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MODELING, SIMULATION AND OPTIMIZATION OF
ELECTRORHEOLOGICAL FLUIDS

R.H.W. HOPPE:2 AND W.G. LITVINOV 2

1. INTRODUCTION

Electrorheological fluids are concentrated suspensioredeatrically polarizable par-
ticles of small size in the range of micrometers in non-catidg or semi-conducting
liquids such as silicone oils. Under the influence of an oatectric field, the particles
form chains along the field lines followed by a coalescenci@fchains into columns in
the plane orthogonal to the field due to short-ranged patisrdrising from charge-density
fluctuations. The formation of the chains is a process whippkns in milliseconds,
whereas the aggregation to columns occurs on a time scaléstlager by an order of
magnitude. On a macroscopic scale, the chainlike and ca@ustructures have a signi-
ficant impact on the rheological properties of the suspe@ssitn particular, the viscosity
increases rapidly with increasing electric field strengtthie direction perpendicular to the
field. The fluid experiences a phase transition to a visctiplagte, and the flow shows a
pronounced anisotropic behavior. Under the influence gelatresses, the columns break
into continuously fragmenting and aggregating volatileiciures which tilt away from
strict field alignment. As a result, the viscosity decreases the fluid flow behaves less
anisotropic. The electrorheological effect is reversibk, the viscosity decreases for de-
creasing electric field strength such that for vanishingl fiétength the fluid behaves again
like a Newtonian one. The fast response to an outer electfit find the reversibility of
the effect make electrorheological fluids particularlyaattive for all technical applications
which require a controllable power transmission.

Although the discovery of the electrorheological effeatrisdited to WINSLOW [1947]
(cf. also WINSLOW [1949, 1962]), it has already been obsergrperimentally by
PRIESTLEY [1769] during the second half of the eighteentiitersy and by DUFF [1896]
and QUINKE [1897] at the end of the nineteenth century. HeaueWINSLOW was the
first scientist who conducted quantitative experimentsuspensions of silica gel particles
in oils of low viscosity. He reported fibration parallel teetklectric field with a solid-like
behavior of the suspension at field strengths larger 8y mm. In his experiments, he
also observed that the yield stress, i.e., when the shesssss proportional to the shear
rate, is proportional to the square of the electric fieldregtk.

WINSLOW'’s work did not immediately launch tremendous reskaxctivities in the
area of electrorheological fluids. In fact, it took roughlyenty to thirty more years,
when the availability of modern, high-resolution measugahtechnology on one hand and
more advanced and powerful computing facilities on the ottaad enabled researchers
to conduct detailed experimental studies and to perforransige numerical simulations
(see BLOCK and KELLY [1988], BLOCK et al. [1990], BSE [1998], BEDOSE and
TRENDLER [2001], CLERCX and BOSSIS [1993], CONRAD et al. 19, DEINEGA
and VINOGRADOV [1984], GAST and ZUKOSKI [1989], HANAOKA etla [2002],
INOUE and MANIWA [1995], KHUSID and ACRIVOS [1995], KIMURA €al. [1998],
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FIGURE 1.1. Formation of chains aligned with the field (left) and ag-
gregation to sheets (right)

KLASS and MARTINEK [1967a,b] and KLINGENBERG et al. [198HLINGEN-
BERG and ZUKOSKI [1990], LEMAIRE et al. [1992], MARSHALL etla [1989],
MOKEEV et al. [1992], RHEE et al. [2003], SHULMAN and NOSOV 985], STAN-
GROOM [1977, 1983], STANWAY et al. [1987], TAO and SUN [1991WOROBEVA
etal. [1969], WHITTLE [1990], WEN et al. [2003], YU and WAN [200) ZHAO et
al. [2002]). The experimental work focused on the creatibthe chainlike and colum-
nar structures (see KLINGENBERG and ZUKOSKI [1990], MARTaNd ANDERSON
[1996], MARTIN et al. [1998a], Ql and WEN [2002]) (cf. Figureli(left)) up to the for-
mation of sheets (cf. Figure 1.1 (right)) and body-centéedichgonal crystal lattices (see
DASSANAYAKE et al. [2000]) (cf. Figure 1.2) as well as on thgndimics of the process
(cf., e.g., ADOLF and GARINO [1995], FOULC et al. [1996], KNGENBERG [1998],
KLINGENBERG and ZUKOSKI [1990], KLINGENBERG et al. [2005ARTIN et al.
[1998b], PFEIL et al. [2002], TAM et al. [1997], UGAZ et al. 994], WHITTLE et
al. [1999], ZHAO and GAO [2001]). The measurements have Ipeeformed using, e.g.,
confocal scanning laser microscopy (DASSANAYAKE et al. (QRJ), two-dimensional
light scattering techniqgues (MARTIN et al. [1998b]), andclaar magnetic resonance
imaging (UGAZ et al. [1994]).

FIGURE 1.2. Body-centered tetragonal crystal lattice in the »gngl
(left) and the xz-plane (right)
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The potential industrial applicability of electrorheoical fluids in automotive applica-
tions (BAYER [1998], BUTZ and STRYK [2001], COULTER et al. 923], FILISKO
[1995], GARG and ANDERSON [2003], GAVIN [2001], GAVIN et al.[1996a,b],
HARTSOCK et al. [1991], HOPPE et al. [2000], JANOCHA et al. 9¢6], LORD
[1996], PEEL etal. [1996], SIMS etal. [1999], STANWAY et dl1996], WEYENBERG
et al. [1996], ZHAO et al. [2005]), aerospace applicatioBERG and WELLSTEAD
[1998], LOU et al. [2001], WERELEY et al. [2001]), food prosi#sy (DAUBERT et
al. [1998]), geophysics (MAKRIS [1999], XU et al. [2000]ifd sciences (KLEIN et al.
[2004], LIU et al. [2005], MAVROIDIS et al. [2001], MONKMANNEet al. [2003a,b],
TAKASHIMA and SCHWAN [1985]), manufacturing (KIM et al. [2EB]), military appli-
cations (DEFENSE UPDATE [2004]), and nondestructive tgs(MAVROIDIS [2002])
caused the US Department of Energy to issue a research rassess electrorheological
fluids (DOE [1993]) and popular scientific journals such aig8me and Nature to publish
overview articles (HALSEY [1992], WHITTLE and BULLOUGH [129). Further re-
ferences covering various aspects of experimental workiativeg efforts, and applications
of electrorheological fluids can be found in BOSSIS [2002)QH[2001], TAO and ROY
[1995].

The experimental work was always accompanied by the deratapof physically con-
sistent, mathematical models, their analysis, numerinallations, and model validations
on the basis of available data from measurements and siongat Roughly speaking,
one has to distinguish between microstructural models¢hvbdmbine electrostatics (see
JONES [1995]), microhydrodynamics (cf. KIM and KARRILA [29]), and liquid state
theory (see CACCANO et al. [1999]; cf. also LARSON [1999], KASZEWICZ
[1999]), and macroscopic models based on continuum fielorige (cf., e.g., RAJAGO-
PAL and TRUESDELL [2000], TRUESDELL and NOLL [1965], TRUE&DL and
TOUPIN [1960]).

The simplest microscale models assume the electrorhealdlyiids to consist of mono-
disperse, neutrally buoyant hard dielectric spheres digplein a Newtonian continuous
phase thus neglecting small conductivities in both phases; impurities in the contin-
uous phase, and triboelectric effects. Idealized elegttiospolarization methods obtain
the electrostatic potential via Laplace’s equation and pnatien the motion of the particles
by Newton’s equation which requires the proper specificatibthe total force exerted
on a particle by taking into account the interparticle ferc&ince the exact solution is
unavailable and the computation of all possible interpktforces is cumbersome, the
system is simplified by the point-dipole approximation (S&NES [1995], KIM and
KLINGENBERG [1997], PARTHASARATHY and KLINGENBERG [1996PFEIL and
KLINGENBERG [2004]) assuming that two spheres of the sarre db not change their
charge distributions. The resulting force equation onlpeatels on the distance of the
particles, the angle between them, the patrticle size, artieproperties of the induced
electric field. The results of the model differ by an order afgnitude from experimen-
tally available data, since the dipole moment of the pasticdnhances the polarization.
This has been accounted for in PARTHASARATHY and KLINGENBER1996] by a
modified point-dipole approximation and by providing mpitie models (see CONRAD et
al. [1991], CLERCX and BOSSIS [1993]) which are based onrsdwdectric field equa-
tions (up to four), whereas the patrticle interaction is perfed for an N particle cluster
allowing the consideration of particles in lattice struesisuch as body-centered tetrago-
nal crystal lattices. The dipole-induced dipole model in &t WAN [2000] represents
a further development of the multipole models in so far aglihiés spheres of different



4 R.H.W. HOPPE AND W.G. LITVINOV

sizes. Maxwell-Wagner polarization due to accumulatedg#sbetween the interface of
the particles and the continuous phase has been incorgonaRARTHASARATHY and
KLINGENBERG [1996] by assuming a point dipole model for thigerfacial polariza-
tion. The Maxwell-Wagner model in KHUSID and ACRIVOS [199%ither acknowl-
edges effects of the disturbance field between particles.

Microstructural models based on energy-type methods hesme therived in BONNECAZE
and BRADY [1992a,b]. They take into account hydrodynamid alectrostatic particle
interactions using Stokesian dynamics and a model for #ngtrelstatic energy. The latter
one is determined from the capacitance matrix of the suggp@n¥he models allow sim-
ulations of monolayers of particles for a wide range of th@raf viscous to electrostatic
forces as described by the Mason number. The macroscopilogyecan be deduced from
the simulations. In accordance with experimental resitlishows that for large electric
field strengths there is a pronounced Bingham-type behafittre suspension with a dy-
namic yield stress that can be related to jumps in the elgtetiio energy. Numerical simu-
lations based on microscale models are typically of mobeadynamics type (cf, e.g., HU
and CHEN [1998], MELROSE [1992], MELROSE and HAYES [1993AC0 and SUN
[19914a], ZHAO and GAO [2001]) using methodologies from ALNEnd TILDESLEY
[1983].

The microstructural features of electrorheological fldidse been used to derive mo-
dels for a description of the macroscopic properties (af.., KLINGENBERG [1993],
PARTHASARATHY et al. [1994], PARTHASARATHY and KLINGENBER [1995a,b,
1999], PFEIL et al. [2003], SEE [1999, 2000], VERNESCU [2DGRANG and XIAO
[2003]). On the other hand, macroscopic models have beeingiot by phenomenolog-
ical approaches within the framework of mixture theory (R#eJAGOPAL [1996], RA-
JAGOPAL et al. [1994]) and classical continuum mechanics (efer to ATKIN et al.
[1991] as one of the first attempts in this direction (cf. afStKIN et al. [1999])).
Since electrorheological fluids exhibit a Non-Newtoniamfloehavior, significant efforts
have been devoted to the derivation of appropriate cotisgtaquations relating the stress
tensor to the rate of deformation tensor by taking into antdioe influence of the elec-
tric field. We mention the pioneering work by RAJAGOPAL and VHMAN [1992,
1995] (see also ENGELMANN et al. [2000]) and the systemaéatment by RUZICKA
[2000] providing a constitutive equation of power law tyged also BUSUIOC and CIO-
RANESCU [2003], ECKART [2000], RAJAGOPAL and RUZICKA [200)1 Other
continuum-based approaches try to incorporate micro- aggbstale effects by using in-
ternal variables (DROUOT et al. [2002]), transverse igprtBRUNN and ABU-JDAYIL
[1998, 2004]), polar theory (ECKART and SADIKI [2001]), antbre general rate-type
models (SADIKI and BALAN [2003]). In this contribution, weilvadopt the constitutive
laws that have been suggested, analyzed and validated ifrH@Rd LITVINOV [2004]
and LITVINOV and HOPPE [2005] for isothermal and non-isathal electrorheological
fluid flows which take into account the orientation of the aitlp field of the flow with
respect to the outer electric field.

The content of this chapter is as follows: In section 2, wecangcerned with balance
equations and constitutive laws for isothermal and notheonal electrorheological fluid
flows and with the existence and/or uniqueness of solutibmsection 3, we deal with
numerical methods both for steady and time-dependent flowasfl Finally, in section 4
we present numerical simulation results for some seledesdrerheological devices and
also briefly address optimal design issues.
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2. MATHEMATICAL MODELS FOR ELECTRORHEOLOGICAL FLUID FLOWS

In this section, we study balance equations and consttuéiws for isothermal and
non-isothermal electrorheological fluid flows. After a gert@resentation in 2.1, in 2.2
we consider stationary isothermal fluid flows based on therglad Bingham-type models
from HOPPE and LITVINOV [2004]. In particular, we shall berm@rned with existence
and/or unigueness results for a regularized version ifllZa8d for the non-regularized
model in 2.2.2. In 2.3, we deal with time-dependent problemtsereas 2.4 and 2.5 are
devoted to the derivation of model equations for non-isatta fluid flows and the dis-
cussion of the existence of solutions following the apphogcLITVINOV and HOPPE
[2005]. We refer to DUVAUT and LIONS [1976], GALDI [1994], GRWINSKI [2004],
LADYZHENSKAYA [1969], TEMAM [1979] for general aspects ratied to the mathe-
matical modelling, the analysis and the numerical solutibfiuid mechanical problems
and to LITVINOV [2000] for a general treatment of optimizaii problems for nonlinear
viscous fluids.

2.1. Balance equations and constitutive laws for isothermal flud flows. We consider
isothermal incompressible electrorheological fluid flows) := Q x (0,7),T € Ry,
where() is supposed to be a bounded Lipschitz domaiRind = 2 or d = 3. We denote

by u(z,t) = (ui(z,t), - ,uaq(z, )7, (z,t) € Q, andp(z,t), (z,t) € Q, the velocity

of the fluid and the pressure, whereér, t) = (Ey(x,t), -, Eq(x, )7, (z,t) € Q,
stands for the electric field. We use the notatign= du/dt for the partial derivative of

u With respect to time. Then, referring poe R, as the density of the fluid, t6 : Q@ —

R? as a forcing term, and to = o(u,p, E) as the stress tensor, the balance equations
(conservation of mass and momentum) are given by

(2.1) p(ut+(u~V)u) ~Vo=/f inQ,
(2.1b) Vou=0 inQ,

which have to be complemented by properly specified initial lboundary conditions and
a constitutive law relating the stress tensdpo the independent variablesp andE.
Neglecting magnetic fields, the electric field can be comsid@s quasi-static so that for
eacht € [0, T] the fieldE(-, t) can be computed b¥ (-, t) = —V(-,t) as the gradient of
an electric potentia) (-, t) satisfying Laplace’s equation
(2.2) V- (eV¥(-,t) =0 inQ,
which also has to be complemented by appropriate boundaittans. Here¢ stands for
the dielectric permittivity.

For the discussion of the constitutive law, we further derimt

— 1 T
2.3) fw) = 5 (Vu+(Vu) )
the rate of deformation tensor (linearized strain tensod) tay
(2.4) I(u) = |le(u)|%

the second invariant of the rate of deformation tensor, @her| » stands for the Frobe-
nius norm. For shear flows, we referto= 7(u, E) as the shear stress which is a field
dependent function of the shear rate

(2.5) v o= 27 (u) 2.



6 R.H.W. HOPPE AND W.G. LITVINOV

In case of flow modes such as Couette flow or Poiseuille flowyavtte electric field is
perpendicular to the fluid velocity, constitutive equatiarf the form

(2.6) o = —pl + 2¢0(I(u),|E]) e(u) .

have been widely used. Heke; R, x Ry — R stands for a viscosity function depending
on the second invariant of the rate of deformation tensortlaaelectric field strength.

The most commonly used constitutive law for simple flow madéisat of a Bingham-type
fluid ATKIN et al. [1991], FILISKO [1995], PARTHASARATHY anKLINGENBERG
[1996], RHEE et al. [2003], STANWAY et al. [1996], WHITTLE, AIN and BUL-

LOUGH [1995]. For stresses above a field dependent yieldstre(E) the viscosity
functiony is given by

(2.7) p(I(u), [E]) = no(E) + 272 7o(E) I(u)™'/2,

wheread (u) = 0 for |o| < oy (E). Here,no(E) is a field dependent constant and E)
denotes the shear stress for vanishing shearntate

A related model, which can be viewed as some extension of ithghBm fluid model,
is that of CASSON [1959]. Fdw| > oy (E), the viscosity function
(2.8) p(I(u), [B]) =no(E) + 272 1(E) I(u)""/? +

+ 2%/ (no(E) 7o(E))"/? T(u)~*/*
is used, whereas agaiifu) = 0 for |o| < oy (E).

The singular character of the viscosity functiptin the Bingham and Casson fluid mo-
dels requires to formulate the equations of motion (2.2&)k() as variational inequalities.
A possible way to circumvent the difficulties associatechwiite non-smooth behavior of
the viscosity function is by regularization which in caseadingham model gives rise to
(2.9) e(I(u),|El) = no(E) + 272 70(E) (k + I(u)"'/2.

Here, x stands for a positive regularization parameter. For thes@asnodel (2.8), one
may use an analogous regularization. The implications imiguthe classical models and
the regularized models will be discussed in a more generdaégblater in this section.

Other frequently used constitutive equations for non-Newen fluids assume a power
law behavior (SIGNIER et al. [1999]). For electrorheoladifiuids, this leads to a vis-
cosity functiony of the form

m(E) 7™y < 3(B)
m(E) v B~y > 0 (E)

wherem(E),n(E) are field dependent material parameters g(d®) stands for a field
dependent shear rate. Regularizations of the power law Incadebe used as well. In this
case, the viscosity function (2.10) is replaced by

(2.11) o(I(u),|E]) = m(E) (k+~2)ME)-D/2 w50,

(2.10) o(I(u), |E]) = {

We note that in case of steady shear flows in axially symmgaa@mnetrical configura-
tions the use of the previously mentioned models in the égpusbf motion (2.1a),(2.1b)
leads to scalar nonlinear equations that can be solved aeahytically. However, a seri-
ous drawback of the models is that the electric field strepfffoccurs as a parameter in
the constitutive laws thus assuming a homogeneous digtibaf the electric field. This
assumption is justified for simple flows in geometrical sef$, where the flow occurs be-
tween conventionally shaped electrodes at small distance éach other (cf. subsections
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4.1 and 4.2), but due to experimental evidence does not haddr more general config-
urations (cf. e.g., ABU-JDAYIL [1996], ABU-JDAYIL and BRUN [1995, 1996, 1997,
2002] and EDAMURA and OTSUBO [2004], GEORGIADES [2003], QIE0 [1997],
OTSUBO and EDAMURA [1998, 1999)).

One of the first systematic approaches towards a generabptearological model based
on continuum field theories has been undertaken by RAJAGO&Ad. WINEMAN in
RAJAGOPAL and WINEMAN [1992] (cf. also RAJAGOPAL and WINEMAN1£€95]),
where the constitutive law is assumed to be of the form

(212) 0= —pl + W E®E + aze(u) + age’(u) +
+ a5 (eWE®E+E®e(u)E) + ap ((°EQ® E+ E®ce(*u)E) .
Here, ® denotes the tensor product angd = «; (1, - ,15),2 < i < 6, are scalar

functions of the six invariants
I :=tr(EE") | Iy :=tr(e(u)) , Iz :=tr(e*(u)) , Iy :=tr(e3(u)) ,
Is =tr(e(WE®E), Iy :=tr(*(u)E® E) ,
where tr stands for the trace of a matrix.
Motivated by RAJAGOPAL and WINEMAN [1992, 1995], an extend®mhgham-type
fluid model
(2.13) o = —pI + noe(u) + |e(w) E| 7} |E| (5(u)E RE+E® s(u)E)

has been used in ENGELMANN et al. [2000], HOPPE and MAZURKEMI [2001],
HOPPE et al. [2000] in combination with a potential equafarthe electric potentiap
(F = —V4) to provide numerical simulations of steady electrorhgimlal fluid flows.

In the spirit of RAJAGOPAL and WINEMAN [1992, 1995], RUZICKA 2D00] has
developed a model that takes into account the interactitwadss the electric field and the
fluid flow (see also RAJAGOPAL and RUZICKA [1996, 2001]). Thenstitutive equation
is of power law type

(2.14) o=—pl + 7 ((1 Fle(u)[?) /2 - 1) E®E+
+ (v2 73 EP) (1 + [e(u)[)) "2 e (u) +
+ ya(1 + [e(u)[?) =D/ (6(u)E QE+E® eE) ,

whereq;,1 < i < 4, are constants and : Ry — R, is a smooth function ofE|?
satisfying

(2.15) 1 < 7o < 7(|Ef) < 1o
Here,rq andr, are the constants
= i EP?) | reo:= i E]?).
ro:= Hm (B, rei= lim r([EF)

As far as the electric field’ is concerned, the quasi-static form of Maxwell’s equations
ERINGEN and MAUGIN [1989], LANDAU and LIFSHITZ [1984] can hesed such that

E can be computed via the gradient of an electric potentigfgatg an elliptic boundary
value problem.

Due to the power law (2.14), the existence of weak solutidnthe equations of mo-
tion (2.1a),(2.1b) both in the case of steady and time-dég@nflows has to be studied
within the framework of generalized Lebesgue and generdlRobolev spaces (for re-
lated work see also FREHSE, MALEK and STEINHAUER [1997], INOV [1982],
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MALEK, NECAS and RUZICKA [1996], MALEK and RAJAGOPAL [2007MALEK,
RAJAGOPAL and RUZICKA [1995]).

A further development of Ruzicka’s approach by means of aengled Casson model has
been studied in ECKART [2000].

Motivated by experimental evidence (CECCIO and WINEMAN [4PSSHULMAN
and NOSOV [1985]), in HOPPE and LITVINOV [2004] a constitugilaw

(2.16) o = —pl + 2p(I(u), |E], p(u, E))e(u)

has been suggested where the viscosity functiorR ; x R x [0,1] — R additionally
depends on the orientation of the electric fiéldvith respect to the velocity of the fluid
flow as described by a functign: S¢ x S¢ — [0, 1] with S¢ denoting the d-dimensional
unit sphere. We refer to as the velocity of the electrode. Then, for- @ # 0 andE # 0
the functionu : S§ x S¢ — [0, 1] is defined according to

u—i B

lu—al |E[’

where- stands for the Euclidean inner productif. The functiony = u(u, E) is an
invariant which is independent of the choice of the refeeeframe and the motion of

the frame with respect to the electrode. For a further disionswe refer to HOPPE and
LITVINOV [2004].

(2.17) wlu, B) =

Shear stress (Pa)

Shearrate, 0.0 1.5 2.0 25 3.0
~v [per sec]| Vimm  kV/mm kV/imm kV/Imm  kV/mm
1.0 x10? 30.2 563.0 979.0 1360.0 1720.
2.0x10? 48.0 650.0 1070.0 1500.0 1900.
4.0 x10? 69.3 695.0 1140.0 1600.0  2030.
6.0 x102 83.5 700.0 1170.0 1640.0  2070.
8.0x10% | 100.0 712.0 1180.0 1670.0  2110.
1.0x10% | 110.0 723.0 1200.0 1676.0  2140.
1.2x10% | 115.0 727.0 1210.0 1686.0  2160.
1.4x10% | 120.0 731.0 1220.0 1693.0 2180.
1.6x10% | 225.0 735.0 1240.0 1696.0  2190.
1.8x10% | 230.0 740.0 1250.0 1706.0  2200.
2.0x10% | 235.0 743.0 1254.0 1710.0 2210.

OO OO OoOOo0O0o0CoTco©

TaBLE 1. Experimental data (shear stress - shear rate dependence)
at various electric field strengths for the commercially ilade
electrorheological fluid RHEOBAY TP Al 3565 (from BAYER [194])

For specific electrorheological fluids, the viscosity fuocty has to be determined
based on experimental data for the relationghig 7(v) between the shear stressand
the shear rate. For various electric field strengths, these data are ysasdilable at
discrete pointsy; € [Vmin, Ymaz),0 < i < N, With 0 < Yinin < Ymaz < oo (cf. Table
1). Complete cubic spline interpolands are then used focdhstruction of flow curves in
[Ymin, Ymaz] (Cf. Figure 2.3), and the flow curves are continuously ex¢end(v,,q., o)
by straight linesr(y) = a; + a7y with coefficientsa;,1 < i < 2, depending onE|
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andu(u, E'). The extension t¢0, v,,i») can de done such that eithef0) = = # 0 or
7(0) = 0. In the former case, the viscosity function takes the form
(218)  (I(u), |E|, u(u, E)) = b(|E, plu, E)I(u) "2 + e(I(u),|E|, u(u,e)) ,
whereb(|E|, u(u, E)) = 2= /275 andc : R, x R, x [0,1] — R is a continuous function.

REMARK 2.1. The viscosity functiog as given by(2.18)represents an extended Bingham-
type fluid model (cf.(2.7). Due to its singular behavior fof (v) = 0, the equations
of motion(2.1a),(2.1b)have to be formulated as variational inequalities (see satien
2.2.2below).

247

3.0 kV/mm
20! K/

S
2.5kvimm
g 16} /ff
?
£ 12) /// 2.0 kv/mm
®
g 08¢}
n - /_/—/—/— 1.5 kV/imm
0.4+

00ler———— — —  00Vimm
0 2 4 6 8 10 12 14 16 18 20

Shear rate [19sec ']

FIGURE 2.3. Flow curves generated by cubic spline interpolandsdas
on the experimental data from Table 1 showing the effect effibld
strength (50Hz, AC) and the shear raten the shear stressat 40°C.

On the other hand, if the flow curves are extendedDtey,,;,) such thatr = 0 for
~ = 0, the viscosity function can be written as

(2.19) (I (u), |E|, p(u, E)) = b(| B, p(u, E))(5+1(u) " + e(I(u), | E|, p(u, e))

where0 < k < 1landb: Ry x [0,1] = R, ¢: Ry x Ry x [0,1] — R are continuous
functions.

REMARK 2.2. The viscosity functiop of the form(2.19)can be interpreted as an exten-
sion of the regularized Bingham fluid mod2I9).

As far as the function$, c in (2.18) and (2.19) are concerned, we assume that the
following conditions are satisfied:

(A1) cis acontinuous function of its arguments, ies C(R; x Ry x [0,1]), and
there exist positive constants, 1 < ¢ < 2, such that for aly;, y2,y3) € Ry x
R, x [0,1] there holds

c1 < c(yr,y2,y3) < ca.
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Moreover, for fixed(y2,y3) € Ry x [0, 1], the functione(-, y2,y3) : R — R is
continuously differentiable, i.ec(-, y2,y3) € C'(R,), and there exist positive
constants;, 3 < i < 4, such that for all; € R, there holds

e

) > ¢
62./1 (y17y2 y3) = &3,

C(y17y27y3) + 2

Jc

e

(A2) bis a continuous function of its arguments, ik.c C(Ry x [0,1]), and there
exists a positive constan such that for al(y;,y2) € Ry x [0, 1] there holds

0 < b(y1,y2) < cs5.

REMARK 2.3. The first condition i A ;) and condition(A2) imply that for the models
(2.18) and (2.19) the viscosity functiorp is bounded from below by a positive constant
and that for the regularized Bingham-type mo¢lL9)the viscosity functiop is bounded
from above as well, whereas(I(u), |E|, u(u, E)) — +oo asI(u) — 0 for the extended
Bingham-type modéR.18)

The second condition ifA 1 ) implies that for fixed values F| andu(u, E) the derivative
of the function/ (v) — G(v) := 4(¢(I(v), |E|, u(u, E)))?1(v) is positive, where (v)
is the second invariant of the stress deviator. The physiegning of this condition is that
in case of shear flow the shear stress increases with inergadiear rate.

The third condition in(A ) imposes a restriction on the functiéia/dy; for large values
of y1 which reflects the experimentally observable behavior eftedrheological fluids
that their structure is destroyed at large shear rates.

(Y1,92,93) 1 < cq -

On the basis of the assumptiof&;) and(Az), existence and uniqueness results for
steady and time-dependent isothermal incompressibléretkeological fluid flows will
be established in the subsequent subsections 2.2 andyr®yreh the theory of monotone
operators (BREZIS [1973], BROWDER [1968], LIONS [1969], MIM [1962], VAIN-
BERG [1964], VISIK [1962], ZEIDLER [1990]).

We note that under some weaker monotonicity assumptiongxatence result has
been derived in DREYFUSS and HUNGERBUEHLER [2004] usingtiemry of Young
measures (see, e.g., VALADIER [1994]). We further refer REYFUSS and HUNGER-
BUEHLER [2004].

Since the macroscopic behavior of electrorheological $lugdlargely determined by
physical processes occurring on a microscale, a naturabagpip to develop physically
consistent macroscopic models is to use homogenizatidmigees within a multiscale
framework. Such an approach has been undertaken in VERNE®D02] (cf. also
BANKS et al. [1999] for a similar approach in case of magnatatogical fluids).

2.2. Boundary value problems for steady isothermal incompressile fluid flows based

on regularized Bingham-type flow models.We adopt standard notation from Lebesgue
and Sobolev space theory (cf., e.g., ADAMS [1975], GRISVARDB85], LIONS and
MAGENES [1968]). In particular, for a bounded Lipschitz daim c R¢,d € N, we
refer toLP(2)?,1 < p < oo, as the Lebesgue spaces with norins|,, , and denote by
(-,)o.o the inner product id.2(Q)¢. The space® ™?(Q)¢, m € N, stand for the Sobolev
spaces with norm§ - ||, .o, whereas¥ ="4(Q2)4,1/p + 1/¢ = 1,1 < p < oo, and
wm=1/p2(T)4 T := 9Q, refer to their dual and trace spaces, respectively>FarT, the
spacelV’y, *7(Q)¢ denotes the space of functionse W*(£2) with vanishing trace
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ony, i.e.,vly = 0, andW~/PP(£)d is the space of functiong € Wm—1/p»(T)d
such thaty = v|y, for somev € W™2(Q)4 with v|r\y, = 0. Furthermore, we refer to
H(div; Q) := {v € L2(Q)YV -v € L*>(Q)} andH (curl; Q) := {v € L2(Q)|V x v €
L2()4}, if d > 3, and H(cur; Q) := {v € L2(Q)?|V xv € L2(Q)}, if d = 2,
as the Hilbert spaces of square integrable vector-valuedibins with square integrable
divergence and rotation, respectively, equipped with thedard graph norm. We denote
by H(div’; Q) and H (curl’; Q) the subspaceH (div’; Q) := {v € H(div;Q)|V -v = 0}
andH (curl’; Q) := {v € H(curl;Q)|V x v = 0}.

Given a bounded Lipschitz domaihc R¢ with boundanyl’ = T pUT n, T pNLy = 0,
and functions

(2.20) Fer? @)t , gel*Tn)! , uPew!2A(rp)?,

we consider the following boundary value problem for stedadgompressible, isother-
mal electrorheological fluid flows under the Stokes appraiom, i.e., we ignore inertial
forces,

(2.21a) V.o =f inQ,

(2.21b) Vou=0 inQ,

(2.21c) u = uP? onTpx(0,T),
(2.21d) v-o =g only,,

where the stress tenseris supposed to satisfy one of the constitutive equations tiee
previous subsection.

As far as the electric field is concerned, we assume that the boundafgaturesn
pairs of electrodes and counter-electrodes occupying spesetd™s, I'¢ C I, T'¢ N I'§ =
0,1 <i < n,n € N, with voltagesU; applied to the electrodd%. Since we assume the
electric fieldE to be quasi-static, it satisfids € H(curl’; Q) andeE € H(div’; ©2), where
e stands for the electric permittivity. Hence, there existekectric potential) € W2(Q)

satisfying the elliptic boundary value problem

(2.22a) V- (eVY) =0 inQ,

U; OI’IF;3 .
(2.22b) w—{ 0 onre 1= n,
(2.22¢) v-eVyp =0 onT\ [ J(TEUTY).

=1
Since the coupling between the electric field and the fluidippssed to be unilateral, the
boundary value problem (2.22a)-(2.22c) can be solved bbéord.

THEOREM2.1. AssumdJ; € Wy *(I%),1 < i < n, ande = (e;j)¢,_y, &5 € L¥(9),
1 <i,j < d, such that for almost alt: €
d
Z Eij(l‘)fifj > CM|§|2 s f S Rd ,a>0.
i,j=1
Then, the boundary value problem (2.22a)-(2.22c) admitsigue weak solutiod €
Wore (@), T := Ui, T¥.

_ Proof. Due to the assumption on the voltagésthere existy) € W12(Q) such that
flre = U; andf|re = 0,1 < 4 < n. Defininga(v,w) := [, Vv - Vwdz,v,w € V :=
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Wol_j;'(ﬂ), T = UL, ([ UT¢), the V-ellipticity of the bilinear forma(-, -) implies the
existence and uniquenesstbE V satisfying

a(f,v) = —a(0,v) , veV.
Then,d = § + f is the unigue weak solution of (2.22a)-(2.22c). O

2.2.1. The regularized extended Bingham fluid modat study the existence and unique-
ness of a solution of the boundary value problem (2.21&21(®. for the electrorheologi-
cal fluid model (2.19) with regularization parameterWe show that a weak solution of
(2.21a)-(2.21d) satisfies a system of variational equatidisaddle point type and establish
an existence result by means of appropriate Galerkin appedions in finite dimensional
subspaces of the underlying function spaces. To this endgtve

(2.23) X = W (@ . V= XnH(dv;Q)

and denote byi € W12(Q)? N H(div’; Q) the function with tracei|r,, = u”. Moreover,
we introduce a functional,, : X x X — R,k € R4, and an operatof. : X — X*
according to

(2.24a) Je(v,w) = 2/c(|E\,M(a+U,E))(K+I(ﬁ+w))1/2 dr |
Q

(2.24b) (L(v),w) = 2/b([((ﬁ + ), |El, w(@+ v, E))e(d+v) : e(w) dx
Q

where(-, -} stands for the dual pairing betweédh and X .
For x > 0, the functionalJ,, is Gateaux differentiable oX with respect to the second
argument. Indeed, the partiab@aux derivativég%(v, ) e L(X,X*),v € X, is given

by
dJ,
(225 (5

(U, w)7 Z> =

2/C(|E|,u(ﬂ+v,E))(/£+I(ﬂ+w))71/26(ﬂ—|—w) ce(z)de, w,z e X .
Q
We further define an operatdr,;; X x X — X*, k > 0, by

(2.26) M, (v,v) = %J” (v,v) + Lv) , veX.
w

We consider the problem: Finde V such that

(2.27) (Mi(v,v),2) = (f+9,2) , z€V,

where we formally viewf + g as an element ok *. We will refer tou = @ + v as a weak
solution of (2.21a)-(2.21d). If a paitu, p) is a solution of (2.21a)-(2.21d), by Green’s
formula it can be easily seen that= u — @ solves (2.27). We can state (2.27) equivalently
as a system of variational equations of saddle point typeg i€ouple the incompressibility
condition by means of a Lagrange multiplier i} (Q2). Denoting byB € L(X, L?(f2))

the divergence operator, i.8p = V - v,v € X, this leads to the following system: Find
(v,p) € X x L?(Q) such that

(2.28a) (M (v,0),2) — (B*p,2)
(2.28b) (Bv,q)o,0

<f+g7z>?Z€X7
0,qcL*9).



MODELING, SIMULATION AND OPTIMIZATION OF ELECTRORHEOLOGICAL FLUIDS 13

LEMMA 2.1. Letv € V be a solution of (2.27). Then, there exists a unigue L?(Q)
such that(2.28a),(2.28ajolds true. Conversely, ifv,p) € X x L?(Q) is a solution of
(2.28a),(2.28a)then the paira + v, p) satisfies (2.27). Moreover, if p anda are smooth
functions, ther{a + v, p) solvey(2.28a),(2.28h)

Proof. The proof follows readily from the properties of the divange operato3. In
particular, denoting by’ the orthogonal complement &f in X and byV? the polar set

VO = leX | (lw)=0,weV},

the operato3 is an isomorphism front’+ onto L?(£2), whereas its adjoinB* is an iso-
morphism fromZ2(Q2) onto V° (see BELONOSOV and LITVINOV [1996] and Lemma
6.1.1 in LITVINOV [2000]). We note that the case : H}(Q)¢ — L2(Q2) has been
addressed, e.g., in BREZZI and FORTIN [1991], GIRAULT andMRART [1986], LA-
DYZHENSKAYA and SOLONNIKQV [1976]. (I

The existence of a solutiofu, p) € X x L?(Q) of (2.28a),(2.28b) will be shown by a
Galerkin approximation with respect to sequeng®s }y and{Q,, } v of finite dimensional
subspaces that are limit denseXnand L%(Q), i.e.,

(2.29a) lim 1g)f( lv—vpllx =0 , veX,
(2.29b) fim nf p—palloq =0 . pel*Q).
N—00 ln n

We refer toB,, € L(X,,Q%),n € N, as the discrete divergence operator

(230) (annvpn)(),Q = /an ‘v, dr v, €X, , Pn € Qn s
Q

and assume that for eaehe N the discrete LBB-condition

B
(2.31) inf  sup \BnlmPrlog

> 5>0
Pn€Qn v, X, an”X ”pn HO,Q

is satisfied. As can be easily established, under the abeuengsion the discrete diver-
gence operatorB,,,n € N, inherit the properties of their continuous countergart

LEMMA 2.2. Assume tha{ X, }n and {Q,,}n are finite dimensional subspacés, C
X,n € N,andQ,, C L*(Q2),n € N,. Moreover, letB,,,n € N, be the discrete divergence
operator as given by2.30)and suppose that the discrete LBB-conditf@rB1)holds true.
Then,B,, is an isomorphism frontKer(B,,))* onto Q% and B; is an isomorphism from
Q,, onto the polar setKer(B,,))° such that

(2.32) 1Boll < 574, BT < B7H, neN.

We consider the following approximating system of finite dimsional variational equa-
tions: Find(v,,pr) € X, X Qn,n € N, such that

(233a) <Mn(vnavn)»zn> - <B:mezn> = <f +gvzn> , Zn € Xn
(233b) (ann7Qn)0,Q - 07 qn € Qn .

The main result of this subsection states the solvabilitthef system (2.33a),(2.33b)
for eachn € N and the existence of a subsequefitecC N such that the associated

sequencd (v, p,) }n Of solutions converges to a pdir, p) € X x L?(Q2) which solves
(2.28a),(2.28b).



14 R.H.W. HOPPE AND W.G. LITVINOV

THEOREM 2.2. Assume that the conditiof?\), (Az) are fulfilled andf, g, u¢ satisfy
(2.20) Further, let{ X, }y and{@,, } be nested sequences of finite dimensional subspaces
X, C X,neN,andQ, C L?*(Q),n € N,i.e.,

(234) X, C Xn+l , QnC Qn+1 , neN,

that are limit dense inX and L?(Q2) and suppose that the discrete LBB-condit{@B1)
holds true. Then, for any > 0 andn € N there exists a solutiofw,,, p,) € X, X Qn

of the discrete saddle point problef2.33a),(2.33h) Moreover, there exist a subsequence
N ¢ Nand a pair(v,p) € X x L?(Q2) such that

(2.353) v, —=v iNX (N 3n-—o0),
(2.35b) pn—p INL*Q) (N 2>n—o0).
The pair(v,p) € X x L?(Q) is a solution of(2.28a),(2.28h)

Theorem 2.2 will be proved by a series of Lemmas which enabléoudeduce the
existence of a bounded sequek¢e,,, p,,) }n of solutions of (2.33a),(2.33b) and to pass to
the limit.

Forz = (Z, 21, 22) With 2 € Wh2(Q),2z; € L2 (Q) andz, € L>®(Q), 22(z) € [0,1]
f.a.a.z € Q, we defineL, : X — X* as the operator

2.36)  (L.(v),w) := 2/b([(v +3), 2 m)e(v+ ) e(w) de s vyw e X |
Q

LEMMA 2.3. Under the assumptiofA+ ), the operatorL, as given by(2.36)is a conti-
nuous, strongly monotone operator frakhinto X*. In particular, forv,w € X there
holds

(2.37a) | L2(v) — La(w)]| x-
(2.37b) (L.(v) = La(w),v —w) > 1 o —wl%k,
whereC, := (2¢o + 4cq) and-yy, 1= 2min(cy, c3) with ¢;, 1 <14 < 4, from (Ay).

Cr v —wlx,

IV IA

Proof. Forv, w € X we sety := v — w and consider the function: [0, 1] — R which
for an arbitrarily, but fixed choseln € X is given by

(t) = /b([(z b wttg), 21, 20)e(F 4+ w+ tg) s e(h) da, t€ [0,1].
Q

Obviously,r satisfies
1
(1) — 7(0) = 5 (L2(v) = Lo(w), h) .

Sincer € C*([0,T)), classical calculus tells us that for soge (0, 1)

(1) = 7(0) + T(8),
where(dr/dt)(€) is given by
(2.38)
T = [ (MG+ v+ ) +

Q
2@%(1(2 +w+£9), 21, 22)(e(Z + w + £q) : (q))(e(Z + w + £q) : dh”) -
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In view of the inequality
ez +w+Eq) s e(q)] < (I(Z+w+&q)*(1(g)'?
and taking(A1)(¢) and(A1)(i%¢) into account, (2.37a) can be easily deduced.
On the other hand, we defime R, x Q@ — R_ by
0b
n(a,x) = (@(O{,Z](lﬁ),zg(l'))_ , aeRy ze.
1
Then, if we setv := I(Z + w + £q) and choosé = ¢ in (2.38), we obtain

%(g) > /(b(I(z+w+£q),z1,22)I(q)+
Q

29(a, 21(x), z2(2))(e(2 + w + £q) - 6((1))2) dr > min(cr, cs) [lal%

which proves (2.37b). The continuity of the operafgrfollows from the continuity of the
Nemytskii operator. O
In view of the representation of the partiabt@aux derivativé.J,, /0w by (2.25) and
assumptior{A,), for a given function
xeU = {¥eLy(Q)|d(z) <csfaaxecQ}

andv € W12(Q) we define an operatd,, : U x X — X* k > 0, according to

(2.39)  (Su(x,v),w) = /X(H—l—l(f/—l—v))*lﬂe(@—kv) ce(w)de, v,we X .
Q

LEMMA 2.4. Under the assumptiofA), for an arbitrarily, but fixed choser € U, the
operator S, (x, ‘), k > 0, with S,; as given by(2.39)is a continuous, monotone operator
from X into X*. In particular, there holds

(2.40a) 18k (x,v) = Sx (O w) | x+ < 25672 v —wlx , v,we X,
1/2
(2.40b) 15: 00 0)l|x- < (/f ar) " vex.
Q
Proof. We setv; := 0 + v, w; := 0 + w and definep,, : Ry — R,k > 0, by
(2.41) or(y) = % X(k+y) 2 yeRy.

Then, if we take

le(v1) : e(wi)] < (L)L (wn))"?
into account, it follows that
(2.42)

<SK(X5'U) —SK(X,’LU)7U—1U> = <SH(X’U) _Sn(Xaw)avl _w1> =
= 2 [ (a0 I(01) + pulllw) () -
Q

- (%(I(vl))+%(I(w1)))8(01)iﬁ(wl))dm >

- 2/ (nT@)) T @) = T (w) (@) ) (1) = I(wn)"/2) da

Q
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Now, for the functionp,, from (2.41) one easily finds

dos
dy

Consideringy(z) := ¢, (22)z, we have(di/dz)(z) = ¢x(22) + 2(des)(2?)2% which
is the left-hand side in (2.43) far?> = y. It follows that is @ monotonously increasing
function, and (2.42) implies the monotonicity of the operai,.(x, -). The boundedness
(2.40b) of S, (x, -) is an immediate consequence of

(S0, w)] <
X+ (1@ 4 0)) 7 2(L(6 4+ 0) V2 (I(w)/? dx <

(243)  ouly) +2—"=(y)y = %x(ﬁ+y)‘”2(1—(ﬁ+y)‘ly> >0,yeR,.

<

—

1/2
< x> dm) lwlx .

— 2
2

Finally, in view of

1 _ dpy, 1
orly) < gesn 2 Sy Wy < gesr Y2 yeRy,
the estimate (2.40a) can be deduced as in the proof of Lenfina 2. O

COROLLARY 2.1. Under the assumptions of Lemra assume thafv, } is a sequence
of elements,, € X,n € N, andv € X such that

v, — v iNX (n— o),
(2.44) v, — v a.e.inQ (n— o),
Vv, — Vv a.e.inQl (n— o0).

Moreover, suppose thdty,, }r is a sequence of elements € U,n € N, such that for
somey € U there holds

(2.45) Xn — X ae.inQ (n—o0).

Then, for any > 0 we have

(2.46) Sk(Xn,Vn) — Sk(x,v) INX* (n— o0).
Proof. Straightforward estimation from above yields

(2.47) 1% (Xn, vn) — Sk (X, v)llx+ <
< HSH(Xnvvn) - SK(X’!HU)”X* + ||Sn(Xn7U) - SK(X?”)HX* .

Due to (2.45), the second term on the right-hand side in j2ets to zero as — .
As far as the first term is concerned, fore X we have

(Sk(Xn,vn) — Sk (Xn,v),w) = /Xn ((H +1(0+ Un))—1/25(vn —v):e(w) +
Q

(I +v0) Y2 — (k4 15 +0)"V2)e(6 +0) - €(w)) dz ,
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from which we deduce
(248) ”Sn(Xna vn) - Sn(Xnvv)”X* S

< 2k 4+ 10+ v,)) (v, —v) da i
(Q/X + I+ ) +

=: 1

- (/ X (5 + 10 +0a) 72 = (5 + 10 +0)) 7215 + v) dl‘)m -
Q

=: I3
In view of the uniform boundedness of the sequefigg}n and (2.44), obviously; — 0
asn — oo. On the other hand, (2.44) also implies
I(0+wv,) = I(0+v) (n— o),
whencel, — 0 asn — oo by the Lebesgue theorem. Consequently, the first term on the
right-hand side in (2.47) tends to zeroras~ oo which allows to conclude. |
We are now in a position to provide the proof of Theorem 2.2.

Proof of Theorem 2.2f (v,,, p,) € X, X Qn,n € N, is a solution of (2.33a),(2.33b), then
v, € Ker(B,,) and

(2.49) (M (vn, vp), wn) + (L(vy), wn) = {f + g, wn) , w, € Ker(B,) .
By assumptior{Az), for « > 0 andw € X we have
aJ,
2. = =
(250) (5" (w,w),w)]

= 2| /c(\E|,,u(ﬁ+w,E))(H+I(ﬂ+w))71/2€(ﬂ+w) ce(w) dr| <
Q

IA

2/c(IEI,u(ﬂ+w)>(lf(w))1/2 dr < 2¢5[Q)"? [|wl|x -
Q
If we take assumptiofA ;) as well as (2.20) and (2.50) into account, it follows that for
someC; € R
ow) = (My(w,w),w) = {f +g,w) > |lw|x (2ei]w]x - 1),
whence
o(w) > 0 for |w||x > r:=0C1/(2¢).

Then, the corollary of Brouwer's fixed point theorem in GAJEXMYSt al. [1974] implies
the existence of a solutian, € Ker(B,,) of (2.49) which satisfies

(2.51) lonllx < [IL(on)lx- < Co , meN,

for some constar; > 0. Now, for¢ € X* let?,, :={|x,,n € N. Then,/,, € X and in
view of (2.49) we have

b (M (v, v) — (f +9)) € Ker(Bn)O .
By means of Lemma 2.2 we deduce the existence of a unigue(@,, such that
Brpn = bn(My(vn,vn) — (f +9))
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and the paifv,, p,) € X,, x @Q,, solves (2.33a),(2.33b). Taking advantage of assumption
(A2), (2.20),(2.51) and Lemmas 2.2 and 2.4 we obtain the bouredsdof the sequence
{pn}n, i-€., with some”5 > 0 there holds

(2.52) [pnlloe < C3 , neN.

Due to (2.51) and (2.52) there exist a subsequé¥fice N and elements* € X,p* €
L?(Q) as well ag;, 5 € X* such that

(2.53a) v, =0 InX (N3n—o0),
(2.53b) vy —v* INLAQ) (N 3n— o00),
(2.53c) v, —v* ae in) (Nsn-—oo),
(2.53d) pn—p" INLAQ) (N 3n— o),
(2.53e) L(v,) =47 inX* (N3n— o),
(2.53f) 0 (Un,vn) =05 INX* (N 2n— 00).

ow
In view of (2.29a),(2.29b) and (2.53a) as well as (2.53d33P we pass to the limit in
(2.33a),(2.33b) and obtain

(2.549) (lo+06-Bpw) = (f+gw),weX,
(2.54b) (V-v*,q)oa = 0, g€ L*(Q) ..
We note that the action of operatbrcan be written ad.(v) = L(w,w),w € X, where
the mappindw, z) — L(w, z) is from X x X into X* according to
(L(w, z),h) := 2/b(1(12 +2), |El,u(t+w,E))e(t+2) :e(h)dx, he X .
Q

Forn € N’ we define/,, € X* by

- 0Jx
2. = (= L —
(2.55) ln(w) <5’LU (Vn, vn) + L(vp, vn)
0Jy
— (= L — X.
(810 (Un7w) + (Un,U)),Un w> , WE
The previous results show
(2.56) lbh(w) >0 , weX,neN.
On the other hand, observing
0Jy 0Js ,
- - == . <
H aw (U7“w) aw (U ,’LU)HX —
~ ~ * 2 1/2
< 2( [ (clBLn(@+ v0n, ) = (Bl i +0", )Y d)
Q

assumptior{Az) in combination with (2.53b),(2.53c) and the Lebesgue theoyield
dJ, oJ. ., N ,
(2.57) a—w(vn,w) — 8—w(v ,w) INnX* (N'on—o0).

In a similar way, we obtain

(2.58) L(v,,w) — L(v*,w) inX* (N 3n— ).
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Taking (Byvn, pn)o.o = 0 into account, (2.33a) and (2.53a),(2.53d) imply

(2.59a) (M (v, vn),0n) = (f + g,0n) —
(f+g.v) (N>3n—o00),
(2.59b) (M (v, v5), w) — (B* X", w) +

+ {(f+gw) (N>n—o00),weX.

Consequently, passing to the limitin (2.55) and observing4a),(2.54b) as well as (2.56)-
(2.58),(2.59a),(2.59Db), it follows that

(4f+ 90" —w) -
0J
_ * * _ * %k * > )
<6w(v,w)—|—L(v,w) B*p*,v w))_O , weX
We choose) = u* — 7z wherer > 0 andz € X. The limit process — 0 results in
(2.60) (4f +9.2) = (Mu(w*,0") = B'p",2)) > 0.

Since this inequality holds true for alle X, we may replace by —z and deduce equality
in (2.60). We have thus shown that the pait, p*) € X x L?(Q) solves (2.28a),(2.28b).
O

For further existence results in case of stationary eldotrmogical fluid flows and for
studies of the regularity of solutions we refer to ETTWEIN &1dZICKA [2002] and to
ACERBI and MINGIONE [2002], BILDHAUER and FUCHS [2004].

With regard to the uniqueness of a solution of (2.28a),(2) 28 refer to HOPPE and
LITVINOV [2004]. We also note that electrorheological fluidws under conditions of
slip on the boundary have been studied in HOPPE et al. [208618r'VINOV [2007].

2.2.2. The extended Bingham-type electrorheological fluid modéd.deal now with the
solution of the boundary value problem (2.21a)-(2.21d)dorextended Bingham-type
electrorheological fluid model (cf. (2.18)) with viscosftynction

(261)  (I(u), Bl p(u, E)) = b(|E|, plu, ENI(w)"? + ¢(| |, p(u, E)) .

We assume that the functidrin (2.61) satisfie$A ), whereas the functionis subject to
the following assumption:

(A1) c¢: Ry x[0,1] — Ris a continuous, strictly positive, and uniformly bounded
function, i.e.,c € C(R4 x [0,1]), and there exist constants > 0 andcyg > 0
such that

cs < ¢(z1,22) < ¢g, 21,220 € Ry x [0,1].

We formulate (2.21a)-(2.21d) as a variational inequalityhe second kind (cf., e.g.,
GLOWINSKI et al. [1981]). To this end, we denote bye W2(Q)? N H(div’; Q) the
function with traceii|r,, = «”. Moreover, we introduce a functiondl: X x X — R and
an operatol : X — X* according to

(2.62a) J(v,w) = Q/b(IEI,u(fHv,E))I(ﬂer)l/2 dz ,

Q
(2.62b) (L(v),w) = 2/0(\E|,,u(ft +v,E))e(a+v) : e(w) dx,
Q
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where(, -) stands for the dual pairing betweéh and X.
For the constitutive equation (2.61), problem (2.27) camwli#en as the following varia-
tional inequality:
Findv € V such that for altv € V there holds
(2.63) J(v,w) — J(v,v) + (L(v),w —v) > (f+g,w—0).
The functionu = @ + v, wherev € V' is a solution of (2.63), is called a weak solution of
(2.21a)-(2.21d) for the constitutive equation (2.61).
We will prove the existence of a solutienc V' of (2.63) via an approximation of by
the functionalJ,, : X x X — R,k € Ry, as given by (2.24a), i.e., for a sequeres, }n
of regularization parameters, > 0,n € N, with x,, — 0 asn — oo we consider the
variational problem:
Findv,, € V such that for allv € V there holds
3.,
v
We further consider the related saddle point problem:
Find (v, ,px, ) € X x L%(Q) such that for alkw € X andq € L?(2) there holds

(2.64) (5, (W v, )y w0) + (L(vi, )y w) = (f + g, w) .

@65) (200, 0,) )+ (Lo, ) w) — (B'pe) = {4 g,u)

(2.65b) (Bvs,,q)oo = 0.

The existence result partially relies on the following feabout functionalal : U x X —
R, of the form

U(h,w) = /h[(w)1/2 dr , heU,weX.
Q
Here,U := {h € L>*(2)|0 < h(z) < ¢;0 a.e. inQ2} for somec;0 > 0.
LEMMA 2.5. For an arbitrarily chosen, but fixel € U, the functionall (h, ) : X — Ry
is a continuous convex functional. Moreover, for any seqadn,, }y of elements:,, €
U,n € N, and any sequencgw,, } of elementsv,, € X, n € N, such that fom — oo
(2.66) hp,—h aeinQ |, w,—=w InX,

there holds
liminf ¥ (h,, w,) > ¥(h,w).

n— oo

Proof. Assumew,, — w in X. In view of

/h[(wn — )2 dy < (/h2 dx)1/2 (/I(w" — w) dz)1/2,

Q Q Q
for n — oo we have

/h[(wn—w)1/2 dr — 0,
Q

/h[(wn —w)Y?dx > |/h[(wn)1/2 dx — /h[(w)1/2 dz|,
Q Q Q
whence

U(h,up) — Y(h,w),
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which proves the continuity of (%, -). For\ € [0, 1] andu, v € X there holds
TOu+ (1 =Xv) = I(Auw) + 221 =N e(u) s e(v) + I(1 — A)v) <

< (M@ + (- 010)?)”

which implies
U(h,Au+ (1= Xv) =

- /hI(/\u+(1—)\)v)1/2 de < NU(h,u) + (1 — A\)U(h,v),
Q

and thus proves the convexity @f(%, -). We have

(2.67a) U (hn,wy) = / (hI(wn)l/2 + (hy — h)I(wn)l/Q) d ,

Q
(267) | / (e — )T (w) V2 di| < [ — o [lwn]lx
Q

Due to (2.66) the right-hand side in (2.67b) goes to zera as ~o and hence, the con-
vexity and the continuity oft (1, -) as well as (2.67a),(2.67b) imply

liminf ©(h,,w,) = liminf U(h,w,) > ¥(h,w),

n— oo

which completes the proof of the lemma. O

THEOREM 2.3. Assume that the conditiorf\,)’, (Az) are fulfilled andf, g, u” satisfy
(2.20) Then, for eacln € N there exist a solution,,, € V of (2.64)and a function
Pr, € L2(2) such that the pai(v,, , p., ) solves the saddle point systé65a),(2.65h)
Moreover, there exist a subseque®eC N and a functiorv € V' such that
(2.68a) v, =v INX (N3n—o0),
(2.68b) Ve, — v INLAHQ)? (N 3n—o0).
The functiorv satisfieg2.63) Further, ifI(a +v) # 0 a.e. inf2, the functional

wr— J(v,w), weV,

is Gateaux-differentiable at the pointand there exists a functigne L?(2) such that for
all w € X there holds

(52 (0,0), w) + (D), w) — (Bpyw) = (] +g,u)

Proof. Theorem 2.2 yields both the existencegf € V satisfying (2.64) as well as the
existence op,,, € L?(Q2) such that the paifv,, , ., ) solves (2.65a),(2.65b). Moreover, it
follows from the proof of Theorem 2.2 that the sequefieg, } is bounded if/. Conse-
quently, there exist a subsequedeC N and a functiony € V such that (2.68a),(2.68b)
hold true. In view of Lemma 2.4, fow € V the functionalw — J,, (w,v) is convex,
whence

(2.69) J., (vg,,w) — Js, (s, , V) + {L(vg, ), w —vs,) — (f+g,w—v,, ) =
_ _<6J,€n
N ov

Assumption(A1)’, (2.68b) and the Lebesgue theorem imply that¥oB n — oo

(2.70) (| B, (@ + v, B))e(v) — (| Bl p(@ + v, E))e(w) in L*(Q),

(Vi s Vi )y W = Ve, ) + I, (Vi s ) = s,y (U, , Vs, ) > 0.

n
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whence by (2.68a)

(2.71) (L(vg, ), w) — (L(v),w) .
We define
@728) M = 2 [l i+ v, B (o) o
Q
@720)  MP i 2 [ C(E| i+ v, ENI,) da.
Q
such that
(2-73) <L<UK,,L)5UH”> = Mfgi) + Mlgi) .
Since (2.70) also holds true with replaced byi, (2.68a) implies that foN’ 5 n — oo
(2.74) MO 2 / 1B, (it + v, E))e(ii) : e(v) da .
Q

On the other hand, assumptidA )’ and (2.68b) imply that for anyw € L?(Q) and
N’ 5 n — oo there holds

(| B, (@ + v, s BN w0 — (e(| B, (@ + v, E)))Pw - in L2(Q) .
Consequently, (2.68a) gives

/(C(\Elau(ﬂ+vnn,E)))l/2€(vnn)w dz — /(C(IEW(@+U7E)))1/2€(v)w dz .
Q

whence
(2.75) (c(| B, p(@ + v, E))) P2 (0, ) = (e(| B, p(@ + v, E))) e (v) .
In view of (2.72b), (2.75) yields
(2.76) lim inf M{® > 2/c(\E|,,u(fL + v, E)I(v) dz
NS noo J
and hence, (2.73),(2.74) and (2.76) imply
(2.77) g/ng inf ( (Vi) V5, ) = (L(v),0) .
The Lebesgue theorem and (2.68b) also show thaffar n — oo there holds
(2.78) T, (U, , w) — J(v,w) .
We have
(2.79) T (Vs V) = Ty (0,00,) + 2 / (be,, — bo)(tin + I, )/ * dx
Q
where
b, = b|E], u@+ v, E)) , bo = b(E| p(@+v,E)),

I, = I(a+wv.,) , Ip:=I(a+v).
In view of

1/2 1/2
|/ (b, — bo)(kin + L, )2 da| < //{n—l—f (/|bﬁn—b0|2dx) ,
Q

Q
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(A2) and (2.68a),(2.68b) imply that fof > n — oo

(2.80) /(b,w —b0) (K + 1., )/?dz — 0.
Q

SinceJ,, (v,v,, ) > J(v, v, ), we have

(2.81) lim inf Jg, (v,v.,) > lUm inf J(v,v,,).

N’3 n—oo N’3 n—oo

Lemma 2.5 and (2.68a),(2.68b) give
(2.82) lim inf J(v,v.,) > J(v,v).

N/’ n—oo
Now, combining (2.79)-(2.82) results in
(2.83) lim inf J. (vs,,v,) > J(v,0).

N3 n—oo

(2.65b) and (2.68a) show € V, whereas (2.69),(2.71),(2.77),(2.78) and (2.83) imply
(2.63). Finally, if (@ + v) # 0, it is easy to verify the existence pfe L?(Q2)such that
(2.65a),(2.65b) hold true. O

2.3. Initial-boundary value problems for isothermal incompressible electrorheologi-
cal fluid flows. For I := [0,7] C R, and a closed subspate C H!(Q)4 we refer to

L2(I;V) as the space of functions: Q — R?%,Q := I x Q,withv(t,-) € Vfaatel
with norm o] 2y = (J; lo(t, )2 odt) /2.

Given a bounded Lipschitz domath ¢ R¢ with boundaryl’ = 9%, we refer toV and
H as the function spaces
Vi={veHQ'V-v=0} , H:={wel*Q)% V -w=0}.
Then, given functions
(2.84) fel>(r;H *()?* , «eH,

wheres = 1 for d = 2 ands = 3/2 for d = 3, we consider the following initial-boundary
value problem for incompressible, isothermal electrolgioal fluid flows

(2.85a) plus+(u-Viu) — V.o = f inQ,
(2.85b) Veu =0 inQ,
(2.85c) u=20 onIx(0,7T),
(2.85d) u(-,0) = u’ inQ.

Here, the stress tenseris supposed to satisfy either the constitutive law (2.18Rdt9).

In case of the regularized extended Bingham fluid model j248 introduce a nonlin-
ear operatod,, : V' — V* according to

(2.86) Ag(u) == (u-V)u + M, (u,u),
whereM,. (-, ) is given as in (2.26) with = 0. We are looking for a weak solution

ue LXL;V), uy € L*(I; H*(Q)%)
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of (2.85a)-(2.85d) such that for alle L2(I; V) andw € H

T T
(2.87a) pus vy dt + [ (Au(w),0)dt = [ (f.0) dt

[ | /
(2.87b) (u(-,0), w0 = (U w)oq -

THEOREM2.4. Assume thatA,), (A2) and(2.84)hold true, Then, the initial-boundary
value(2.85a)-(2.85dadmits a weak solution.

Proof. We provide a constructive existence proof by means of a &alapproximation
with respect to a sequené®, } of finite dimensional subspacé&s C V,n € N, that are

limit dense inV. We assumé/,, = spar{<p(1) : ,@%N”)} and look for a solution
Ny,

(2.88) un(t) = Y A0 (t) o
i=1

of the problem

du, . ‘ .
(2.89a) (0= o0 + (An(un) D) = (£40) 1< i < Ny,
(2.89b) 1, (0) = Pou®,

whereP, : H — V,, is theL? orthogonal projection ont®,,. We note that (2.89a),(2.89b)
represents an initial-value problem for a system of firseomtdinary differential equa-
tions. The assumptiorid\; ), (A2), guarantee the existence of a solution. Moreover, it fol-
lows that the sequencés,, }n and{ A, (u,,) }x are bounded id?(I; V) andL?(I; H~*(%)),
respectively. Consequently, there exist a subsequhceN and functions: € L?(I;V)
and¢* € L*(I; H=*(Q)) such that

U, —u* InL*(LV) (N 3n— o),
Ap(up) =0 InL*(I; H5(Q)) (N3n—o0).

Arguments from the theory of parabolic partial differehgguations (cf., e.g., LIONS
[1969]) show that forp € C§°(I; V') there holds

T T T
puspioa dt + [ (Ag(u), @) dt = [ (f,p)dt
-/ / /

which givesu € L%(I;V),u, € L*(I; H=%(2)) and implies that (2.87a) holds true, since
Cs°(I; V) is dense inL2(I; V). A similar reasoning based on an appropriate choice of a
test function allows to dedue€-, 0) = u°. O

We note that a generalization of Theorem 2.4 to the case ohioigeneous Dirichlet
datau = u” on¥ x I can be found in LITVINOV [2004].

On the other hand, if we consider the extended Bingham fluidahbased on the
viscosity function (2.18), we have to deal with a stronglylireear parabolic variational
inequality. Adopting the notation from subsection 2.2.2 are looking for a weak so-
lution w € L3(I;V),u; € L*(I; H—*()) of (2.85a)-(2.85d) in the sense that for all
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v € L?(I;V) andw € H there holds
T T

(2.90a) /(p(uuv—u dt —|—/ (u-V)u,v —u) dt +

0 0
T

/(J(um)—J(u,u))dt—i—/T(L(u)m—u dt > /Tfm—u
0 0

0
(2.90b) (u(-,0),w)o.0 = (U, w)o0 .

THEOREM 2.5. Assume thatA;)”, (A2) and (2.84) hold true. Then, the variational
inequality(2.90a),(2.90bhas a solution: € L2(I; V), u, € L*(I; H—*()).

Proof. We choos€ k., }v as a null sequence of positive regularization parametens. F
eachn € N, Theorem 2.4 guarantees the existence of a weak solutiof (2.85a)-(2.85d)
with respect to the regularized extended Bingham fluid m¢2idl9) (with x replaced by
kn). The boundedness of the sequetiag } in L?(I; V) infers the existence of a sub-
sequenc&’ C N and of a functioru € L?(I;V) such thatu,, — u(N' 3 n — o00) in
L?(I; V). Passing to the limit as in the proof of Theorem 2.3 allowstootude. O

2.4. Balance equations and constitutive laws for non-isothermancompressible elec-
trorheological fluid flows. Non-isothermal flows of non-Newtonian fluids have been stud-
ied in a series of papers mostly in the engineering liteeatuvith respect to industrially
relevant applications. Various laws of the temperatureesddpnce of the viscosity have
been assumed, e.g., a hyperbolic law for the variation oftbepsity or a Reynolds-type
relation. A rigorous mathematical analysis of non-isotherflow in a Bingham fluid can
be found in DUVAUT and LIONS [1971].

As far as electrorheological fluids are concerned, it iskatiwn by experimental evi-
dence that their operational behavior exhibits a deperelenche temperature (cf. BEN-
DERSKAIA et al. [1980], TABATABAI [1993], ZHIZKIN [1986]). Figure 2.4 displays
the temperature dependence of the shear stress (left) ahd ofirrent density (right) for
a polyurethane based electrorheological fluid under diffeoperational conditions, i.e.,
electric field strengths. Mathematical models for nonkisomal electrorheological fluid
flows based on a power law constitutive equation have beeliestin RUZICKA [2000]
(cf. also ECKART and SADIKI [2001], SADIKI and BALAN [2003])

Here, we follow the approach in LITVINOV and HOPPE [2005]. &sume a gene-
ral dependence of the viscosity function on the temperatumed consider the following
constitutive equation between the stress teasand the rate of strain tenser

(2.91) o = —pl + 2p(I(u),|E|, u(u, E),0)e(u) .

As in subsection 2.1y andp stand for the velocity and pressure of the fluid fldi) is
the second invariant of the rate of strain tendorefers to the electric field, ang(u, E)
is the square of the cosine of the angle between the velaottytee electric field.
The equations of motion and the incompressibility condifior the fluid flow have to be
completed by a thermodynamical balance equation which eatetluced from the energy
conservation law

et + u-Ve = o:¢e(u) — V-q+ fo,
wheree denotes the specific internal energyis the heat flux vector angl, stands for a
volumetric heat source/sink. As constitutive equationsaagime the linear Fourier law

= pcd , q = —kVO,
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FIGURE 2.4. Temperature dependence of the shear stress (lefthand t
current density (right) in electrorheological fluids (froBAYER
[1997a])

wherep, c andk refer to the density, the specific heat, and the thermal otivily. We
are thus led to the following coupled systemin= Q x (0,7

(2.92a) plug + (u-Vyu) — V-0 = f1,
(2.92b) Vou =0,
(2.92¢) pc(0r +u - VO) — EAO — 20(1(u), |E|, u(u, E),0)I(u) = fa,

where f; is a volumetric force on the fluid. The equations have to cetepl by appro-
priate initial and boundary conditions that will be disce$sn detail in the subsequent
subsections.

REMARK 2.4. We note that the impact of the electrical conductivity intttexmal balance
equation(2.92c)has been neglected, since electrorheological fluids aretrébally non-
conducting.

As far as the viscosity functiop is concerned, we will assume that the following condition
is satisfied:

(T1) ¢ isacontinuous function of its arguments, i ¢ C(R? x [0, 1] xR). For fixed
(y2,v3,94) € Ry x [0, 1] x R the functiony(-, y2, y3, ¥4) is continuously differen-
tiable inR ,i.e.,o(-, y2,y3,y4) € C*(R,). There exist positive constants 1 <
1 < 4, such that

ca > o(Y1,Y2,Y3,Y1) > c1,

0
o(y1,y2,Y3,ys4) + 2(%1(?;1,?/2,?;3,1/4) > c3,

IN

117 2, Y3, Y4 1 Cq4 .

The first condition in('Ty) requires non-vanishing viscosity for vanishing shear rate
and thus does not include Bingham-type electrorheolodiocal models. However, as in
subsection 2.1 we may consider viscosity functions of thenfo

(2.93) p(I(u), |El, p(u, E),0) =
= b(|E|, u(u, E),0)(k + L(u)) "2 + c((I(u), |El, u(u, B),6) ,
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wherex > 0, the functiorc is supposed to satisfiT'; ), and the functior is subject to the
assumption

(T2) bis acontinuous function of its arguments, iles C(Ry x [0,1] x R). There
exists a positive constani such that

Cs > b(y17y27y3) > 0.

The case: = 0in (2.93) refers to a generalized Bingham-type model for-isother-
mal electrorheological fluid flows, whereas> 0 can be interpreted as a regularization
thereof.

The physical relevance of these assumptions with respebetfluid flow has been dis-
cussed in subsection 2.2.

We consider the following modification of the thermal bakamgjuation (2.92c) which

gives rise to a non-local model:

(2.94) pc(0y +u - VO) — kEAG — 20(1(w)), |E|, u(u, E),0)I(Pg(u)) = fa.
Here Py € L(WH2(Q)4, C*°(Q)%), 3 > 0, is the regularization operator

(2.95) (Ps(v))(x) = /wg(\x — ) (Pe(v))(z') da’ , 2 € Q, v e WH2(Q),

Rd
wherePg € L(W2(Q)4, W12(R?)) is an extension operator ang; € C5°(R;) with
supdwg) C [0, 3] and [, wa(|z])dz = 1.
REMARK 2.5. The physical interpretation of the regularization operafe; in the thermal
balance equatiorf2.94)is that the dissipation of energy at a pointc ) only depends
on the rate of strain tensor in a small vicinity of the pointe Wote that non-local models

agree remarkably well with atomistic theories and experitakobservations (cf., e.g.,
ERINGEN [2002])

2.5. Boundary value problems for steady non-isothermal incompessible electrorhe-
ological fluid flows. We consider steady, non-isothermal, incompressiblereldeolog-
ical fluid flow and assum& c R< to be a bounded Lipschitz domain with boundary
suchthal" =Tp Ul N, T'p NIy = . We further suppose

(2.96) hel* (), fe L*(Q), ge L*(Ty)?,
uD c Wl/Q,Q(FD)d , eD c Wl/Q,Q(F)
to be given functions and consider the following boundady@groblem

(2.97a) Vie=fi , V-u=0 1inQ,
(2.97b) —xAO +u - VO + 200(I(u), | El, p(u, E),N)I(u) = fo inQ,
(2.97¢) v =u” onlp,
(2.97d) v.o =g only,,
(2.97¢) 0 =60 onT,

wherey = (pc) 'k andp = (pc)~!. Asin subsection 2.2 we assume a unilateral coupling
between the electric field and the flow field, i.e., we suppose thatis given by means
of an electrical potentiab which satisfies the boundary value problem (2.22a)-(2.22c)

We study the existence of a weak solution of (2.97a)-(2.9%&re the velocity is sup-
posed to be iWV12(Q)4 N H(div’; ), the pressurg in L?(Q2), and the temperaturgin
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Whr(Q)with1 < r < 2ford =2andl < r < 3/2for d = 3. In order to accommodate
tpe inhomogeneous Dirichlet bounda[y data (2.97c),(3,9ve define € W2(Q)? and
6 € Wb (Q) such thati|r,, = v andf|r = 0. We set

X = WRE (@ N HdV;Q) , oflx = (/(1@))2 dm)l/z

and consider the operators

N:X xWot(Q) = X* , A: X x Woik(Q) = W5 (Q), s =
which are defined according to

(2.98a) (N(,0),w) =

¢)
2/cp(I(ﬂ—i—v),|E|,u(ﬂ+v,E),0~+()5(ﬂ+v):s(w) de , |
Q

(2.98b) (Aw,),€) = X—l/((é+<)(a+w)-vg+

Q
+ 200(1(i +w), | B|, u(@ +w), 8 + ) I(a+ w)g) dz .

Here,(-, -) refers to the dual product betwedf and X in (2.98a) and to the dual product
betweenV —1:¢(Q) andW&f(Q) in (2.98b). For the ease of exposition, we will use the
same notation. The correct meaning will always follow safsitm the context.

Moreover, we refer td3 € £(X, L?(Q2)) as the divergence operatbw = V - v,v € X,.
We consider the following system of variational equations:

Find (v,p, 0) € X x L*(Q) x Wy{.(€) such that

(2.99a) (N(v,0),w) — (B*p,w) = (fi +g,w),weX
(2.99b) (Bv,q)o0 = 0, g€ L*(Q),
(2.99¢) (V0, Vo0 — (A(®,0),¢) = (f3,Qoq» ¢ € WoR(Q),

where(fs,()o.a = (f2,¢)o,0 — (V@, V(¢)o,o. For notational convenience, we denote by
# both the solution of (2.97a)-(2.97¢) and (2.99a)-(2.98a¥ill be clear from the context
which one is considered.

LEMMA 2.6. Assume thatu,p, ) is a classical solution 0{2.97a)-(2.97e) Then, the
triple (w—a, p, 60— 5) solveq2.99a)-(2.99c)Conversely, ifv, p, 0) is a sufficiently smooth
solution of (2.99a)-(2.99c)then the triple(i + v, p, § + ) solves(2.97a)-(2.97c)n the
classical sense.

Proof. The assertions are easily verified by Green’s formula. O

We will prove the existence of a solution of the system (2)92209c¢) by an approxima-
tion involving the regularization operatdis from (2.95). For that purpose, we introduce
the operator

Ag s X x Wy () > W2(Q),



MODELING, SIMULATION AND OPTIMIZATION OF ELECTRORHEOLOGICAL FLUIDS 29

which is given by means of

(2.100) (Ag(w, ), &) = X! / ((9~+ O (a+w) - VE+

Q
+ 20p(1(@+ w), [E|, (@ + w), 8 + O T(Pa(@ + w))¢) da .

Here, (-, -) stands for the dual product betweBn—12(Q) andWO{’FQ(Q). The associated
boundary value problem reads as follows:

Find (v,p,0) € X x L*(Q) x Wy 2(Q) such that

(2.101a) (N(v,0),w) — (B*p,w) = (f1+g,w) ,weX
(2.101b) (Bv,q)o = 0, g€ L*(Q),
(2.101c) (V8, Vo0 — (A5(v,0),¢) = (f3, Qo s ¢ € Wor(Q).

THEOREM 2.6. Suppose thatT;),(2.96) are satisfied andz € L*(Q2). Then, for any
B > 0 there exists a solutiofws, pg) of (2.101a)-(2.101cqnd there exist constants; >
0,1 <4 <2, such that

(2.102) lusllx < C1, lpslloe < C2, b€ (0,a), a>0.

Proof. We refer to LITVINOV and HOPPE [2005]. O

We will now address the existence of a solution of the sys&289@)-(2.99c). We define
an operaton, : V — L(W," (€2), W~15(Q)) according to

(2.103) (Aa(0)C, ) = ! / C(a+v) - VEda,
Q

wherev € V,¢ € W, " (Q) and¢ € W,*(€2). We consider the auxiliary problem:
Find@ € W, " () such that
(2.104) (VO,VE) — (M2(v)8,€) =0 , £€W;"(Q).

Under these prerequisites, we now assyfig}n to be a sequence of regularization
parameters’, € R,,n € N, such that3, — 0 asn — oo and further suppose that
{(vn, pn,0n)}n is an associated sequence of solutigns, p,,0,) € X x L*(Q) x
W01’2(Q),n € N, of the system (2.101a)-(2.101c) whose existence is gusedninder
the assumptions of Theorem 2.6.

THEOREM2.7. Assume thaf2 c R?, d = 2 or d = 3 is a bounded”3-domain. Further,
suppose that the conditiof¥'; ) and(2.96)hold true and the variational equatiq.104)
is only trivially solvable. For a null sequende,, } »- of positive regularization parameters
let {(vn, pn, ) }n be the associated sequence of solutions p,,,0,) € X x L%(Q) x
W01’2(Q), n € N, of the systen(2.101a)-(2.101c)Then, there exist a subsequefitec N
and a triple(v,p,0) € X x L2(2) x Wy () such that folN* 3 n — oo

(2.105a) v, — v inX,
(2.105b) pn—p INL*Q),
(2.105c) 0, — 6 InWy"(Q).

The triple(v, p, 0) is a solution of the syste(®.99a)-(2.99c)
Proof. We refer to LITVINOV and HOPPE [2005]. O
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3. NUMERICAL SOLUTION OF ELECTRORHEOLOGICAL FLUID FLOWS

This section is devoted to the numerical solution of staignand time-dependent,
isothermal and non-isothermal electrorheological fluidvfio We shall begin in 3.1 with
steady-state isothermal problems with emphasis on narlibeawa-type algorithms in
3.1.1 as well as augmented Lagrangian methods in 3.1.2. iftisdes the construc-
tion of preconditioners based on approximate inversesefStiokes operator which will
be the subject of 3.1.3. An augmented Lagrangian approaticydarly suited for non-
regularized Bingham models shall be considered in 3.1#eTdependent problems shall
be taken care of in 3.2, and in 3.3 we shall address non-iso#idluid flows. We refer to
CROCHET [1984], ELMAN, SILVESTER and WATHEN [2005], GLOWING [2004],
GUNZBURGER [1989], HUANG [1998], THOMASSET [1981], TUREK1999] with
regard to a general presentation of numerical solutiomigcies for Newtonian and non-
Newtonian fluid flows.

3.1. Steady-state isothermal incompressible flow problemsAs we have seen in sub-
section 2.2 (cf. Theorem 2.2), steady isothermal, incosginée electrorheological fluid
flows with a regularized viscosity function can be approxidzaby finite dimensional non-
linear saddle point problems of the form:

Find (v,,pn) € X, X @, such that
(3.1a) <Sn(vn)7wn> - <B:<Lpnvwn> = <f + ngn> , Wy € Xy,
(31b) (annaQn)O,Q = 07 qn € Qn 5

whereX, C X = WolfD () and@,, € L*(Q),n € N, are finite dimensional subspaces,
Sp(tn) := My (un,un) with M, : X x X — X* being the nonlinear operator given by
(2.26), andB,, refers to the discrete divergence operator (2.30). We asshat the pairs
(Xn, Qn),n € N, satisfy the discrete LBB-condition (2.31).

Since the nonlinear operatSy, admits an invers& !, the discrete velocity field,, can

n

be formally eliminated from (3.1a),(3.1b) which gives riee

REMARK 3.1. In the linear regime, the linear operataB,, S, ! B; is called the Schur
complement an(3.2)is referred to as the Schur complement system.

All numerical techniques for the solution of (3.1a),(3.ab¢ nonlinear versions of me-
thods that have been developed for linear saddle point @nadyli.e., when the operator
S in (3.1a) is a linear operator. The most popular numericekses are Uzawa-type
algorithms and those based on the augmented Lagrangiameap(ct., e.g., CAO [2003],
FORTIN and GLOWINSKI [1983], GLOWINSKI [1984, 2004], GLOWINSKand LE
TALLEC [1989], LIN and CAO [2006]). In the nonlinear reginthese methods are outer-
inner iterative schemes where the outer iteration takesafahe saddle point structure of
the problem and the inner iteration is devoted to the noalipeoblem associated with the
operators.

3.1.1. Nonlinear Uzawa-type algorithmslhe nonlinear Uzawa algorithm can be formally
derived as a damped nonlinear Richardson iteration withpilagrparameter > 0 applied

to (3.2):

Givenpﬁbo) € Qn, Comput@%”) € Qn,v € N, according to

3.3) p;”H) = pgl”) — TBnS,rjl(B:p%V) +fotgn) ., veENy.
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Of course, we are interested in iteratéé) for the discrete velocity field as well which
can be obtained by means of (3.1a). Thus we arrive at theafimifpstandard form of the
nonlinear Uzawa algorithm:

Nonlinear Uzawa algorithm:

Given (vﬁf)),p5l )) € X, x @, andr > 0, compute(vn ,pSL )) € X, xQ,,v €N, asthe
solution of

B4a) (ST wy) — (Brpl) wa) = (f + g, wn) , wn € Xy
(34b) (ngerl) pSLU) Qn)O,Q = _T(B’IL’U'ELV+1)7qn)O,Q » Gn € Qn .

THEOREM3.1. Let (v, pn) € X, X @, be the solution 0f3.1a),(3.1bjand suppose that

{(vﬁf’),pn )}n is the sequence of iterates generated by the nonlinear Uzdgaithm
(3.4a),(3.4b) Assume- < 2,32 with v;, as in Lemm&.3and 3 from Lemma2.2. Then,
for v — oo there holds

o) S, inX p") —p, inL*9Q).

3

Proof. We setel”) := v\ — v, andefg”) .= p¥) — p,. If we subtract (3.1a) from
(3.4a) and (3.1b) from (3.4b), we obtain
(3.53) <Sn(U’I(LV+1)) — Sn(vn),wn) = (Bpe ;()V)v W), Wn € Xn
(3.5b) (€™ — el gn)o = —T(Buel ™, an)o0 s @n € Qu -

We chooseaw,, = 2¢5 " in (3.5a) andy, = 2¢"™ in (3.5b). Then, multiplying (3.5a)
by 27 and adding it to (3.5b) yields

e VG0 + el ™ — el NG o — lef 15 +
+ 27 <Sn(11§;’+1)) — Sp(vn), (”H)} = 27 (Bneg,”+1),ez(,”) - e(”H))QQ )

The results of subsection 2.2 imply

le" M5 + llep ™ — el 5o — llet” 1150 +
7
+ 27y [l Y% < 25 leS *Vllx flep ™ — e lloa »

and hence, Young’s inequality gives

v v T v
(3.6) leg VN30 = lleg 5.0 + 7 (292 ~ 7) leS"* D% < 0.

We deduce from (3.6) that the sequerde’”’ 15,0} is convergent which in turn gives us
()

ey’ — 0 asv — oco. Moreover, we have
(3.7) S0 (D) — S, (vn)||x+ — 0 as v —oo.
On the other hand, in view of (3.5a) and Lemma 2.2 it followe th
1S () = Sn(va)llx- = IBrel x> B lle llog -

Hence. (3.7) tells us thafj’) — 0asv — oo. O

It is well-known from the theory of linear iterative schentkat the convergence can be
significantly improved by preconditioning (cf., e.g., BANK al. [1990], BRAMBLE et
[1997], ELMAN [2002], ELMAN and GOLUB [1994], ELMAN and IBVESTER
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[1996], KLAWONN [1998], RUSTEN and WINTHER [1992]). In terna$ the Richard-
son iteration (3.3), we may use

p = pl) + PUBRS T (Brpl) + futgn)  veEN,

with a preconditione®,, : Q,, — @,, which is assumed to be a linear symmetric positive
operator. This leads to the preconditioned nonlinear Uzagarithm:

Preconditioned nonlinear Uzawa algorithm:
Let P, : Q, — Q, be alinear symmetric positive operator. Then, givey ),pgbo)) €
X, X Qn, compute(vn 7pn”)) € X,, x Qn,v € N, as the solution of

(3:8a) (S (0™ wy) — (Brpl) wn) = (f + g, wn) , wn € Xy
(38b) (ngerl) - p% )7 Qn)O,Q = —(P;anUgVH),Qn)O,Q » qn € Qn .

REMARK 3.2. The preconditioned nonlinear Uzawa algorithm containsdtaendard form
(3.4a),(3.4bps a special case as can be readily seen by choaBing: 71,,, 7 > 0, with
1,, denoting the identity of),,.

A major problem in the practical realization of the algomith{3.8a),(3.8b) is that it
requires the solution of a nonlinear problem. This issuesigally taken care of by an
approximation?n of S,,. We will discuss feasible choices 6f, in subsection 3.1.3. Since
in this case we do not solve (3.8a),(3.8b) exactly, the tieguscheme is referred to as a
preconditioned inexact nonlinear Uzawa algorithm:

Preconditioned inexact nonlinear Uzawa algorithm:
Let S;;! be an approximate inverse 6f,! and assume tha®, : Q,, — Qn is a linear
symmetric positive operator. Then, giv 0),p%)) € X, X Qn, compute(vn ,pn”))

X, X Qn,v € N, as the solution of
(3.99) <Sn(v7(my+l)vw > <B*p£LV)7wn> = <f + ngn> , Wy € Xy
(39b) (P%VH) (V) Qn)O Q = _(Pn_an'Uy(zy—H)aQn)O,Q , Qn € Qn .

In case of a linear symmetric positive definite operaiqr the convergence of pre-
conditioned inexact nonlinear Uzawa algorithms has beatyaed in BRAMBLE et al.
[1997], ELMAN and GOLUB [1994]. As can be expected, it reg@sisome conditions on
the approximate inversé;1 and on the preconditioné?,,.

3.1.2. Augmented Lagrangian method&s we already know from subsection 2.2.1, the
nonlinear saddle point problem (3.1a),(3.1b) results ftbm constrained minimization
problem

nin. (Jn(vruvn) + (L(vn), vn>) ,

whereV,, == X,, N H(divO;Q) andJ, : X x X — RandL : X — X* are given by
(2.24a)(2.24b), if we couple the constraifitsv,, = 0 by Lagrange multiplierg,, € Q..
An alternative is to use penalty methods

min (Jﬁ(vn,vn)) + (L(vn),vn) + r(Bpon, Bn’l]n)oygz) ,

Vn €Xn

where the constraints are taken care of by a penalty termpeittalty parameter > 0.
The disadvantage with penalty methods is that the penalgnpeterr usually has to be
chosen quite large which has a negative impact on the condifi the resulting algebraic
system.
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The augmented Lagrangian techniques combine the previpprsaches in such a way
that they work sufficiently well for a moderate choice of thenplty parameter. A con-
vergence analysis in the symmetric case is given in FORTIINGDhOWINSKI [1983],
GLOWINSKI and LE TALLEC [1989], whereas the nonsymmetric edsms been ad-
dressed in AWANOU [2005].

Augmented Lagrangian algorithm:

Given(v”,p) € X,, x @, andr, p > 0, computevl”, p{’) € X,, x Qn, v € N, such

that for (w,, g,) € X,, x @, there holds
(38.10a) (S, (v ™), wy) — (Brpl), wn) + 7(Buv ™, Bywn)o = (f + g9, wa)
(3.10b) P — ) gn)o0 + p(Bao ™ g,)00 = 0.

THEOREM 3.2. Let (v,,pn) € X, X @, be the unique solution 0of3.1a),(3.1b)and

let {(v,(f),pgf))}N be the sequence of iterates generated by the augmentedrigagna

algorithm(3.10a),(3.10h)Then, under the assumptipn< 2r for v — oo there holds
v%") —uv, InX pgf’) —p, INL*Q).

Proof. The convergence result can be verified using a similar réag@as in the proof of

Theorem 3.1. Setting” := v —v,, andel”) := p) —p,,, it follows from (3.1a),(3.1b)
and (3.10a),(3.10b) that f(wn € X,, andg, € Q,, there holds

(3.11a) (S (W H) — S, (), wy) + r(Beg”H),Bwn)QQ = (B} é”),wn%
(3.11b) (e(”“) — eé”),qn)o a0 = —p(Bnel™ g)oq -
With w, = 2¢5' T g, = 2¢%"™) in (3.11a),(3.11b) and the results of subsection 2.2 as
well as Young'’s inequality we obtain

leS ™ B0 = lleg 5.0 + 207 e VN5 + p(2r —7) [Bel ™% < 0,
from which we first deduce the convergence| " 1.} and then
(3.12a) e -0 inX (v— ),
(3.12b) Bel”) -0 inL*(Q) (v— o),
Now, (3.11a) and Lemma 2.2 result in

190 (0T = S (vn) + 7By Buel ™| x+ = IIB* Ollxs > Blef Mo -

np

Hence, (3.12a),(3.12b) and the continuitySfimply ep — 0asv — . |
As in the case of the nonlinear Uzawa algorithm, in practicehputations we replace

S,, in (3.10a) by some appropriate approximatin This leads to the inexact augmented
Lagrangian algorithm

Inexact augmented Lagrangian algorithm:
Let S, be an approximation of,,. Then, given(vflo),pglo)) € X, x Quandr,p > 0,
compute(v%”),pgf)) € X, X Qn,v € N, such that fo(w,, ¢,) € X,, x @, there holds

(3.13a) < n (v, V+1)) n) — <B71pEL)’w“> +7’(an(y+1) ann)O,Q = (f+g,wn),
(3.13b) YD =P qn)oq + p(Bavl ™ gn)oe = 0.

The convergence of the inexact augmented Lagrangian #igorequires thaf?,;1 pro-
vides a sufficiently good approximation 6f;* which also affects the choice of the para-
metersr andp.
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REMARK 3.3. More efficient preconditioners can be constructed in thenfeavork of multi-
grid techniques (cf. HACKBUSCH [1985) with respect to a hierarchy of discretiza-
tions and/or domain decomposition methods @JARTERONI and VALLI [1999]and
TOSELLI and WIDLUND [2005) relying on overlapping or non-overlapping decompo-
sitions of the computational domain. However, we are notrewéany scientific contribu-
tions where such approaches have been applied to the nushsdtution of electrorheo-
logical fluid flows.

3.1.3. Construction of approximate inverse$here is a wide variety of possible approxi-
mates inverses; ! of S;-! for the realization of the inexact nonlinear Uzawa algarith

(3.9a),(3.9b) and the inexact augmented Lagrangian #hgoki3.13a),(3.13b), among them
the Picard iteration, fixed point techniques and Newtoretyyethods.

We recall that the operatd, in (3.8a) and (3.11a) can be formally written &g(v,,) =

S, (vn,vn) WhereS, : X x X — X* is given by

(3.14)  (Sp(vn,wp), 2,) = 2/. (b(|E\,fL’)(n + I+ v,)) " 2e(i 4 wy) : e(2n)
Q
+ e(I(@+vp), |E|, 2)(@ + wn) : e(zn)> dz .

Then, for a givery,, € X the solution of the nonlinear variational equation

(315) <Sn(vn)a Zn> = <f7n zn) , Zn € Xy,
can be obviously reformulated as
(316) <Sn(’l)n,1)n), Zn> = <fnv Zn) , Zn € X, .

We first consider a Picard-type iteration (cf. MOORE and CIEID[P007]) which in the
Russian literature is also known as the Birger-Kachanowhaotefcf. FUCIK etal. [1973]).
Picard iteration

Givenv,(lo) € X,, computeu,({’), v € N, as the solution of the linear variational equation

(317) <S’7L(U»SLV)7U£LD+1))7 zn> = <fna Zn> ., zm€X,,veNy.
THEOREM 3.3. Letwv,, € X, be the solution of(3.15)and {v,(L”)}N be the sequence of

iterateSUfJ’) € X,,v € N, generated by the Picard iteratiof8.17) Then, under the
assumptiongAy), (A2) and forx > 0, there holds

oW S, inX (v— ).
Proof. We refer to FUCIK et al. [1973], MOORE and CLOUD [2007]. O

We will not consider the issue how well the invei$g! associated with the Picard iteration
(3.17) approximateS;, ! in order to access the convergence of the inexact nonlineavel
algorithm or the inexact augmented Lagrangian algorithmirstead address this question
in the framework of a fixed point iteration:

We introduced : X — X* as a linear, continuous self-adjoint coercive operater, we
assume that for, w € X

(3.18a) (Av,w) = (Aw,v),
(3.18b) |{(Av,w)] < Ca [v|x [Jw]x ,
(3.18c) (Av,v) > ya llv[l% -

Hence)| - || := (A-,-)'/2 defines a norm o which is equivalent to thé- || x -norm and
the||-||1,2,o-norm. We refer td| - || 4~ as the associated norm on the dual spEteHence,




MODELING, SIMULATION AND OPTIMIZATION OF ELECTRORHEOLOGICAL FLUIDS 35

the operatorS,, retains its properties with respect to the|| 4- and the| - |
particular, forw,,, z, € X, there holds

a=-nhorm. In

(3.19a) S (wn) = Sn(zn)|
(3.19b) (Sn(wn) — Sulzn), Wn — 2n) = s lwn — 2al% -

4 < Cg |lwn — znlla

V

Setting A,, := Alx, ., for the solution of (3.15) we consider the following fixedimo
iteration:

Fixed point iteration
Givenvﬁlo) € X, andt € R, computev,({’) € X,,,v € N, as the solution of

(3.20) (A0 2y = (A0, 2,) —t((Sn(vn”)),zn>—(fn,zn>) oz E€X,.

THEOREM 3.4. Letw, € X, be the unique solution of3.15) Assume that the operator

A € L(X, X*) satisfieq3.18a)-(3.18cand that assumptionA.1 ), (A2) hold true. Then,

for k > 0 andt € (0, 2750572) the linear problen(3.20)has a unique solutiony " ¢

X,,, and there holds

k(t)”

21 () _ < (0)y — .

(3 ) an Un”A — 1 o k(t) ||S’ﬂ(vn ) f’ﬂl A ) (S N7
where

(3.22) k(t) = (1—2yst+ CEH)Y? < 1.

The optimal value is

kopt = k(topt) = (]- - 7§C§2)1/2 ) topt = ’YSCSTZ .

Proof. We denote byJ : X* — X the Riesz operator. Then, the iteration (3.20)
amounts to the computation of a fixed point of the operd@igt) : X,, — X,, given by

(3.23) T.(t)(wy) == w, — t J(Sp(wn) — fn) , wp€X,.
Taking (3.19a),(3.19b) and the isometry.binto account, from (3.23) we deduce

| T () (wn) — Tn(t)(zn)”i = [Jwn — 25 — t J(Sp(wn) — Sn(zn»”z%l =
= ”wn - Zn||,24 -2t <Sn(wn) - Sn(zn)a Wp — Zn> +t? Hsn(wn) - Sn(zn)”,%l* <

l|wn — Zn||124 — 2t ys |lw, — Zn”i +t° CLQQ [|wn — ZnH?L& = k(t)g [|wn — ZnH?ﬁ& .

IN

Hence, the assertion follows from the Banach fixed pointria@o d

REMARK 3.4. Some comments are in order with regard to an appropriate ahoif the
finite dimensional subspacés, and @,,. In the framework of finite element approxima-
tions based on simplicial and/or quadrilateral trianguilanis of the computational domain,
for incompressible Stokes and Navier-Stokes type fluid floblgms various families of
finite elements have been suggested. The Taylor-HQgd®;_;-elementsk € N, and
its generalizations have become the most popular choicgjitiGations. For a thorough
presentation and discussion including the discrete inf-sondition we refer t8RAESS
[2007], BREZZI and FORTIN [1991]
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3.1.4. An augmented Lagrangian approach for an extended Binghadrfladel. In case
of the extended Bingham fluid model based on the viscositgtfon (2.18), the fluid flow
is described by the nonlinear variational inequality of seeond kind (2.63). Hence, ap-
propriate numerical methods for such variational inedieslhave to be provided (cf., e.g.,
GLOWINSKI et al. [1981]). We present here an augmented Lagjeamnapproach relying
on a mixed formulation of the problem that has been used in ENVFANN et al. [2000]
for the computation of electrorheological fluid flows obeyie constitutive law (2.13).
The motivation for the mixed formulation is that the nonhnigy and non-smoothness of
the problem is confined to the gradients of the componentseofi¢locity. Hence, intro-
ducingp = Vu as additional unknowns and usingPd / PO finite element discretization
of (u, p) boils down the global nonlinear problem to a sequence ol |tma-dimensional
nonlinear problems that can be easily solved. For simpliwié restrict ourselves to a
problem setting with full rotational symmetry whefe = E.(r, z)e, + E,(r, z)e, and

u = u(r, z)ey with e,., ey ande, denoting the unit vectors in a cylindrical coordinate sys-
tem. The incompressibility condition is then automatigahtisfied.

Based on the constitutive law (2.13), the steady state V := W, () of the elec-
trorheological fluid flow corresponds to the minimizer of tilebal energy

(3.24) J(u) = 1}23 J(v) .
Here,J : V — R stands for the energy functional

1
(3.25) J(w) := 7/\E|\E~Vu\r drdz + Qn/\Vu\zr drdzL(v),veV,
o) )

wherel : V' — R comprises volume and surface forces according to

L) = (f+g,v) , veV.
We introducey = Vu € L?(2)? as additional unknowns and couple the constraiatVu
both by a Lagrangian multipliex € L2(2)? and by a penalty term with penalty parameter
7 > 0 which gives rise to the saddle point problem:
Find (u,p, \) € V x L?(Q)? x L*(Q)? such that
(3.26) L (u,p,A) = infsup L7 (v, q, 1) ,

v,q o

where the augmented Lagrangiaff) (-, -, -) is given by

1
L7 (v,q,p) = 7/|E||E~p|7“ drdz + §n/|pl27" dr dz +
Q Q

1
+ /u-(p—Vu)drdz + §r/|p—Vu|2drd,z—e(v).
Q Q

For a simplicial triangulatioriZ, (2) of the computational domaif?, we use aP1/P0
discretization(up, pr) € Vi X Wﬁ of (u,p) whereV}, stands for the standard finite el-
ement space of continuous piecewise linear finite elemanddig, for the linear space
of elementwise constants. If an approximation of the eledield £ is obtained based
on a P1 approximation, we definé’;,, € W}, locally as the elementwise integral mean
of that approximation. Consequently, the discrete minatidm problem amounts to the
computation of{up, pr, An) € Vi, x W2 x W2 such that

(3:27) LO (up,pp, M) = inf sup L7 (op, qn, pin)

Vhydh
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whereE in the definition ofL(")(-, -, -) has to be replaced ;.

The minimization problem (3.27) is solved iteratively by @merator splitting technique
where each iteration step requires the solution of a globadicatic minimization problem
and local, i.e., elementwise nonlinear minimization peoh$ along with appropriate up-
dates of the discrete Lagrangian multipliess In particular, given sequencég,, }n and
{m }n Of update parameteys, € R, and penalty parameters € R, ,n € N, as well as

start vectore{pglo), )\(1)) € W2 x W2, an iteration consists of the following two steps:
Step 1: Computeu(") € V}, as the solution of the global quadratic minimization prafle
(3.28) L) (™, pin=D Ay — inf, L (v, p{" D, A

Vh h

and update the multiplier according to
(329 AP Z 30 4 (Tl — gl D).

Step 2: Computep(") € W} as the solution of

(3.30) L(T">(u§f 7ph) /\(n+1/2)) inf L(T)(u(n . /\n+1/2))
qrEW}

and update the multiplier according to
(331) )\Eln-‘rl) _ )\Eln—ﬁ-l/?) + p"(vuzn) 7p§:1)) )

The minimization problem (3.28) requires the solution oih@&r algebraic system where
the coefficient matrix corresponds to the stiffness matsisoaiated with thé”1 approx-
imation of the Laplacian-A. On the other hand, the minimization problem (3.30) re-
duces to the simultaneous solution of the elementwise niaition problems: For each
T € T,,(22) computep” |7 € Py(T)? such that

Tn n . Tn T
(3.32) Il =k T a0

Tn) .

where the functlonaV : Py(T)? — Ris given by

TG = LT (Wl |, g AT

The local minimization problems (3.32) give rise to two-éimsional variational inequali-
ties which can be solved analytically.

3.2. Evolutionary isothermal incompressible flow problems. We consider the discreti-
zation of initial-boundary value problems for time-depentdincompressible isothermal
electrorheological fluid problems (2.1a),(2.1b) by a défece approximation in time and
by the Galerkin method in space using finite dimensional gatesX,, C X := W,
and@,, C L*(Q),n € N as in the previous subsection 3.1. For discretization i tine
refer to

(3.33) Iy = {tm=mk|0<m<M,k:=T/M}, MeN,

as a uniform partition of the time intervél, 7] of step sizek and approximate the time
derivativew, (-, t) in t € I, by the forward and backward difference quotieffsu(-,t)
which are given by

(3348) a,ju(,t) = kil(u(’vt‘i’ k) - u('vt» , te Tk \ {T} )
(3.34b) o u(-t) == k Hu(t) —u(,t—k)) , tel\{0}.
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We denote b)(u%m),P%m)) € X, x @, an approximation ofu(-,t,,),p(-,tm)) € X X
L?(2) at timet,,,. Using a convex combination of the discretizations by thevésd and
difference quotients in time results in the so-calt@escheme which at each time level
amounts to the solution of the following nonlinear systerfirife dimensional variational
equations

(3.352) <F'rg,®) (u’glm))7wn> - <B;p,(lm)7wn> = <h£1®)3wn> ; wp € Xp
(335b) (Bnugzm)v Qn> =0, g, €Qn,

where the nonlinear operat@'i;(l@) : X,, — X} and the right-hand sidlegle) € X0 e
[0,1], are given by

(3:362) (FL) (va), wn) i= p ™" (s wa) + O ({(vn - V)om, wn) + (S (a)wn))
(3.36b) h(® = f, + g, +k ul™ — (1-0©) ((u;m) V)l 4 Sn(ugm) .

For® = 0 and®© = 1, we recover the standard explicit and implicit differenpprxima-
tion, respectively. The difference approximation @ 1/2 is called the Crank-Nicolsen
method. It is well-known that th®-scheme is consistent with the initial-boundary value
problem of ordeiO(k) in time for © # 1/2, whereas the Crank-Nicolsen method is con-
sistent of orde(k?). Moreover, the9-scheme is only conditionally stable fér < 1/2
and unconditionally stable f&® € [1/2,1] (cf., e.g., STRIKWERDA [2004], THOMAS
[1995]). Usually, the stability condition fo® € [0,1/2) imposes a severe restriction on
the choice of the step siZeso that the corresponding schemes are not used in practice.

The nonlinear system (3.35a),(3.35b) can be solved usimgadme techniques as de-
scribed in subsection 3.1. In particular, we may use theogmas of the inexact non-
linear Uzawa algorithm (3.9a),(3.9b) and the inexact augetk Lagrangian algorithm
(3.13a),(3.13b) provided we have suitable approximaterses(£."))~t of (F{®)~1,
© € (1/2,1], at hand. For the construction of such inverses, the Picardtion or fixed
point iterations can be used as well. The only differencén& tve are faced with the
additional nonlinear convective terfa,, - V)v,, which, however, can be treated in much
the same way as the nonlinearity in the opera&gr For instance, in case of the standard
implicit scheme @ = 1) we use

(337) (A (vn),wa) = p k™ (o) + (U™ - V)vm, wn) + (Su(ul™), wa) ) |

with S, given by (3.14).
For the Crank-Nicolsen scheme, an appropriate modificdtemnto be used in order to
retain second order accuracy (cf., e.g., ELMAN [2002]).

3.3. Non-isothermal incompressible electrorheological flow psblems. We use the no-
tations from subsection 2.5 and assufig, }n, { @, }n and{Y,, }x to be limit dense nested
sequences of finite dimensional subspaces af?(2) andWO{’I? (), respectively, and we
consider the following sequence of approximating systeifinite dimensional variational
equations: Findv,,, p,,0,) € X, x @, x Y, such that

(3388) <N(Un7 9”)7 wn> - <B;pn7 wn> = <f +9, wn> sy € Xy,
(338b) (anna(Jn)O,Q =0 y dn € Qn )
(338C) (vena an)O,Q - <AB(Un79n)7 Cn) = (f3> Cn)O,Q y <n ey,,

whereB,, € L(X,, Q) refers to the discrete divergence operator (cf. subse2tdn).
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THEOREM 3.5. Let the assumptions of Theoredr6 be satisfied and lef(v.,, pn, 0,) }n

be a sequence of solutions (8.38a)-(3.38c) Then, there exist a subsequeeC N

and atriple(v,p,0) € X x L*(Q) x W, () that solveg2.101a)-(2.101c3uch that for
N 3n— oo

(3.39a) v, — v inX,
(3.39b) pn—p INLAQ),
(3.39¢) O — 0 InWyT(Q).

Proof. SettingV,, = Ker(B,,), (3.38a)-(3.38c) can be equivalently stated as: Find
(vn, 0n) € Vi, x Y, such that

(340&) <N(Un76‘n)awn> = <f1 + g7wn> ,wn, € Xy,
(340b) (v‘gna VCn)O,Q - <A,3(Un,9n)7 Cn) = (f37 Cn)O,Q , Cn €Yy .

It follows from Theorem 2.6 that for eaghe N problem (3.40a),(3.40b) admits a solution

(vn, 0n) € V,, x Y,,. Moreover, there are constarits > 0,1 < i < 2, such that
(3.41) lonllx < C1 Ol < Co

uniformly inn € N. We haveN (v, 6,) — (f1 + g) € V,?, and hence, Lemma 2.2 implies
that there is a unique, € @,, such that

(3.42) (N(vn, 0n),wn) — (Bppn,wn) = (fi +g,wn) , wy € X,
i.e., (vn, Pn, 0n) SOlves (3.38a)-(3.38c). Lemma 2.2 and (3.41) yield
(3.43) onlloe < C3 . neN

for some constan®’; > 0. Consequently, there exist a subseque¥ice N and(v,p,§) €
X x L2(Q) x Wy () such that folN' 5 n — oo

(3.443a) vp —u inX
(3.44b) v, — v in LA,
(3.44¢) v, — v a.e. inQ,
(3.44d) pn—p InL3Q),
(3.44e) O — 0 InWyL(Q),
(3.44f) 0, — 0 inL*Q),
(3.449) 0, — 0 a.e. inQ,
(3.44h) N(vn,0,) =€ in X*.

For afixed integen, € Nletw,, € X,,, andg,, € Qn,. Then, in view of (3.44a),(3.44d)
and (3.44h), passing to the limit in (2.101a),(2.101b)dsel

<€_B*pvw> :<f1+ng> 9 weXngv
(BU7Q)O,Q =0 3 qc Qno .

Sincen, € N was arbitrarily chosen and the sequent&s }y and{Q,, } are limit dense
in X andL?(), it follows that

(3.45a) {—Bp=fi+tg inX",
(3.45b) V-v =0 ae. inQ.
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We defineL,, ., : X — X* according to

<LZ1722 (wl), ’w2> =

2/90([(12—&—101), \E|,,u(1l+zl,E),é—I—zg)E(ﬁ—i—wl) ce(we) dx ) wy,wy € X .

Q
Forz; = v,, 2o = 0, Lemma 2.3 gives
(3.46) (L(v,,0,)(Vn) = L(w,0,)(©),0n —w) >0 , weX, neN.

Moreover, by (3.44b),(3.44c) and (3.44f),(3.449) and thbésgue theorem
L(Umgn)(w) — L(Uﬁ) (w) in X* , W E X.
It follows that forw € X there holds

(3.47a) N/gl%rg@(L(vmg”)(w),v”> = (L(y,0)(w),v) ,
(3.47b) N’alinn—1>oc<L(v”’0")(w)7w> = <L(U)9) (w), w> .

Observing (3.44h) and (3.45a), we obtain
(348) N’glinnioo ((L(llnﬁn)(vn)vw> - <B*pa w>) = <f1 + ng> , WE X.
Taking into account that

<B*pn, Un> = (pm Bn'Un)O,Q )
(2.101a) and (3.44a) imply that fo¥ > n — oo there holds

(3.49) <L(vn,0")(vn)vvn> = <f1 + g, Un> - <f1 + g, U> .
Due to (3.47a),(3.47b) and (3.48),(3.49), we pass to thi¢ iim{3.46) and get
(3.50) (fi+9—Lwe(w)+Bpv-—w) >0 , weX.

If we choosew = v — yz,z € X,v > 0, in (3.50), fory — 0 it follows that
(fi+g—N(w,0)+B'p,z) >0 , zeX.

Sincez € X can be arbitrarily chosen, we may replacky —z and thus obtain

(3.51a) (N(v,0),2) — (B*p,2) ={fi+g,2) , z€X,

(3.51b) ¢ =N(v,0).

On the other hand, (3.44a)-(3.44c) and (3.44e)-(3.44g)ddlsas Lebesgue’s theorem im-
I

" Ldim (As(0n,00),8) = (A5(0,0),) , €€ WGP(Q).

Choosingny € N and¢,,, € Y, arbitrarily, but fixed, and passing to the limit in (2.101c),
we get

(Veav£no)(),ﬂ - <A[5(U76)7£n0> = <f37fno>
Since the sequend@’, }y is limit dense inW()lﬁ(Q), we thus have

(352) (V6. V&oa — (As(v,0).6) = (fs,6) . €€ WoZ().
Now, (3.45b), (3.51a) and (3.52) show that the tripdep, 8) is a solution of (2.101a)-
(2.101c).

What remains to be shown is the strong convergence (3.3%9€)3 We first note that
due to (3.44a), (3.48) (withy = v), and (3.49)

(3.53) Ay = (Lo, ,0,)(Wn) = Lygy(v), v, —v) = 0 (N'3n— o0).
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We splitA,, according to
(354) An = (L(v,,6,)(Vn) = Lo, 0,) (V) vn = v) + (L(v,.0,)(v) = Lug) (v), v —v) .
In view of (3.44a) and (3.47a),(3.47b) we have
(Lv,.0,)(0) = Ly gy (v), 0 —v) = 0 (N'3n— 00),
and hence, due to (3.53),(3.54)

(3.55) (Lw,,0,)(0n) = Ly, 0,)(v),vp —v) =0 (N 31— o0).
Now, Lemma 2.3 implies

(3.56) v, —v inX (N 2n—o0),

whence

(3.57) I(i+v,) = I(a+v) ae. inQ (N3n-—o0).

We choosev = w,, € X,, in(2.101a) and subtract (2.101a) from (3.38a) which shtwat t
for ¢, € Q,, there holds

(358) <B*(pn - Qn)vwn> = <N(Un7 gn) - N(U, 9)1 wn> + <B*(p - Qn)»wn> .
Applying Lemma 2.2 in (3.58) yields

B*(pn — qn), w
lpr — gnllo,o < sup (B" (P = gn), wn)
wn€Xp ﬁ ‘wn”X

S ﬁ_l HN(’UTL,On)—N(’U,G)Hx* +CHp_qn||0,Q ) dn EQna
whereC € R is a positive constant. It follows that

@59 lp—pallon < v (Ip—ailon + lpn—gallon) <

< 7 N 0) = N@8)x- + (C+1) inf [lp— galloc -
Setting
Cum = o(L(@+v,), |E|, (it + vm, E),0 +60,,) , n,m €Ny,
straightforward estimation results in

/
360) 5 IN(@n0) = Nl < ( [(pune(a+ o) = ouncl +v)? do)
Q

(/ ((%n(E(a + vn) — (@ = v)) + (Pnn — Po0)e(t + v))2 d$)1/2 <

Q

([ tatton=vyae)""+ ([ (omn — on?1(a+) ar)

Q Q

It follows from (Ty), (3.44b),(3.44c), (3.44f),(3.449) and (3.56),(3.57) adlvas the
Lebesgue theorem that the right-hand side in (3.60) coegeig zero a®y’ > n — oo.
Consequently,

(3.61) IN (v, 0,) — N(v,0)|[x« =0 (N 3n— ).
Since the sequendg),, }x is limit dense inL?(), (3.59) and (3.61) imply
(3.62) pn—p INLAQ) (N3n— o).

IN
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Finally, from (3.44b),(3.44c), (3.44f),(3.449) and (3.%8.57) we also get
(3.63) Ap(vn,0,) — Ag(v,0) INnW™H2(Q) (N 3n — o00).
Choosing,, = 6,, in (3.38c¢), we have

10n]F 2.0 = (As(vn,0n),0n) + (f3,0n)
whence in view of (2.101c),(3.44f) and (3.63) f§f > n — oo we have

lim (A (on,00),00) + (s, 0n)) = (Aa(0,0,6) + (f5,6) = 0] 2.0
Consequently|6,,[|7 5 o — 10117 2. @sN’ > n — oo, which together with (3.44f) results
in

O — 0 INWer(Q) (N'3n—o00).

This concludes the proof of the theorem. O

4. NUMERICAL SIMULATION AND OPTIMIZATION
OF ELECTRORHEOLOGICAL DEVICES

We shall consider the application of the algorithmic toasealoped in the previous sec-
tion 3 to the simulation and the optimal design of electrotbgical devices and systems.
The most elementary devices are rheometers used for theireeant of rheological pro-
perties which shall be discussed in 4.1. Examples for movaragkd devices are given
by electrorheological shock absorbers which feature a mvider spectrum of damper
characteristics than absorbers based on conventionas flilde simulation of the opera-
tional behavior of such electrorheological shock absahiarmparticular their compression
and rebound states, shall be treated in 4.2. Finally, 4.8vstéd to a brief presentation
of a methodology for the shape optimization of the inlet antet boundaries of piston
ducts in electrorheological shock absorbers. For genspads of optimization problems
related to fluid mechanical processes we refer to LITVINOW(JQ and MOHAMMADI
and PIRONNEAU [2001].

4.1. Electrorheological rheometers. Electrorheological rheometers are devices for the
measurement of the rheological properties of electrodwgodl fluids. Figure 4.5 displays
a simple model consisting of two coaxial cylinders of lersdthi. and radiir,., r., respec-
tively. The inner cylinder features a high voltage lead teeaternal electric circuit which
supplies the lateral surface. The inner cylinder thus semgehe electrode. The lateral sur-
face of the outer cylinder represents the counter electrode gap between the cylinders
is filled with an electrorheological fluid.

One of the cylinders may rotate, whereas the other one renadirest. When one of the
cylinders starts revolving, the other one experiences guodue to the viscosity of the
fluid. Applying a voltage through the external electric gitcthe electrorheological effect
results in an enhanced viscosity and the strength of thei¢ofejt by the other cylinder
increases. Commercial rheometers operate within a freyuamge ofl0~7 - 100 Hz, a
temperature range of -150 - 100Q and allow angular velocities of 0 - 320 rad/s. The
normal force range is betwe@f—3 and 50 N.

The arrangement has full rotational symmetry so that thepeoational domain reduces
to the domain2 as shown in Figure 4.5 (right). Given a cylindrical coordenaystem
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Electrodes

ER fluid ol

Q

O e

FIGURE 4.5. Electrorheological clutch (left) and computationaiain (right).

(r, i, z) with basis vectors,., e, ande_, the velocity vector only features an angular com-
ponentu(r, z)e, Which results in the following components of the strain tens

@D enl)=enl) = 5(00 ) cfu) = cpafu) = 5 or
e11(u) = ea2(u) = e33(u) = e13(u) = e31(u) =0.
Hence, for the second invariant of the rate of strain tensooktain
1 0u wu 1 Ou

e R P/ 2
(42) I(w) = 55— =) + 3(5.)°.
In our caseu(u, E) = 0 and hence, the viscosity functignis given by
(4.3) e(I(u),|E],0) := b(|E|,0)(r+ I(u)""/* + e(I(u),|E],0),

wherex is the regularization parameter. Note that= 0 refers to the extended Bingham
fluid. Assuming no volume force acting on the fluid, the steatife equations take the
form

0 0 0 0
(443) - (p(I(), |BL,0)(5 = =) + 5-(e(L(w),|EL0)52) +
+ (1), 1BLO) (5 - 1) = 0,
(4.4b) % _ % _9.

The incompressibility condition is automatically satifie
As far as the boundary conditions dh= 02 are concerned, we prescribe velocities on
the left boundary of?

Ty = {(r,2)|r=0, 2€ (0,l. — I;)}
and on the surface of the internal and external cylinder

4
Fs = U Fs,i;
=1
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where the subsurfacés ;,1 < i < 4, are given by
Fer1 = {(r,2)|2z=0, re ((0,re)} ,
Tso = {(r,z)|r=rc, z€ (0,l)},
Tss == {(r,2)|z=1lc—1;, re(0,m)} ,
Toa = A{(r,2)|r=ri, z€((le—1),l)}.
Moreover, surface forces are specified on
Iy =T\ (T,uly).
If the inner cylinder is rotating, the boundary conditioms ehosen according to

0onlyUTs; Ul
(4.5a) u(r,z) = rw onl; 3 ,
riw onl'gy
. Ou wu
(45b) }E’%(E - ;)(T, Z) =0,z¢ (Ovle - lz) )
0
(4.5¢) ¢(I(u),|E|,0)£ — 0, p = const. ol .

On the other hand, if the outer cylinder is revolving, we have

0onlyUTs 30Ul 4
(4.6a) u(r, z) = rw only 4 )
rew ONT'g o
. Ou u
(46b) ’11_{%(% - ;)(7’, Z) =0,z¢€ (Ovle - ll) ’
(4.6¢) @(I(u),|E|,O)? = 0, p = const. ol .
z

Due to the rotational symmetry, the electric field
E(r,z) = Eq(r,2)e, + E.(r,2)e,

has two component&,. and E, which can be computed according fo = —Vy =
—(0%/0r, 00 /02)T as the gradient of an electric potentiak= 1) (r, z). Denoting by

Ty = {(r2)|r=ri,z€le—1lle)},
Te = {(r,2)|r=re, 2z€ (le —li,le)},

the lateral surfaces of the inner and outer cylinder, thetetepotentialiy satisfies the
boundary value problem

a6 oy eaz/; 9, o, .
(47a) E(GE) + , ar &(EE) =0 |n(27
(4.7b) v =U onl; , v =0 onl,,
oY _ 4 W _
e 0 only , wve I +uzeaz =0 only,

whereU is the applied voltage, stands for the dielectric permittivity and= (v,.,v.)7 is
the exterior normal unit vector.

Given a simplicial triangulation of the computational doam&, we have discretized
(4.4a) by conforming P1 finite elements in case of a reguddrizscosity function, i.e.,
k > 0, whereas for the extended Bingham fluid model, ke= 0, we have chosen the
mixed formulation from subsection 3.1.4 and used confogniith elements for the primal
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variable and elementwise constants for the dual variablles.resulting algebraic systems
have been solved by the augmented Lagrangian algorithmsasilded in section 3. In

both cases, the boundary value problem (4.7a),(4.7b) hexs discretized by conforming

P1 elements, and the resulting algebraic system has beesddoy the preconditioned

conjugate gradient method.
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Angular velocity [rad/sec]

£ --2kV
s -- 3kV

24 24.2 244 246 24.8 25

Distance [0~2 meter]

FIGURE 4.8. Narrow-gap configuration: angular velocity profiles-(r
tating outer cylinder); from HOPPE, LITVINOV and RAHMAN [23)]

Angular velocity [rad/sec]

24 24.2 24.4 24.6 24.8 25
Distance [0~ meter]

FIGURE 4.9. Narrow-gap configuration: angular velocity profiles-(r
tating inner cylinder); from HOPPE, LITVINOV and RAHMAN [Z15]

The computations have been performed for the commerciaélifedole polyurethane-
based electrorheological fluid Rheobay TP Al 3565 (cf. BAYER97a]). Using experi-
mental measurements for various electric field strengtiesyiscosity functionp has been
specified by cubic spline approximations of they)-flow curves (cf. section 2).

We have considered two different geometrical configuratiohthe rheometer, namely a
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4.0x 10*V

FIGURE 4.10. Isolines of the electric potential (wide-gap confagian)

wide-gap configuration with the specifications
Wide-gap: 7, =35mm, r.=70mm , [; =250mm, [, = 300 mm,
w=125radls , U=0,2,3kV
and a narrow-gap configuration with
Narrow-gap: r;=24mm, r.=25mm , [, =25mm, [, =30 mm,
w=>5radls , U =0,50,100kV .

The following results have been obtained based on the negethviscosity functionp
with x = 10! (for related results based on the extended Bingham fluid made

x = 0 we refer to ENGELMANN et al. [2000]).

Figures 4.6 and 4.7 display the angular velocity profilestferwide-gap configuration with
revolving outer cylinder (Figure 4.6) and revolving inngtieder (Figure 4.7) at applied
voltages ofU = 0V , U = 50 kV, andU = 100 kV, respectively. In both cases a
zone with a constant angular velocity occurs close to therayinder which increases for
increasing voltage. This is the typical velocity profile fdectrorheological Couette-type
flows.

On the other hand, Figures 4.8 and 4.9 show the angular #elocifiles for the narrow-
gap configuration with revolving outer cylinder (Figure Yahd revolving inner cylinder
(Figure 4.9) at applied voltages 8f =0V , U = 2 kV, andU = 3 kV. We observe that
in both cases there is no zone with a constant angular veldedeed, independent of the
applied voltage, the velocity profile is almost linear.

Finally, Figure 4.10 contains the isolines of the electotemtial) with respect to the
wide-gap configuration. In fact, for both the wide-gap anel tlarrow-gap configuration
the electric fieldZ = (E,, E,)” in the gap between the inner and outer cylinder is close to
the constant vectai//(r; — r.),0)” and thus perpendicular to the velocity. The electric
field decays rapidly with increasing distance to the ela@tsso

4.2. Electrorheological shock absorbers.Due to their fast response to outer electrical
fields, electrorheological fluids are much better suiteddotomotive shock absorbers
than conventional oils. In fact, electrorheological shabisorbers feature a much wider
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characteristics than conventional ones and thus allowriddeal adaptation to different
road conditions and driving styles (cf., e.g., BAYER [1991B98], BOSE, HOPPE and
MAZURKEVICH [2001], FILISKO [1995], GAVIN et al. [1996a,h]HOPPE, LITVI-
NOV and RAHMAN [2003, 2007], HOPPE et al. [2000]).

Figure 4.11 (left) displays the longitudinal section of &cerorheological shock absorber.
The absorber consists of two chambers filled with an eldvtr@ogical fluid, a piston fea-
turing two transfer ducts that connect the chambers, andddhs-filled chamber sepa-
rated from the others by a floating piston. The inner wallshef transfer ducts act as
electrodes and counter electrodes, respectively. Thegameected with an outer electric
circuit by a high voltage lead within the piston rod. We digtiish between the compres-
sion mode and the rebound mode. In the compression modeistioa pnoves down and
the fluid passes from the lower chamber through the ductshetapper chamber, whereas
in the rebound mode the piston moves up and the fluid flow isenofposite direction.
The variation of the applied voltage almost instantangoakhnges the viscosity of the
fluid and thus allows to control the damper characteristics.
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FIGURE4.11. Schematic representation of an electrorheologiuatls

absorber (left) and simplicial triangulation of the conatignal domain
(right)

The fluid flow is assumed to be axially symmetric so that thematational domain can
be restricted to the right half of the fluid chamber and digpdkin cylindrical coordinates
r, z. Figure 4.12 illustrates the computational domain in theagion where the piston is
at an upper position (left) and at a lower position (rightpelio the displacemenft) of
the piston, the computational domain changes in time anidhis be denoted b@,, ).

If the piston is displaced by (t) = I1(t) — 11(0), the floating piston is displaced from
its initial position byb(t) = a(t)(R1/R)?, whereR and R, are the radii of the floating
piston and the piston rod. For a proper specification of thentary conditions, we refer

to Uyy = 094 as the boundary of the right half of the fluid chamber. In pattr,

F%) andl“fl’(cz) stand for the boundary of the piston and the upper boundahedfoating

piston. We further denote bpff&) andel“()t) the inner wall (CD in Figure 4.12) and the
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FIGURE 4.12. Domain of flow of the electrorheological fluid at time
instantst = 0 (left) andt > 0 (right).

outer wall (C'D’ in Figure 4.12) of the transfer duct whichrge as the electrode and
counter electrode, respectively. FinaIFf()t) = {(r,2) € Quu | r = 0} stands for
the left boundary of the computational domain which coiesidvith the symmetry axis.
We setQ := Q) % (0,T), 8,04 = Tq) x (0,T) and use analogous notations for the
other space-time domains involving the specific parts obtiwndary of the computational
domain.

Taking advantage of the axial symmetry, the velocitig given by
u(r,z) = uy(r,z)e, + ua(r,z)e,,

which gives rise to the following components of the straimster

9 9
enfu) = al: o en() = % , ess(u) = %,
1.0 0

e13(u) = e31(u) = 5(—;; +—8l;2)7

612(u) = 521('&) = 823(11,) = 632(11,) =0.
The second invariant of the rate of strain tensor turns oheto
_ (Ouy o tayy | Ouzy, 10w Oupy,
I(u)i(ar)Jr(r) (82)+2(8z+874)'
Denoting byp the density of the fluid, by the viscosity function according to (2.19), and
by f = (f1, f2)* the volume force with the radial and axial componefitand f», the
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equations of motion take the form

ouy ouy Juy Op
(4.8a) p(w + LMW + UQE) o
0 0 2 .
- 2@(@311(”)) - 2%(%13(”)) - ;90(511@) —ean(u)) = fL INQ,
Ous Ous Ous dp
(4.8b) ot v ) T g -
0 .
- 28 (perz(u)) — 2@(%33(“)) - ;@513(@&) = f2 InQ,
(4.8c) Vo= 2 0w g
or 0z r

Moreover, referring ta(?) as the piston velocity and 1) as some given initial velocity,
the boundary conditions and the initial condition are gitsgn

(4.9a) up =0  onXyy,

(4.9b) uz = v® onn®)

(4.9¢) uy = vP)(Ry/R)*> on Ei{lw

(4.9d) up = 0 oNT,0 \ (T USey USHLY
8u2 o )

(4.9¢) o = 0 on Ea(t),

(4.9f) u(-,0) = u® in Qe -

The motion of the piston satisfies the initial-value problem

(4.10a) dzl(:) (t) = g(t,o® (1), U1t) , te(0,T),
(4.10b) v®(0) = o <0,

wherem is the sum of the mass of the piston and the mass of the bodtifiles the
piston att = 0, U(t) stands for the applied voltage, and the drag far@gv?) (), U(t))
is given by

(4.11) g(t, vV (1),U(t)) == — / (2(,0531(u)uT + (2¢e33(u) —p)uz) ds.

(»)
P2

The electric fieldE has the form
E(T,Z) = El(rv'z)er + EQ(T‘,Z)GZ .

As in the previous example (cf. subsection 4.1), it can bemded by means of an electric
potentiak)(t) which at each time instante [0, T satisfies the following elliptic boundary
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value problem

(4.12a) V- (eVy(t) = 0 inQqypy,

(4.12b) w(t) = U(t) ol

(4.12c) ¥(t) =0 onl
o

(4.12d) 5. (1) =0 onr{),

(4.12¢) V,.eaa—lf(t) —i—uzeg—qﬁ(t) =0 elsewhere

For the numerical simulation of the operational behavidhefelectrorheological shock
absorber we have used a discretization in time with resjpeatuniform partition of the
time interval [0, 7] of step sizek := T/M,M € N, using the explicit Euler scheme
for the equation of motion (4.10) of the piston and the backiEuler scheme for the
equations of motion (4.8a)-(4.8c) of the fluid with= 0. Knowing the computation
domain at time levet,,,0 < m < M — 1, the discretization in space has been taken care
of by P,/ P, Taylor-Hood elements for the fluid variables and conformitigelements for
the electric potential with respect to a simplicial triafedion of 2, (,, ). The discretized
fluid equations have been solved by the augmented Lagramdgmmnithm as described
in subsection 3.1, whereas the preconditioned conjugatdieyit method has been used
for the discretized potential equation. For details we rédeHOPPE, LITVINOV and
RAHMAN [2007].

©0000000000,,
0°° %o,

velocCity .

0.017

r [meter]

FIGURE 4.13. Profiles of the relative velocity of the fluid in the pist
duct for various applied voltaged7 = 0 \Volt (dotted-circled line),1
kV (dashed-dotted line} kV (dashed line)¢ kV (dotted line) and kV
(solid line).

The simulations have been based on the commercial eleetiadical fluid Rheobay
TP Al 3565 (see BAYER [1997a]) by computing the viscositydtion ¢ using experi-
mentally availabler(~)-flow curves (cf. subsection 4.1). As far as the geometry ef th
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FIGURE 4.14. Isolines of the electric potential at three diffengiston positions

shock absorber is concerned, we have used the following(datiigure 4.12):
R :=0023m , Ry :=0006m , 7 :=0013m , 79 := 0.017m,
l:=014m , [(0):=002m , d:=004dm.

Figure 4.13 shows the relative velocity of the fluig,, = (v — v)/~ in the piston
duct for various electric field strengths, where= (f:f rdr)~! f:f r(u —v)(r, z1)dr is
the flow rate relative to the electrodes. In case of a vanishirctric field, we clearly
observe a parabolic flow profile typical for flows of Newtonfands between two parallel
plates. For increasing electric field strength the profiladtes in the center of the duct
with an increasing zone of constant relative velocity. Tikishe typical flow pattern of
electrorheological fluids.

Figure 4.14 displays the isolines of the electric potenti&br various positions of the
piston assuming an applied voltagelof= 9 kV. Again, we see that the electric field is
essentially concentrated within the transfer ducts in fhection of ther-axis and rapidly
decays off the ducts.

Figures 4.15 and 4.16 contain visualizations of the vejoe#ictoru at various stages
of the compression mode (Figure 4.15) and the rebound mddaré~4.16). As has to
be expected, in the transfer ducts the direction of the Vgloector essentially coincides
with the direction of the;-axis and is thus orthogonal to the electric fiéld
We note that the pressure in the gas reservoir should beisofficlarge, since otherwise
the fluid chamber can not be fully filled with the fluid and catiitn may occur. For further
details concerning the simulation results we refer to HORFEVINOV and RAHMAN
[2007].

4.3. Shape optimization of electrorheological devicesAn important issue in the design
of electrorheological shock absorbers is to find a suitabtametry of the inflow and out-
flow boundaries of the piston ducts such that both in the cesgion mode and in the
rebound mode pressure peaks are avoided which may cauggapapte damping pro-
files. This amounts to the solution of a shape optimizatiablam which for simplicity
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FIGURE 4.15. Velocity vectors during compression

FIGURE 4.16. Velocity vectors during rebound

will be stated as a velocity and pressure tracking problemre/the objective functional is
given by

L o] ‘ «
(4.13) minimize J(u,p,d) := 71|\u—ui||g,n(d) + EQHP_pd”(%,Q(d)'
Here,u? € H(div’;Q(d)) andp? € L?*(Q(d)) stand for a desired velocity profile and

pressure distribution, respectively, € (0,1],1 < i < 2, and2(d) is the domain occupied
by the fluid which depends on the design variables= (dy,:-- ,d,,)T € R™. The
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design variables are chosen as thteziBr control points of a 8ier curve representation
(cf. FARIN [2002]) of the inlet and outlet boundaries (cfghire 4.17 (left)).
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FIGURE 4.17. Bezier curve representation of the inlet and outlet boun-
daries of a piston duct (left), optimized outlet boundarydgie) and
details of the optimal design for various electric field stg#as (right)

The PDE constraints are given by
(4.143a) —V-o) =f inQd),
(4.14b) V-u =0 inQd),

along with appropriate boundary conditions (cf. subsecid?). The constitutive law is
assumed to be given by

(4.15) o = —pl +2¢o(I(u),|E|, u(u, E)) e(u)

with a regularized viscosity functiop of the form (2.19), where the electric field is
computed via the gradient of an electric potential satigfyan elliptic boundary value
problem (cf. (4.12a)-(4.12¢)). We further assume bildtepastraints on the design vari-
ables according to

(4.16) de K == {deR™|d™™ < d; < d"*,1<i<m}.
ChoosingX C H!(Q(d))? andQ := L%(Q(d)), we refer toY := X x Q as the

state space and denote 5Y-,d),d € K, the nonlinear Stokes operator associated with
(4.14a),(4.14b). Then, the state equations can be writtepérator form according to

4.17) S(y,d) = g¢.
wherey := (u.p)T andg := (f,0)”. We choosel € K as a reference design and refer

to Q := Q(d) as the associated reference domain. Then, the actual déddjrcan be
obtained from the reference domdirby means of an isomorphism

(4.18) Qd) = d(Q;d),
O(z;d) = (Py(d;d), Po(2;d)T , &= (21, 22)T
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The advantage of using the reference donfaiis that finite element approximations of
(4.17) can be performed with respect to that fixed domainauttbeing forced to remesh
for each update of the design variables.

We denote by7;,(Q))y a shape regular family of simplicial triangulations{af By means
of (4.18), these triangulations induce an associated Yaffj (2(d)))n of simplicial tri-
angulations of the actual physical domaid&?).

We use Taylor-HoodP2/ P1 elements for the discretization of the velocitye X and the
pressure € @ denoting the associated trial spacesyyand@;, with dim X; = n; and
dim @}, = no, respectively. This gives rise to an objective functiofigt R x R™, n :=
n1 + ng, by means of

(07
(4.19)  Jn(un,pn,d) = 21 (un — uf) "Iy (d) (up — ufl) + 7th2 n(d)ph s

wherel, ;(d),1 < v < 2, are the associated mass matrices aj’;lde R"l,pi € R
result from theL2-projections ofu?, p¢ onto X;, N H(div’; Q) andQy,, respectively. The
discretized shape optimization problem can be stated as

(4.20) inf Jh (uh,ph, d)

Up,,Ph,d

subject to the discrete nonlinear Stokes system

(4.21) Sh(yh,d) = ghn -
and the constraints
(4.22) de K.

For notational convenience, in the sequel we will drop tisemditization index.

Due to the dependence of the domain on the design paramktérs< i < m, the ob-
jective functional is nonconvex. Therefore, there may teximultitude of local minima.
Throughout the following, we assume thgt, d*) € R™ x K is a strict local solution of
(4.20)-(4.22).

We solve the discrete minimization problem by an adaptiviafallowing primal-dual
interior-point method. To this end, we couple the ineqyaldnstraints (4.22) by logarith-
mic barrier functions with a barrier paramefer= 1/u > 0, p — oo, resulting in the
following parameterized family of minimization subprotie

(4.23) me ) (y, d)

y.d

subject to (4.21), where

(4.24) BW(y,d) =

tM—‘

i dIIlll’l In(d?lax _ dl)] .

The dual aspect is to couple the constraint (4.21) by a LagranultiplierA = (A, A\,)”
which leads to the saddle point problem

(4.25) inf sup L(“)(y, A d),
y,d A

where the Lagrangiah(*) is given by
(4.26) LW (y,\,d) = B (y,d) + \"(S(y,d) —g)
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The central pathy —— x(u) = (y(u), A(n),d(p))? is defined as the solution of the
nonlinear system
Ly (y, A, d)
(4.27) Fla(u),m) = | LM, d) | =0,
L (y, A, d)
which represents the first order necessary optimality ¢mm for (4.25).

For the solution of the parameter-dependent nonlineaesy$4.27) we use an adaptive
path-following predictor-corrector strategy along three of DEUFLHARD [2004].

Predictor Step: The predictor step relies on tangent continuation alongrtgjectory of
the Davidenko equation

(428) Fy ($(M), ,LL) xl(,u) 7FH (I(N)v :u) :

Given some approximatio(;. ) at ux > 0, computei(® (y.41), wherepy 1 = px +

Apl” | according to
(4.29a) (@ (pn), o) 0 (pr) = — Fu(@(pe)s pre)
(4.29b) O () = Fu) + Ap) ow () -

We us%uéo) = Apo for some given initial step siz& o, whereas fok > 1 the predicted
step sizeﬁu,(co) is chosen by

1Az ()| V2~ 1)1/2 .
= = k—1 >

1 () — 2O ()| 20 (1)

whereAyuy,_; is the computed continuation step sizer(?) () is the first Newton cor-

rection (see below), an@(ux) < 1 is the contraction factor associated with a successful
previous continuation step.

(4.30) Ap” = (

Corrector step: As a corrector, we use Newton’s method applied (@ (px+1), tk+1) =
0 with 2(®)(us, 1) as a start vector. In particular, fér > 0 andj, > 0 we compute
Az (uy.41) according to

(4.31) F'(399 (1), 1) AzY (gi1) = — F(2Y99 (1), g1

andfx(jZ)(uk+1) as the associated simplified Newton correction
(4.32)

F'(299 (1), prsr) M(ﬂ)(ﬂk+1) = — F(@Y) (41) + Az9) (1), ) -
We monitor convergence of Newton’s method by means of

09 (upn) = 827 (s )| /11AZ97) (i)

In case of successful convergence, we accept the currgnsigie and proceed with the
next continuation step. However, if the monotonicity test

(4.33) OY) (ipyr) < 1

fails for somej, > 0, the continuation step has to be repeated with the reduepdsiste

V2 —11\1/2
@34  AptY = (g(@(m)) Aw . 90) =VEFT-1
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until we either achieve convergence or for some prespeddiedr boundA ,,,;, observe
4
A,uff R Allin -
In the latter case, we stop the algorithm and report convesgéailure.

Actually, we perform the correction step by an inexact Newttethod featuring right-
transforming iterations. The derivatives have been coetphy automatic differentiation.
For details we refer to ANTIL et al. [2007], HOPPE, PETROVAdaS®CHULZ [2002],
HOPPE and PETROVA [2004], HOPPE, LINSENMANN and PETROVA (8Q) WIT-
TUM [1989].

Figure 4.17 (middle) shows the optimized design of the vbtendary of a piston duct
in the rebound stage (cf. subsection 4.2) and details of pienized outlet boundary for
various electric field strengths (the lines show the difiémesigns for increasing elec-
tric field strengths from right to left). Although the desggdo not differ that much, the
specification of a best compromise is the subject of a fupémization routine.
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