigurable Computing 15

priority task. If the frequencies of all the higher priority
tasks are at the minimum and/or the CPP of these tasks are
at their respective lspec, Explorer checks the EC condition

for the least priority active task and removes it if EC � 0. It
then goes to the Increased_Power_Budget Flow due to
same reason as discussed in the Space_Adjustment Flow.

Reduce_System_DPC Flow

Go to task with priority P(Na-1)

Is Fj = Fj_min?

N

Y
Is CPP = Ispec?

N

Y

Go to next higher priority
task

N

Is task priority =
Po?

Y

Go to task with priority
P(Na-1)

Reduce CPP by a stepReduce Fj by a step

Go to Find_Task_Variant Flow

Go to Power_Analysis Flow

(Assuming successful return from
Find_Task_Variant Flow) Remove task

Is EC = 0?
Y

Go to Increased_Power_Budget
Flow Error

N

Figure 9: Reduce_System_DPC flow of Explorer.

Space_Adjustment Flow

Reduce CPP by a step
N Is task CPP = Ispec?

Y
Go to

Find_Task_Variant Flow

Go to task with
priority Ps

(Assuming
successful return

from
Find_Task_Variant

Flow)

N

Y

Does
task have

priority Ps?

Go to originating flow

Is task priority =
Po?

N

Y

Y

Go to task with priority P(Na-1)

Is
EC = 0?

N

Remove task

Error

Go to Increased_Power_Budget
Flow

Go to next higher
priority task

Figure 8: Space_Adjustment flow of Explorer.

16 International Journal of Reconfigurable Computing

6.9. Increased_Power_Budget Flow. When PTPC condition
improves over the existing one, there is a scope to increase
the system’s STPC. *is means that there is a scope to in-
crease the performance of some or all the tasks which have
been operating at a lower performance due to previous low
power budget constraint. Operation at a higher performance
and frequency also frees up some slots which further allows
adding the tasks of the mode which have been eliminated
due to the previously low PTPC requirement. When Ex-
plorer is in the Reduce_System_DPC Flow, it keeps a track of
the task whose frequency or performance is last reduced
during adaptation, so that if the power budget further re-
duces, the run-time adaptation can begin from the same task
to save exploration and adaptation time. Let the priority of
this task be Pk. Now, when the power budget has increased,
Explorer begins adaptation using this flow, shown in Fig-
ure 10, from the same task. It increases the operating fre-
quency of this task by a step and sets its CPP to hspec. It then
goes to the Find_Variant Flow to select an ASP circuit
variant of the task with priority Pk that meets the new
frequency and performance requirements. Once a variant is
found, and if the ESTPC of the resultant configuration is still
lower than the PTPC, the operating frequency Fj is in-
creased again by a step and the process repeats. If the fre-
quency reaches maximum and the ESTPC of the candidate
configuration is still lower than PTPC, the frequency of the
next lower priority task is increased by a step and its CPP is
set to hspec. *is continues till the frequency of the last active
task reaches maximumwith its CPP set to hspec. If the ESTPC
is still lower than the PTPC, Explorer adds an eliminated
task of the next lower priority, if any, and repeats the above
process. *e above procedure stops when a candidate
configuration is found which has ESTPC > PTPC. Explorer
then goes to the Reduce_System_DPC Flow and finally
settles onto a configuration which has ESTPC < PTPC. *is
process is needed so that the performance of as many tasks as
possible can be increased and as many eliminated tasks as
possible can be added back. If the power budget has in-
creased significantly, it could be possible to have a system
configuration with all the tasks of a mode running at their
maximum frequencies and performances. If Explorer ac-
cepted a configuration in the first round itself, there could
still be room for increasing some task’s performance or
adding in an eliminated task and the opportunity would
have been missed. Once a system configuration that satisfies
the PTPC condition is selected, it is evaluated against the
PDTR requirements using the Temperature_Analysis Flow.

6.10. Hardware_Fault Flow. *e method of run-time ASP
component relocation presented in [42, 43] is used by Ex-
plorer as the fault mitigation method. *e method proposes
that if there is a hardware fault in a slot, the affected ASP
component must be relocated to a spare slot. *is way,
recovery time of the affected component is only its relocation
time. *e faulty slot can then be diagnosed simultaneously
while the recovered ASP component is functioning. Explorer
implements this method using the Hardware_Fault Flow,
shown in Figure 11. If a spare slot is available, the relocation

can be immediate. However, if there is no available spare
slot, Explorer needs to adapt the system configuration to
create a spare slot. To do so, it begins by trying to reduce the
CPP of a task, starting from the one with the least priority
among the active set of tasks. If the CPP of any task can be
reduced, Explorer finds a suitable variant for that task using
the Find_Variant Flow such that it occupies lesser number of
slots, thus creating a spare slot(s). *e affected ASP com-
ponent is then relocated to a created spare slot. Once the
affected ASP component is restored, Explorer goes to the
Power_Analysis Flow to verify whether the resultant con-
figuration meets the PTPC constraint. While trying to re-
duce CPP of a task, if all the tasks are operating at their lspec
and reducing CPP is not possible, Explorer eliminates the
last active task after verifying its EC to create a spare slot(s).
Once a spare slot is available, the affected ASP component is
relocated to the spare slot. As discussed in the Space_-
Adjustment Flow, if a task is removed for fault mitigation,
there can be a big drop in the power consumption of the
resultant system configuration, resulting in a big gap be-
tween its STPC and PTPC. *erefore, there is a possibility
for tasks operating at degraded performances to increase
their performances. To achieve this, Explorer goes to the
Increased_Power_Budget Flow after relocating and recov-
ering the affected ASP component.

6.11. Hardware_Fault_Recovery Flow. Once a slot with a
transient fault is recovered, it is back in the system as a spare
slot. Explorer is therefore invoked to put the slot to use, if
needed, using this flow shown in Figure 12. If a spare slot was
available when the hardware fault occurred, there is no
change in the system configuration as the affected task
component is simply relocated to the spare slot. In this case,
no change needs to be made when the faulty slot is re-
covered. However, if Explorer carried out RTSA due to lack
of a spare slot when the fault occurred, the original system
configuration that existed prior to the fault must be restored.
Explorer therefore extracts the original system configuration
from the memory and selects it as the potential new system
configuration which can rectify any degradation or elimi-
nation of a task which occurred due to the fault. Explorer
then goes to the Power_Analysis Flow to verify if the
configuration meets the power consumption constraint.

*us, the above scenarios demonstrate that a MACROS-
based system deployed with Explorer can adapt in run-time
to changing mode, power budget, die temperature, and/or
hardware resource constraints by dynamically choosing
suitable ASP circuit variants of tasks at suitable operating
frequencies such that they together fit in the available
number of slots on the FPGA die, critical tasks of the desired
system mode operate at their maximum performance,
noncritical tasks operate within a permitted performance
range, the system’s power consumption is within the
available power budget, and the die temperature is within the
permitted range. As a by-product of the run-time structural
adaptation, the system’s lifetime can also increase; the extent
of which depends on the relation between the system’s PTPC
and STPC of the selected configuration. *is versatility of

International Journal of Reconfigurable Computing 17

Explorer allows autonomous and mobile systems to be
completely sustainable!

7. Demonstration of RTSA Using Explorer

*is section discusses an example that shows how Explorer
enables a system to structurally adapt to the varying
workload, power budget, die temperature, and hardware
resource conditions in run-time. It demonstrates how,
whenever there is a change in the set of constraints, Explorer
dynamically selects a suitable system configuration that
closely satisfies the constraints at that time. Consider a
system developed on the Zynq XC7Z020 device. *e system
has 6 tasks, T0 toT5, and three modes of operation,
M0 toM2. Each task has 10 ASP circuit variants for RTSA.
*e tasks can operate at 30, 60, 120, and 240MHz. Tables 1
and 2 presented in Section 5 represent the Mode-LUT and
Variant-LUT, respectively, for the example system consid-
ered here. *e Zynq device is configured with the MACROS

framework and is divided into 8 PRRs/slots to support the
system’s dynamic workload and RTSA.*e system runs on a
rechargeable 12V battery with a capacity of 48Wh.

*e DPC required to estimate the STPC for Zynq is
obtained using the DPCEM; that is, equations (2) and (3)
combined together. *e coefficients for the DPCEM of the
Zynq SoC are assumed to be the same for all tasks, and they
are as follows [3]: CLS � 0.013, CBS � 1.1, CDS � 0.226, and
CF � 23.046 for a total of 69 IOBs on Zynq. With this in-
formation, the DPCEM equation for the Zynq SoC is ob-
tained as follows:

DPC(Zynq)(mW) � DPC Task1() + DPC Task2() + · · · + DPC TaskNm
(􏼁

,

(6)

whereNm is the number of tasks in amodeMm of the system
considered in this example. *e DPC of each task can be
obtained as

DPC Taskn()(mW) �
Fccn

Fmin
× 0.013 × NLSn + 1.1 × NBSn + 0.226 × NDSn + CFn(􏼁. (7)

Increased_Power_Budget Flow

Go to task with priority Pk

Y

N

Is
Fj = Fj_max?

(If returned from
Power_Analysis

Flow)

Increase Fj by a step

Set CPP = hspec

Go to Find_Task_Variant Flow

Go to Power_Analysis Flow

(Assuming successful return from
Find_Task_Variant Flow)

Set Fj = Fj_min

Go to Power_Analysis Flow Add task with priority PNa

End increased power budget
condition

Y

Y N

N

Is
Na = Nm?

Is
task priority =

P(Na-1)?

Go to next lower priority task

Figure 10: Increased_Power_Budget flow of Explorer.

18 International Journal of Reconfigurable Computing

Hardware_Fault Flow

Relocate affected task
component to spare slot

YIs
a spare slot
available?

N

Go to task with priority P(Na-1) Go to next higher priority task

Y

YN

N

Is
CPP = Ispec?

Is
task priority = Po?

Reduce CPP by a step
Go to task with priority P(Na-1)

Go to Find_Task_Variant Flow Is EC = 0?

(Assuming successful return
from Find_Task_Variant Flow)

Relocate affected task
component to created spare slot

Go to Power_Analysis Flow

Remove task

Relocate affected task
component to created spare slot

Go to Increased_Power_Budget
Flow

Error
N

Y

Figure 11: Hardware_Fault flow of Explorer.

Hardware_Fault_Recovery Flow

N

Y

Was
system config

changed due to
fault?

Retain System Configuration

Extract system configuration prior
to fault from memory

Go to Power_Analysis Flow

Figure 12: Hardware_Fault_Recovery flow of Explorer.

International Journal of Reconfigurable Computing 19

Note that, for the example considered here, the coeffi-
cient CF is used once for all the IOBs used by the tasks
together. *is means

CF �
Fcc

Fmin
× 􏽘

Nm−1

n�0
CFn

⎛⎝ ⎞⎠ �
Fcc

Fmin
× 23.046. (8)

*e frequency Fcc for the IOBs is the operating fre-
quency of the least priority task among the active tasks.

For the example in this section, SPC of Zynq is 2.340W,
and R, the rise in TPC to reach STPC, is 0.06W [16]. All the
tasks utilize only the FPGA resources, and the ARM Cortex-
A9 processor of the Zynq SoC is therefore not used. Hence,
SPP� 0. With these data, the STPCEM equation, equation
(4) can be rewritten for Zynq as follows:

STPC(Zynq)(W) � 2.34(W) + DPC(W) + 0.06(W)

� DPC(W) + 2.4.
(9)

Equation (5) is the SDTEM equation for a FPGA. For the
Zynq device, M � 11.85 and C � 4.88 [16]. With these values,
the SDTEM for Zynq is obtained as

SDT(Zynq)
°C(􏼁 � 11.85 × STPC(W) + 4.88. (10)

Explorer uses the set of equations to estimate the STPC
and SDT for candidate configurations while carrying out
RTSA for the system considered here. Table 4 summarizes
the flow of events that occur, which are discussed next.

7.1. Case 1: Initial State. At system start-up, the battery
capacity is 100%, i.e., 48Wh. *e system needs to be able to
function for at least 8 hours without refueling. *is means
that PTPC� 6W. *e system’s PDTR is 68–70°C. *e
Constraint Set for this case is shown in Table 5(a). *e
default mode is M0, formed by tasks T2, T5, T0, and T4 in the
same order of priority, as shown in the Mode-LUT in Ta-
ble 1. Explorer goes to the Mode_Change Flow, extracts the
mode and task characteristics, and goes to the Find_Sys-
tem_Configuration Flow. It selects variant number 0 for all
the tasks using the Task_Variant Flow; each variant operates
at 240MHz, occupies 1 slot, and provides a performance of
240 fps. It then goes to the Power_Analysis Flow to estimate
the STPC for the candidate configuration. Using Table 2 and
the above-mentioned model equations, ESTPC of this
combination is obtained as

ESTPC(mW) �
240
30

× 0.013 × 15751 + 1.1 × 142 + 0.226 × 178 + 0.334 × 69{ } + 2400 � 5793.9mW � 5.79W. (11)

Since ESTPC ≤ PTPC, the candidate configuration
satisfies the power budget. Explorer, therefore, goes to the
Temperature_Analysis Flow to estimate its SDT. Using the
SDTEM equation, ESDT for this configuration of T2 − 0,
T5 − 0, T0 − 0, and T4 − 0 is obtained as

ESDT°C � 11.85 × 5.79 + 4.89 � 73.5°C. (12)

*e ESDTof 73.5°C does not satisfy the PDTR. Explorer,
therefore, goes to the Reduce_System_DPC Flow to reduce
system power consumption further. It starts with T4, the
least priority task, and keeps reducing the frequency of T4 to
reduce the task’s DPC. It goes through 4 candidate system
configurations (CSCs) as shown in Table 5(b) and finally
settles at configuration T2 − 0, T5 − 0, T0 − 0, and T4 − 6.
Task T4 now operates at 30MHz and occupies 5 slots to
provide the same performance of 240 fps. *is configuration
has ESTPC� 5.48W, and ESDT� 69.79°C. *is candidate
satisfies all the constraints and is therefore selected as the
system configuration. It occupies all the 8 slots, as shown in
Figure 13(a), and maintains the performance of all the tasks.
With this configuration, the system can function without
recharging for 8.76 hours.

7.2. Case 2: Hardware Fault. After 15 minutes, there is a
hardware fault in the slot where a component of critical task
T2 is operating, reducing Ns to 7.*e Constraint Set changes
to Table 6(a). Explorer is invoked, and it goes to the

Hardware_Fault Flow. Since there is no spare slot available,
one needs to be created to relocate the affected task com-
ponent. Explorer reduces the CPP of T4 to 120 fps and selects
variant T4 − 7 as listed in Table 6(b), which operates at
30MHz and occupies 3 slots to provide a performance of
120 fps. *is creates 2 spare slots, and the affected task
component is relocated to a spare slot, as shown in
Figure 13(b). *e resultant configuration has
ESTPC� 5.09W and ESDT� 65.17°C. It satisfies all the
constraints except for the PDTR. In this case, the priority of
Explorer is to avoid the faulty slot and keep all the tasks
functioning without failing the PTPC requirement. *e
selected configuration is the best possible solution that can
satisfy these requirements. *erefore, PDTR is sacrificed
until the time the faulty slot is recovered, since it has the least
priority among all the parameters in this case.

7.3. Case 3: Hardware Fault Restoration. Within the next 15
minutes, the fault is identified as a transient fault and is
rectified (e.g., by scrubbing technique). *e affected slot is
back in the system as a spare slot, changing Ns to 8 again.
*e Constraint Set changes to Table 7(a). Explorer is invoked
again, and it goes to the Hardware_Fault_Recovery Flow to
bring back the configuration that existed prior to the fault
from system memory. *us, CSC2, as shown in Table 7(b) is
selected and reconfigured so that T4 can operate at its
maximum performance as seen in Figure 14(a). Since the
original system configuration is restored, which has

20 International Journal of Reconfigurable Computing

Table 4: Flow of events discussed in Section 7.

Case
no.

Time elapsed
(hours)

System
mode

Battery
capacity (%)

Required lifetime
(hours)

PTPC
(W)

PDTR
(°C)

ESTPC
(W)

ESDT
(W)

Achieved lifetime
(hours)

1 0 M0 100.00 8 6 68–70 5.48 69.79 8.76
2 0.25 M0 97.15 7.75 6 68–70 5.09 65.17 9.17
3 0.25 M0 94.5 7.5 6 68–70 5.48 69.79 8.28
4 0.5 M0 88.79 7 6 64–66 5.09 65.17 8.38
5 0.5 M0 83.49 8.25 4.86 61–63 4.83 62.12 8.30
6 0.25 M1 81 8 4.86 61–63 4.81 61.89 8.08
7 0.25 M1 78.47 6.75 5.6 64–66 5.15 65.87 7.32
8 1 M1 67.75 5.75 5.6 66–68 5.28 67.49 6.16

Table 5: Constraint Set and CSCs evaluated for case 1.

(a) Constraint Set
Mode PTPC (W) PDTR (°C) Ns

M0 6 68–70 8
(b) Sequence of CSCs evaluated

Case 1

CSC1 CSC2 CSC3 CSC4
T2 − 0 T2 − 0 T2 − 0 T2 − 0
T5 − 0 T5 − 0 T5 − 0 T5 − 0
T0 − 0 T0 − 0 T0 − 0 T0 − 0
T4 − 0 T4 − 1 T4 − 3 T4 − 6

ESTPC (W) 5.794 5.629 5.529 5.477
ESDT (°C) 73.55 71.6 70.41 69.79
No. of slots 4 5 6 8

D
CCI

Task T5

Task T2 Task T0

Task T4c

Mode = M0

Task T4d

Task T4e

Task T4a

Task T4b

(a)

D
CCI

Task T0

Mode = M0

Fault

Task T4a

Task T4b

Task T4c

Task T2

Spare

Task T5

(b)

Figure 13: RTSA using Explorer for cases 1 and 2. (a) Selected system configuration for case 1. (b) Selected system configuration for case 2.

Table 6: Constraint Set and CSCs evaluated for case 2.

(a) Constraint Set
Mode PTPC (W) PDTR (°C) Ns

M0 6 68–70 7
(b) Sequence of CSCs evaluated

Case 2

CSC1 CSC2
T2 − 0 T2 − 0
T5 − 0 T5 − 0
T0 − 0 T0 − 0
T4 − 6 T4 − 7

ESTPC (W) 5.48 5.09
ESDT (°C) 69.79 65.17
No. of slots 8 6

International Journal of Reconfigurable Computing 21

ESTPC� 5.48W and ESDT� 69.79°C, all the constraints of
the Constraint Set are satisfied.

7.4.Case 4: PDTRDrop. After half an hour, from Table 4, the
PDTR drops to 64–66 (°C) and the PTPC continues to
remain at 6W. *e Constraint Set changes to Table 8(a).
Since the current configuration does not satisfy the PDTR,
Explorer goes to Reduce_System_DPC Flow to find a
configuration with lower ESTPC and hence lower ESDT.
Since T4 is already at its minimum frequency, Explorer
reduces the performance of T4. It selects T4 − 7 which
operates at 30MHz and occupies 3 slots to provide a per-
formance of 120 fps. *e resultant configuration CSC2 as
listed in Table 8(b) has ESTPC� 5.09W and ESDT� 65.17°C.
*is candidate satisfies both the PTPC and PDTR con-
straints and is therefore selected as the new system con-
figuration as shown in Figure 14(b).

7.5. Case 5: PTPC and PDTR Drop. After another half hour,
as shown in Table 4, there is a drop in the power budget and
die temperature constraint. If the power budget had not
changed, it would have meant that expected system lifetime
is 6.5 hours. However, due to external conditions, the system

is now supposed to continue operating without recharging
for 8.25 hours, which brings down the PTPC to 4.86W. *e
PDTR also drops to 61–63°C. *us, the Constraint Set
changes to Table 9(a). *e current system configuration has
STPC� 5.09W, which is greater than the new PTPC and will
be able to sustain the system for only 7.88 hours. Explorer
therefore goes to Reduce_System_DPC Flow to adapt to the
situation. Since T4 is at its lspec and operating at its minimum
frequency in the current configuration, Explorer reduces the
frequency of T0 to 120MHz and selects variant T0 − 1. *e
resultant configuration still does not satisfy the PTPC
constraint. Reducing the frequency to 60MHz also does not
satisfy the PTPC. When the frequency is further reduced to
30MHz, Explorer needs to select T0 − 7, which occupies 5
slots to maintain the performance at 240 fps. Since enough
spare slots to accommodate this variant are not available,
Explorer goes to the Space_Adjustment Flow. T0 has
hspec � lspec � 240 fps, and so the performance of T0 cannot
be reduced further. Explorer therefore tries to reduce per-
formance of higher priority tasks T5 and T2. However, they
also have hspec � lspec � 240 fps, and it is not possible to
reduce their performance. *us, the least priority task T4
needs to be removed. Since a task is removed, Explorer goes
to the Increased_Power_Budget Flow to check the possibility

Table 7: Constraint Set and CSCs evaluated for case 3.

(a) Constraint Set
Mode PTPC (W) PDTR (°C) Ns

M0 6 68–70 8
(b) Sequence of CSCs evaluated

Case 3

CSC1 CSC2
T2 − 0 T2 − 0
T5 − 0 T5 − 0
T0 − 0 T0 − 0
T4 − 7 T4 − 6

ESTPC (W) 5.09 5.48
ESDT (°C) 65.17 69.79
No. of slots 6 8

D
CCI

Task T0

Mode = M0

Task T4b

Task T4c

Task T4d

Task T2

Task T5

Task T4e

Task T4a

(a)

D
CCI

Task T0

Mode = M0

Task T4b

Task T4c

Task T2

Task T5

Task T4a

Spare

Spare

(b)

Figure 14: RTSA using Explorer for cases 3 and 4. (a) Selected system configuration for case 3. (b) Selected system configuration for case 4.

22 International Journal of Reconfigurable Computing

of a drastic drop in the ESTPC. Since the Explorer’s current
frequency for T0 was 60MHz, Explorer now increases its
frequency to 120MHz and sets its CPP to 240 fps by selecting
T0 − 1. *e resultant configuration has ESTPC� 4.7W,
lower than the PTPC of 4.86W. Explorer therefore again
increases the frequency of T0; it selects T0 − 0, which
operates at 240MHz and provides a performance of 240 fps.
*e resultant configuration has ESTPC� 4.83W, still lower
than PTPC.*e next step would be to add the removed task;
however, it was removed once during the flow is hence not
added back. *e exploration ends at T0 − 0. All the candi-
dates evaluated in this case are listed in Table 9(b). *e final
configuration of T2 − 0, T5 − 0, and T0 − 0 has
ESTPC� 4.83W and ESDT� 62.12°C. It satisfies both, the
PTPC and the PDTR, and is therefore selected and con-
figured as the new system configuration as shown in
Figure 15.

7.6. Case 6: Mode Change. After 15 minutes, there is a
request for a mode change to M1, formed by tasks T3, T2,
T5, and T1. *e PTPC continues to be 4.86W, and the
PDTR also remains 61–63°C. *e Constraint Set for this
case is shown in Table 10(a). Explorer goes to the Mod-
e_Change Flow to find a suitable configuration that satisfies
the task performance and system constraints. It goes
though the candidates as shown in Table 10(b). *e final
configuration is T3 − 0, T2 − 0, T5 − 0, and T1 − 7. Tasks T3,
T2, and T5 operate a maximum performance of 240 fps, and
T1 operates at a reduced performance of 120 fps. *is
configuration has ESTPC � 4.81W and ESDT � 61.89°C. It

satisfies both, the PTPC and PDTR, and is therefore se-
lected and configured as the new system configuration as
shown in Figure 16.

7.7. Case 7: PTPC and PDTR Rise. After 15 minutes, the
situations improve and the system lifetime before next
recharge reduces to 6.75 hours. *us, the power budget
improves to 5.58W. *e PDTR also rises to 64–66°C. *e
Constraint Set changes to Table 11(a). Explorer goes to
Increased_Power_Budget Flow. It goes on increasing the
frequency of T1, as shown in Table 11(b), until it reaches
variant T1 − 0, which operates at 240MHz to give a per-
formance of 240 fps. *e ESTPC of the resultant config-
uration is 5.28W. Since it is not possible to increase the
DPC further, this configuration is chosen as the candidate
that satisfies the PTPC. However, since its ESDT � 67.46
(°C), it fails in the Temperature_Analysis Flow. Explorer,
therefore, goes to the Reduce_System_DPC Flow and se-
lects T1 − 1, which operates at 120MHz to give a perfor-
mance of 240 fps. *e resulting candidate
T3 − 0, T2 − 0, T5 − 0, and T1 − 1 has ESTPC � 5.15W and
ESDT � 65.87°C. It satisfies all the constraints and is
therefore selected and configured as the system configu-
ration as shown in Figure 17(a).

7.8. Case 8: Increased PDTR. After 1 hour, the PDTR in-
creases to 66–68°C. *e Constraint Set changes to
Table 12(a). Explorer goes to Increased_Power_Budget Flow
and increases the frequency of T1 to 240MHz by selecting
T1 − 0 as listed in Table 12(b). *e final configuration, as
shown in Figure 17(a), has ESTPC� 5.28W, and
ESDT� 67.5°C. *e resulting candidate T3 − 0, T2 − 0, T5
−0, and T1 − 0 satisfies all the constraints and is therefore
selected as the system configuration.

*us, the above scenarios demonstrate that a MACROS-
based system deployed with Explorer can adapt in run-time
to changing system mode, power budget, die temperature,
and hardware resource constraints by dynamically choosing
a suitable configuration such that the critical tasks of the
desired system mode operate at their maximum perfor-
mance, noncritical tasks operate within a permitted per-
formance range, the system’s power budget (increased or
decreased) is satisfied, its die temperature is within or close
to the specified range, and the total area occupied is less than
or equal to the available number of slots.

8. Analysis

8.1. Storage Requirements. Explorer has been implemented
as a bare-metal C code on the ARM Cortex-A9 processor of
the Zynq XC7Z020 device, operating at 666MHz. *e
implementation covers the example discussed in Section 7.
Since each of the six tasks in the example has ten ASP
circuit variants, the Variant-LUT stores the operating
frequency, performance, number of slots, Logic slices,
BRAM slices, and DSP slices used, for only 6 × 10 � 60
variants, irrespective of the modes. If a decision space of
system configurations was used, characteristics of 3 modes

Table 8: Constraint Set and CSCs evaluated for case 4.

(a) Constraint Set
Mode PTPC (W) PDTR (°C) Ns

M0 6 64–66 8
(b) Sequence of CSCs evaluated

Case 4

CSC1 CSC2
T2 − 0 T2 − 0
T5 − 0 T5 − 0
T0 − 0 T0 − 0
T4 − 6 T4 − 7

ESTPC (W) 5.48 5.09
ESDT (°C) 69.79 65.17
No. of slots 8 6

Table 9: Constraint Set and CSCs evaluated for case 5.

(a) Constraint Set
Mode PTPC (W) PDTR (°C) Ns

M0 4.86 61–63 8
(b) Sequence of CSCs evaluated

Case 5

CSC1 CSC2 CSC3 CSC4 CSC5
T2 − 0 T2 − 0 T2 − 0 T2 − 0 T2 − 0
T5 − 0 T5 − 0 T5 − 0 T5 − 0 T5 − 0
T0 − 0 T0 − 1 T0 − 3 T0 − 1 T0 − 0
T4 − 7 T4 − 7 T4 − 7

ESTPC (W) 5.09 5.04 5 4.69 4.83
ESDT (°C) 65.17 64.67 64.14 60.52 62.12
No. of slots 6 7 8 4 3

International Journal of Reconfigurable Computing 23

×106 configurations per mode would need to be stored in
the Variant-LUT. *e LUT size with the proposed method
is only 0.002% of the size when a decision space of system
configurations is used.

8.2. Execution Time. Execution time of Explorer running on
the ARM Cortex-A9 core has been recorded for different
worst-case scenarios of the example discussed in Section 7 to
observe the time taken in making the worst-case algorith-
mically taxing decisions. It is to be noted that Explorer is
implemented on the ARM Cortex-A9 processor of the Zynq
XC7Z020 device since the example system in Section 7 is
considered to be developed on the Zynq XC7Z020 device.
Any other hard/soft-core processor can be chosen to im-
plement Explorer depending on the FPGA/SoC device that a
system is developed on. *e execution time of Explorer will
be according to the processor chosen. However, it can be
said that using any equivalent or advanced processor core
will produce similar or better results.

8.3. Case 1: Worst-Case PTPC Drop or PDTR Drop. In the
case of either a power budget and/or die temperature drop,
Explorer resorts to the same solution, reducing the system’s
power consumption. In the worst-case scenario, RTSA would
require changing the system’s configuration from the one
consisting of tasks operating at their highest frequency and
highest performance hspec to the one having only the critical
tasks with their EC� 1 operating at their lowest frequency and
lowest performance lspec. Consider mode M1 as an example.
*e initial configuration is T3 − 0, T2 − 0, T5 − 0, and T1 − 0,
each ASP circuit variant occupying one slot, operating at
240MHz at 240 fps. A heavy dip in the PTPC and/or PDTR
condition results in a configuration comprising of only T3 − 6
occupying 5 slots and providing a performance of 240 fps at
30MHz. To reach this stage, Explorer needs to try reducing
the frequency and CPP of each task starting from the lowest
priority, then decide to remove each task one after the other,
and then reach the last possible system configuration ofT3 − 6
alone, which has the lowest power consumption. Explorer
takes only 102.59μs to reach this conclusion.

8.4. Case 2: Worst-Case PTPC Rise and/or PDTR Rise.
*e longest decision-making process in the case of an in-
creased power budget and/or required die temperature
needs to be evaluated here. It must be noted that for worst-
case decision-making in this case, there should be a big jump
in both, PTPC and PDTR. If there is a drastic increase in
only one parameter, the process of exploration will stop

Table 10: Constraint Set and CSCs evaluated for case 6.

(a) Constraint Set
Mode PTPC (W) PDTR (°C) Ns

M1 4.86 61–63 8
(b) Sequence of CSCs evaluated

Case 6

CSC1 CSC2 CSC3 CSC4 CSC5
T3 − 0 T3 − 0 T3 − 0 T3 − 0 T3 − 0
T2 − 0 T2 − 0 T2 − 0 T2 − 0 T2 − 0
T5 − 0 T5 − 0 T5 − 0 T5 − 0 T5 − 0
T1 − 0 T1 − 1 T1 − 3 T1 − 6 T1 − 7

ESTPC (W) 5.28 5.15 5.08 5.03 4.81
ESDT (°C) 69.49 65.87 65.07 64.53 61.89
No. of slots 4 5 6 8 6

D
CCI

Mode = M1

Task T5

Task T2

Task T3

Task T1a

Task T1b

Task T1c

Spare

Spare

Figure 16: Selected system configuration for RTSA using Explorer
for case 6.

Table 11: Constraint Set and CSCs evaluated for case 7.

(a) Constraint Set
Mode PTPC (W) PDTR (°C) Ns

M1 5.58 64–66 8
(b) Sequence of CSCs evaluated

Case 7

CSC1 CSC2 CSC3 CSC4 CSC5
T3 − 0 T3 − 0 T3 − 0 T3 − 0 T3 − 0
T2 − 0 T2 − 0 T2 − 0 T2 − 0 T2 − 0
T5 − 0 T5 − 0 T5 − 0 T5 − 0 T5 − 0
T1 − 7 T1 − 3 T1 − 1 T1 − 0 T1 − 1

ESTPC (W) 4.81 5.08 5.15 5.28 5.15
ESDT (°C) 61.89 65.07 65.87 67.49 65.87
No. of slots 6 6 5 4 5

D
CCI

Mode = M0

Task T0

Task T5

Spare

Spare Spare

Spare

Task T2

Spare

Figure 15: Selected system configuration for RTSA using Explorer
for case 5.

24 International Journal of Reconfigurable Computing

sooner than the worst-possible exploration. For example, if
there is a big rise in PTPC, but not in the PDTR, when
Explorer tries to find a candidate configuration that has an
increased ESPTC, it may fail the PDTR. *is will force
Explorer to select a configuration with lower ESTPC, thus
not allowing it to explore all possible candidates and reach
the one that closely satisfies the increased PTPC. Similarly,
since PTPC has a higher priority over PDTR, if there is a big
rise in PDTR alone, candidates closer to satisfying the PDTR
will not be explored since their ESTPC will not satisfy the
PTPC.*erefore, for noting the worst-case execution time, a
big rise in both, PTPC and PDTR, is considered here.

Consider mode M1; the current system configuration
consists of only T3 − 6, occupying 5 slots and providing a
performance of 240 fps at 30MHz. A big rise in the PTPC
and PDTR results in a configuration T3 − 0, T2 − 0, T5 − 0,
and T1 − 1; tasks T3, T2, and T5 providing a performance of
240 fps at 240MHz and T1 providing a performance of
240 fps at 120MHz. To reach this decision, Explorer first
evaluates T3 at increasing frequency and maximum per-
formance. It then adds the task T2 and evaluates it at in-
creasing frequency andmaximum performance.*is repeats
for tasks T5 and T1. Explorer finally meets the condition
ESTPC > PTPC for configurationT3 − 0,T2 − 0, T5 − 0, and

T1 − 0. It then again reduces the frequency of T1 to 120MHz
and settles at T1 − 1 to satisfy both PTPC and PDTR. *e
Execution time for this case is ≈ 83.46 μs. It must be noted
in the case of a maximum increase in power budget, Explorer
settles at T1 − 0 itself. It does not return to T1 − 1 again to
decrease the system’s power consumption. Hence, in this
case, the execution time is less than 83.46 μs. Maximum
increase in PTPC is therefore not considered as the worst-
case increased power budget condition from the point of
view of run-time decision-making.

8.5. Case 3: Worst-Case Mode Change. Suppose while the
system is functioning in the mode M0, it experiences the
worst power budget drop. In this situation, there is also an
interrupt to change the mode M1. In this case, Explorer
carries out RTSA by finding a system configuration for M1
that satisfies the worst PTPC condition. *is is a superset of
Case 1; Explorer first finds the configuration T3 − 0, T2 − 0,
T5 − 0, and T1 − 0, goes on reducing power consumption,
and finally settles at T3 − 6 alone. Time recorded for this case
is 129.84 μs. *is can be expected since the execution time
recorded for a mode change to M1 with the selected system
configuration as T3 − 0, T2 − 0, T5 − 0, and T1 − 0 is 25.97 μs
and the time recorded for a worst-case power budget drop is
102.59 μs as mentioned in Case 1.

8.6. Case 4: Worst-Case Hardware Fault. Assume that in
mode M1, hspecs � lspecs for all the tasks. *e current system
configuration is T3 − 0, T2 − 0, T5 − 0, and T1 − 6; all the
slots are occupied to maintain the performance of all tasks
at their hspec. If there is hardware fault in such a case,
Explorer tries to reduce the CPP of each task starting from
T1 up to T3 and finally decides to remove T1 − 6 since
performance of no task can be reduced to create a spare slot
for relocating the task component in the faulty slot. *e
time recorded for this is 21.39 μs.

D
CCI

Mode = M1

Task T3

Task T2

Task T5

Task T1a

Task T1bSpare

Spare Spare

(a)

D
CCI

Spare

Spare

Spare

Spare

Mode = M1

Task T3

Task T2

Task T5

Task T1

(b)

Figure 17: RTSA using Explorer for cases 7 and 8. (a) Selected system configuration for case 7. (b) Selected system configuration for case 8.

Table 12: Constraint Set and CSCs evaluated for case 8.

(a) Constraint Set
Mode PTPC (W) PDTR (°C) Ns

M1 5.58 66–68 8
(b) Sequence of CSCs evaluated

Case 8

CSC1 CSC2
T3 − 0 T3 − 0
T2 − 0 T2 − 0
T5 − 0 T5 − 0
T1 − 1 T1 − 0

ESTPC (W) 5.15 5.28
ESDT (°C) 65.87 67.49
No. of slots 5 4

International Journal of Reconfigurable Computing 25

From all the cases considered, the maximum execution
time observed is 129.84 μs. Comparing this decision-making
time with the reconfiguration time of one slot: if the PCAP
configuration port providing 145MB/sec [82] is used,
reconfiguring a partial bitstream of size say 492.8 KB, which
is one-eighth the size of a full bitstream for Zynq XCZ7020
SoC, in a PRR, is 3.3ms. It is possible to see that the decision-
making time is less than 4% of one slot reconfiguration
period; Explorer can make a decision for RTSA even before a
slot is reconfigured!*e observed execution time is obtained
when four tasks per mode with 10 ASP circuit variants each
are considered; that is, a maximum of 40 ASP circuit variants
can be explored. Considering a larger system with 25 tasks
per mode and 64 ASP circuit variants each, a maximum of
1600 ASP circuit variants will be explored. Extrapolating the
observed worst-case execution time to this large system
results in 5.2ms. Comparing this time with an application
requirement; consider an application involving video pro-
cessing at 120 fps. It requires 8.33ms to process a frame.
Explorer’s decision-making time is less than 0.65 times the
time taken to process a frame.*is means there will be a loss
of only one frame to find a solution even for such a large
system. A loss of one frame can be tolerated by most ap-
plications.*emethod thus proves to be suitable to carry out
a system’s structural adaptation at run-time for many ap-
plications even with quite strict performance constraints.

9. Conclusion

*is paper presents Decision Space Explorer, a run-time
decision-making method to enable multiobjective RTSA in
FPGA/SoC-based autonomous and mobile systems sup-
porting multitask multimode applications, thus making
them self-sustainable. Whenever there is a change in a
system’s mode, power budget, die temperature, and/or
hardware resource constraints, Explorer evaluates potential
system configurations and selects the appropriate ASP cir-
cuit variants for the tasks at their respective appropriate
operating frequencies such that they satisfy all the con-
straints. *is means that the selected configuration fits in the
available hardware resources, the critical tasks of the sys-
tem’s required mode continue to operate at their required
performance, the other noncritical tasks operate within the
permitted performance specifications, the system’s STPC is
lower than the power budget, and its SDT is maintained
within the permitted range! To find such a system config-
uration, the proposed method explores the decision space of
ASP circuit variants of individual tasks instead of a decision
space of entire system configurations, thus drastically re-
ducing the number of configurations to be explored and
analyzed, and hence the exploration time. Also, it evaluates
potential system configurations using dynamic run-time
mathematical power consumption and die temperature
estimation models, which have a very small execution time.
Implementation of Explorer on the ARM Cortex-A9 core of
Zynq XZ7Z020 device shows that the total execution time to
select the final configuration in the worst-case scenario for
an example system, i.e., where longest possible algorithmic
processing would be required, is ≈ 130 μs. Extrapolating it

to larger systems still results in an execution time in the
order of ms. *is demonstrates the suitability of Explorer to
be used by systems in run-time for self-survival against
multiple dynamic system constraints.

Data Availability

*e data used to support the findings of this study are
available in the manuscript.

Conflicts of Interest

*e authors declare no conflicts of interest.

References

[1] N.Wiener, Cybernetics: Or the Control and Communication in
the Animal and the Machine, *eMIT Press, Cambridge, MA,
USA, 1965.

[2] D. Sharma, L. Kirischian, and V. Kirischian, “Run-time ad-
aptation method for mitigation of hardware faults and power
budget variations in space-borne FPGA-based systems,” in
Proceedings of the 2017 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), Pasadena, CA, USA, 2017.

[3] D. Sharma, L. Kirischian, and V. Kirischian, “Run-time
mitigation of power budget variations and hardware faults by
structural adaptation of FPGA-based multi-modal SoPC,”
Computers, vol. 7, p. 52, 2018.

[4] D. Sharma, V. Kirischian, and L. Kirischian, “On-chip thermal
balancing using dynamic structural adaptation of FPGA-
based multi-task SoPCs for space-borne applications,” in
Proceedings of the 2019 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), Colchester, UK, 2019.

[5] V. Dumitriu, L. Kirischian, and V. Kirischian, “Mitigation of
variations in environmental conditions by SoPC architecture
adaptation,” in Proceedings of the 2015 NASA/ESA Conference
on Adaptive Hardware and Systems (AHS), Montreal, Canada,
2015.

[6] A. D. Pimentel, “Exploring exploration: a tutorial introduc-
tion to embedded systems design space exploration,” IEEE
Design & Test, vol. 34, no. 1, pp. 77–90, 2017.

[7] M. Belwal and T. S. B. Sudarshan, “A survey on design space
exploration for heterogeneous multi-core,” in Proceedings of
the 2014 International Conference on Embedded Systems
(ICES), Coimbatore, India, 2014.

[8] C. Piotr and A. Jaszkiewicz, “Pareto simulated annealing,” in
Proceedings of the 12th International Conference on Multiple
Criteria Decision Making, pp. 297–307, Hagen, Germany,
1997.

[9] G. Palermo, C. Silvano, and V. Zaccaria, “Discrete particle
swarm optimization for multi-objective design space explo-
ration,” in Proceedings of the 2008 11th EUROMICRO Con-
ference on Digital System Design Architectures, Methods and
Tools, Parma, Italy, 2008.

[10] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo,
“Ant colony heuristic for mapping and scheduling tasks and
communications on heterogeneous embedded systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 29, no. 6, pp. 911–924, 2010.

[11] M. Palesi and T. Givargis, “Multi-objective design space ex-
ploration using genetic algorithms,” in Proceedings of the 10th
International Symposium on Hardware/Software Codesign.
CODES 2002, Estes Park, CO, USA, 2002.

26 International Journal of Reconfigurable Computing

[12] T. Givargis, F. Vahid, and J. Henkel, “System-level exploration
for Pareto-optimal configurations in parameterized system-
on-a-chip,” IEEE Transactions on Very Large Scale Integration
Systems, vol. 10, no. 4, pp. 416–422, 2002.

[13] C. Pilato, D. Loiacono, F. Ferrandi, P. L. Lanzi, and D. Sciuto,
“High-level synthesis with multi-objective genetic algorithm:
a comparative encoding analysis,” in Proceedings of the 2008
IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), Hong Kong, China,
2008.

[14] F. Ferrandi, P. L. Lanzi, D. Loiacono, C. Pilato, and D. Sciuto,
“A multi-objective genetic algorithm for design space ex-
ploration in high-level synthesis,” in Proceedings of the 2008
IEEE Computer Society Annual Symposium on VLSI, Mont-
pellier, France, 2008.

[15] P. van Stralen and A. Pimentel, “Fitness prediction techniques
for scenario-based design space exploration,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 32, no. 8, pp. 1240–1253, 2013.

[16] D. Sharma and L. Kirischian, “A method for run-time pre-
diction of on-chip thermal conditions in dynamically
reconfigurable SoPCs,” International Journal of Reconfig-
urable Computing, vol. 2021, Article ID 8818788, 20 pages,
2021.

[17] V. Dumitriu and L. Kirischian, “SoC self-integration mech-
anism for dynamic reconfigurable systems based on collab-
orative macro-function units,” in Proceedings of the 2013
International Conference on Reconfigurable Computing and
FPGAs (ReConFig), Cancun, Mexico, 2013.

[18] V. Dumitriu and L. Kirischian, “SoPC self-integration
mechanism for seamless architecture adaptation to stream
workload variations,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 24, no. 2, pp. 799–802, 2016.

[19] V. Dumitriu, A framework and method for the run-time on-
chip synthesis of multi-mode self-organized reconfigurable
stream processors, Ph.D. thesis, Ryerson University, Toronto,
Canada, 2015.

[20] D. Sharma, V. Dimitriu, and L. Kirischian, “Architecture
reconfiguration as a mechanism for sustainable performance
of embedded systems in case of variations in available power,”
Applied Reconfigurable Computing (ARC 2017), Springer,
Berlin, Germany, 2017.

[21] H. Tabkhi and G. Schirner, “Application-guided power gating
reducing register file static power,” IEEE Transactions on Very
Large Scale Integration Systems, vol. 22, no. 12, pp. 2513–2526,
2014.

[22] M. Hosseinabady and J. L. Nunez-Yanez, “Run-time power
gating in hybrid ARM-FPGA devices,” in Proceedings of the
2014 24th International Conference on Field Programmable
Logic and Applications (FPL), Munich, Germany, 2014.

[23] D. You and K.-S. Chung, “Quality of service-aware dynamic
voltage and frequency scaling for embedded GPUs,” IEEE
Computer Architecture Letters, vol. 14, no. 1, pp. 66–69, 2015.

[24] M. U. K. Khan, M. Shafique, and J. Henkel, “Power-efficient
workload balancing for video applications,” IEEE Transac-
tions on Very Large Scale Integration Systems, vol. 24, no. 6,
pp. 2089–2102, 2016.

[25] G. Kornaros and D. Pnevmatikatos, “Dynamic power and
thermal management of NoC-based heterogeneous MPSoCs,”
ACM Transactions on Reconfigurable Technology and Systems,
vol. 7, no. 1, pp. 1–26, 2014.

[26] S. D. Carlo, G. Gambardella, P. Prinetto, D. Rolfo, and
P. Trotta, “Satta,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 8, no. 1, pp. 1–22, 2015.

[27] Y. H. Lu, L. Benini, and G. De Micheli, “Low-power task
scheduling for multiple devices,” in Proceedings of the 8th
International Workshop on Hardware/Software Codesign, San
Diego, CA, USA, 2000.

[28] P. Yang, P. Marchal, C. Wong et al., “Managing dynamic
concurrent tasks in embedded real-time multimedia systems,”
in Proceedings of the 15th International Symposium on System
Synthesis, 2002, Kyoto, Japan, 2002.

[29] M. Qiu, Z. Chen, L. T. Yang, X. Qin, and B. Wang, “Towards
power-efficient smartphones by energy-aware dynamic task
scheduling,” in Proceedings of the 2012 IEEE 14th Interna-
tional Conference on High Performance Computing and
Communication 2012 IEEE 9th International Conference on
Embedded Software and Systems, Liverpool, UK, 2012.

[30] K. Ganeshpure and S. Kundu, “Performance-driven dynamic
thermal management of MPSoC based on task rescheduling,”
ACM Transactions on Design Automation of Electronic Sys-
tems, vol. 19, no. 2, pp. 1–33, 2014.

[31] L. Ost, M. Mandelli, G. M. Almeida et al., “Power-aware
dynamic mapping heuristics for NoC-based MPSoCs using a
unified model-based approach,” ACM Transactions on Em-
bedded Computing Systems, vol. 12, no. 3, pp. 1–22, 2013.

[32] A. Rodŕıguez, J. Valverde, C. Castañares, J. Portilla,
E. de la Torre, and T. Riesgo, “Execution modeling in self-
aware FPGA-based architectures for efficient resource man-
agement,” in Proceedings of the 2015 10th International
Symposium on Reconfigurable Communication-Centric Sys-
tems-on-Chip (ReCoSoC), Bremen, Germany, 2015.

[33] K.-W. Lin and Y.-S. Chen, “Online thermal-aware task
placement in three-dimensional field-programmable gate
arrays,” in Proceedings of the 2015 Conference on Research in
Adaptive and Convergent Systems, Prague, Czech Republic,
2015.

[34] XILINX, XAPP1088: Correcting Single Event Upsets in Virtex-
4 FPGA Configuration Memory, XILINX, San Jose, CA, USA,
2009.

[35] C. Bolchini, A. Miele, and C. Sandionigi, “A novel design
methodology for implementing reliability-aware systems on
SRAM-based FPGAs,” IEEE Transactions on Computers,
vol. 60, no. 12, pp. 1744–1758, 2011.

[36] R. Salvador, A. Otero, J. Mora, E. d. l. Torre, L. Sekanina, and
T. Riesgo, “Fault tolerance analysis and self-healing strategy of
autonomous, evolvable hardware systems,” in Proceedings of
the 2011 International Conference on Reconfigurable Com-
puting and FPGAs, Cancun, Mexico, 2011.

[37] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Index,” in
Digital Systems Testing and Testable Design, pp. 647–652,
Wiley-IEEE Press, Hoboken, NJ, USA, 2009.

[38] H. Zhang, L. Bauer, M. A. Kochte et al., “Module diversifi-
cation: fault tolerance and aging mitigation for runtime
reconfigurable architectures,” in Proceedings of the 2013 IEEE
International Test Conference (ITC), Anaheim, CA, USA,
2013.

[39] X. Iturbe, K. Benkrid, A. T. Erdogan et al., “R3TOS: a reliable
reconfigurable real-time operating system,” in Proceedings of
the 2010 NASA/ESA Conference on Adaptive Hardware and
Systems, Anaheim, CA, USA, 2010.

[40] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, T. Arslan, and
I. Martinez, “Runtime scheduling, allocation, and execution of
real-time hardware tasks onto Xilinx FPGAs subject to fault
occurrence,” International Journal of Reconfigurable Com-
puting, vol. 2013, Article ID 905057, 32 pages, 2013.

[41] A. Biedermann, S. A. Huss, and A. Israr, “Safe dynamic
reshaping of reconfigurable MPSoC embedded systems for

International Journal of Reconfigurable Computing 27

self-healing and self-adaption purposes,” ACM Transactions
on Reconfigurable Technology and Systems, vol. 8, no. 4,
pp. 1–22, 2015.

[42] V. Dumitriu, L. Kirischian, and V. Kirischian, “Run-time
recovery mechanism for transient and permanent hardware
faults based on distributed, self-organized dynamic partially
reconfigurable systems,” IEEE Transactions on Computers,
vol. 65, no. 9, pp. 2835–2847, 2016.

[43] V. Dumitriu, L. Kirischian, and V. Kirischian, “Decentralized
run-time recovery mechanism for transient and permanent
hardware faults for space-borne FPGA-based computing
systems,” in Proceedings of the 2014 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), Leicester, UK, 2014.

[44] A. Vallero, A. Carelli, and S. Di Carlo, “Trading-off reliability
and performance in FPGA-based reconfigurable heteroge-
neous systems,” in Proceedings of the 2018 13th International
Conference on Design Technology of Integrated Systems in
Nanoscale Era (DTIS), Taormina, Italy, 2018.

[45] S. Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta,
and A. Vallero, “A novel methodology to increase fault tol-
erance in autonomous FPGA-based systems,” in Proceedings
of the 2014 IEEE 20th International On-Line Testing Sympo-
sium (IOLTS), Platja d’Aro, Spain, 2014.

[46] S. D. Carlo, P. Prinetto, and A. Scionti, “A FPGA-based
reconfigurable software architecture for highly dependable
systems,” in Proceedings of the 2009 Asian Test Symposium,
Taichung, Taiwan, 2009.

[47] S. Di Carlo, A. Miele, P. Prinetto, and A. Trapanese, “Mi-
croprocessor fault-tolerance via on-the-fly partial reconfi-
guration,” in Proceedings of the 2010 15th IEEE European Test
Symposium, Prague, Czech Republic, 2010.

[48] G. B. Wigley and D. A. Kearney, “Research issues in operating
systems for reconfigurable computing,” in Proceedings of the
2002 International Conference on Engineering of Reconfig-
urable System and Algorithms, pp. 10–16, Las Vegas, NV,
USA, 2002.

[49] M. Eckert, D. Meyer, J. Haase, and B. Klauer, “Operating
system concepts for reconfigurable computing: review and
survey,” International Journal of Reconfigurable Computing,
vol. 2016, Article ID 2478907, 11 pages, 2016.

[50] X. Iturbe, K. Benkrid, C. Hong et al., “R3TOS: a novel reliable
reconfigurable real-time operating system for highly adaptive,
efficient, and dependable computing on FPGAs,” IEEE
Transactions on Computers, vol. 62, no. 8, pp. 1542–1556,
2013.

[51] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, and
T. Arslan, “Microkernel architecture and hardware abstrac-
tion layer of a reliable reconfigurable real-time operating
system (R3TOS),” ACM Transactions on Reconfigurable
Technology and Systems, vol. 8, pp. 1–35, 2015.

[52] H. K.-H. So and R. Brodersen, “A unified hardware/software
runtime environment for FPGA-based reconfigurable com-
puters using BORPH,” ACM Transactions on Embedded
Computing Systems, vol. 7, no. 2, pp. 1–28, 2008.

[53] D. Göhringer, M. Hübner, E. N. Zeutebouo, and J. Becker,
“CAP-OS: operating system for runtime scheduling, task
mapping and resource management on reconfigurable mul-
tiprocessor architectures,” in Proceedings of the 2010 IEEE
International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), Atlanta, GA, USA,
2010.

[54] A. Agne, M. Happe, A. Keller et al., “ReconOS: an operating
system approach for reconfigurable computing,” IEEE Micro,
vol. 34, no. 1, pp. 60–71, 2014.

[55] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and
R. Lauwereins, “Designing an operating system for a het-
erogeneous reconfigurable SoC,” in Proceedings of the 2003
International Parallel and Distributed Processing Symposium,
Nice, France, 2003.

[56] M. D. Santambrogio, V. Rana, and D. Sciuto, “Operating
system support for online partial dynamic reconfiguration
management,” in Proceedings of the 2008 International
Conference on Field Programmable Logic and Applications,
Heidelberg, Germany, 2008.

[57] K. Jozwik, H. Tomiyama, M. Edahiro, S. Honda, and
H. Takada, “Rainbow: an OS extension for hardware multi-
tasking on dynamically partially reconfigurable FPGAs,” in
Proceedings of the 2011 International Conference on Recon-
figurable Computing and FPGAs, Cancun, Mexico, 2011.

[58] C. Steiger, H. Walder, and M. Platzner, “Operating systems
for reconfigurable embedded platforms: online scheduling of
real-time tasks,” IEEE Transactions on Computers, vol. 53,
no. 11, pp. 1393–1407, 2004.

[59] J. A. Clemente, I. Beretta, V. Rana, D. Atienza, and D. Sciuto,
“A mapping-scheduling algorithm for hardware acceleration
on reconfigurable platforms,” ACM Transactions on Recon-
figurable Technology and Systems, vol. 7, pp. 1–27, 2014.

[60] R. Pellizzoni and M. Caccamo, “Real-time management of
hardware and software tasks for FPGA-based embedded
systems,” IEEE Transactions on Computers, vol. 56, no. 12,
pp. 1666–1680, 2007.

[61] P.-A. Hsiung, C.-H. Huang, J.-S. Shen, and C.-C. Chiang,
“Scheduling and placement of hardware/software real-time
relocatable tasks in dynamically partially reconfigurable
systems,” ACM Transactions on Reconfigurable Technology
and Systems, vol. 4, pp. 1–32, 2010.

[62] D. De Sensi, M. Torquati, and M. Danelutto, “A reconfigu-
ration algorithm for power-aware parallel applications,” ACM
Transactions on Architecture and Code Optimization, vol. 13,
no. 4, pp. 1–25, 2016.

[63] É. Sousa, F. Hannig, J. Teich, Q. Chen, and U. Schlichtmann,
“Runtime adaptation of application execution under thermal
and power constraints in massively parallel processor arrays,”
in Proceedings of the 18th International Workshop on Software
and Compilers for Embedded Systems, Sankt Goar, Germany,
2015.

[64] M. Ullmann, W. Jin, and J. Becker, “Hardware enhanced
function allocation management in reconfigurable systems,”
in Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium, Denver, CO, USA, 2005.

[65] G. Wassi, M. E. A. Benkhelifa, G. Lawday, F. Verdier, and
S. Garcia, “Multi-shape tasks scheduling for online multi-
tasking on FPGAs,” in Proceedings of the 2014 9th Interna-
tional Symposium on Reconfigurable and Communication-
Centric Systems-on-Chip (ReCoSoC), Montpellier, France,
2014.

[66] S. M.-K. Gueye, E. Rutten, and J.-P. Diguet, “Autonomic
management of missions and reconfigurations in FPGA-
based embedded system,” in Proceedings of the 2017 NASA/
ESA Conference on Adaptive Hardware and Systems (AHS),
Pasadena, CA, USA, 2017.

[67] K. Vipin and S. A. Fahmy, “Mapping adaptive hardware
systems with partial reconfiguration using CoPR for Zynq,” in
Proceedings of the 2015 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), Montreal, Canada, 2015.

[68] K. Loukil, N. Ben Amor, and M. Abid, “Self adaptive
reconfigurable system based on middleware cross layer ad-
aptation model,” in Proceedings of the 2009 6th International

28 International Journal of Reconfigurable Computing

Multi-Conference on Systems, Signals and Devices, Djerba,
Tunisia, 2009.

[69] W. Fornaciari, D. Sciuto, C. Silvano, and V. Zaccaria, “A
sensitivity-based design space exploration methodology for
embedded systems,” Design Automation for Embedded Sys-
tems, vol. 7, no. 1-2, pp. 7–33, 2002.

[70] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau,
D. C. Cronquist, and M. Sivaraman, “PICO: automatically
designing custom computers,” Computer, vol. 35, no. 9,
pp. 39–47, 2002.

[71] G. Snider, “Spacewalker: automated design space exploration
for embedded computer systems,” Technical report HPL-
2001-220, Hewlett-Packard Laboratories, Palo Alto, CA, USA,
2001.

[72] B. C. Schafer and K. Wakabayashi, “Divide and conquer high-
level synthesis design space exploration,” ACM Transactions
on Design Automation of Electronic Systems, vol. 17, no. 3,
pp. 1–19, 2012.

[73] G. Mariani, V. Sima, G. Palermo, V. Zaccaria, C. Silvano, and
K. Bertels, “Using multi-objective design space exploration to
enable run-time resource management for reconfigurable
architectures,” in Proceedings of the 2012 Design, Automation
& Test in Europe Conference & Exhibition (DATE), Dresden,
Germany, 2012.

[74] S. M. Logesh, D. S. H. Ram, and M. C. Bhuvaneswari, “Multi-
objective optimization of power, area and delay during high-
level synthesis of DFG’s—a genetic algorithm approach,” in
Proceedings of the 2011 3rd International Conference on
Electronics Computer Technology, Kanyakumari, India, 2011.

[75] M. Holzer, B. Knerr, and M. Rupp, “Design space exploration
with evolutionary multi-objective optimisation,” in Proceed-
ings of the 2007 International Symposium on Industrial Em-
bedded Systems, Costa da Caparica, Portugal, 2007.

[76] P. V. Huong and N. N. Binh, “An approach to design em-
bedded systems by multi-objective optimization,” in Pro-
ceedings of the 2012 International Conference on Advanced
Technologies for Communications, Hanoi, Vietnam, 2012.

[77] J. Madsen, T. Stidsen, P. Kjærulff, and S. Mahadevan, “Multi-
objective design space exploration of embedded system
platforms,” in From Model-Driven Design to Resource Man-
agement for Distributed Embedded Systems, vol. 225,
pp. 185–194, Springer, Berlin, Germany, 2006.

[78] G. Palermo, C. Silvano, and V. Zaccaria, “ReSPIR: a response
surface-based Pareto iterative refinement for application-
specific design space exploration,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 28, no. 12, pp. 1816–1829, 2009.

[79] G. Mariani, A. Brankovic, G. Palermo, J. Jovic, V. Zaccaria,
and C. Silvano, “A correlation-based design space exploration
methodology for multi-processor systems-on-chip,” in Pro-
ceedings of the 47th Design Automation Conference, Anaheim,
CA, USA, 2010.

[80] Xilinx Inc, Vivado Design Suite User Guide Partial Reconfi-
guration, Xilinx, San Jose, CA, USA, 2018.

[81] Intel, Intel Quartus Prime Pro Edition User Guide Partial
Reconfiguration, Intel, Santa Clara, CA, USA, 2021.

[82] Xilinx Inc, Zynq-7000 SoC Technical Reference Manual,
Xilinx, San Jose, CA, USA, 2021.

International Journal of Reconfigurable Computing 29

