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MODELING, SIMULATION AND OPTIMIZATION OF
ELECTRORHEOLOGICAL FLUIDS

R.H.W. HOPPE1,2 AND W.G. LITVINOV 2

1. INTRODUCTION

Electrorheological fluids are concentrated suspensions ofelectrically polarizable par-
ticles of small size in the range of micrometers in non-conducting or semi-conducting
liquids such as silicone oils. Under the influence of an outerelectric field, the particles
form chains along the field lines followed by a coalescence ofthe chains into columns in
the plane orthogonal to the field due to short-ranged potentials arising from charge-density
fluctuations. The formation of the chains is a process which happens in milliseconds,
whereas the aggregation to columns occurs on a time scale that is larger by an order of
magnitude. On a macroscopic scale, the chainlike and columnar structures have a signi-
ficant impact on the rheological properties of the suspensions. In particular, the viscosity
increases rapidly with increasing electric field strength in the direction perpendicular to the
field. The fluid experiences a phase transition to a viscoplastic state, and the flow shows a
pronounced anisotropic behavior. Under the influence of large stresses, the columns break
into continuously fragmenting and aggregating volatile structures which tilt away from
strict field alignment. As a result, the viscosity decreasesand the fluid flow behaves less
anisotropic. The electrorheological effect is reversible, i.e., the viscosity decreases for de-
creasing electric field strength such that for vanishing field strength the fluid behaves again
like a Newtonian one. The fast response to an outer electric field and the reversibility of
the effect make electrorheological fluids particularly attractive for all technical applications
which require a controllable power transmission.

Although the discovery of the electrorheological effect iscredited to WINSLOW [1947]
(cf. also WINSLOW [1949, 1962]), it has already been observedexperimentally by
PRIESTLEY [1769] during the second half of the eighteenth century and by DUFF [1896]
and QUINKE [1897] at the end of the nineteenth century. However, WINSLOW was the
first scientist who conducted quantitative experiments on suspensions of silica gel particles
in oils of low viscosity. He reported fibration parallel to the electric field with a solid-like
behavior of the suspension at field strengths larger than3kV/mm. In his experiments, he
also observed that the yield stress, i.e., when the shear stress is proportional to the shear
rate, is proportional to the square of the electric field strength.

WINSLOW’s work did not immediately launch tremendous research activities in the
area of electrorheological fluids. In fact, it took roughly twenty to thirty more years,
when the availability of modern, high-resolution measurement technology on one hand and
more advanced and powerful computing facilities on the other hand enabled researchers
to conduct detailed experimental studies and to perform extensive numerical simulations
(see BLOCK and KELLY [1988], BLOCK et al. [1990], B̈OSE [1998], B̈OSE and
TRENDLER [2001], CLERCX and BOSSIS [1993], CONRAD et al. [1991], DEINEGA
and VINOGRADOV [1984], GAST and ZUKOSKI [1989], HANAOKA et al. [2002],
INOUE and MANIWA [1995], KHUSID and ACRIVOS [1995], KIMURA et al. [1998],
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FIGURE 1.1. Formation of chains aligned with the field (left) and ag-
gregation to sheets (right)

KLASS and MARTINEK [1967a,b] and KLINGENBERG et al. [1989],KLINGEN-
BERG and ZUKOSKI [1990], LEMAIRE et al. [1992], MARSHALL et al. [1989],
MOKEEV et al. [1992], RHEE et al. [2003], SHULMAN and NOSOV [1985], STAN-
GROOM [1977, 1983], STANWAY et al. [1987], TAO and SUN [1991b], VOROBEVA
et al. [1969], WHITTLE [1990], WEN et al. [2003], YU and WAN [2000], ZHAO et
al. [2002]). The experimental work focused on the creation of the chainlike and colum-
nar structures (see KLINGENBERG and ZUKOSKI [1990], MARTINand ANDERSON
[1996], MARTIN et al. [1998a], QI and WEN [2002]) (cf. Figure 1.1 (left)) up to the for-
mation of sheets (cf. Figure 1.1 (right)) and body-centeredtetragonal crystal lattices (see
DASSANAYAKE et al. [2000]) (cf. Figure 1.2) as well as on the dynamics of the process
(cf., e.g., ADOLF and GARINO [1995], FOULC et al. [1996], KLINGENBERG [1998],
KLINGENBERG and ZUKOSKI [1990], KLINGENBERG et al. [2005],MARTIN et al.
[1998b], PFEIL et al. [2002], TAM et al. [1997], UGAZ et al. [1994], WHITTLE et
al. [1999], ZHAO and GAO [2001]). The measurements have beenperformed using, e.g.,
confocal scanning laser microscopy (DASSANAYAKE et al. [2000]), two-dimensional
light scattering techniques (MARTIN et al. [1998b]), and nuclear magnetic resonance
imaging (UGAZ et al. [1994]).

FIGURE 1.2. Body-centered tetragonal crystal lattice in the xy-plane
(left) and the xz-plane (right)
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The potential industrial applicability of electrorheological fluids in automotive applica-
tions (BAYER [1998], BUTZ and STRYK [2001], COULTER et al. [1993], FILISKO
[1995], GARG and ANDERSON [2003], GAVIN [2001], GAVIN et al. [1996a,b],
HARTSOCK et al. [1991], HOPPE et al. [2000], JANOCHA et al. [1996], LORD
[1996], PEEL et al. [1996], SIMS et al. [1999], STANWAY et al.[1996], WEYENBERG
et al. [1996], ZHAO et al. [2005]), aerospace applications (BERG and WELLSTEAD
[1998], LOU et al. [2001], WERELEY et al. [2001]), food processing (DAUBERT et
al. [1998]), geophysics (MAKRIS [1999], XU et al. [2000]), life sciences (KLEIN et al.
[2004], LIU et al. [2005], MAVROIDIS et al. [2001], MONKMANNet al. [2003a,b],
TAKASHIMA and SCHWAN [1985]), manufacturing (KIM et al. [2003]), military appli-
cations (DEFENSE UPDATE [2004]), and nondestructive testing (MAVROIDIS [2002])
caused the US Department of Energy to issue a research assessment of electrorheological
fluids (DOE [1993]) and popular scientific journals such as Science and Nature to publish
overview articles (HALSEY [1992], WHITTLE and BULLOUGH [1992]). Further re-
ferences covering various aspects of experimental work, modeling efforts, and applications
of electrorheological fluids can be found in BOSSIS [2002], HAO [2001], TAO and ROY
[1995].

The experimental work was always accompanied by the development of physically con-
sistent, mathematical models, their analysis, numerical simulations, and model validations
on the basis of available data from measurements and simulations. Roughly speaking,
one has to distinguish between microstructural models, which combine electrostatics (see
JONES [1995]), microhydrodynamics (cf. KIM and KARRILA [1991]), and liquid state
theory (see CACCANO et al. [1999]; cf. also LARSON [1999], LUKASZEWICZ
[1999]), and macroscopic models based on continuum field theories (cf., e.g., RAJAGO-
PAL and TRUESDELL [2000], TRUESDELL and NOLL [1965], TRUESDELL and
TOUPIN [1960]).

The simplest microscale models assume the electrorheological fluids to consist of mono-
disperse, neutrally buoyant hard dielectric spheres dispersed in a Newtonian continuous
phase thus neglecting small conductivities in both phases,ionic impurities in the contin-
uous phase, and triboelectric effects. Idealized electrostatic polarization methods obtain
the electrostatic potential via Laplace’s equation and compute the motion of the particles
by Newton’s equation which requires the proper specification of the total force exerted
on a particle by taking into account the interparticle forces. Since the exact solution is
unavailable and the computation of all possible interparticle forces is cumbersome, the
system is simplified by the point-dipole approximation (seeJONES [1995], KIM and
KLINGENBERG [1997], PARTHASARATHY and KLINGENBERG [1996], PFEIL and
KLINGENBERG [2004]) assuming that two spheres of the same size do not change their
charge distributions. The resulting force equation only depends on the distance of the
particles, the angle between them, the particle size, and onthe properties of the induced
electric field. The results of the model differ by an order of magnitude from experimen-
tally available data, since the dipole moment of the particles enhances the polarization.
This has been accounted for in PARTHASARATHY and KLINGENBERG [1996] by a
modified point-dipole approximation and by providing multipole models (see CONRAD et
al. [1991], CLERCX and BOSSIS [1993]) which are based on several electric field equa-
tions (up to four), whereas the particle interaction is performed for an N particle cluster
allowing the consideration of particles in lattice structures such as body-centered tetrago-
nal crystal lattices. The dipole-induced dipole model in YUand WAN [2000] represents
a further development of the multipole models in so far as it admits spheres of different
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sizes. Maxwell-Wagner polarization due to accumulated charges between the interface of
the particles and the continuous phase has been incorporated in PARTHASARATHY and
KLINGENBERG [1996] by assuming a point dipole model for thisinterfacial polariza-
tion. The Maxwell-Wagner model in KHUSID and ACRIVOS [1995]further acknowl-
edges effects of the disturbance field between particles.
Microstructural models based on energy-type methods have been derived in BONNECAZE
and BRADY [1992a,b]. They take into account hydrodynamic and electrostatic particle
interactions using Stokesian dynamics and a model for the electrostatic energy. The latter
one is determined from the capacitance matrix of the suspension. The models allow sim-
ulations of monolayers of particles for a wide range of the ratio of viscous to electrostatic
forces as described by the Mason number. The macroscopic rheology can be deduced from
the simulations. In accordance with experimental results,it shows that for large electric
field strengths there is a pronounced Bingham-type behaviorof the suspension with a dy-
namic yield stress that can be related to jumps in the electrostatic energy. Numerical simu-
lations based on microscale models are typically of molecular dynamics type (cf, e.g., HU
and CHEN [1998], MELROSE [1992], MELROSE and HAYES [1993], TAO and SUN
[1991a], ZHAO and GAO [2001]) using methodologies from ALLEN and TILDESLEY
[1983].

The microstructural features of electrorheological fluidshave been used to derive mo-
dels for a description of the macroscopic properties (cf. e.g., KLINGENBERG [1993],
PARTHASARATHY et al. [1994], PARTHASARATHY and KLINGENBERG [1995a,b,
1999], PFEIL et al. [2003], SEE [1999, 2000], VERNESCU [2002], WANG and XIAO
[2003]). On the other hand, macroscopic models have been obtained by phenomenolog-
ical approaches within the framework of mixture theory (seeRAJAGOPAL [1996], RA-
JAGOPAL et al. [1994]) and classical continuum mechanics (we refer to ATKIN et al.
[1991] as one of the first attempts in this direction (cf. alsoATKIN et al. [1999])).
Since electrorheological fluids exhibit a Non-Newtonian flow behavior, significant efforts
have been devoted to the derivation of appropriate constitutive equations relating the stress
tensor to the rate of deformation tensor by taking into account the influence of the elec-
tric field. We mention the pioneering work by RAJAGOPAL and WINEMAN [1992,
1995] (see also ENGELMANN et al. [2000]) and the systematic treatment by RUZICKA
[2000] providing a constitutive equation of power law type (see also BUSUIOC and CIO-
RANESCU [2003], ECKART [2000], RAJAGOPAL and RUZICKA [2001]). Other
continuum-based approaches try to incorporate micro- and mesoscale effects by using in-
ternal variables (DROUOT et al. [2002]), transverse isotropy (BRUNN and ABU-JDAYIL
[1998, 2004]), polar theory (ECKART and SADIKI [2001]), andmore general rate-type
models (SADIKI and BALAN [2003]). In this contribution, we will adopt the constitutive
laws that have been suggested, analyzed and validated in HOPPE and LITVINOV [2004]
and LITVINOV and HOPPE [2005] for isothermal and non-isothermal electrorheological
fluid flows which take into account the orientation of the velocity field of the flow with
respect to the outer electric field.

The content of this chapter is as follows: In section 2, we areconcerned with balance
equations and constitutive laws for isothermal and non-isothermal electrorheological fluid
flows and with the existence and/or uniqueness of solutions.In section 3, we deal with
numerical methods both for steady and time-dependent fluid flows. Finally, in section 4
we present numerical simulation results for some selected electrorheological devices and
also briefly address optimal design issues.
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2. MATHEMATICAL MODELS FOR ELECTRORHEOLOGICAL FLUID FLOWS

In this section, we study balance equations and constitutive laws for isothermal and
non-isothermal electrorheological fluid flows. After a general presentation in 2.1, in 2.2
we consider stationary isothermal fluid flows based on the extended Bingham-type models
from HOPPE and LITVINOV [2004]. In particular, we shall be concerned with existence
and/or uniqueness results for a regularized version in 2.2.1 and for the non-regularized
model in 2.2.2. In 2.3, we deal with time-dependent problems, whereas 2.4 and 2.5 are
devoted to the derivation of model equations for non-isothermal fluid flows and the dis-
cussion of the existence of solutions following the approach in LITVINOV and HOPPE
[2005]. We refer to DUVAUT and LIONS [1976], GALDI [1994], GLOWINSKI [2004],
LADYZHENSKAYA [1969], TEMAM [1979] for general aspects related to the mathe-
matical modelling, the analysis and the numerical solutionof fluid mechanical problems
and to LITVINOV [2000] for a general treatment of optimization problems for nonlinear
viscous fluids.

2.1. Balance equations and constitutive laws for isothermal fluid flows. We consider
isothermal incompressible electrorheological fluid flows in Q := Ω × (0, T ), T ∈ R+,
whereΩ is supposed to be a bounded Lipschitz domain inR

d, d = 2 or d = 3. We denote
by u(x, t) = (u1(x, t), · · · , ud(x, t))

T , (x, t) ∈ Q̄, andp(x, t), (x, t) ∈ Q, the velocity
of the fluid and the pressure, whereasE(x, t) = (E1(x, t), · · · , Ed(x, t))

T , (x, t) ∈ Q̄,
stands for the electric field. We use the notationut := ∂u/∂t for the partial derivative of
u with respect to time. Then, referring toρ ∈ R+ as the density of the fluid, tof : Q →
R

d as a forcing term, and toσ = σ(u, p,E) as the stress tensor, the balance equations
(conservation of mass and momentum) are given by

ρ
(

ut + (u · ∇)u
)

− ∇ · σ = f in Q ,(2.1a)

∇ · u = 0 in Q ,(2.1b)

which have to be complemented by properly specified initial and boundary conditions and
a constitutive law relating the stress tensorσ to the independent variablesu, p andE.
Neglecting magnetic fields, the electric field can be considered as quasi-static so that for
eacht ∈ [0, T ] the fieldE(·, t) can be computed byE(·, t) = −∇ψ(·, t) as the gradient of
an electric potentialψ(·, t) satisfying Laplace’s equation

(2.2) ∇ · (ǫ∇ψ(·, t)) = 0 in Ω ,

which also has to be complemented by appropriate boundary conditions. Here,ǫ stands for
the dielectric permittivity.

For the discussion of the constitutive law, we further denote by

(2.3) ε(u) =
1

2

(

∇u+ (∇u)T
)

the rate of deformation tensor (linearized strain tensor) and by

(2.4) I(u) = ‖ε(u)‖2
F

the second invariant of the rate of deformation tensor, where ‖ · ‖F stands for the Frobe-
nius norm. For shear flows, we refer toτ = τ(u,E) as the shear stress which is a field
dependent function of the shear rate

(2.5) γ = (2−1I(u))1/2 .
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In case of flow modes such as Couette flow or Poiseuille flow, where the electric field is
perpendicular to the fluid velocity, constitutive equations of the form

(2.6) σ = −pI + 2ϕ(I(u), |E|) ε(u) .
have been widely used. Here,ϕ : R+×R+ → R stands for a viscosity function depending
on the second invariant of the rate of deformation tensor andthe electric field strength.
The most commonly used constitutive law for simple flow modesis that of a Bingham-type
fluid ATKIN et al. [1991], FILISKO [1995], PARTHASARATHY andKLINGENBERG
[1996], RHEE et al. [2003], STANWAY et al. [1996], WHITTLE, ATKIN and BUL-
LOUGH [1995]. For stresses above a field dependent yield stressσY (E) the viscosity
functionϕ is given by

(2.7) ϕ(I(u), |E|) = η0(E) + 2−1/2 τ0(E) I(u)−1/2 ,

whereasI(u) = 0 for |σ| ≤ σY (E). Here,η0(E) is a field dependent constant andτ0(E)
denotes the shear stress for vanishing shear rateγ.

A related model, which can be viewed as some extension of the Bingham fluid model,
is that of CASSON [1959]. For|σ| > σY (E), the viscosity function

ϕ(I(u), |E|) = η0(E) + 2−1/2 τ0(E) I(u)−1/2 +(2.8)

+ 23/4 (η0(E) τ0(E))1/2 I(u)−1/4

is used, whereas againI(u) = 0 for |σ| ≤ σY (E).

The singular character of the viscosity functionϕ in the Bingham and Casson fluid mo-
dels requires to formulate the equations of motion (2.1a),(2.1b) as variational inequalities.
A possible way to circumvent the difficulties associated with the non-smooth behavior of
the viscosity function is by regularization which in case ofa Bingham model gives rise to

(2.9) ϕ(I(u), |E|) = η0(E) + 2−1/2 τ0(E) (κ+ I(u))−1/2 .

Here,κ stands for a positive regularization parameter. For the Casson model (2.8), one
may use an analogous regularization. The implications of using the classical models and
the regularized models will be discussed in a more general context later in this section.

Other frequently used constitutive equations for non-Newtonian fluids assume a power
law behavior (SIGNIER et al. [1999]). For electrorheological fluids, this leads to a vis-
cosity functionϕ of the form

(2.10) ϕ(I(u), |E|) =

{

m(E) γ
n(E)−1
0 , γ ≤ γ0(E)

m(E) γn(E)−1 , γ > γ0(E)
,

wherem(E), n(E) are field dependent material parameters andγ0(E) stands for a field
dependent shear rate. Regularizations of the power law model can be used as well. In this
case, the viscosity function (2.10) is replaced by

(2.11) ϕ(I(u), |E|) = m(E) (κ+ γ2)(n(E)−1)/2 , κ > 0 .

We note that in case of steady shear flows in axially symmetricgeometrical configura-
tions the use of the previously mentioned models in the equations of motion (2.1a),(2.1b)
leads to scalar nonlinear equations that can be solved semi-analytically. However, a seri-
ous drawback of the models is that the electric field strength|E| occurs as a parameter in
the constitutive laws thus assuming a homogeneous distribution of the electric field. This
assumption is justified for simple flows in geometrical settings, where the flow occurs be-
tween conventionally shaped electrodes at small distance from each other (cf. subsections
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4.1 and 4.2), but due to experimental evidence does not hold true for more general config-
urations (cf. e.g., ABU-JDAYIL [1996], ABU-JDAYIL and BRUNN [1995, 1996, 1997,
2002] and EDAMURA and OTSUBO [2004], GEORGIADES [2003], OTSUBO [1997],
OTSUBO and EDAMURA [1998, 1999]).

One of the first systematic approaches towards a general phenomenological model based
on continuum field theories has been undertaken by RAJAGOPALand WINEMAN in
RAJAGOPAL and WINEMAN [1992] (cf. also RAJAGOPAL and WINEMAN [1995]),
where the constitutive law is assumed to be of the form

σ = − pI + α2 E ⊗ E + α3 ε(u) + α4 ε
2(u) +(2.12)

+ α5 (ε(u)E ⊗ E + E ⊗ ε(u)E) + α6 (ε2E ⊗ E +E ⊗ ε(2u)E) .

Here,⊗ denotes the tensor product andαi = αi(I1, · · · , I6), 2 ≤ i ≤ 6, are scalar
functions of the six invariants

I1 := tr(EET ) , I2 := tr(ε(u)) , I3 := tr(ε2(u)) , I4 := tr(ε3(u)) ,

I5 :=tr(ε(u)E ⊗ E) , I6 := tr(ε2(u)E ⊗ E) ,

where tr stands for the trace of a matrix.
Motivated by RAJAGOPAL and WINEMAN [1992, 1995], an extendedBingham-type
fluid model

(2.13) σ = −pI + η0ε(u) + γ|ε(u)E|−1|E|
(

ε(u)E ⊗ E + E ⊗ ε(u)E
)

has been used in ENGELMANN et al. [2000], HOPPE and MAZURKEVICH [2001],
HOPPE et al. [2000] in combination with a potential equationfor the electric potentialψ
(E = −∇ψ) to provide numerical simulations of steady electrorheological fluid flows.

In the spirit of RAJAGOPAL and WINEMAN [1992, 1995], RUZICKA [2000] has
developed a model that takes into account the interaction between the electric field and the
fluid flow (see also RAJAGOPAL and RUZICKA [1996, 2001]). The constitutive equation
is of power law type

σ = − pI + γ1

(

(1 + |ε(u)|2)(r−1)/2 − 1
)

E ⊗ E +(2.14)

+ (γ2 + γ3|E|2)(1 + |ε(u)|2)(r−2)/2ε(u) +

+ γ4(1 + |ε(u)|2)(r−2)/2
(

ε(u)E ⊗ E + E ⊗ εE
)

,

whereγi, 1 ≤ i ≤ 4, are constants andr : R+ → R+ is a smooth function of|E|2
satisfying

(2.15) 1 < r∞ ≤ r(|E|2) ≤ r0 .

Here,r0 andr∞ are the constants

r0 := lim
|E|2→0

r(|E|2) , r∞ := lim
|E|2→∞

r(|E|2) .

As far as the electric fieldE is concerned, the quasi-static form of Maxwell’s equations
ERINGEN and MAUGIN [1989], LANDAU and LIFSHITZ [1984] can beused such that
E can be computed via the gradient of an electric potential satisfying an elliptic boundary
value problem.
Due to the power law (2.14), the existence of weak solutions of the equations of mo-
tion (2.1a),(2.1b) both in the case of steady and time-dependent flows has to be studied
within the framework of generalized Lebesgue and generalized Sobolev spaces (for re-
lated work see also FREHSE, MALEK and STEINHAUER [1997], LITVINOV [1982],
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MALEK, NECAS and RUZICKA [1996], MALEK and RAJAGOPAL [2007], MALEK,
RAJAGOPAL and RUZICKA [1995]).
A further development of Ruzicka’s approach by means of an extended Casson model has
been studied in ECKART [2000].

Motivated by experimental evidence (CECCIO and WINEMAN [1994], SHULMAN
and NOSOV [1985]), in HOPPE and LITVINOV [2004] a constitutive law

(2.16) σ = −pI + 2ϕ(I(u), |E|, µ(u,E))ε(u) ,

has been suggested where the viscosity functionϕ : R+ × R+ × [0, 1] → R additionally
depends on the orientation of the electric fieldE with respect to the velocityu of the fluid
flow as described by a functionµ : Sd

1 × Sd
1 → [0, 1] with Sd

1 denoting the d-dimensional
unit sphere. We refer tôu as the velocity of the electrode. Then, foru− û 6= 0 andE 6= 0
the functionµ : Sd

1 × Sd
1 → [0, 1] is defined according to

(2.17) µ(u,E) :=
u− û

|u− û| ·
E

|E| ,

where· stands for the Euclidean inner product inR
d. The functionµ = µ(u,E) is an

invariant which is independent of the choice of the reference frame and the motion of
the frame with respect to the electrode. For a further discussion we refer to HOPPE and
LITVINOV [2004].

Shear stress (Pa)
Shear rate 0.0 1.5 2.0 2.5 3.0
γ [per sec] V/mm kV/mm kV/mm kV/mm kV/mm
1.0×102 30.2 563.0 979.0 1360.0 1720.0
2.0×102 48.0 650.0 1070.0 1500.0 1900.0
4.0×102 69.3 695.0 1140.0 1600.0 2030.0
6.0×102 83.5 700.0 1170.0 1640.0 2070.0
8.0×102 100.0 712.0 1180.0 1670.0 2110.0
1.0×103 110.0 723.0 1200.0 1676.0 2140.0
1.2×103 115.0 727.0 1210.0 1686.0 2160.0
1.4×103 120.0 731.0 1220.0 1693.0 2180.0
1.6×103 225.0 735.0 1240.0 1696.0 2190.0
1.8×103 230.0 740.0 1250.0 1706.0 2200.0
2.0×103 235.0 743.0 1254.0 1710.0 2210.0

TABLE 1. Experimental data (shear stress - shear rate dependence)
at various electric field strengths for the commercially available
electrorheological fluid RHEOBAY TP AI 3565 (from BAYER [1997a])

For specific electrorheological fluids, the viscosity function ϕ has to be determined
based on experimental data for the relationshipτ = τ(γ) between the shear stressτ and
the shear rateγ. For various electric field strengths, these data are usually available at
discrete pointsγi ∈ [γmin, γmax], 0 ≤ i ≤ N, with 0 < γmin < γmax < ∞ (cf. Table
1). Complete cubic spline interpolands are then used for theconstruction of flow curves in
[γmin, γmax] (cf. Figure 2.3), and the flow curves are continuously extended to(γmax,∞)
by straight linesτ(γ) = a1 + a2γ with coefficientsai, 1 ≤ i ≤ 2, depending on|E|



MODELING, SIMULATION AND OPTIMIZATION OF ELECTRORHEOLOGICAL FLUIDS 9

andµ(u,E). The extension to[0, γmin) can de done such that eitherτ(0) = τ0 6= 0 or
τ(0) = 0. In the former case, the viscosity function takes the form

(2.18) ϕ(I(u), |E|, µ(u,E)) = b(|E|, µ(u,E))I(u)−1/2 + c(I(u), |E|, µ(u, e)) ,

whereb(|E|, µ(u,E)) = 2−1/2τ0 andc : R+ ×R+ × [0, 1] → R is a continuous function.

REMARK 2.1. The viscosity functionϕ as given by(2.18)represents an extended Bingham-
type fluid model (cf.(2.7). Due to its singular behavior forI(u) = 0, the equations
of motion(2.1a),(2.1b)have to be formulated as variational inequalities (see subsection
2.2.2below).
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FIGURE 2.3. Flow curves generated by cubic spline interpolands based
on the experimental data from Table 1 showing the effect of the field
strength (50Hz, AC) and the shear rateγ on the shear stressτ at 40oC.

On the other hand, if the flow curves are extended to[0, γmin) such thatτ = 0 for
γ = 0, the viscosity function can be written as

(2.19) ϕ(I(u), |E|, µ(u,E)) = b(|E|, µ(u,E))(κ+I(u))−1/2 + c(I(u), |E|, µ(u, e)) ,

where0 < κ ≪ 1 andb : R+ × [0, 1] → R , c : R+ × R+ × [0, 1] → R are continuous
functions.

REMARK 2.2. The viscosity functionϕ of the form(2.19)can be interpreted as an exten-
sion of the regularized Bingham fluid model(2.9).

As far as the functionsb, c in (2.18) and (2.19) are concerned, we assume that the
following conditions are satisfied:

(A1) c is a continuous function of its arguments, i.e.,c ∈ C(R+ × R+ × [0, 1]), and
there exist positive constantsci, 1 ≤ i ≤ 2, such that for all(y1, y2, y3) ∈ R+×
R+ × [0, 1] there holds

c1 ≤ c(y1, y2, y3) ≤ c2 .
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Moreover, for fixed(y2, y3) ∈ R+ × [0, 1], the functionc(·, y2, y3) : R+ → R is
continuously differentiable, i.e.,c(·, y2, y3) ∈ C1(R+), and there exist positive
constantsci, 3 ≤ i ≤ 4, such that for ally1 ∈ R+ there holds

c(y1, y2, y3) + 2
∂c

∂y1
(y1, y2, y3) ≥ c3 ,

| ∂c
∂y1

(y1, y2, y3)| y1 ≤ c4 .

(A2) b is a continuous function of its arguments, i.e.,b ∈ C(R+ × [0, 1]), and there
exists a positive constantc5 such that for all(y1, y2) ∈ R+ × [0, 1] there holds

0 ≤ b(y1, y2) ≤ c5 .

REMARK 2.3. The first condition in(A1) and condition(A2) imply that for the models
(2.18) and (2.19) the viscosity functionϕ is bounded from below by a positive constant
and that for the regularized Bingham-type model(2.19)the viscosity functionϕ is bounded
from above as well, whereasϕ(I(u), |E|, µ(u,E)) → +∞ asI(u) → 0 for the extended
Bingham-type model(2.18).
The second condition in(A1) implies that for fixed values of|E| andµ(u,E) the derivative
of the functionI(v) 7−→ G(v) := 4(ϕ(I(v), |E|, µ(u,E)))2I(v) is positive, whereG(v)
is the second invariant of the stress deviator. The physicalmeaning of this condition is that
in case of shear flow the shear stress increases with increasing shear rate.
The third condition in(A1) imposes a restriction on the function∂c/∂y1 for large values
of y1 which reflects the experimentally observable behavior of electrorheological fluids
that their structure is destroyed at large shear rates.

On the basis of the assumptions(A1) and(A2), existence and uniqueness results for
steady and time-dependent isothermal incompressible electrorheological fluid flows will
be established in the subsequent subsections 2.2 and 2.3 relying on the theory of monotone
operators (BREZIS [1973], BROWDER [1968], LIONS [1969], MINTY [1962], VAIN-
BERG [1964], VISIK [1962], ZEIDLER [1990]).

We note that under some weaker monotonicity assumptions, anexistence result has
been derived in DREYFUSS and HUNGERBUEHLER [2004] using thetheory of Young
measures (see, e.g., VALADIER [1994]). We further refer to DREYFUSS and HUNGER-
BUEHLER [2004].

Since the macroscopic behavior of electrorheological fluids is largely determined by
physical processes occurring on a microscale, a natural approach to develop physically
consistent macroscopic models is to use homogenization techniques within a multiscale
framework. Such an approach has been undertaken in VERNESCU[2002] (cf. also
BANKS et al. [1999] for a similar approach in case of magnetorheological fluids).

2.2. Boundary value problems for steady isothermal incompressible fluid flows based
on regularized Bingham-type flow models.We adopt standard notation from Lebesgue
and Sobolev space theory (cf., e.g., ADAMS [1975], GRISVARD[1985], LIONS and
MAGENES [1968]). In particular, for a bounded Lipschitz domain Ω ⊂ R

d, d ∈ N, we
refer toLp(Ω)d, 1 ≤ p ≤ ∞, as the Lebesgue spaces with norms‖ · ‖p,Ω and denote by
(·, ·)0,Ω the inner product inL2(Ω)d. The spacesWm,p(Ω)d,m ∈ N, stand for the Sobolev
spaces with norms‖ · ‖m,p,Ω, whereasW−m,q(Ω)d, 1/p + 1/q = 1, 1 ≤ p < ∞, and
Wm−1/p,p(Γ)d,Γ := ∂Ω, refer to their dual and trace spaces, respectively. ForΣ ⊆ Γ, the
spaceWm−p,p

0,Σ (Ω)d denotes the space of functionsv ∈ Wm,p(Ω)d with vanishing trace
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on Σ, i.e., v|Σ = 0, andWm−1/p,p
00 (Σ)d is the space of functionsψ ∈ Wm−1/p,p(Γ)d

such thatψ = v|Σ for somev ∈ Wm,p(Ω)d with v|Γ\Σ = 0. Furthermore, we refer to
H(div; Ω) := {v ∈ L2(Ω)d|∇ · v ∈ L2(Ω)} andH(curl; Ω) := {v ∈ L2(Ω)d|∇ × v ∈
L2(Ω)d}, if d ≥ 3, andH(curl; Ω) := {v ∈ L2(Ω)2|∇ × v ∈ L2(Ω)}, if d = 2,
as the Hilbert spaces of square integrable vector-valued functions with square integrable
divergence and rotation, respectively, equipped with the standard graph norm. We denote
byH(div0; Ω) andH(curl0; Ω) the subspacesH(div0; Ω) := {v ∈ H(div; Ω)|∇ · v = 0}
andH(curl0; Ω) := {v ∈ H(curl; Ω)|∇ × v = 0}.

Given a bounded Lipschitz domainΩ ⊂ R
d with boundaryΓ = ΓD∪ΓN ,ΓD∩ΓN = ∅,

and functions

(2.20) f ∈ L2(Ω)d , g ∈ L2(ΓN )d , uD ∈W 1/2,2(ΓD)d ,

we consider the following boundary value problem for steady, incompressible, isother-
mal electrorheological fluid flows under the Stokes approximation, i.e., we ignore inertial
forces,

∇ · σ = f in Ω ,(2.21a)

∇ · u = 0 in Ω ,(2.21b)

u = uD onΓD × (0, T ) ,(2.21c)

ν · σ = g onΓN , ,(2.21d)

where the stress tensorσ is supposed to satisfy one of the constitutive equations from the
previous subsection.

As far as the electric fieldE is concerned, we assume that the boundaryΓ featuresn
pairs of electrodes and counter-electrodes occupying opensubsetsΓe

i ,Γ
c
i ⊂ Γ,Γe

i ∩ Γc
i =

∅, 1 ≤ i ≤ n, n ∈ N, with voltagesUi applied to the electrodesΓe
i . Since we assume the

electric fieldE to be quasi-static, it satisfiesE ∈ H(curl0; Ω) andǫE ∈ H(div0; Ω), where
ǫ stands for the electric permittivity. Hence, there exists an electric potentialψ ∈W 1,2(Ω)
satisfying the elliptic boundary value problem

∇ · (ǫ∇ψ) = 0 in Ω ,(2.22a)

ψ =

{
Ui onΓe

i

0 onΓc
i
, 1 ≤ i ≤ n ,(2.22b)

ν · ǫ∇ψ = 0 onΓ \
n⋃

i=1

(Γe
i ∪ Γc

i ) .(2.22c)

Since the coupling between the electric field and the fluid is supposed to be unilateral, the
boundary value problem (2.22a)-(2.22c) can be solved beforehand.

THEOREM 2.1. AssumeUi ∈ W
1/2,2
00 (Γe

i ), 1 ≤ i ≤ n, andǫ = (ǫij)
d
i,j=1, ǫij ∈ L∞(Ω),

1 ≤ i, j ≤ d, such that for almost allx ∈ Ω

d∑

i,j=1

ǫij(x)ξiξj ≥ α|ξ|2 , ξ ∈ R
d , α > 0 .

Then, the boundary value problem (2.22a)-(2.22c) admits a unique weak solutionθ ∈
W 1,2

0,Γc(Ω),Γc :=
⋃n

i=1 Γc
i .

Proof. Due to the assumption on the voltagesUi there exists̃θ ∈ W 1,2(Ω) such that
θ̃|Γe

i
= Ui andθ̃|Γc

i
= 0, 1 ≤ i ≤ n. Defininga(v, w) :=

∫

Ω
ǫ∇v · ∇wdx, v, w ∈ V :=
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W 1,2

0,Γ̃
(Ω), Γ̃ :=

⋃n
i=1(Γ

e
i ∪ Γc

i ), theV -ellipticity of the bilinear forma(·, ·) implies the

existence and uniqueness ofθ̂ ∈ V satisfying

a(θ̂, v) = −a(θ̃, v) , v ∈ V .

Then,θ = θ̂ + θ̃ is the unique weak solution of (2.22a)-(2.22c). �

2.2.1. The regularized extended Bingham fluid model.We study the existence and unique-
ness of a solution of the boundary value problem (2.21a)-(2.21d) for the electrorheologi-
cal fluid model (2.19) with regularization parameterκ. We show that a weak solution of
(2.21a)-(2.21d) satisfies a system of variational equations of saddle point type and establish
an existence result by means of appropriate Galerkin approximations in finite dimensional
subspaces of the underlying function spaces. To this end, weset

(2.23) X := W 1,2
0,ΓD

(Ω)d , V := X ∩H(div0; Ω)

and denote bỹu ∈W 1,2(Ω)d ∩H(div0; Ω) the function with tracẽu|ΓD
= uD. Moreover,

we introduce a functionalJκ : X × X → R, κ ∈ R+, and an operatorL : X → X∗

according to

Jκ(v, w) := 2

∫

Ω

c(|E|, µ(ũ+ v,E))(κ+ I(ũ+ w))1/2 dx ,(2.24a)

〈L(v), w〉 := 2

∫

Ω

b(I((ũ+ v), |E|, µ(ũ+ v,E))ε(ũ+ v) : ε(w) dx ,(2.24b)

where〈·, ·〉 stands for the dual pairing betweenX∗ andX.
For κ > 0, the functionalJκ is Gâteaux differentiable onX with respect to the second
argument. Indeed, the partial Gâteaux derivative∂Jκ

∂w (v, ·) ∈ L(X,X∗), v ∈ X, is given
by

〈∂Jκ

∂w
(v, w), z〉 =(2.25)

2

∫

Ω

c(|E|, µ(ũ+ v,E))(κ+ I(ũ+ w))−1/2ε(ũ+ w) : ε(z) dx , w, z ∈ X .

We further define an operatorMκ;X ×X → X∗, κ > 0, by

(2.26) Mκ(v, v) :=
∂Jκ

∂w
(v, v) + L(v) , v ∈ X .

We consider the problem: Findv ∈ V such that

(2.27) 〈Mκ(v, v), z〉 = 〈f + g, z〉 , z ∈ V ,

where we formally viewf + g as an element ofX∗. We will refer tou = ũ+ v as a weak
solution of (2.21a)-(2.21d). If a pair(u, p) is a solution of (2.21a)-(2.21d), by Green’s
formula it can be easily seen thatv = u− ũ solves (2.27). We can state (2.27) equivalently
as a system of variational equations of saddle point type, ifwe couple the incompressibility
condition by means of a Lagrange multiplier inL2(Ω). Denoting byB ∈ L(X,L2(Ω))
the divergence operator, i.e.,Bv = ∇ · v, v ∈ X, this leads to the following system: Find
(v, p) ∈ X × L2(Ω) such that

〈Mκ(v, v), z〉 − 〈B∗p, z〉 = 〈f + g, z〉 , z ∈ X ,(2.28a)

(Bv, q)0,Ω = 0 , q ∈ L2(Ω) .(2.28b)
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LEMMA 2.1. Let v ∈ V be a solution of (2.27). Then, there exists a uniquep ∈ L2(Ω)
such that(2.28a),(2.28a)holds true. Conversely, if(v, p) ∈ X × L2(Ω) is a solution of
(2.28a),(2.28a), then the pair(ũ+ v, p) satisfies (2.27). Moreover, ifv, p andũ are smooth
functions, then(ũ+ v, p) solves(2.28a),(2.28b).

Proof. The proof follows readily from the properties of the divergence operatorB. In
particular, denoting byV ⊥ the orthogonal complement ofV in X and byV 0 the polar set

V 0 := {ℓ ∈ X∗ | 〈ℓ, w〉 = 0 , w ∈ V } ,
the operatorB is an isomorphism fromV ⊥ ontoL2(Ω), whereas its adjointB∗ is an iso-
morphism fromL2(Ω) ontoV 0 (see BELONOSOV and LITVINOV [1996] and Lemma
6.1.1 in LITVINOV [2000]). We note that the caseB : H1

0 (Ω)d → L2
0(Ω) has been

addressed, e.g., in BREZZI and FORTIN [1991], GIRAULT and RAVIART [1986], LA-
DYZHENSKAYA and SOLONNIKOV [1976]. �

The existence of a solution(u, p) ∈ X × L2(Ω) of (2.28a),(2.28b) will be shown by a
Galerkin approximation with respect to sequences{Xn}N and{Qn}N of finite dimensional
subspaces that are limit dense inX andL2(Ω), i.e.,

lim
n→∞

inf
vn∈Xn

‖v − vn‖X = 0 , v ∈ X ,(2.29a)

lim
n→∞

inf
µn∈Qn

‖p− pn‖0,Ω = 0 , p ∈ L2(Ω) .(2.29b)

We refer toBn ∈ L(Xn, Q
∗
n), n ∈ N, as the discrete divergence operator

(2.30) (Bnvn, pn)0,Ω :=

∫

Ω

pn∇ · vn dx , vn ∈ Xn , pn ∈ Qn ,

and assume that for eachn ∈ N the discrete LBB-condition

(2.31) inf
pn∈Qn

sup
vn∈Xn

(Bnvn, pn)0,Ω

‖vn‖X‖pn‖0,Ω
≥ β > 0

is satisfied. As can be easily established, under the above assumption the discrete diver-
gence operatorsBn, n ∈ N, inherit the properties of their continuous counterpartB.

LEMMA 2.2. Assume that{Xn}N and {Qn}N are finite dimensional subspacesXn ⊂
X,n ∈ N, andQn ⊂ L2(Ω), n ∈ N,. Moreover, letBn, n ∈ N, be the discrete divergence
operator as given by(2.30)and suppose that the discrete LBB-condition(2.31)holds true.
Then,Bn is an isomorphism from(Ker(Bn))⊥ ontoQ∗

n andB∗
n is an isomorphism from

Qn onto the polar set(Ker(Bn))0 such that

(2.32) ‖Bn‖ ≤ β−1 , ‖(B∗
n)−1‖ ≤ β−1 , n ∈ N .

We consider the following approximating system of finite dimensional variational equa-
tions: Find(vn, pn) ∈ Xn ×Qn, n ∈ N, such that

〈Mκ(vn, vn), zn〉 − 〈B∗
npn, zn〉 = 〈f + g, zn〉 , zn ∈ Xn ,(2.33a)

(Bnvn, qn)0,Ω = 0 , qn ∈ Qn .(2.33b)

The main result of this subsection states the solvability ofthe system (2.33a),(2.33b)
for eachn ∈ N and the existence of a subsequenceN

′ ⊂ N such that the associated
sequence{(vn, pn)}N′ of solutions converges to a pair(v, p) ∈ X × L2(Ω) which solves
(2.28a),(2.28b).



14 R.H.W. HOPPE AND W.G. LITVINOV

THEOREM 2.2. Assume that the conditions(A1), (A2) are fulfilled andf, g, ud satisfy
(2.20). Further, let{Xn}N and{Qn}N be nested sequences of finite dimensional subspaces
Xn ⊂ X,n ∈ N, andQn ⊂ L2(Ω), n ∈ N, i.e.,

(2.34) Xn ⊂ Xn+1 , Qn ⊂ Qn+1 , n ∈ N ,

that are limit dense inX andL2(Ω) and suppose that the discrete LBB-condition(2.31)
holds true. Then, for anyκ > 0 andn ∈ N there exists a solution(vn, pn) ∈ Xn × Qn

of the discrete saddle point problem(2.33a),(2.33b). Moreover, there exist a subsequence
N

′ ⊂ N and a pair(v, p) ∈ X × L2(Ω) such that

vn ⇀ v in X (N′ ∋ n→ ∞) ,(2.35a)

pn → p in L2(Ω) (N′ ∋ n→ ∞) .(2.35b)

The pair(v, p) ∈ X × L2(Ω) is a solution of(2.28a),(2.28b).

Theorem 2.2 will be proved by a series of Lemmas which enable us to deduce the
existence of a bounded sequence{(un, pn)}N of solutions of (2.33a),(2.33b) and to pass to
the limit.

For z = (z̃, z1, z2) with z̃ ∈ W 1,2(Ω), z1 ∈ L2
+(Ω) andz2 ∈ L∞(Ω), z2(x) ∈ [0, 1]

f.a.a.x ∈ Ω, we defineLz : X → X∗ as the operator

(2.36) 〈Lz(v), w〉 := 2

∫

Ω

b(I(v + z̃), z1, z2)ε(v + z̃) : ε(w) dx , v, w ∈ X .

LEMMA 2.3. Under the assumption(A1), the operatorLz as given by(2.36) is a conti-
nuous, strongly monotone operator fromX into X∗. In particular, for v, w ∈ X there
holds

‖Lz(v) − Lz(w)‖X∗ ≤ CL ‖v − w‖X ,(2.37a)

〈Lz(v) − Lz(w), v − w〉 ≥ γL ‖v − w‖2
X ,(2.37b)

whereCL := (2c2 + 4c4) andγL := 2min(c1, c3) with ci, 1 ≤ i ≤ 4, from (A1).

Proof. Forv, w ∈ X we setq := v −w and consider the functionτ : [0, 1] → R which
for an arbitrarily, but fixed chosenh ∈ X is given by

τ(t) :=

∫

Ω

b(I(z̃ + w + tq), z1, z2)ε(z̃ + w + tq) : ε(h) dx , t ∈ [0, 1] .

Obviously,τ satisfies

τ(1) − τ(0) =
1

2
〈Lz(v) − Lz(w), h〉 .

Sinceτ ∈ C1([0, T ]), classical calculus tells us that for someξ ∈ (0, 1)

τ(1) = τ(0) +
dτ

dt
(ξ) ,

where(dτ/dt)(ξ) is given by

dτ

dt
(ξ) =

∫

Ω

(

b(I(z̃ + w + ξq), z1, z2)ε(q) : ε(h) +

(2.38)

2
∂b

∂y1
(I(z̃ + w + ξq), z1, z2)(ε(z̃ + w + ξq) : ε(q))(ε(z̃ + w + ξq) : ε(h))

)

dx .



MODELING, SIMULATION AND OPTIMIZATION OF ELECTRORHEOLOGICAL FLUIDS 15

In view of the inequality

|ε(z̃ + w + ξq) : ε(q)| ≤ (I(z̃ + w + ξq))1/2(I(q))1/2

and taking(A1)(i) and(A1)(iii) into account, (2.37a) can be easily deduced.
On the other hand, we defineη : R+ × Ω → R− by

η(α, x) := (
∂b

∂y1
(α, z1(x), z2(x))

− , α ∈ R+ , x ∈ Ω .

Then, if we setα := I(z̃ + w + ξq) and chooseh = q in (2.38), we obtain

dτ

dt
(ξ) ≥

∫

Ω

(

b(I(z̃ + w + ξq), z1, z2)I(q) +

2g(α, z1(x), z2(x))(ε(z̃ + w + ξq) : ε(q))2
)

dx ≥ min(c1, c3) ‖q‖2
X ,

which proves (2.37b). The continuity of the operatorLz follows from the continuity of the
Nemytskii operator. �

In view of the representation of the partial Gâteaux derivative∂Jκ/∂w by (2.25) and
assumption(A2), for a given function

χ ∈ U := {ϑ ∈ L∞
+ (Ω) | ϑ(x) ≤ c5 f.a.a.x ∈ Ω}

andṽ ∈W 1,2(Ω) we define an operatorSκ : U ×X → X∗, κ > 0, according to

(2.39) 〈Sκ(χ, v), w〉 :=

∫

Ω

χ(κ+ I(ṽ + v))−1/2ε(ṽ + v) : ε(w) dx , v, w ∈ X .

LEMMA 2.4. Under the assumption(A2), for an arbitrarily, but fixed chosenχ ∈ U , the
operatorSκ(χ, ·), κ > 0, with Sκ as given by(2.39) is a continuous, monotone operator
fromX intoX∗. In particular, there holds

‖Sκ(χ, v) − Sκ(χ,w)‖X∗ ≤ 2c5κ
−1/2 ‖v − w‖X , v, w ∈ X ,(2.40a)

‖Sκ(χ, v)‖X∗ ≤
( ∫

Ω

χ2 dx
)1/2

, v ∈ X .(2.40b)

Proof. We setv1 := ṽ + v, w1 := ṽ + w and defineϕκ : R+ → R+, κ > 0, by

(2.41) ϕκ(y) :=
1

2
χ (κ+ y)−1/2 , y ∈ R+ .

Then, if we take
|ε(v1) : ε(w1)| ≤ (I(v1))

1/2(I(w1))
1/2

into account, it follows that

〈Sκ(χ, v) − Sκ(χ,w), v − w〉 = 〈Sκ(χ, v) − Sκ(χ,w), v1 − w1〉 =

(2.42)

= 2

∫

Ω

(

ϕκ(I(v1))I(v1) + ϕκ(I(w1))I(w1) −

− (ϕκ(I(v1)) + ϕκ(I(w1)))ε(v1) : ε(w1)
)

dx ≥

≥ 2

∫

Ω

(

ϕκ(I(v1))(I(v1))
1/2 − ϕκ(I(w1))(I(w1))

1/2
)(

(I(v1))
1/2 − I(w1)

1/2
)

dx .
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Now, for the functionϕκ from (2.41) one easily finds

(2.43) ϕκ(y) + 2
dϕκ

dy
(y)y =

1

2
χ(κ+ y)−1/2

(

1 − (κ+ y)−1y
)

> 0 , y ∈ R+ .

Consideringψ(z) := ϕκ(z2)z, we have(dψ/dz)(z) = ϕκ(z2) + 2(dϕκ)(z2)z2 which
is the left-hand side in (2.43) forz2 = y. It follows thatψ is a monotonously increasing
function, and (2.42) implies the monotonicity of the operator Sκ(χ, ·). The boundedness
(2.40b) ofSκ(χ, ·) is an immediate consequence of

|〈Sκ(χ, v), w〉| ≤

≤
∫

Ω

χ(κ+ (I(ṽ + v))−1/2(I(ṽ + v))1/2(I(w))1/2 dx ≤

≤
(∫

Ω

χ2 dx
)1/2

‖w‖X .

Finally, in view of

ϕκ(y) ≤ 1

2
c5κ

−1/2 , |dϕκ

dy
(y)|y ≤ 1

4
c5κ

−1/2 , y ∈ R+ ,

the estimate (2.40a) can be deduced as in the proof of Lemma 2.3. �

COROLLARY 2.1. Under the assumptions of Lemma2.4assume that{vn}N is a sequence
of elementsvn ∈ X,n ∈ N, andv ∈ X such that

vn → v in X (n→ ∞) ,

vn → v a.e. inΩ (n→ ∞) ,(2.44)

∇vn → ∇v a.e. inΩ (n→ ∞) .

Moreover, suppose that{χn}N is a sequence of elementsχn ∈ U, n ∈ N, such that for
someχ ∈ U there holds

(2.45) χn → χ a.e. inΩ (n→ ∞) .

Then, for anyκ > 0 we have

(2.46) Sκ(χn, vn) → Sκ(χ, v) in X∗ (n→ ∞) .

Proof. Straightforward estimation from above yields

‖Sκ(χn, vn) − Sκ(χ, v)‖X∗ ≤(2.47)

≤ ‖Sκ(χn, vn) − Sκ(χn, v)‖X∗ + ‖Sκ(χn, v) − Sκ(χ, v)‖X∗ .

Due to (2.45), the second term on the right-hand side in (2.47) tends to zero asn → ∞.
As far as the first term is concerned, forw ∈ X we have

〈Sκ(χn, vn) − Sκ(χn, v), w〉 =

∫

Ω

χn

(

(κ+ I(ṽ + vn))−1/2ε(vn − v) : ε(w) +

+ ((κ+ I(ṽ + vn))−1/2 − (κ+ I(ṽ + v))−1/2)ε(ṽ + v) : ε(w)
)

dx ,
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from which we deduce

‖Sκ(χn, vn) − Sκ(χn, v)‖X∗ ≤(2.48)

≤
( ∫

Ω

χ2
n(κ+ I(ṽ + vn))−1I(vn − v) dx

)1/2

︸ ︷︷ ︸

=: I1

+

+
( ∫

Ω

χ2
n((κ+ I(ṽ + vn))−1/2 − (κ+ I(ṽ + v))−1/2)2I(ṽ + v) dx

)1/2

︸ ︷︷ ︸

=: I2

.

In view of the uniform boundedness of the sequence{χn}N and (2.44), obviouslyI1 → 0
asn→ ∞. On the other hand, (2.44) also implies

I(ṽ + vn) → I(ṽ + v) (n→ ∞) ,

whenceI2 → 0 asn → ∞ by the Lebesgue theorem. Consequently, the first term on the
right-hand side in (2.47) tends to zero asn→ ∞ which allows to conclude. �

We are now in a position to provide the proof of Theorem 2.2.

Proof of Theorem 2.2.If (vn, pn) ∈ Xn ×Qn, n ∈ N, is a solution of (2.33a),(2.33b), then
vn ∈ Ker(Bn) and

(2.49) 〈Mκ(vn, vn), wn〉 + 〈L(vn), wn〉 = 〈f + g, wn〉 , wn ∈ Ker(Bn) .

By assumption(A2), for κ > 0 andw ∈ X we have

|〈∂Jκ

∂w
(w,w), w〉| =(2.50)

= 2 |
∫

Ω

c(|E|, µ(ũ+ w,E))(κ+ I(ũ+ w))−1/2ε(ũ+ w) : ε(w) dx| ≤

≤ 2

∫

Ω

c(|E|, µ(ũ+ w))(I(w))1/2 dx ≤ 2c5|Ω|1/2 ‖w‖X .

If we take assumption(A1) as well as (2.20) and (2.50) into account, it follows that for
someC1 ∈ R+

̺(w) := 〈Mκ(w,w), w〉 − 〈f + g, w〉 ≥ ‖w‖X

(

2c1‖w‖X − C1

)

,

whence
̺(w) ≥ 0 for ‖w‖X ≥ r := C1/(2c1) .

Then, the corollary of Brouwer’s fixed point theorem in GAJEWSKI et al. [1974] implies
the existence of a solutionvn ∈ Ker(Bn) of (2.49) which satisfies

(2.51) ‖vn‖X ≤ r , ‖L(vn)‖X∗ ≤ C2 , n ∈ N ,

for some constantC2 > 0. Now, for ℓ ∈ X∗ let ℓn := ℓ|Xn
, n ∈ N. Then,ℓn ∈ X∗

n and in
view of (2.49) we have

ℓn(Mκ(vn, vn) − (f + g)) ∈ Ker(Bn)0 .

By means of Lemma 2.2 we deduce the existence of a uniquepn ∈ Qn such that

B∗
npn = ℓn(Mκ(vn, vn) − (f + g))
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and the pair(vn, pn) ∈ Xn ×Qn solves (2.33a),(2.33b). Taking advantage of assumption
(A2), (2.20),(2.51) and Lemmas 2.2 and 2.4 we obtain the boundedness of the sequence
{pn}N, i.e., with someC3 > 0 there holds

(2.52) ‖pn‖0,Ω ≤ C3 , n ∈ N .

Due to (2.51) and (2.52) there exist a subsequenceN
′ ⊂ N and elementsv∗ ∈ X, p∗ ∈

L2(Ω) as well asℓ∗1, ℓ
∗
2 ∈ X∗ such that

vn ⇀ v∗ in X (N′ ∋ n→ ∞) ,(2.53a)

vn → v∗ in L2(Ω) (N′ ∋ n→ ∞) ,(2.53b)

vn → v∗ a.e. inΩ (N′ ∋ n→ ∞) ,(2.53c)

pn → p∗ in L2(Ω) (N′ ∋ n→ ∞) ,(2.53d)

L(vn) ⇀ ℓ∗1 in X∗ (N′ ∋ n→ ∞) ,(2.53e)

∂Jκ

∂w
(vn, vn) ⇀ ℓ∗2 in X∗ (N′ ∋ n→ ∞) .(2.53f)

In view of (2.29a),(2.29b) and (2.53a) as well as (2.53d)-(2.53f) we pass to the limit in
(2.33a),(2.33b) and obtain

〈ℓ∗2 + ℓ∗1 −B∗p∗, w〉 = 〈f + g, w〉 , w ∈ X ,(2.54a)

(∇ · v∗, q)0,Ω = 0 , q ∈ L2(Ω) . .(2.54b)

We note that the action of operatorL can be written asL(v) = L(w,w), w ∈ X, where
the mapping(w, z) 7−→ L(w, z) is fromX ×X intoX∗ according to

〈L(w, z), h〉 := 2

∫

Ω

b(I(ũ+ z), |E|, µ(ũ+ w,E))ε(ũ+ z) : ε(h) dx , h ∈ X .

Forn ∈ N
′ we defineℓ̂n ∈ X∗ by

ℓ̂n(w) := 〈∂Jκ

∂w
(vn, vn) + L(vn, vn) −(2.55)

− (
∂Jκ

∂w
(vn, w) + L(un, v)), vn − w〉 , w ∈ X .

The previous results show

(2.56) ℓ̂n(w) ≥ 0 , w ∈ X , n ∈ N
′ .

On the other hand, observing

‖∂Jκ

∂w
(vn, w) − ∂Jκ

∂w
(v∗, w)‖X∗ ≤

≤ 2
( ∫

Ω

(c(|E|, µ(ũ+ vn, E)) − c(|E|, µ(ũ+ v∗, E)))2 dx
)1/2

,

assumption(A2) in combination with (2.53b),(2.53c) and the Lebesgue theorem yield

(2.57)
∂Jκ

∂w
(vn, w) → ∂Jκ

∂w
(v∗, w) in X∗ (N′ ∋ n→ ∞) .

In a similar way, we obtain

(2.58) L(vn, w) → L(v∗, w) in X∗ (N′ ∋ n→ ∞) .
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Taking(Bnvn, pn)0,Ω = 0 into account, (2.33a) and (2.53a),(2.53d) imply

〈Mκ(vn, vn), vn〉 = 〈f + g, vn〉 →(2.59a)

〈f + g, v∗〉 (N′ ∋ n→ ∞) ,

〈Mκ(vn, vn), w〉 → 〈B∗λ∗, w〉 +(2.59b)

+ 〈f + g, w〉 (N′ ∋ n→ ∞) , w ∈ X .

Consequently, passing to the limit in (2.55) and observing (2.54a),(2.54b) as well as (2.56)-
(2.58),(2.59a),(2.59b), it follows that

(

〈f + g, v∗ − w〉 −

− 〈∂Jκ

∂w
(v∗, w) + L(v∗, w) −B∗p∗, v∗ − w〉

)

≥ 0 , w ∈ X .

We choosev = u∗ − τz whereτ > 0 andz ∈ X. The limit processτ → 0 results in

(2.60)
(

〈f + g, z〉 − 〈Mκ(v∗, v∗) −B∗p∗, z〉
)

≥ 0 .

Since this inequality holds true for allz ∈ X, we may replacez by−z and deduce equality
in (2.60). We have thus shown that the pair(v∗, p∗) ∈ X × L2(Ω) solves (2.28a),(2.28b).
�

For further existence results in case of stationary electrorheological fluid flows and for
studies of the regularity of solutions we refer to ETTWEIN andRUZICKA [2002] and to
ACERBI and MINGIONE [2002], BILDHAUER and FUCHS [2004].

With regard to the uniqueness of a solution of (2.28a),(2.28b) we refer to HOPPE and
LITVINOV [2004]. We also note that electrorheological fluidflows under conditions of
slip on the boundary have been studied in HOPPE et al. [2006] and LITVINOV [2007].

2.2.2. The extended Bingham-type electrorheological fluid model.We deal now with the
solution of the boundary value problem (2.21a)-(2.21d) foran extended Bingham-type
electrorheological fluid model (cf. (2.18)) with viscosityfunction

(2.61) ϕ(I(u), |E|, µ(u,E)) = b(|E|, µ(u,E))I(u)−1/2 + c(|E|, µ(u,E)) .

We assume that the functionb in (2.61) satisfies(A2), whereas the functionc is subject to
the following assumption:

(A1)′ c : R+ × [0, 1] → R is a continuous, strictly positive, and uniformly bounded
function, i.e.,c ∈ C(R+ × [0, 1]), and there exist constantsc8 > 0 andc9 > 0
such that

c8 ≤ c(z1, z2) ≤ c9 , z1, z2 ∈ R+ × [0, 1] .

We formulate (2.21a)-(2.21d) as a variational inequality of the second kind (cf., e.g.,
GLOWINSKI et al. [1981]). To this end, we denote byũ ∈ W 1,2(Ω)d ∩H(div0; Ω) the
function with tracẽu|ΓD

= uD. Moreover, we introduce a functionalJ : X×X → R and
an operatorL : X → X∗ according to

J(v, w) := 2

∫

Ω

b(|E|, µ(ũ+ v,E))I(ũ+ w)1/2 dx ,(2.62a)

〈L(v), w〉 := 2

∫

Ω

c(|E|, µ(ũ+ v,E))ε(ũ+ v) : ε(w) dx ,(2.62b)
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where〈·, ·〉 stands for the dual pairing betweenX∗ andX.
For the constitutive equation (2.61), problem (2.27) can bewritten as the following varia-
tional inequality:

Findv ∈ V such that for allw ∈ V there holds

(2.63) J(v, w) − J(v, v) + 〈L(v), w − v〉 ≥ 〈f + g, w − v〉 .
The functionu = ũ + v, wherev ∈ V is a solution of (2.63), is called a weak solution of
(2.21a)-(2.21d) for the constitutive equation (2.61).

We will prove the existence of a solutionv ∈ V of (2.63) via an approximation ofJ by
the functionalJκ : X ×X → R, κ ∈ R+, as given by (2.24a), i.e., for a sequence{κn}N

of regularization parametersκn > 0, n ∈ N, with κn → 0 asn → ∞ we consider the
variational problem:

Findvκn
∈ V such that for allw ∈ V there holds

(2.64) 〈∂Jκn

∂v
(vκn

, vκn
), w〉 + 〈L(vκn

), w〉 = 〈f + g, w〉 .

We further consider the related saddle point problem:

Find (vκn
, pκn

) ∈ X × L2(Ω) such that for allw ∈ X andq ∈ L2(Ω) there holds

〈∂Jκn

∂w
(vκn

, vκn
), w〉 + 〈L(vκn

), w〉 − 〈B∗pκn
, w〉 = 〈f + g, w〉 ,(2.65a)

(Bvκn
, q)0,Ω = 0 .(2.65b)

The existence result partially relies on the following result about functionalsΨ : U×X →
R+ of the form

Ψ(h,w) :=

∫

Ω

hI(w)1/2 dx , h ∈ U , w ∈ X .

Here,U := {h ∈ L∞(Ω)|0 ≤ h(x) ≤ c10 a.e. inΩ} for somec10 > 0.

LEMMA 2.5. For an arbitrarily chosen, but fixedh ∈ U , the functionalΨ(h, ·) : X → R+

is a continuous convex functional. Moreover, for any sequence{hn}N of elementshn ∈
U, n ∈ N, and any sequence{wn}N of elementswn ∈ X,n ∈ N, such that forn→ ∞
(2.66) hn → h a.e. inΩ , wn ⇀ w in X ,

there holds
lim
n→

inf
∞

Ψ(hn, wn) ≥ Ψ(h,w) .

Proof. Assumewn ⇀ w in X. In view of
∫

Ω

hI(wn − w)1/2 dx ≤
( ∫

Ω

h2 dx
)1/2 ( ∫

Ω

I(wn − w) dx
)1/2

,

for n→ ∞ we have
∫

Ω

hI(wn − w)1/2 dx → 0 ,

∫

Ω

hI(wn − w)1/2 dx ≥ |
∫

Ω

hI(wn)1/2 dx−
∫

Ω

hI(w)1/2 dx| ,

whence
Ψ(h, un) → Ψ(h,w) ,
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which proves the continuity ofΨ(h, ·). Forλ ∈ [0, 1] andu, v ∈ X there holds

I(λu+ (1 − λ)v) = I(λu) + 2λ(1 − λ) ε(u) : ε(v) + I(1 − λ)v) ≤

≤
(

λI(u)1/2 + (1 − λ)I(v)1/2
)2

,

which implies

Ψ(h, λu+ (1 − λ)v) =

=

∫

Ω

hI(λu+ (1 − λ)v)1/2 dx ≤ λΨ(h, u) + (1 − λ)Ψ(h, v) ,

and thus proves the convexity ofΨ(h, ·). We have

Ψ(hn, wn) =

∫

Ω

(

hI(wn)1/2 + (hn − h)I(wn)1/2
)

dx ,(2.67a)

|
∫

Ω

(hn − h)I(wn)1/2 dx| ≤ ‖hn − h‖0,Ω ‖wn‖X .(2.67b)

Due to (2.66) the right-hand side in (2.67b) goes to zero asn → ∞ and hence, the con-
vexity and the continuity ofΨ(h, ·) as well as (2.67a),(2.67b) imply

lim
n→

inf
∞

Ψ(hn, wn) = lim
n→

inf
∞

Ψ(h,wn) ≥ Ψ(h,w) ,

which completes the proof of the lemma. �

THEOREM 2.3. Assume that the conditions(A1)′, (A2) are fulfilled andf, g, uD satisfy
(2.20). Then, for eachn ∈ N there exist a solutionvκn

∈ V of (2.64) and a function
pκn

∈ L2(Ω) such that the pair(vκn
, pκn

) solves the saddle point system(2.65a),(2.65b).
Moreover, there exist a subsequenceN

′ ⊂ N and a functionv ∈ V such that

vκn
⇀ v in X (N′ ∋ n→ ∞) ,(2.68a)

vκn
→ v in L2(Ω)d (N′ ∋ n→ ∞) .(2.68b)

The functionv satisfies(2.63). Further, if I(ũ+ v) 6= 0 a.e. inΩ, the functional

w 7−→ J(v, w) , w ∈ V ,

is Gâteaux-differentiable at the pointv and there exists a functionp ∈ L2(Ω) such that for
all w ∈ X there holds

〈∂J
∂v

(v, v), w〉 + 〈L(v), w〉 − 〈B∗p,w〉 = 〈f + g, w〉 .

Proof. Theorem 2.2 yields both the existence ofvκn
∈ V satisfying (2.64) as well as the

existence ofpκn
∈ L2(Ω) such that the pair(vκn

, pκn
) solves (2.65a),(2.65b). Moreover, it

follows from the proof of Theorem 2.2 that the sequence{vκn
}N is bounded inV . Conse-

quently, there exist a subsequenceN
′ ⊂ N and a functionv ∈ V such that (2.68a),(2.68b)

hold true. In view of Lemma 2.4, forw ∈ V the functionalv 7−→ Jκn
(w, v) is convex,

whence

Jκn
(vκn

, w) − Jκn
(vκn

, vκn
) + 〈L(vκn

), w − vκn
〉 − 〈f + g, w − vκn

〉 =(2.69)

= −〈∂Jκn

∂v
(vκn

, vκn
), w − vκn

〉 + Jκn
(vκn

, w) − Jκn
(vκn

, vκn
) ≥ 0 .

Assumption(A1)′, (2.68b) and the Lebesgue theorem imply that forN
′ ∋ n→ ∞

(2.70) c(|E|, µ(ũ+ vκn
, E))ε(v) → c(|E|, µ(ũ+ v,E))ε(w) in L2(Ω) ,
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whence by (2.68a)

(2.71) 〈L(vκn
), w〉 → 〈L(v), w〉 .

We define

M (1)
κn

:= 2

∫

Ω

c(|E|, µ(ũ+ vκn
, E))ε(ũ) : ε(vκn

) dx ,(2.72a)

M (2)
κn

:= 2

∫

Ω

c(|E|, µ(ũ+ vκn
, E))I(vκn

) dx ,(2.72b)

such that

(2.73) 〈L(vκn
), vκn

〉 = M (1)
κn

+ M (2)
κn

.

Since (2.70) also holds true withw replaced bỹu, (2.68a) implies that forN′ ∋ n→ ∞

(2.74) M (1)
κn

→ 2

∫

Ω

c(|E|, µ(ũ+ v,E))ε(ũ) : ε(v) dx .

On the other hand, assumption(A1)′ and (2.68b) imply that for anyw ∈ L2(Ω) and
N

′ ∋ n→ ∞ there holds

(c(|E|, µ(ũ+ vκn
, E)))1/2w → (c(|E|, µ(ũ+ v,E)))1/2w in L2(Ω) .

Consequently, (2.68a) gives
∫

Ω

(c(|E|, µ(ũ+ vκn
, E)))1/2ε(vκn

)w dx→
∫

Ω

(c(|E|, µ(ũ+ v,E)))1/2ε(v)w dx .

whence

(2.75) (c(|E|, µ(ũ+ vκn
, E)))1/2ε(vκn

) → (c(|E|, µ(ũ+ v,E)))1/2ε(v) .

In view of (2.72b), (2.75) yields

(2.76) lim
N′∋

inf
n→∞

M (2)
κn

≥ 2

∫

Ω

c(|E|, µ(ũ+ v,E)I(v) dx ,

and hence, (2.73),(2.74) and (2.76) imply

(2.77) lim
N′∋

inf
n→∞

〈L(vκn
), vκn

〉 ≥ 〈L(v), v〉 .

The Lebesgue theorem and (2.68b) also show that forN
′ ∋ n→ ∞ there holds

(2.78) Jκn
(vκn

, w) → J(v, w) .

We have

(2.79) Jκn
(vκn

, vκn
) = Jκn

(v, vκn
) + 2

∫

Ω

(bκn
− b0)(κn + Iκn

)1/2 dx ,

where

bκn
:= b(|E|, µ(ũ+ vκn

, E)) , b0 := b(|E|, µ(ũ+ v,E)) ,

Iκn
:= I(ũ+ vκn

) , I0 := I(ũ+ v) .

In view of

|
∫

Ω

(bκn
− b0)(κn + Iκn

)1/2 dx| ≤
(∫

Ω

(κn + Iκn
) dx

)1/2 ( ∫

Ω

|bκn
− b0|2 dx

)1/2

,
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(A2) and (2.68a),(2.68b) imply that forN′ ∋ n→ ∞

(2.80)
∫

Ω

(bκn
− b0)(κn + Iκn

)1/2 dx→ 0 .

SinceJκn
(v, vκn

) ≥ J(v, vκn
), we have

(2.81) lim
N′∋

inf
n→∞

Jκn
(v, vκn

) ≥ lim
N′∋

inf
n→∞

J(v, vκn
) .

Lemma 2.5 and (2.68a),(2.68b) give

(2.82) lim
N′∋

inf
n→∞

J(v, vκn
) ≥ J(v, v) .

Now, combining (2.79)-(2.82) results in

(2.83) lim
N′∋

inf
n→∞

Jκn
(vκn

, vκn
) ≥ J(v, v) .

(2.65b) and (2.68a) showv ∈ V , whereas (2.69),(2.71),(2.77),(2.78) and (2.83) imply
(2.63). Finally, ifI(ũ + v) 6= 0, it is easy to verify the existence ofp ∈ L2(Ω)such that
(2.65a),(2.65b) hold true. �

2.3. Initial-boundary value problems for isothermal incompressible electrorheologi-
cal fluid flows. For Ī := [0, T ] ⊂ R+ and a closed subspaceV ⊂ H1(Ω)d we refer to
L2(I;V ) as the space of functionsv : Q̄ → R

d, Q̄ := I × Ω, with v(t, ·) ∈ V f.a.a.t ∈ I
with norm‖v‖L2(I;V ) := (

∫

I
‖v(t, ·)‖2

1,Ωdt)
1/2.

Given a bounded Lipschitz domainΩ ⊂ R
d with boundaryΓ = ∂Ω, we refer toV and

H as the function spaces

V := {v ∈ H1
0 (Ω)d | ∇ · v = 0} , H := {w ∈ L2(Ω)d | ∇ · w = 0} .

Then, given functions

(2.84) f ∈ L2(I;H−s(Ω)d , u0 ∈ H ,

wheres = 1 for d = 2 ands = 3/2 for d = 3, we consider the following initial-boundary
value problem for incompressible, isothermal electrorheological fluid flows

ρ(ut + (u · ∇)u) − ∇ · σ = f in Q ,(2.85a)

∇ · u = 0 in Q ,(2.85b)

u = 0 onΓ × (0, T ) ,(2.85c)

u(·, 0) = u0 in Ω .(2.85d)

Here, the stress tensorσ is supposed to satisfy either the constitutive law (2.18) or(2.19).

In case of the regularized extended Bingham fluid model (2.19), we introduce a nonlin-
ear operatorAκ : V → V ∗ according to

(2.86) Aκ(u) := (u · ∇)u + Mκ(u, u) ,

whereMκ(·, ·) is given as in (2.26) with̃u = 0. We are looking for a weak solution

u ∈ L2(I;V ) , ut ∈ L2(I;H−s(Ω)d)
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of (2.85a)-(2.85d) such that for allv ∈ L2(I;V ) andw ∈ H

T∫

0

〈ρut, v〉 dt+

T∫

0

〈Aκ(u), v〉 dt =

T∫

0

〈f, v〉 dt ,(2.87a)

(u(·, 0), w)0,Ω = (u0, w)0,Ω .(2.87b)

THEOREM 2.4. Assume that(A1), (A2) and (2.84)hold true, Then, the initial-boundary
value(2.85a)-(2.85d)admits a weak solution.

Proof. We provide a constructive existence proof by means of a Galerkin approximation
with respect to a sequence{Vn}N of finite dimensional subspacesVn ⊂ V, n ∈ N, that are
limit dense inV . We assumeVn = span{ϕ(1)

n , · · · , ϕ(Nn)
n } and look for a solution

(2.88) un(t) =

Nn∑

i=1

γ(i)
n (t) ϕ(i)

n

of the problem

(ρ
dun

dt
, ϕ(i)

n )0,Ω + 〈Aκ(un), ϕ(i)
n 〉 = 〈f, ϕ(i)

n 〉 , 1 ≤ i ≤ Nn ,(2.89a)

un(0) = Pnu
0 ,(2.89b)

wherePn : H → Vn is theL2 orthogonal projection ontoVn. We note that (2.89a),(2.89b)
represents an initial-value problem for a system of first order ordinary differential equa-
tions. The assumptions(A1), (A2), guarantee the existence of a solution. Moreover, it fol-
lows that the sequences{un}N and{Aκ(un)}N are bounded inLp(I;V ) andL2(I;H−s(Ω)),
respectively. Consequently, there exist a subsequenceN

′ ⊂ N and functionsu ∈ L2(I;V )
andℓ∗ ∈ L2(I;H−s(Ω)) such that

un ⇀ u∗ in L2(I;V ) (N′ ∋ n→ ∞) ,

Aκ(un) ⇀ ℓ∗ in L2(I;H−s(Ω)) (N′ ∋ n→ ∞) .

Arguments from the theory of parabolic partial differential equations (cf., e.g., LIONS
[1969]) show that forϕ ∈ C∞

0 (I;V ) there holds

−
T∫

0

(ρu, ϕt)0,Ω dt+

T∫

0

〈Aκ(u), ϕ〉 dt =

T∫

0

〈f, ϕ〉 dt ,

which givesu ∈ L2(I;V ), ut ∈ L2(I;H−s(Ω)) and implies that (2.87a) holds true, since
C∞

0 (I;V ) is dense inL2(I;V ). A similar reasoning based on an appropriate choice of a
test function allows to deduceu(·, 0) = u0. �

We note that a generalization of Theorem 2.4 to the case of inhomogeneous Dirichlet
datau = uD onΣ × I can be found in LITVINOV [2004].

On the other hand, if we consider the extended Bingham fluid model based on the
viscosity function (2.18), we have to deal with a strongly nonlinear parabolic variational
inequality. Adopting the notation from subsection 2.2.2, we are looking for a weak so-
lution u ∈ L2(I;V ), ut ∈ L2(I;H−s(Ω)) of (2.85a)-(2.85d) in the sense that for all
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v ∈ L2(I;V ) andw ∈ H there holds
T∫

0

〈ρ(ut, v − u〉 dt +

T∫

0

〈(u · ∇)u, v − u〉 dt +(2.90a)

T∫

0

(J(u, v) − J(u, u)) dt+

T∫

0

〈L(u), v − u〉 dt ≥
T∫

0

〈f, v − u〉 dt ,

(u(·, 0), w)0,Ω = (u0, w)0,Ω .(2.90b)

THEOREM 2.5. Assume that(A1)′′, (A2) and (2.84) hold true. Then, the variational
inequality(2.90a),(2.90b)has a solutionu ∈ L2(I;V ), ut ∈ L2(I;H−s(Ω)).

Proof. We choose{κn}N as a null sequence of positive regularization parameters. For
eachn ∈ N, Theorem 2.4 guarantees the existence of a weak solutionun of (2.85a)-(2.85d)
with respect to the regularized extended Bingham fluid model(2.19) (withκ replaced by
κn). The boundedness of the sequence{un}N in L2(I;V ) infers the existence of a sub-
sequenceN′ ⊂ N and of a functionu ∈ L2(I;V ) such thatun ⇀ u(N′ ∋ n → ∞) in
L2(I;V ). Passing to the limit as in the proof of Theorem 2.3 allows to conclude. �

2.4. Balance equations and constitutive laws for non-isothermal incompressible elec-
trorheological fluid flows. Non-isothermal flows of non-Newtonian fluids have been stud-
ied in a series of papers mostly in the engineering literature with respect to industrially
relevant applications. Various laws of the temperature dependence of the viscosity have
been assumed, e.g., a hyperbolic law for the variation of theviscosity or a Reynolds-type
relation. A rigorous mathematical analysis of non-isothermal flow in a Bingham fluid can
be found in DUVAUT and LIONS [1971].

As far as electrorheological fluids are concerned, it is well-known by experimental evi-
dence that their operational behavior exhibits a dependence on the temperature (cf. BEN-
DERSKAIA et al. [1980], TABATABAI [1993], ZHIZKIN [1986]). Figure 2.4 displays
the temperature dependence of the shear stress (left) and ofthe current density (right) for
a polyurethane based electrorheological fluid under different operational conditions, i.e.,
electric field strengths. Mathematical models for non-isothermal electrorheological fluid
flows based on a power law constitutive equation have been studied in RUZICKA [2000]
(cf. also ECKART and SADIKI [2001], SADIKI and BALAN [2003]).

Here, we follow the approach in LITVINOV and HOPPE [2005]. Weassume a gene-
ral dependence of the viscosity function on the temperatureθ and consider the following
constitutive equation between the stress tensorσ and the rate of strain tensorε

(2.91) σ = −pI + 2ϕ(I(u), |E|, µ(u,E), θ)ε(u) .

As in subsection 2.1,u andp stand for the velocity and pressure of the fluid flow,I(u) is
the second invariant of the rate of strain tensor,E refers to the electric field, andµ(u,E)
is the square of the cosine of the angle between the velocity and the electric field.
The equations of motion and the incompressibility condition for the fluid flow have to be
completed by a thermodynamical balance equation which can be deduced from the energy
conservation law

et + u · ∇e = σ : ε(u) − ∇ · q + f2 ,

wheree denotes the specific internal energy,q is the heat flux vector andf2 stands for a
volumetric heat source/sink. As constitutive equations weassume the linear Fourier law

e = ρcθ , q = −k∇θ ,
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FIGURE 2.4. Temperature dependence of the shear stress (left) and the
current density (right) in electrorheological fluids (fromBAYER
[1997a])

whereρ, c andk refer to the density, the specific heat, and the thermal conductivity. We
are thus led to the following coupled system inQ := Ω × (0, T )

ρ(ut + (u · ∇)u) − ∇ · σ = f1 ,(2.92a)

∇ · u = 0 ,(2.92b)

ρc(θt + u · ∇θ) − k∆θ − 2ϕ(I(u), |E|, µ(u,E), θ)I(u) = f2 ,(2.92c)

wheref1 is a volumetric force on the fluid. The equations have to completed by appro-
priate initial and boundary conditions that will be discussed in detail in the subsequent
subsections.

REMARK 2.4. We note that the impact of the electrical conductivity in thethermal balance
equation(2.92c)has been neglected, since electrorheological fluids are electrically non-
conducting.

As far as the viscosity functionϕ is concerned, we will assume that the following condition
is satisfied:

(T1) ϕ is a continuous function of its arguments, i.e.,ϕ ∈ C(R2
+×[0, 1]×R). For fixed

(y2, y3, y4) ∈ R+× [0, 1]×R the functionϕ(·, y2, y3, y4) is continuously differen-
tiable inR+, i.e.,ϕ(·, y2, y3, y4) ∈ C1(R+). There exist positive constantsci, 1 ≤
i ≤ 4, such that

c2 ≥ ϕ(y1, y2, y3, y4) ≥ c1 ,

ϕ(y1, y2, y3, y4) + 2
∂ϕ

∂y1
(y1, y2, y3, y4) ≥ c3 ,

∂ϕ

∂y1
(y1, y2, y3, y4)| y1 ≤ c4 .

The first condition in(T1) requires non-vanishing viscosity for vanishing shear rate
and thus does not include Bingham-type electrorheologicalflow models. However, as in
subsection 2.1 we may consider viscosity functions of the form

ϕ(I(u), |E|, µ(u,E), θ) =(2.93)

= b(|E|, µ(u,E), θ)(κ+ I(u))−1/2 + c((I(u), |E|, µ(u,E), θ) ,
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whereκ ≥ 0, the functionc is supposed to satisfy(T1), and the functionb is subject to the
assumption

(T2) b is a continuous function of its arguments, i.e.,b ∈ C(R+ × [0, 1] × R). There
exists a positive constantc5 such that

c5 ≥ b(y1, y2, y3) ≥ 0 .

The caseκ = 0 in (2.93) refers to a generalized Bingham-type model for non-isother-
mal electrorheological fluid flows, whereasκ > 0 can be interpreted as a regularization
thereof.
The physical relevance of these assumptions with respect tothe fluid flow has been dis-
cussed in subsection 2.2.

We consider the following modification of the thermal balance equation (2.92c) which
gives rise to a non-local model:

(2.94) ρc(θt + u · ∇θ) − k∆θ − 2ϕ(I(u)), |E|, µ(u,E), θ)I(Pβ(u)) = f2 .

HerePβ ∈ L(W 1,2(Ω)d, C∞(Ω)d), β > 0, is the regularization operator

(2.95) (Pβ(v))(x) :=

∫

Rd

ωβ(|x− x′|) (PE(v))(x′) dx′ , x ∈ Ω , v ∈W 1,2(Ω) ,

wherePE ∈ L(W 1,2(Ω)d,W 1,2(Rd)) is an extension operator andωβ ∈ C∞
+ (R+) with

supp(ωβ) ⊂ [0, β] and
∫

Rd ωβ(|x|)dx = 1.

REMARK 2.5. The physical interpretation of the regularization operator Pβ in the thermal
balance equation(2.94) is that the dissipation of energy at a pointx ∈ Ω only depends
on the rate of strain tensor in a small vicinity of the point. We note that non-local models
agree remarkably well with atomistic theories and experimental observations (cf., e.g.,
ERINGEN [2002]).

2.5. Boundary value problems for steady non-isothermal incompressible electrorhe-
ological fluid flows. We consider steady, non-isothermal, incompressible electrorheolog-
ical fluid flow and assumeΩ ⊂ R

d to be a bounded Lipschitz domain with boundaryΓ
such thatΓ = Γ̄D ∪ Γ̄N ,ΓD ∩ ΓN = ∅. We further suppose

f1 ∈ L2(Ω)d , f2 ∈ L2(Ω) , g ∈ L2(ΓN )d ,(2.96)

uD ∈W 1/2,2(ΓD)d , θD ∈W 1/2,2(Γ)

to be given functions and consider the following boundary value problem

∇ · σ = f1 , ∇ · u = 0 in Ω ,(2.97a)

−χ∆θ + u · ∇θ + 2̺ϕ(I(u), |E|, µ(u,E), θ)I(u) = f2 in Ω ,(2.97b)

u = uD onΓD ,(2.97c)

ν · σ = g onΓN , ,(2.97d)

θ = θD onΓ ,(2.97e)

whereχ = (ρc)−1κ and̺ = (ρc)−1. As in subsection 2.2 we assume a unilateral coupling
between the electric fieldE and the flow field, i.e., we suppose thatE is given by means
of an electrical potentialψ which satisfies the boundary value problem (2.22a)-(2.22c).

We study the existence of a weak solution of (2.97a)-(2.97e)where the velocity is sup-
posed to be inW 1,2(Ω)d ∩H(div0; Ω), the pressurep in L2(Ω), and the temperatureθ in
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W 1,r(Ω) with 1 < r < 2 for d = 2 and1 < r < 3/2 for d = 3. In order to accommodate
the inhomogeneous Dirichlet boundary data (2.97c),(2.97e), we definẽu ∈W 1,2(Ω)d and
θ̃ ∈W 1,r(Ω) such that̃u|ΓD

= uD andθ̃|Γ = θD. We set

X := W 1,2
0,ΓD

(Ω)d ∩H(div0; Ω) , ‖v‖X :=
(∫

Ω

(I(v))2 dx
)1/2

and consider the operators

N : X ×W 1,r
0,Γ(Ω) → X∗ , A : X ×W 1,r

0,Γ(Ω) →W−1,s(Ω) , s =
r

r − 1
,

which are defined according to

〈N(v, ζ), w〉 :=(2.98a)

2

∫

Ω

ϕ(I(ũ+ v), |E|, µ(ũ+ v,E), θ̃ + ζ)ε(ũ+ v) : ε(w) dx , ,

〈A(w, ζ), ξ〉 := χ−1

∫

Ω

(

(θ̃ + ζ)(ũ+ w) · ∇ξ +(2.98b)

+ 2̺ϕ(I(ũ+ w), |E|, µ(ũ+ w), θ̃ + ζ)I(ũ+ w)ξ
)

dx .

Here,〈·, ·〉 refers to the dual product betweenX∗ andX in (2.98a) and to the dual product
betweenW−1,s(Ω) andW 1,r

0,Γ(Ω) in (2.98b). For the ease of exposition, we will use the
same notation. The correct meaning will always follow easily from the context.
Moreover, we refer toB ∈ L(X,L2(Ω)) as the divergence operatorBv = ∇ · v, v ∈ X,.
We consider the following system of variational equations:
Find (v, p, θ) ∈ X × L2(Ω) ×W 1,r

0,Γ(Ω) such that

〈N(v, θ), w〉 − 〈B∗p,w〉 = 〈f1 + g, w〉 , w ∈ X(2.99a)

(Bv, q)0,Ω = 0 , q ∈ L2(Ω) ,(2.99b)

(∇θ,∇ζ)0,Ω − 〈A(v, θ), ζ〉 = (f3, ζ)0,Ω , ζ ∈W 1,s
0,Γ(Ω) ,(2.99c)

where(f3, ζ)0,Ω := (f2, ζ)0,Ω − (∇θ̃,∇ζ)0,Ω. For notational convenience, we denote by
θ both the solution of (2.97a)-(2.97e) and (2.99a)-(2.99c).It will be clear from the context
which one is considered.

LEMMA 2.6. Assume that(u, p, θ) is a classical solution of(2.97a)-(2.97e). Then, the
triple (u−ũ, p, θ−θ̃) solves(2.99a)-(2.99c). Conversely, if(v, p, θ) is a sufficiently smooth
solution of (2.99a)-(2.99c), then the triple(ũ + v, p, θ̃ + θ) solves(2.97a)-(2.97c)in the
classical sense.

Proof. The assertions are easily verified by Green’s formula. �

We will prove the existence of a solution of the system (2.99a)-(2.99c) by an approxima-
tion involving the regularization operatorPβ from (2.95). For that purpose, we introduce
the operator

Aβ : X ×W 1,2
0,Γ(Ω) →W−1,2(Ω) ,
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which is given by means of

〈Aβ(w, ζ), ξ〉 := χ−1

∫

Ω

(

(θ̃ + ζ)(ũ+ w) · ∇ξ +(2.100)

+ 2̺ϕ(I(ũ+ w), |E|, µ(ũ+ w), θ̃ + ζ)I(Pβ(ũ+ w))ξ
)

dx .

Here,〈·, ·〉 stands for the dual product betweenW−1,2(Ω) andW 1,2
0,Γ(Ω). The associated

boundary value problem reads as follows:

Find (v, p, θ) ∈ X × L2(Ω) ×W 1,2
0,Γ(Ω) such that

〈N(v, θ), w〉 − 〈B∗p,w〉 = 〈f1 + g, w〉 , w ∈ X(2.101a)

(Bv, q)0,Ω = 0 , q ∈ L2(Ω) ,(2.101b)

(∇θ,∇ζ)0,Ω − 〈Aβ(v, θ), ζ〉 = (f3, ζ)0,Ω , ζ ∈W 1,2
0,Γ(Ω) .(2.101c)

THEOREM 2.6. Suppose that(T1),(2.96) are satisfied andE ∈ L4(Ω). Then, for any
β > 0 there exists a solution(vβ , pβ) of (2.101a)-(2.101c)and there exist constantsCi >
0, 1 ≤ i ≤ 2, such that

(2.102) ‖vβ‖X ≤ C1 , ‖pβ‖0,Ω ≤ C2 , b ∈ (0, a) , a > 0 .

Proof. We refer to LITVINOV and HOPPE [2005]. �

We will now address the existence of a solution of the system (2.99a)-(2.99c). We define
an operatorΛ2 : V → L(W 1,r

0 (Ω),W−1,s(Ω)) according to

(2.103) 〈Λ2(v)ζ, ξ〉 := χ−1

∫

Ω

ζ(ũ+ v) · ∇ξ dx ,

wherev ∈ V, ζ ∈W 1,r
0 (Ω) andξ ∈W 1,s

0 (Ω). We consider the auxiliary problem:

Find θ̄ ∈W 1,r
0 (Ω) such that

(2.104) 〈∇θ̄,∇ξ〉 − 〈Λ2(v)θ̄, ξ〉 = 0 , ξ ∈W 1,s
0 (Ω) .

Under these prerequisites, we now assume{βn}N to be a sequence of regularization
parametersβn ∈ R+, n ∈ N, such thatβn → 0 asn → ∞ and further suppose that
{(vn, pn, θn)}N is an associated sequence of solutions(vn, pn, θn) ∈ X × L2(Ω) ×
W 1,2

0 (Ω), n ∈ N, of the system (2.101a)-(2.101c) whose existence is guaranteed under
the assumptions of Theorem 2.6.

THEOREM 2.7. Assume thatΩ ⊂ R
d, d = 2 or d = 3 is a boundedC3-domain. Further,

suppose that the conditions(T1) and(2.96)hold true and the variational equation(2.104)
is only trivially solvable. For a null sequence{βn}N of positive regularization parameters
let {(vn, pn, θn)}N be the associated sequence of solutions(vn, pn, θn) ∈ X × L2(Ω) ×
W 1,2

0 (Ω), n ∈ N, of the system(2.101a)-(2.101c). Then, there exist a subsequenceN
∗ ⊂ N

and a triple(v, p, θ) ∈ X × L2(Ω) ×W 1,r
0 (Ω) such that forN∗ ∋ n→ ∞

vn → v in X ,(2.105a)

pn → p in L2(Ω) ,(2.105b)

θn → θ in W 1,r
0 (Ω) .(2.105c)

The triple(v, p, θ) is a solution of the system(2.99a)-(2.99c).

Proof. We refer to LITVINOV and HOPPE [2005]. �
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3. NUMERICAL SOLUTION OF ELECTRORHEOLOGICAL FLUID FLOWS

This section is devoted to the numerical solution of stationary and time-dependent,
isothermal and non-isothermal electrorheological fluid flows. We shall begin in 3.1 with
steady-state isothermal problems with emphasis on nonlinear Uzawa-type algorithms in
3.1.1 as well as augmented Lagrangian methods in 3.1.2. Thisincludes the construc-
tion of preconditioners based on approximate inverses of the Stokes operator which will
be the subject of 3.1.3. An augmented Lagrangian approach particularly suited for non-
regularized Bingham models shall be considered in 3.1.4. Time-dependent problems shall
be taken care of in 3.2, and in 3.3 we shall address non-isothermal fluid flows. We refer to
CROCHET [1984], ELMAN, SILVESTER and WATHEN [2005], GLOWINSKI [2004],
GUNZBURGER [1989], HUANG [1998], THOMASSET [1981], TUREK [1999] with
regard to a general presentation of numerical solution techniques for Newtonian and non-
Newtonian fluid flows.

3.1. Steady-state isothermal incompressible flow problems.As we have seen in sub-
section 2.2 (cf. Theorem 2.2), steady isothermal, incompressible electrorheological fluid
flows with a regularized viscosity function can be approximated by finite dimensional non-
linear saddle point problems of the form:

Find (vn, pn) ∈ Xn ×Qn such that

〈Sn(vn), wn〉 − 〈B∗
npn, wn〉 = 〈f + g, wn〉 , wn ∈ Xn ,(3.1a)

(Bnvn, qn)0,Ω = 0 , qn ∈ Qn ,(3.1b)

whereXn ⊂ X := W 1,2
0,ΓD

(Ω) andQn ⊂ L2(Ω), n ∈ N, are finite dimensional subspaces,
Sn(un) := Mκ(un, un) with Mκ : X ×X → X∗ being the nonlinear operator given by
(2.26), andBn refers to the discrete divergence operator (2.30). We assume that the pairs
(Xn, Qn), n ∈ N, satisfy the discrete LBB-condition (2.31).
Since the nonlinear operatorSn admits an inverseS−1

n , the discrete velocity fieldvn can
be formally eliminated from (3.1a),(3.1b) which gives riseto

(3.2) BnS
−1
n (B∗

npn + fn + gn) = 0 .

REMARK 3.1. In the linear regime, the linear operatorBnS
−1
n B∗

n is called the Schur
complement and(3.2) is referred to as the Schur complement system.

All numerical techniques for the solution of (3.1a),(3.1b)are nonlinear versions of me-
thods that have been developed for linear saddle point problems, i.e., when the operator
S in (3.1a) is a linear operator. The most popular numerical schemes are Uzawa-type
algorithms and those based on the augmented Lagrangian approach (cf., e.g., CAO [2003],
FORTIN and GLOWINSKI [1983], GLOWINSKI [1984, 2004], GLOWINSKI and LE
TALLEC [1989], LIN and CAO [2006]). In the nonlinear regime,these methods are outer-
inner iterative schemes where the outer iteration takes care of the saddle point structure of
the problem and the inner iteration is devoted to the nonlinear problem associated with the
operatorS.

3.1.1. Nonlinear Uzawa-type algorithms.The nonlinear Uzawa algorithm can be formally
derived as a damped nonlinear Richardson iteration with damping parameterτ > 0 applied
to (3.2):

Givenp(0)
n ∈ Qn, computep(ν)

n ∈ Qn, ν ∈ N, according to

(3.3) p(ν+1)
n = p(ν)

n − τBnS
−1
n (B∗

np
(ν)
n + fn + gn) , ν ∈ N0 .



MODELING, SIMULATION AND OPTIMIZATION OF ELECTRORHEOLOGICAL FLUIDS 31

Of course, we are interested in iteratesu(ν)
n for the discrete velocity field as well which

can be obtained by means of (3.1a). Thus we arrive at the following standard form of the
nonlinear Uzawa algorithm:

Nonlinear Uzawa algorithm:
Given(v

(0)
n , p

(0)
n ) ∈ Xn ×Qn andτ > 0, compute(v(ν)

n , p
(ν)
n ) ∈ Xn ×Qn, ν ∈ N, as the

solution of

〈Sn(v(ν+1)
n , wn〉 − 〈B∗

np
(ν)
n , wn〉 = 〈f + g, wn〉 , wn ∈ Xn ,(3.4a)

(p(ν+1)
n − p(ν)

n , qn)0,Ω = −τ(Bnv
(ν+1)
n , qn)0,Ω , qn ∈ Qn .(3.4b)

THEOREM3.1. Let (vn, pn) ∈ Xn ×Qn be the solution of(3.1a),(3.1b)and suppose that

{(v(ν)
n , p

(ν)
n )}N is the sequence of iterates generated by the nonlinear Uzawaalgorithm

(3.4a),(3.4b). Assumeτ < 2γLβ
2 with γL as in Lemma2.3andβ from Lemma2.2. Then,

for ν → ∞ there holds

v(ν)
n → vn in X , p(ν)

n → pn in L2(Ω) .

Proof. We sete(ν)
v := v

(n))
n − vn ande(ν)

p := p
(ν)
n − pn. If we subtract (3.1a) from

(3.4a) and (3.1b) from (3.4b), we obtain

〈Sn(v(ν+1)
n ) − Sn(vn), wn〉 = 〈B∗

ne
(ν)
p , wn〉 , wn ∈ Xn ,(3.5a)

(e(ν+1)
p − e(ν)

p , qn)0,Ω = −τ(Bne
(ν+1)
v , qn)0,Ω , qn ∈ Qn .(3.5b)

We choosewn = 2e
(ν+1)
u in (3.5a) andqn = 2e

(ν+1)
p in (3.5b). Then, multiplying (3.5a)

by 2τ and adding it to (3.5b) yields

‖e(ν+1)
p ‖2

0,Ω + ‖e(ν+1)
p − e(ν)

p ‖2
0,Ω − ‖e(ν)

p ‖2
0,Ω +

+ 2τ 〈Sn(v(ν+1)
n ) − Sn(vn), e(ν+1)

v 〉 = 2τ (Bne
(ν+1)
v , e(ν)

p − e(ν+1)
p )0,Ω .

The results of subsection 2.2 imply

‖e(ν+1)
p ‖2

0,Ω + ‖e(ν+1)
p − e(ν)

p ‖2
0,Ω − ‖e(ν)

p ‖2
0,Ω +

+ 2τ γL ‖e(ν+1)
v ‖2

X ≤ 2
τ

β
‖e(ν+1)

v ‖X ‖e(ν+1)
p − e(ν)

p ‖0,Ω ,

and hence, Young’s inequality gives

(3.6) ‖e(ν+1)
p ‖2

0,Ω − ‖e(ν)
p ‖2

0,Ω + τ (2γL − τ

β2
) ‖e(ν+1)

v ‖2
X ≤ 0 .

We deduce from (3.6) that the sequence{‖e(ν)
p ‖2

0,Ω}N is convergent which in turn gives us

e
(ν)
v → 0 asν → ∞. Moreover, we have

(3.7) ‖Sn(v(ν+1)
n ) − Sn(vn)‖X∗ → 0 as ν → ∞ .

On the other hand, in view of (3.5a) and Lemma 2.2 it follows that

‖Sn(v(ν+1)
n ) − Sn(vn)‖X∗ = ‖B∗

ne
(ν)
p ‖X∗ ≥ β ‖e(ν)

p ‖0,Ω .

Hence. (3.7) tells us thate(ν)
p → 0 asν → ∞. �

It is well-known from the theory of linear iterative schemesthat the convergence can be
significantly improved by preconditioning (cf., e.g., BANKet al. [1990], BRAMBLE et
al. [1997], ELMAN [2002], ELMAN and GOLUB [1994], ELMAN and SILVESTER
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[1996], KLAWONN [1998], RUSTEN and WINTHER [1992]). In termsof the Richard-
son iteration (3.3), we may use

p(ν+1)
n = p(ν)

n + P−1
n BnS

−1
n (B∗

np
(ν)
n + fn + gn) , ν ∈ N0 ,

with a preconditionerPn : Qn → Qn which is assumed to be a linear symmetric positive
operator. This leads to the preconditioned nonlinear Uzawaalgorithm:

Preconditioned nonlinear Uzawa algorithm:
Let Pn : Qn → Qn be a linear symmetric positive operator. Then, given(v

(0)
n , p

(0)
n ) ∈

Xn ×Qn, compute(v(ν)
n , p

(ν)
n ) ∈ Xn ×Qn, ν ∈ N, as the solution of

〈Sn(v(ν+1)
n , wn〉 − 〈B∗

np
(ν)
n , wn〉 = 〈f + g, wn〉 , wn ∈ Xn ,(3.8a)

(p(ν+1)
n − p(ν)

n , qn)0,Ω = −(P−1
n Bnv

(ν+1)
n , qn)0,Ω , qn ∈ Qn .(3.8b)

REMARK 3.2. The preconditioned nonlinear Uzawa algorithm contains thestandard form
(3.4a),(3.4b)as a special case as can be readily seen by choosingPn = τIn, τ > 0, with
In denoting the identity onQn.

A major problem in the practical realization of the algorithm (3.8a),(3.8b) is that it
requires the solution of a nonlinear problem. This issue is usually taken care of by an
approximationS̃n of Sn. We will discuss feasible choices ofS̃n in subsection 3.1.3. Since
in this case we do not solve (3.8a),(3.8b) exactly, the resulting scheme is referred to as a
preconditioned inexact nonlinear Uzawa algorithm:

Preconditioned inexact nonlinear Uzawa algorithm:
Let S̃−1

n be an approximate inverse ofS−1
n and assume thatPn : Qn → Qn is a linear

symmetric positive operator. Then, given(v
(0)
n , p

(0)
n ) ∈ Xn ×Qn, compute(v(ν)

n , p
(ν)
n ) ∈

Xn ×Qn, ν ∈ N, as the solution of

〈S̃n(v(ν+1)
n , wn〉 − 〈B∗

np
(ν)
n , wn〉 = 〈f + g, wn〉 , wn ∈ Xn ,(3.9a)

(p(ν+1)
n − p(ν)

n , qn)0,Ω = −(P−1
n Bnv

(ν+1)
n , qn)0,Ω , qn ∈ Qn .(3.9b)

In case of a linear symmetric positive definite operatorSn, the convergence of pre-
conditioned inexact nonlinear Uzawa algorithms has been analyzed in BRAMBLE et al.
[1997], ELMAN and GOLUB [1994]. As can be expected, it requires some conditions on
the approximate inversẽS−1

n and on the preconditionerPn.

3.1.2. Augmented Lagrangian methods.As we already know from subsection 2.2.1, the
nonlinear saddle point problem (3.1a),(3.1b) results fromthe constrained minimization
problem

min
vn∈Vn

(

Jκ(vn, vn) + 〈L(vn), vn〉
)

,

whereVn := Xn ∩ H(div0; Ω) andJκ : X × X → R andL : X → X∗ are given by
(2.24a)(2.24b), if we couple the constraintsBnvn = 0 by Lagrange multiplierspn ∈ Qn.
An alternative is to use penalty methods

min
vn∈Xn

(

Jκ(vn, vn)) + 〈L(vn), vn〉 + r(Bnvn, Bnvn)0,Ω

)

,

where the constraints are taken care of by a penalty term withpenalty parameterr > 0.
The disadvantage with penalty methods is that the penalty parameterr usually has to be
chosen quite large which has a negative impact on the condition of the resulting algebraic
system.
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The augmented Lagrangian techniques combine the previous approaches in such a way
that they work sufficiently well for a moderate choice of the penalty parameter. A con-
vergence analysis in the symmetric case is given in FORTIN and GLOWINSKI [1983],
GLOWINSKI and LE TALLEC [1989], whereas the nonsymmetric case has been ad-
dressed in AWANOU [2005].

Augmented Lagrangian algorithm:
Given(v

(0)
n , p

(0)
n ) ∈ Xn×Qn andr, ρ > 0, compute(v(ν)

n , p
(ν)
n ) ∈ Xn×Qn, ν ∈ N, such

that for(wn, qn) ∈ Xn ×Qn there holds

〈Sn(v(ν+1)
n , wn〉 − 〈B∗

np
(ν)
n , wn〉 + r(Bnv

(ν+1)
n , Bnwn)0,Ω = 〈f + g, wn〉 ,(3.10a)

(p(ν+1)
n − p(ν)

n , qn)0,Ω + ρ(Bnv
(ν+1)
n , qn)0,Ω = 0 .(3.10b)

THEOREM 3.2. Let (vn, pn) ∈ Xn × Qn be the unique solution of(3.1a),(3.1b)and

let {(v(ν)
n , p

(ν)
n )}N be the sequence of iterates generated by the augmented Lagrangian

algorithm(3.10a),(3.10b). Then, under the assumptionρ < 2r for ν → ∞ there holds

v(ν)
n → vn in X , p(ν)

n → pn in L2(Ω) .

Proof. The convergence result can be verified using a similar reasoning as in the proof of
Theorem 3.1. Settinge(ν)

v := v
(n))
n −vn ande(ν)

p := p
(ν)
n −pn, it follows from (3.1a),(3.1b)

and (3.10a),(3.10b) that forwn ∈ Xn andqn ∈ Qn there holds

〈Sn(v(ν+1)
n − Sn(vn), wn〉 + r(Be(ν+1)

v , Bwn)0,Ω = 〈B∗
ne

(ν)
p , wn〉 ,(3.11a)

(e(ν+1)
p − e(ν)

p , qn)0,Ω = −ρ(Bne
(ν+1)
v , qn)0,Ω .(3.11b)

With wn = 2e
(ν+1)
v , qn = 2e

(ν+1
p ) in (3.11a),(3.11b) and the results of subsection 2.2 as

well as Young’s inequality we obtain

‖e(ν+1)
p ‖2

0,Ω − ‖e(ν)
p ‖2

0,Ω + 2ρ γ ‖e(ν+1)
v ‖2

X + ρ (2r − τ) ‖Be(ν+1)
v ‖2

X ≤ 0 ,

from which we first deduce the convergence of{‖e(ν)
p ‖2

0,Ω}N and then

e(ν)
v → 0 in X (ν → ∞) ,(3.12a)

Be(ν)
v → 0 in L2(Ω) (ν → ∞) ,(3.12b)

Now, (3.11a) and Lemma 2.2 result in

‖Sn(v(ν+1)
n ) − Sn(vn) + rB∗

nBne
(ν+1)
v ‖X∗ = ‖B∗

ne
(ν)
p ‖X∗ ≥ β ‖e(ν)

p ‖0,Ω .

Hence, (3.12a),(3.12b) and the continuity ofSn imply e(ν)
p → 0 asν → ∞. �

As in the case of the nonlinear Uzawa algorithm, in practicalcomputations we replace
Sn in (3.10a) by some appropriate approximationS̃n. This leads to the inexact augmented
Lagrangian algorithm

Inexact augmented Lagrangian algorithm:
Let S̃n be an approximation ofSn. Then, given(v(0)

n , p
(0)
n ) ∈ Xn × Qn andr, ρ > 0,

compute(v(ν)
n , p

(ν)
n ) ∈ Xn ×Qn, ν ∈ N, such that for(wn, qn) ∈ Xn ×Qn there holds

〈S̃n(v(ν+1)
n ), wn〉 − 〈B∗

np
(ν)
n , wn〉 + r(Bnv

(ν+1)
n , Bnwn)0,Ω = 〈f + g, wn〉 ,(3.13a)

(p(ν+1)
n − p(ν)

n , qn)0,Ω + ρ(Bnv
(ν+1)
n , qn)0,Ω = 0 .(3.13b)

The convergence of the inexact augmented Lagrangian algorithm requires that̃S−1
n pro-

vides a sufficiently good approximation ofS−1
n which also affects the choice of the para-

metersr andρ.
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REMARK 3.3. More efficient preconditioners can be constructed in the framework of multi-
grid techniques (cf.HACKBUSCH [1985]) with respect to a hierarchy of discretiza-
tions and/or domain decomposition methods (cf.QUARTERONI and VALLI [1999]and
TOSELLI and WIDLUND [2005]) relying on overlapping or non-overlapping decompo-
sitions of the computational domain. However, we are not aware of any scientific contribu-
tions where such approaches have been applied to the numerical solution of electrorheo-
logical fluid flows.

3.1.3. Construction of approximate inverses.There is a wide variety of possible approxi-
mates inverses̃S−1

n of S−1
n for the realization of the inexact nonlinear Uzawa algorithm

(3.9a),(3.9b) and the inexact augmented Lagrangian algorithm (3.13a),(3.13b), among them
the Picard iteration, fixed point techniques and Newton-type methods.
We recall that the operatorSn in (3.8a) and (3.11a) can be formally written asSn(vn) =

Ŝn(vn, vn) whereŜn : X ×X → X∗ is given by

〈Ŝn(vn, wn), zn〉 := 2

∫

Ω

(

b(|E|, x)(κ+ I(ũ+ vn))−1/2ε(ũ+ wn) : ε(zn)(3.14)

+ c(I(ũ+ vn), |E|, x)ε(ũ+ wn) : ε(zn)
)

dx .

Then, for a givenfn ∈ X∗
n the solution of the nonlinear variational equation

(3.15) 〈Sn(vn), zn〉 = 〈fn, zn〉 , zn ∈ Xn ,

can be obviously reformulated as

(3.16) 〈Ŝn(vn, vn), zn〉 = 〈fn, zn〉 , zn ∈ Xn .

We first consider a Picard-type iteration (cf. MOORE and CLOUD [2007]) which in the
Russian literature is also known as the Birger-Kachanov method (cf. FUCIK et al. [1973]).

Picard iteration
Givenv(0)

n ∈ Xn, computev(ν)
n , ν ∈ N, as the solution of the linear variational equation

(3.17) 〈Ŝn(v(ν)
n , v(ν+1)

n ), zn〉 = 〈fn, zn〉 , zn ∈ Xn , ν ∈ N0 .

THEOREM 3.3. Let vn ∈ Xn be the solution of(3.15)and {v(ν)
n }N be the sequence of

iteratesv(ν)
n ∈ Xn, ν ∈ N, generated by the Picard iteration(3.17). Then, under the

assumptions(A1), (A2) and forκ > 0, there holds

v(ν)
n → vn in X (ν → ∞) .

Proof. We refer to FUCIK et al. [1973], MOORE and CLOUD [2007]. �

We will not consider the issue how well the inverseS̃−1
n associated with the Picard iteration

(3.17) approximatesS−1
n in order to access the convergence of the inexact nonlinear Uzawa

algorithm or the inexact augmented Lagrangian algorithm, but instead address this question
in the framework of a fixed point iteration:
We introduceA : X → X∗ as a linear, continuous self-adjoint coercive operator, i.e., we
assume that forv, w ∈ X

〈Av,w〉 = 〈Aw, v〉 ,(3.18a)

|〈Av,w〉| ≤ CA ‖v‖X ‖w‖X ,(3.18b)

〈Av, v〉 ≥ γA ‖v‖2
X .(3.18c)

Hence,‖ ·‖A := 〈A·, ·〉1/2 defines a norm onX which is equivalent to the‖ ·‖X -norm and
the‖·‖1,2,Ω-norm. We refer to‖·‖A∗ as the associated norm on the dual spaceX∗. Hence,
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the operatorSn retains its properties with respect to the‖ · ‖A- and the‖ · ‖A∗ -norm. In
particular, forwn, zn ∈ Xn there holds

‖Sn(wn) − Sn(zn)‖A∗ ≤ CS ‖wn − zn‖A ,(3.19a)

〈Sn(wn) − Sn(zn), wn − zn〉 ≥ γS ‖wn − zn‖2
A .(3.19b)

SettingAn := A|Xn
, for the solution of (3.15) we consider the following fixed point

iteration:

Fixed point iteration
Givenv(0)

n ∈ Xn andt ∈ R+, computev(ν)
n ∈ Xn, ν ∈ N, as the solution of

(3.20) 〈Anv
(ν+1)
n , zn〉 = 〈Anv

(ν)
n , zn〉 − t

(

〈Sn(v(ν)
n ), zn〉 − 〈fn, zn〉

)

, zn ∈ Xn .

THEOREM 3.4. Let vn ∈ Xn be the unique solution of(3.15). Assume that the operator
A ∈ L(X,X∗) satisfies(3.18a)-(3.18c)and that assumptions(A1), (A2) hold true. Then,

for κ > 0 andt ∈ (0, 2γSC
−2
S ) the linear problem(3.20)has a unique solutionv(ν+1)

n ∈
Xn, and there holds

(3.21) ‖v(ν)
n − vn‖A ≤ k(t)ν

1 − k(t)
‖Sn(v(0)

n ) − fn‖A∗ , ν ∈ N ,

where

(3.22) k(t) = (1 − 2γSt+ C2
St

2)1/2 < 1 .

The optimal value is

kopt = k(topt) = (1 − γ2
SC

−2
S )1/2 , topt = γSC

−2
S .

Proof. We denote byJ : X∗ → X the Riesz operator. Then, the iteration (3.20)
amounts to the computation of a fixed point of the operatorTn(t) : Xn → Xn given by

(3.23) Tn(t)(wn) := wn − t J(Sn(wn) − fn) , wn ∈ Xn .

Taking (3.19a),(3.19b) and the isometry ofJ into account, from (3.23) we deduce

‖Tn(t)(wn) − Tn(t)(zn)‖2
A = ‖wn − zn − t J(Sn(wn) − Sn(zn))‖2

A =

= ‖wn − zn‖2
A − 2t 〈Sn(wn) − Sn(zn), wn − zn〉 + t2 ‖Sn(wn) − Sn(zn)‖2

A∗ ≤
≤ ‖wn − zn‖2

A − 2t γS ‖wn − zn‖2
A + t2 C2

S ‖wn − zn‖2
A = k(t)2 ‖wn − zn‖2

A .

Hence, the assertion follows from the Banach fixed point theorem. �

REMARK 3.4. Some comments are in order with regard to an appropriate choice of the
finite dimensional subspacesXn andQn. In the framework of finite element approxima-
tions based on simplicial and/or quadrilateral triangulations of the computational domain,
for incompressible Stokes and Navier-Stokes type fluid flow problems various families of
finite elements have been suggested. The Taylor-HoodPk/Pk−1-elements,k ∈ N, and
its generalizations have become the most popular choice in applications. For a thorough
presentation and discussion including the discrete inf-sup condition we refer toBRAESS
[2007], BREZZI and FORTIN [1991].
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3.1.4. An augmented Lagrangian approach for an extended Bingham fluid model. In case
of the extended Bingham fluid model based on the viscosity function (2.18), the fluid flow
is described by the nonlinear variational inequality of thesecond kind (2.63). Hence, ap-
propriate numerical methods for such variational inequalities have to be provided (cf., e.g.,
GLOWINSKI et al. [1981]). We present here an augmented Lagrangian approach relying
on a mixed formulation of the problem that has been used in ENGELMANN et al. [2000]
for the computation of electrorheological fluid flows obeying the constitutive law (2.13).
The motivation for the mixed formulation is that the nonlinearity and non-smoothness of
the problem is confined to the gradients of the components of the velocity. Hence, intro-
ducingp = ∇u as additional unknowns and using aP1/P0 finite element discretization
of (u, p) boils down the global nonlinear problem to a sequence of local, low-dimensional
nonlinear problems that can be easily solved. For simplicity we restrict ourselves to a
problem setting with full rotational symmetry whereE = Er(r, z)er + Ez(r, z)ez and
u = u(r, z)eϑ with er, eϑ andez denoting the unit vectors in a cylindrical coordinate sys-
tem. The incompressibility condition is then automatically satisfied.
Based on the constitutive law (2.13), the steady stateu ∈ V := W 1,2

0,ΓD
(Ω) of the elec-

trorheological fluid flow corresponds to the minimizer of theglobal energy

(3.24) J(u) = inf
v∈V

J(v) .

Here,J : V → R stands for the energy functional

(3.25) J(v) := γ

∫

Ω

|E||E · ∇u|r dr dz +
1

2
η

∫

Ω

|∇u|2r dr dz ℓ(v) , v ∈ V ,

whereℓ : V → R comprises volume and surface forces according to

ℓ(v) := 〈f + g, v〉 , v ∈ V .

We introducep = ∇u ∈ L2(Ω)2 as additional unknowns and couple the constraintp = ∇u
both by a Lagrangian multiplierλ ∈ L2(Ω)2 and by a penalty term with penalty parameter
τ > 0 which gives rise to the saddle point problem:

Find (u, p, λ) ∈ V × L2(Ω)2 × L2(Ω)2 such that

(3.26) L(τ)(u, p, λ) = inf
v,q

sup
µ
L(τ)(v, q, µ) ,

where the augmented LagrangianL(τ)(·, ·, ·) is given by

L(τ)(v, q, µ) := γ

∫

Ω

|E||E · p|r dr dz +
1

2
η

∫

Ω

|p|2r dr dz +

+

∫

Ω

µ · (p−∇u) dr dz +
1

2
τ

∫

Ω

|p−∇u|2 dr dz − ℓ(v) .

For a simplicial triangulationTh(Ω) of the computational domainΩ, we use aP1/P0
discretization(uh, ph) ∈ Vh × W 2

h of (u, p) whereVh stands for the standard finite el-
ement space of continuous piecewise linear finite elements and Wh for the linear space
of elementwise constants. If an approximation of the electric field E is obtained based
on aP1 approximation, we defineEh ∈ Wh locally as the elementwise integral mean
of that approximation. Consequently, the discrete minimization problem amounts to the
computation of(uh, ph, λh) ∈ Vh ×W 2

h ×W 2
h such that

(3.27) L(τ)(uh, ph, λh) = inf
vh,qh

sup
µh

L(τ)(vh, qh, µh) ,
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whereE in the definition ofL(τ)(·, ·, ·) has to be replaced byEh.
The minimization problem (3.27) is solved iteratively by anoperator splitting technique
where each iteration step requires the solution of a global quadratic minimization problem
and local, i.e., elementwise nonlinear minimization problems along with appropriate up-
dates of the discrete Lagrangian multipliersλh. In particular, given sequences{ρn}N and
{τn}N of update parametersρn ∈ R+ and penalty parametersτn ∈ R+, n ∈ N, as well as
start vectors(p(0)

h , λ
(1)
h ) ∈W 2

h ×W 2
h , an iteration consists of the following two steps:

Step 1:Computeu(n)
h ∈ Vh as the solution of the global quadratic minimization problem

(3.28) L(τn)(u
(n)
h , p

(n−1)
h , λ

(n)
h ) = inf

vh∈Vh

L(τ)(vh, p
(n−1)
h , λ

(n)
h )

and update the multiplier according to

(3.29) λ
(n+1/2)
h = λ

(n)
h + ρn(∇u(n)

h − p
(n−1)
h ) .

Step 2:Computep(n)
h ∈W 2

h as the solution of

(3.30) L(τn)(u
(n)
h , p

(n)
h , λ

(n+1/2)
h ) = inf

qh∈W 2
h

L(τ)(u
(n)
h , qh, λ

(n+1/2)
h )

and update the multiplier according to

(3.31) λ
(n+1)
h = λ

(n+1/2)
h + ρn(∇u(n)

h − p
(n)
h ) .

The minimization problem (3.28) requires the solution of a linear algebraic system where
the coefficient matrix corresponds to the stiffness matrix associated with theP1 approx-
imation of the Laplacian−∆. On the other hand, the minimization problem (3.30) re-
duces to the simultaneous solution of the elementwise minimization problems: For each
T ∈ Th(Ω) computep(n)

h |T ∈ P0(T )2 such that

(3.32) J
(τn)
T (p

(n)
h |T ) = inf

qT
h
∈P0(T )2

J
(τn)
T (qT

h ) ,

where the functionalJ (τn)
T : P0(T )2 → R is given by

J
(τn)
T (qT

h ) := L(τn)(u
(n)
h |T , qT

h , λ
(n+1/2)
h ) .

The local minimization problems (3.32) give rise to two-dimensional variational inequali-
ties which can be solved analytically.

3.2. Evolutionary isothermal incompressible flow problems.We consider the discreti-
zation of initial-boundary value problems for time-dependent incompressible isothermal
electrorheological fluid problems (2.1a),(2.1b) by a difference approximation in time and
by the Galerkin method in space using finite dimensional subspacesXn ⊂ X := W 1,2

0,ΓD

andQn ⊂ L2(Ω), n ∈ N as in the previous subsection 3.1. For discretization in time we
refer to

(3.33) Īk := {tm = mk | 0 ≤ m ≤M , k := T/M} , M ∈ N ,

as a uniform partition of the time interval[0, T ] of step sizek and approximate the time
derivativeut(·, t) in t ∈ Īk by the forward and backward difference quotients∂±k u(·, t)
which are given by

∂+
k u(·, t) := k−1(u(·, t+ k) − u(·, t)) , t ∈ Īk \ {T} ,(3.34a)

∂−k u(·, t) := k−1(u(·, t) − u(·, t− k)) , t ∈ Īk \ {0} .(3.34b)
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We denote by(u(m)
n , p

(m)
n ) ∈ Xn × Qn an approximation of(u(·, tm), p(·, tm)) ∈ X ×

L2(Ω) at timetm. Using a convex combination of the discretizations by the forward and
difference quotients in time results in the so-calledΘ-scheme which at each time level
amounts to the solution of the following nonlinear system offinite dimensional variational
equations

〈F (Θ)
n (u(m)

n ), wn〉 − 〈B∗
np

(m)
n , wn〉 = 〈h(Θ)

n , wn〉 , wn ∈ Xn ,(3.35a)

(Bnu
(m)
n , qn〉 = 0 , qn ∈ Qn ,(3.35b)

where the nonlinear operatorF (Θ)
n : Xn → X∗

n and the right-hand sideh(Θ)
n ∈ X∗

n,Θ ∈
[0, 1], are given by

〈F (Θ)
n (vn), wn〉 := ρ k−1 〈vn, wn〉 + Θ

(

〈(vn · ∇)vn, wn〉 + 〈Sn(vn), wn〉
)

,(3.36a)

h(Θ)
n := fn + gn + k−1u(m)

n − (1 − Θ)
(

(u(m)
n · ∇)u(m)

n + Sn(u(m)
n )

)

.(3.36b)

ForΘ = 0 andΘ = 1, we recover the standard explicit and implicit difference approxima-
tion, respectively. The difference approximation forΘ = 1/2 is called the Crank-Nicolsen
method. It is well-known that theΘ-scheme is consistent with the initial-boundary value
problem of orderO(k) in time for Θ 6= 1/2, whereas the Crank-Nicolsen method is con-
sistent of orderO(k2). Moreover, theΘ-scheme is only conditionally stable forΘ < 1/2
and unconditionally stable forΘ ∈ [1/2, 1] (cf., e.g., STRIKWERDA [2004], THOMAS
[1995]). Usually, the stability condition forΘ ∈ [0, 1/2) imposes a severe restriction on
the choice of the step sizek so that the corresponding schemes are not used in practice.

The nonlinear system (3.35a),(3.35b) can be solved using the same techniques as de-
scribed in subsection 3.1. In particular, we may use the analogues of the inexact non-
linear Uzawa algorithm (3.9a),(3.9b) and the inexact augmented Lagrangian algorithm
(3.13a),(3.13b) provided we have suitable approximate inverses(F̃ (Θ)

n )−1 of (F
(Θ)
n )−1,

Θ ∈ (1/2, 1], at hand. For the construction of such inverses, the Picard iteration or fixed
point iterations can be used as well. The only difference is that we are faced with the
additional nonlinear convective term(vn · ∇)vn which, however, can be treated in much
the same way as the nonlinearity in the operatorSn. For instance, in case of the standard
implicit scheme (Θ = 1) we use

(3.37) 〈F̃ (1)
n (vn), wn〉 := ρ k−1 〈vn, wn〉 +

(

〈(u(m)
n · ∇)vn, wn〉 + 〈S̃n(u(m)

n ), wn〉
)

,

with S̃n given by (3.14).
For the Crank-Nicolsen scheme, an appropriate modificationhas to be used in order to
retain second order accuracy (cf., e.g., ELMAN [2002]).

3.3. Non-isothermal incompressible electrorheological flow problems. We use the no-
tations from subsection 2.5 and assume{Xn}N, {Qn}N and{Yn}N to be limit dense nested
sequences of finite dimensional subspaces ofX,L2(Ω) andW 1,2

0,Γ(Ω), respectively, and we
consider the following sequence of approximating systems of finite dimensional variational
equations: Find(vn, pn, θn) ∈ Xn ×Qn × Yn such that

〈N(vn, θn), wn〉 − 〈B∗
npn, wn〉 = 〈f + g, wn〉 , wn ∈ Xn(3.38a)

(Bnvn, qn)0,Ω = 0 , qn ∈ Qn ,(3.38b)

(∇θn,∇ζn)0,Ω − 〈Aβ(vn, θn), ζn〉 = (f3, ζn)0,Ω , ζn ∈ Yn ,(3.38c)

whereBn ∈ L(Xn, Qn) refers to the discrete divergence operator (cf. subsection2.2.1).
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THEOREM 3.5. Let the assumptions of Theorem2.6 be satisfied and let{(vn, pn, θn)}N

be a sequence of solutions of(3.38a)-(3.38c). Then, there exist a subsequenceN
′ ⊂ N

and a triple(v, p, θ) ∈ X × L2(Ω) ×W 1,2
0,Γ(Ω) that solves(2.101a)-(2.101c)such that for

N
′ ∋ n→ ∞

vn → v in X ,(3.39a)

pn → p in L2(Ω) ,(3.39b)

θn → θ in W 1,2
0,Γ(Ω) .(3.39c)

Proof. SettingVn = Ker(Bn), (3.38a)-(3.38c) can be equivalently stated as: Find
(vn, θn) ∈ Vn × Yn such that

〈N(vn, θn), wn〉 = 〈f1 + g, wn〉 , wn ∈ Xn(3.40a)

(∇θn,∇ζn)0,Ω − 〈Aβ(vn, θn), ζn〉 = (f3, ζn)0,Ω , ζn ∈ Yn .(3.40b)

It follows from Theorem 2.6 that for eachn ∈ N problem (3.40a),(3.40b) admits a solution
(vn, θn) ∈ Vn × Yn. Moreover, there are constantsCi > 0, 1 ≤ i ≤ 2, such that

(3.41) ‖vn‖X ≤ C1 , ‖θn‖1,Ω ≤ C2

uniformly in n ∈ N. We haveN(vn, θn)− (f1 + g) ∈ V 0
n , and hence, Lemma 2.2 implies

that there is a uniquepn ∈ Qn such that

(3.42) 〈N(vn, θn), wn〉 − 〈B∗
npn, wn〉 = 〈f1 + g, wn〉 , wn ∈ Xn ,

i.e.,(vn, pn, θn) solves (3.38a)-(3.38c). Lemma 2.2 and (3.41) yield

(3.43) ‖pn‖0,Ω ≤ C3 , n ∈ N

for some constantC3 > 0. Consequently, there exist a subsequenceN
′ ⊂ N and(v, p, θ) ∈

X × L2(Ω) ×W 1,2
0,Γ(Ω) such that forN′ ∋ n→ ∞

vn ⇀ u in X ,(3.44a)

vn → v in L4(Ω)d ,(3.44b)

vn → v a.e. inΩ ,(3.44c)

pn ⇀ p in L2(Ω) ,(3.44d)

θn ⇀ θ in W 1,2
0,Γ(Ω) ,(3.44e)

θn → θ in L4(Ω) ,(3.44f)

θn → θ a.e. inΩ ,(3.44g)

N(vn, θn) ⇀ ℓ in X∗ .(3.44h)

For a fixed integern0 ∈ N letwn0
∈ Xn0

andqn0
∈ Qn0

. Then, in view of (3.44a),(3.44d)
and (3.44h), passing to the limit in (2.101a),(2.101b) yields

〈ℓ−B∗p,w〉 = 〈f1 + g, w〉 , w ∈ Xn0
,

(Bv, q)0,Ω = 0 , q ∈ Qn0
.

Sincen0 ∈ N was arbitrarily chosen and the sequences{Xn}N and{Qn}N are limit dense
in X andL2(Ω), it follows that

ℓ − B∗p = f1 + g in X∗ ,(3.45a)

∇ · v = 0 a.e. inΩ .(3.45b)
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We defineLz1,z2
: X → X∗ according to

〈Lz1,z2
(w1), w2〉 :=

2

∫

Ω

ϕ(I(ũ+ w1), |E|, µ(ũ+ z1, E), θ̃ + z2)ε(ũ+ w1) : ε(w2) dx , w1, w2 ∈ X .

For z1 = vn, z2 = θn Lemma 2.3 gives

(3.46) 〈L(vn,θn)(vn) − L(vn,θn)(v), vn − w〉 ≥ 0 , w ∈ X , n ∈ N .

Moreover, by (3.44b),(3.44c) and (3.44f),(3.44g) and the Lebesgue theorem

L(vn,θn)(w) → L(v,θ)(w) in X∗ , w ∈ X .

It follows that forw ∈ X there holds

lim
N′∋n→∞

〈L(vn,θn)(w), vn〉 = 〈L(v,θ)(w), v〉 ,(3.47a)

lim
N′∋n→∞

〈L(vn,θn)(w), w〉 = 〈L(v,θ)(w), w〉 .(3.47b)

Observing (3.44h) and (3.45a), we obtain

(3.48) lim
N′∋n→∞

(

〈L(vn,θn)(vn), w〉 − 〈B∗p,w〉
)

= 〈f1 + g, w〉 , w ∈ X .

Taking into account that

〈B∗pn, vn〉 = (pn, Bnvn)0,Ω ,

(2.101a) and (3.44a) imply that forN
′ ∋ n→ ∞ there holds

(3.49) 〈L(vn,θn)(vn), vn〉 = 〈f1 + g, vn〉 → 〈f1 + g, v〉 .
Due to (3.47a),(3.47b) and (3.48),(3.49), we pass to the limit in (3.46) and get

(3.50) 〈f1 + g − L(v,θ)(w) +B∗p, v − w〉 ≥ 0 , w ∈ X .

If we choosew = v − γz, z ∈ X, γ > 0, in (3.50), forγ → 0 it follows that

〈f1 + g −N(v, θ) +B∗p, z〉 ≥ 0 , z ∈ X .

Sincez ∈ X can be arbitrarily chosen, we may replacez by −z and thus obtain

〈N(v, θ), z〉 − 〈B∗p, z〉 = 〈f1 + g, z〉 , z ∈ X ,(3.51a)

ℓ = N(v, θ) .(3.51b)

On the other hand, (3.44a)-(3.44c) and (3.44e)-(3.44g) as well as Lebesgue’s theorem im-
ply

lim
N′∋n→∞

〈Aβ(vn, θn), ξ〉 = 〈Aβ(v, θ), ξ〉 , ξ ∈W 1,2
0,Γ(Ω) .

Choosingn0 ∈ N andξn0
∈ Yn0

arbitrarily, but fixed, and passing to the limit in (2.101c),
we get

(∇θ,∇ξn0
)0,Ω − 〈Aβ(v, θ), ξn0

〉 = 〈f3, ξn0
〉 .

Since the sequence{Yn}N is limit dense inW 1,2
0,Γ(Ω), we thus have

(3.52) (∇θ,∇ξ)0,Ω − 〈Aβ(v, θ), ξ〉 = 〈f3, ξ〉 , ξ ∈W 1,2
0,γ (Ω) .

Now, (3.45b), (3.51a) and (3.52) show that the triple(v, p, θ) is a solution of (2.101a)-
(2.101c).

What remains to be shown is the strong convergence (3.39a)-(3.39c). We first note that
due to (3.44a), (3.48) (withw = v), and (3.49)

(3.53) Λn := 〈L(vn,θn)(vn) − Lv,θ)(v), vn − v〉 → 0 (N′ ∋ n→ ∞) .
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We splitΛn according to

(3.54) Λn = 〈L(vn,θn)(vn)−Lvn,θn)(v), vn − v〉 + 〈L(vn,θn)(v)−Lv,θ)(v), vn − v〉 .
In view of (3.44a) and (3.47a),(3.47b) we have

〈L(vn,θn)(v) − Lv,θ)(v), vn − v〉 → 0 (N′ ∋ n→ ∞) ,

and hence, due to (3.53),(3.54)

(3.55) 〈L(vn,θn)(vn) − Lvn,θn)(v), vn − v〉 → 0 (N′ ∋ n→ ∞) .

Now, Lemma 2.3 implies

(3.56) vn → v in X (N′ ∋ n→ ∞) ,

whence

(3.57) I(ũ+ vn) → I(ũ+ v) a.e. inΩ (N′ ∋ n→ ∞) .

We choosew = wn ∈ Xn in (2.101a) and subtract (2.101a) from (3.38a) which shows that
for qn ∈ Qn there holds

(3.58) 〈B∗(pn − qn), wn〉 = 〈N(vn, θn) −N(v, θ), wn〉 + 〈B∗(p− qn), wn〉 .
Applying Lemma 2.2 in (3.58) yields

‖pn − qn‖0,Ω ≤ sup
wn∈Xn

〈B∗(pn − qn), wn〉
β |wn‖X

≤

≤ β−1 ‖N(vn, θn) −N(v, θ)‖X∗ + C ‖p− qn‖0,Ω , qn ∈ Qn ,

whereC ∈ R is a positive constant. It follows that

‖p− pn‖0,Ω ≤ inf
qn∈Qn

(

‖p− qn‖0,Ω + ‖pn − qn‖0,Ω

)

≤(3.59)

≤ β−1 ‖N(vn, θn) −N(v, θ)‖X∗ + (C + 1) inf
qn∈Qn

‖p− qn‖0,Ω .

Setting

ϕnm := ϕ(I(ũ+ vn), |E|, µ(ũ+ vm, E), θ̃ + θm) , n,m ∈ N0 ,

straightforward estimation results in

1

2
‖N(vn, θn) −N(v, θ)‖X∗ ≤

( ∫

Ω

(ϕnnε(ũ+ vn) − ϕ00ε(ũ+ v)2 dx
)1/2

(3.60)

=
( ∫

Ω

(

(ϕnn(ε(ũ+ vn) − ε(ũ− v)) + (ϕnn − ϕ00)ε(ũ+ v)
)2

dx
)1/2

≤

≤
( ∫

Ω

ϕ2
nnI(vn − v) dx

)1/2

+
( ∫

Ω

(ϕnn − ϕ00)
2I(ũ+ v) dx

)1/2

.

It follows from (T1), (3.44b),(3.44c), (3.44f),(3.44g) and (3.56),(3.57) as well as the
Lebesgue theorem that the right-hand side in (3.60) converges to zero asN′ ∋ n → ∞.
Consequently,

(3.61) ‖N(vn, θn) −N(v, θ)‖X∗ → 0 (N′ ∋ n→ ∞) .

Since the sequence{Qn}N is limit dense inL2(Ω), (3.59) and (3.61) imply

(3.62) pn → p in L2(Ω) (N′ ∋ n→ ∞) .
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Finally, from (3.44b),(3.44c), (3.44f),(3.44g) and (3.56),(3.57) we also get

(3.63) Aβ(vn, θn) → Aβ(v, θ) in W−1,2(Ω) (N′ ∋ n→ ∞) .

Choosingζn = θn in (3.38c), we have

‖θn‖2
1,2,Ω = 〈Aβ(vn, θn), θn〉 + 〈f3, θn〉 ,

whence in view of (2.101c),(3.44f) and (3.63) forN
′ ∋ n→ ∞ we have

lim
N′∋n→∞

(

〈Aβ(vn, θn), θn〉 + 〈f3, θn〉
)

= 〈Aβ(v, θ, θ〉 + 〈f3, θ〉 = ‖θ‖2
1,2,Ω .

Consequently,‖θn‖2
1,2,Ω → ‖θ‖2

1,2,Ω asN
′ ∋ n → ∞, which together with (3.44f) results

in

θn → θ in W 1,2
0,Γ(Ω) (N′ ∋ n→ ∞) .

This concludes the proof of the theorem. �

4. NUMERICAL SIMULATION AND OPTIMIZATION

OF ELECTRORHEOLOGICAL DEVICES

We shall consider the application of the algorithmic tools developed in the previous sec-
tion 3 to the simulation and the optimal design of electrorheological devices and systems.
The most elementary devices are rheometers used for the measurement of rheological pro-
perties which shall be discussed in 4.1. Examples for more advanced devices are given
by electrorheological shock absorbers which feature a muchwider spectrum of damper
characteristics than absorbers based on conventional fluids. The simulation of the opera-
tional behavior of such electrorheological shock absorbers, in particular their compression
and rebound states, shall be treated in 4.2. Finally, 4.3 is devoted to a brief presentation
of a methodology for the shape optimization of the inlet and outlet boundaries of piston
ducts in electrorheological shock absorbers. For general aspects of optimization problems
related to fluid mechanical processes we refer to LITVINOV [2000] and MOHAMMADI
and PIRONNEAU [2001].

4.1. Electrorheological rheometers.Electrorheological rheometers are devices for the
measurement of the rheological properties of electrorheological fluids. Figure 4.5 displays
a simple model consisting of two coaxial cylinders of lengths li, le and radiirr, re, respec-
tively. The inner cylinder features a high voltage lead to anexternal electric circuit which
supplies the lateral surface. The inner cylinder thus serves as the electrode. The lateral sur-
face of the outer cylinder represents the counter electrode. The gap between the cylinders
is filled with an electrorheological fluid.
One of the cylinders may rotate, whereas the other one remains at rest. When one of the
cylinders starts revolving, the other one experiences a torque due to the viscosity of the
fluid. Applying a voltage through the external electric circuit, the electrorheological effect
results in an enhanced viscosity and the strength of the torque felt by the other cylinder
increases. Commercial rheometers operate within a frequency range of10−7 - 100 Hz, a
temperature range of -150 - 1000oC and allow angular velocities of 0 - 320 rad/s. The
normal force range is between10−3 and 50 N.

The arrangement has full rotational symmetry so that the computational domain reduces
to the domainΩ as shown in Figure 4.5 (right). Given a cylindrical coordinate system
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FIGURE 4.5. Electrorheological clutch (left) and computational domain (right).

(r, α, z) with basis vectorser, eα andez, the velocity vector only features an angular com-
ponentu(r, z)eα which results in the following components of the strain tensor

ε12(u) = ε21(u) =
1

2
(
∂u

∂r
− u

r
) , ε23(u) = ε32(u) =

1

2

∂u

∂z
,(4.1)

ε11(u) = ε22(u) = ε33(u) = ε13(u) = ε31(u) = 0 .

Hence, for the second invariant of the rate of strain tensor we obtain

(4.2) I(u) =
1

2
(
∂u

∂r
− u

r
)2 +

1

2
(
∂u

∂z
)2 .

In our case,µ(u,E) = 0 and hence, the viscosity functionϕ is given by

(4.3) ϕ(I(u), |E|, 0) := b(|E|, 0)(κ+ I(u))−1/2 + c(I(u), |E|, 0) ,

whereκ is the regularization parameter. Note thatκ = 0 refers to the extended Bingham
fluid. Assuming no volume force acting on the fluid, the steadystate equations take the
form

∂

∂r
(ϕ(I(u), |E|, 0)(

∂u

∂r
− u

r
)) +

∂

∂z
(ϕ(I(u), |E|, 0)

∂u

∂z
) +(4.4a)

+
2

r
ϕ(I(u), |E|, 0)(

∂u

∂r
− u

r
) = 0 ,

∂p

∂r
=

∂p

∂z
= 0 .(4.4b)

The incompressibility condition is automatically satisfied.
As far as the boundary conditions onΓ = ∂Ω are concerned, we prescribe velocities on
the left boundary ofΩ

Γℓ := {(r, z) | r = 0 , z ∈ (0, le − li)}
and on the surface of the internal and external cylinder

Γs :=
4⋃

i=1

Γs,i ,
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where the subsurfacesΓs,i, 1 ≤ i ≤ 4, are given by

Γs,1 := {(r, z) | z = 0 , r ∈ ((0, re)} ,

Γs,2 := {(r, z) | r = re , z ∈ (0, le)} ,
Γs,3 := {(r, z) | z = le − li , r ∈ (0, ri)} ,

Γs,4 := {(r, z) | r = ri , z ∈ ((le − li), le)} .
Moreover, surface forces are specified on

Γt := Γ \ (Γ̄ℓ ∪ Γ̄s) .

If the inner cylinder is rotating, the boundary conditions are chosen according to

u(r, z) =







0 onΓℓ ∪ Γs,1 ∪ Γs,2

rω onΓs,3

riω onΓs,4

,(4.5a)

lim
r→0

(
∂u

∂r
− u

r
)(r, z) = 0 , z ∈ (0, le − li) ,(4.5b)

ϕ(I(u), |E|, 0)
∂u

∂z
= 0 , p = const. onΓt .(4.5c)

On the other hand, if the outer cylinder is revolving, we have

u(r, z) =







0 onΓℓ ∪ Γs,3 ∪ Γs,4

rω onΓs,1

reω onΓs,2

,(4.6a)

lim
r→0

(
∂u

∂r
− u

r
)(r, z) = 0 , z ∈ (0, le − li) ,(4.6b)

ϕ(I(u), |E|, 0)
∂u

∂z
= 0 , p = const. onΓt .(4.6c)

Due to the rotational symmetry, the electric field

E(r, z) = Er(r, z)er + Ez(r, z)ez

has two componentsEr andEz which can be computed according toE = −∇ψ =
−(∂ψ/∂r, ∂ψ/∂z)T as the gradient of an electric potentialψ = ψ(r, z). Denoting by

Γi := {(r, z) | r = ri , z ∈ (le − li, le)} ,
Γe := {(r, z) | r = re , z ∈ (le − li, le)} ,

the lateral surfaces of the inner and outer cylinder, the electric potentialψ satisfies the
boundary value problem

∂

∂r
(ǫ
∂ψ

∂r
) +

ǫ

r

∂ψ

∂r
+

∂

∂z
(ǫ
∂ψ

∂z
) = 0 in Ω ,(4.7a)

ψ = U onΓi , ψ = 0 onΓe ,(4.7b)

∂ψ

∂r
= 0 onΓ0 , νrǫ

∂ψ

∂r
+ νzǫ

∂ψ

∂z
= 0 onΓt ,

whereU is the applied voltage,ǫ stands for the dielectric permittivity andν = (νr, νz)
T is

the exterior normal unit vector.

Given a simplicial triangulation of the computational domain Ω, we have discretized
(4.4a) by conforming P1 finite elements in case of a regularized viscosity function, i.e.,
κ > 0, whereas for the extended Bingham fluid model, i.e.,κ = 0, we have chosen the
mixed formulation from subsection 3.1.4 and used conforming P1 elements for the primal
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variable and elementwise constants for the dual variables.The resulting algebraic systems
have been solved by the augmented Lagrangian algorithm as described in section 3. In
both cases, the boundary value problem (4.7a),(4.7b) has been discretized by conforming
P1 elements, and the resulting algebraic system has been solved by the preconditioned
conjugate gradient method.
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FIGURE 4.6. Wide-gap configuration: angular velocity profiles (revol-
ving outer cylinder); from HOPPE, LITVINOV and RAHMAN [2005]
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FIGURE 4.7. Wide-gap configuration: angular velocity profiles (revol-
ving inner cylinder); from HOPPE, LITVINOV and RAHMAN [2005]
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FIGURE 4.8. Narrow-gap configuration: angular velocity profiles (ro-
tating outer cylinder); from HOPPE, LITVINOV and RAHMAN [2005]
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FIGURE 4.9. Narrow-gap configuration: angular velocity profiles (ro-
tating inner cylinder); from HOPPE, LITVINOV and RAHMAN [2005]

The computations have been performed for the commercially available polyurethane-
based electrorheological fluid Rheobay TP AI 3565 (cf. BAYER[1997a]). Using experi-
mental measurements for various electric field strengths, the viscosity functionϕ has been
specified by cubic spline approximations of theτ(γ)-flow curves (cf. section 2).
We have considered two different geometrical configurations of the rheometer, namely a
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FIGURE 4.10. Isolines of the electric potential (wide-gap configuration)

wide-gap configuration with the specifications

Wide-gap: ri = 35 mm , re = 70 mm , li = 250 mm , le = 300 mm ,

ω = 125 rad/s , U = 0, 2, 3 kV

and a narrow-gap configuration with

Narrow-gap: ri = 24 mm , re = 25 mm , li = 25 mm , le = 30 mm ,

ω = 5 rad/s , U = 0, 50, 100 kV .

The following results have been obtained based on the regularized viscosity functionϕ
with κ = 10−11 (for related results based on the extended Bingham fluid model, i.e.,
κ = 0 we refer to ENGELMANN et al. [2000]).
Figures 4.6 and 4.7 display the angular velocity profiles forthe wide-gap configuration with
revolving outer cylinder (Figure 4.6) and revolving inner cylinder (Figure 4.7) at applied
voltages ofU = 0 V , U = 50 kV, andU = 100 kV , respectively. In both cases a
zone with a constant angular velocity occurs close to the outer cylinder which increases for
increasing voltage. This is the typical velocity profile forelectrorheological Couette-type
flows.
On the other hand, Figures 4.8 and 4.9 show the angular velocity profiles for the narrow-
gap configuration with revolving outer cylinder (Figure 4.8) and revolving inner cylinder
(Figure 4.9) at applied voltages ofU = 0 V , U = 2 kV, andU = 3 kV . We observe that
in both cases there is no zone with a constant angular velocity. Indeed, independent of the
applied voltage, the velocity profile is almost linear.

Finally, Figure 4.10 contains the isolines of the electric potentialψ with respect to the
wide-gap configuration. In fact, for both the wide-gap and the narrow-gap configuration
the electric fieldE = (Er, Ez)

T in the gap between the inner and outer cylinder is close to
the constant vector(U/(ri − re), 0)T and thus perpendicular to the velocity. The electric
field decays rapidly with increasing distance to the electrodes.

4.2. Electrorheological shock absorbers.Due to their fast response to outer electrical
fields, electrorheological fluids are much better suited forautomotive shock absorbers
than conventional oils. In fact, electrorheological shockabsorbers feature a much wider
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characteristics than conventional ones and thus allow for an ideal adaptation to different
road conditions and driving styles (cf., e.g., BAYER [1997b, 1998], BÖSE, HOPPE and
MAZURKEVICH [2001], FILISKO [1995], GAVIN et al. [1996a,b], HOPPE, LITVI-
NOV and RAHMAN [2003, 2007], HOPPE et al. [2000]).
Figure 4.11 (left) displays the longitudinal section of an electrorheological shock absorber.
The absorber consists of two chambers filled with an electrorheological fluid, a piston fea-
turing two transfer ducts that connect the chambers, and a third gas-filled chamber sepa-
rated from the others by a floating piston. The inner walls of the transfer ducts act as
electrodes and counter electrodes, respectively. They areconnected with an outer electric
circuit by a high voltage lead within the piston rod. We distinguish between the compres-
sion mode and the rebound mode. In the compression mode, the piston moves down and
the fluid passes from the lower chamber through the ducts intothe upper chamber, whereas
in the rebound mode the piston moves up and the fluid flow is in the opposite direction.
The variation of the applied voltage almost instantaneously changes the viscosity of the
fluid and thus allows to control the damper characteristics.

FIGURE 4.11. Schematic representation of an electrorheological shock
absorber (left) and simplicial triangulation of the computational domain
(right)

The fluid flow is assumed to be axially symmetric so that the computational domain can
be restricted to the right half of the fluid chamber and displayed in cylindrical coordinates
r, z. Figure 4.12 illustrates the computational domain in the situation where the piston is
at an upper position (left) and at a lower position (right). Due to the displacementa(t) of
the piston, the computational domain changes in time and will thus be denoted byΩa(t).
If the piston is displaced bya(t) = l1(t) − l1(0), the floating piston is displaced from
its initial position byb(t) = a(t)(R1/R)2, whereR andR1 are the radii of the floating
piston and the piston rod. For a proper specification of the boundary conditions, we refer
to Γa(t) = ∂Ωa(t) as the boundary of the right half of the fluid chamber. In particular,

Γ
(p)
a(t) andΓ

(f)
a(t) stand for the boundary of the piston and the upper boundary ofthe floating

piston. We further denote byΓ(e)
a(t) andΓ

(c)
a(t) the inner wall (CD in Figure 4.12) and the
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FIGURE 4.12. Domain of flow of the electrorheological fluid at time
instantst = 0 (left) andt > 0 (right).

outer wall (C’D’ in Figure 4.12) of the transfer duct which serve as the electrode and
counter electrode, respectively. Finally,Γ

(ℓ)
a(t) := {(r, z) ∈ Ωa(t) | r = 0} stands for

the left boundary of the computational domain which coincides with the symmetry axis.
We setQ := Ωa(t) × (0, T ),Σa(t) := Γa(t) × (0, T ) and use analogous notations for the
other space-time domains involving the specific parts of theboundary of the computational
domain.

Taking advantage of the axial symmetry, the velocityu is given by

u(r, z) = u1(r, z)er + u2(r, z)ez ,

which gives rise to the following components of the strain tensor

ε11(u) =
∂u1

∂r
, ε22(u) =

u1

r
, ε33(u) =

∂u2

∂z
,

ε13(u) = ε31(u) =
1

2
(
∂u1

∂z
+
∂u2

∂z
) ,

ε12(u) = ε21(u) = ε23(u) = ε32(u) = 0 .

The second invariant of the rate of strain tensor turns out tobe

I(u) = (
∂u1

∂r
)2 + (

u1

r
)2 + (

∂u2

∂z
)2 +

1

2
(
∂u1

∂z
+
∂u2

∂r
)2 .

Denoting byρ the density of the fluid, byϕ the viscosity function according to (2.19), and
by f = (f1, f2)

T the volume force with the radial and axial componentsf1 andf2, the
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equations of motion take the form

ρ
(∂u1

∂t
+ u1

∂u1

∂r
+ u2

∂u1

∂z

)

+
∂p

∂r
−(4.8a)

− 2
∂

∂r
(ϕε11(u)) − 2

∂

∂z
(ϕε13(u)) −

2

r
ϕ(ε11(u) − ε22(u)) = f1 in Q ,

ρ
(∂u2

∂t
+ u1

∂u2

∂r
+ u2

∂u2

∂z

)

+
∂p

∂r
−(4.8b)

− 2
∂

∂r
(ϕε13(u)) − 2

∂

∂z
(ϕε33(u)) −

2

r
ϕε13(u) = f2 in Q ,

∇ · u =
∂u1

∂r
+
∂u2

∂z
+
u1

r
= 0 in Q .(4.8c)

Moreover, referring tov(p) as the piston velocity and tou(0) as some given initial velocity,
the boundary conditions and the initial condition are givenby

u1 = 0 onΣa(t) ,(4.9a)

u2 = v(p) onΣ
(p)
a(t) ,(4.9b)

u2 = v(p)(R1/R)2 onΣ
(f)
a(t) ,(4.9c)

u2 = 0 onΣa(t) \ (Σ
(f)

a(t) ∪ Σ
(ℓ)

a(t) ∪ Σ
(p)

a(t)) ,(4.9d)

∂u2

∂r
= 0 onΣ

(ℓ)
a(t) ,(4.9e)

u(·, 0) = u(0) in Ωa(t) .(4.9f)

The motion of the piston satisfies the initial-value problem

m
dv(p)

dt
(t) = g(t, v(p)(t), U(t)) , t ∈ (0, T ) ,(4.10a)

v(p)(0) = v
(p)
0 < 0 ,(4.10b)

wherem is the sum of the mass of the piston and the mass of the body thatstrikes the
piston att = 0, U(t) stands for the applied voltage, and the drag forceg(t, v(p)(t), U(t))
is given by

(4.11) g(t, v(p)(t), U(t)) := −
∫

Σ
(p)

a(t)

(

2ϕε31(u)νr + (2ϕε33(u) − p)νz

)

ds .

The electric fieldE has the form

E(r, z) = E1(r, z)er + E2(r, z)ez .

As in the previous example (cf. subsection 4.1), it can be computed by means of an electric
potentialψ(t) which at each time instantt ∈ [0, T ] satisfies the following elliptic boundary
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value problem

∇ · (ǫ∇ψ(t)) = 0 in Ωa(t) ,(4.12a)

ψ(t) = U(t) onΓ
(e)
a(t) ,(4.12b)

ψ(t) = 0 onΓ
(c)
a(t) ,(4.12c)

∂ψ

∂r
(t) = 0 onΓ

(ℓ)
a(t) ,(4.12d)

νrǫ
∂ψ

∂r
(t) + νzǫ

∂ψ

∂z
(t) = 0 elsewhere.(4.12e)

For the numerical simulation of the operational behavior ofthe electrorheological shock
absorber we have used a discretization in time with respect to a uniform partition of the
time interval [0, T ] of step sizek := T/M,M ∈ N, using the explicit Euler scheme
for the equation of motion (4.10) of the piston and the backward Euler scheme for the
equations of motion (4.8a)-(4.8c) of the fluid withρ = 0. Knowing the computation
domain at time leveltm, 0 ≤ m ≤ M − 1, the discretization in space has been taken care
of byP2/P1 Taylor-Hood elements for the fluid variables and conformingP1 elements for
the electric potential with respect to a simplicial triangulation of Ωa(tm). The discretized
fluid equations have been solved by the augmented Lagrangianalgorithm as described
in subsection 3.1, whereas the preconditioned conjugate gradient method has been used
for the discretized potential equation. For details we refer to HOPPE, LITVINOV and
RAHMAN [2007].

ve
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FIGURE 4.13. Profiles of the relative velocity of the fluid in the piston
duct for various applied voltages:U = 0 Volt (dotted-circled line),1
kV (dashed-dotted line),3 kV (dashed line),6 kV (dotted line) and9 kV
(solid line).

The simulations have been based on the commercial electrorheological fluid Rheobay
TP AI 3565 (see BAYER [1997a]) by computing the viscosity function ϕ using experi-
mentally availableτ(γ)-flow curves (cf. subsection 4.1). As far as the geometry of the
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FIGURE 4.14. Isolines of the electric potential at three differentpiston positions

shock absorber is concerned, we have used the following data(cf. Figure 4.12):

R := 0.023 m , R1 := 0.005 m , r1 := 0.013 m , r2 := 0.017 m ,

l := 0.14 m , l1(0) := 0.02 m , d := 0.04 m .

Figure 4.13 shows the relative velocity of the fluidurel = (u − v)/γ in the piston
duct for various electric field strengths, whereγ = (

∫ r2

r1
rdr)−1

∫ r2

r1
r(u − v)(r, z1)dr is

the flow rate relative to the electrodes. In case of a vanishing electric field, we clearly
observe a parabolic flow profile typical for flows of Newtonianfluids between two parallel
plates. For increasing electric field strength the profile flattens in the center of the duct
with an increasing zone of constant relative velocity. Thisis the typical flow pattern of
electrorheological fluids.

Figure 4.14 displays the isolines of the electric potentialψ for various positions of the
piston assuming an applied voltage ofU = 9 kV . Again, we see that the electric field is
essentially concentrated within the transfer ducts in the direction of ther-axis and rapidly
decays off the ducts.

Figures 4.15 and 4.16 contain visualizations of the velocity vectoru at various stages
of the compression mode (Figure 4.15) and the rebound mode (Figure 4.16). As has to
be expected, in the transfer ducts the direction of the velocity vector essentially coincides
with the direction of thez-axis and is thus orthogonal to the electric fieldE.
We note that the pressure in the gas reservoir should be sufficiently large, since otherwise
the fluid chamber can not be fully filled with the fluid and cavitation may occur. For further
details concerning the simulation results we refer to HOPPE, LITVINOV and RAHMAN
[2007].

4.3. Shape optimization of electrorheological devices.An important issue in the design
of electrorheological shock absorbers is to find a suitable geometry of the inflow and out-
flow boundaries of the piston ducts such that both in the compression mode and in the
rebound mode pressure peaks are avoided which may cause inappropriate damping pro-
files. This amounts to the solution of a shape optimization problem which for simplicity
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FIGURE 4.15. Velocity vectors during compression

FIGURE 4.16. Velocity vectors during rebound

will be stated as a velocity and pressure tracking problem where the objective functional is
given by

(4.13) minimize J(u, p, d) :=
α1

2
‖u− ud‖2

0,Ω(d) +
α2

2
‖p− pd‖2

0,Ω(d) .

Here,ud ∈ H(div0; Ω(d)) andpd ∈ L2(Ω(d)) stand for a desired velocity profile and
pressure distribution, respectively,αi ∈ (0, 1], 1 ≤ i ≤ 2, andΩ(d) is the domain occupied
by the fluid which depends on the design variablesd = (d1, · · · , dm)T ∈ R

m. The
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design variables are chosen as the Bézier control points of a B́ezier curve representation
(cf. FARIN [2002]) of the inlet and outlet boundaries (cf. Figure 4.17 (left)).
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FIGURE 4.17. B́ezier curve representation of the inlet and outlet boun-
daries of a piston duct (left), optimized outlet boundary (middle) and
details of the optimal design for various electric field strengths (right)

The PDE constraints are given by

− ∇ · σ(u) = f in Ω(d) ,(4.14a)

∇ · u = 0 in Ω(d) ,(4.14b)

along with appropriate boundary conditions (cf. subsection 4.2). The constitutive law is
assumed to be given by

(4.15) σ = −pI + 2 ϕ(I(u), |E|, µ(u,E)) ε(u)

with a regularized viscosity functionϕ of the form (2.19), where the electric fieldE is
computed via the gradient of an electric potential satisfying an elliptic boundary value
problem (cf. (4.12a)-(4.12e)). We further assume bilateral constraints on the design vari-
ables according to

(4.16) d ∈ K := {d ∈ R
m | dmin

i ≤ di ≤ dmax
i , 1 ≤ i ≤ m} .

ChoosingX ⊂ H1(Ω(d))2 andQ := L2
0(Ω(d)), we refer toY := X × Q as the

state space and denote byS(·, d), d ∈ K, the nonlinear Stokes operator associated with
(4.14a),(4.14b). Then, the state equations can be written in operator form according to

(4.17) S(y, d) = g .

wherey := (u.p)T andg := (f, 0)T . We choosêd ∈ K as a reference design and refer
to Ω̂ := Ω(d̂) as the associated reference domain. Then, the actual domainΩ(d) can be
obtained from the reference domainΩ̂ by means of an isomorphism

Ω(d) = Φ(Ω̂; d) ,(4.18)

Φ(x̂; d) = (Φ1(x̂; d),Φ2(x̂; d))
T , x̂ = (x̂1, x̂2)

T
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The advantage of using the reference domainΩ̂ is that finite element approximations of
(4.17) can be performed with respect to that fixed domain without being forced to remesh
for each update of the design variables.
We denote by(Th(Ω̂))N a shape regular family of simplicial triangulations ofΩ̂. By means
of (4.18), these triangulations induce an associated family (Th(Ω(d)))N of simplicial tri-
angulations of the actual physical domainsΩ(d).
We use Taylor-HoodP2/P1 elements for the discretization of the velocityu ∈ X and the
pressurep ∈ Q denoting the associated trial spaces byXh andQh with dimXh = n1 and
dimQh = n2, respectively. This gives rise to an objective functionalJh : R

n × R
m, n :=

n1 + n2, by means of

(4.19) Jh(uh, ph, d) :=
α1

2
(uh − ud

h)T I1,h(d)(uh − ud
h) +

α2

2
pT

h I2,h(d)ph ,

whereIν,h(d), 1 ≤ ν ≤ 2, are the associated mass matrices andud
h ∈ R

n1 , pd
h ∈ R

n2

result from theL2-projections ofud, pd ontoXh ∩H(div0; Ω) andQh, respectively. The
discretized shape optimization problem can be stated as

(4.20) inf
uh,ph,d

Jh(uh, ph, d)

subject to the discrete nonlinear Stokes system

(4.21) Sh(yh, d) = gh .

and the constraints

(4.22) d ∈ K .

For notational convenience, in the sequel we will drop the discretization indexh.
Due to the dependence of the domain on the design parametersdi, 1 ≤ i ≤ m, the ob-
jective functional is nonconvex. Therefore, there may exist a multitude of local minima.
Throughout the following, we assume that(y∗, d∗) ∈ R

n ×K is a strict local solution of
(4.20)-(4.22).
We solve the discrete minimization problem by an adaptive path-following primal-dual
interior-point method. To this end, we couple the inequality constraints (4.22) by logarith-
mic barrier functions with a barrier parameterβ = 1/µ > 0, µ → ∞, resulting in the
following parameterized family of minimization subproblems

(4.23) inf
y,d

B(µ)(y, d)

subject to (4.21), where

(4.24) B(µ)(y, d) := J(y, d) − 1

µ

m∑

i=1

[ln(di − dmin
i ) + ln(dmax

i − di)] .

The dual aspect is to couple the constraint (4.21) by a Lagrange multiplierλ = (λu, λp)
T

which leads to the saddle point problem

(4.25) inf
y,d

sup
λ
L(µ)(y, λ, d) ,

where the LagrangianL(µ) is given by

(4.26) L(µ)(y, λ, d) = B(µ)(y, d) + λT (S(y, d) − g) .
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The central pathµ 7−→ x(µ) := (y(µ), λ(µ), d(µ))T is defined as the solution of the
nonlinear system

F (x(µ), µ) =






L
(µ)
y (y, λ, d)

L
(µ)
λ (y, λ, d)

L
(µ)
d (y, λ, d)




 = 0 ,(4.27)

which represents the first order necessary optimality conditions for (4.25).
For the solution of the parameter-dependent nonlinear system (4.27) we use an adaptive
path-following predictor-corrector strategy along the lines of DEUFLHARD [2004].

Predictor Step: The predictor step relies on tangent continuation along thetrajectory of
the Davidenko equation

(4.28) Fx(x(µ), µ) x′(µ) = −Fµ(x(µ), µ) .

Given some approximatioñx(µk) at µk > 0, computex̃(0)(µk+1), whereµk+1 = µk +

∆µ
(0)
k , according to

Fx(x̃(µk), µk) δx(µk) = − Fµ(x̃(µk), µk) ,(4.29a)

x̃(0)(µk+1) = x̃(µk) + ∆µ
(0)
k δx(µk) .(4.29b)

We use∆µ(0)
0 = ∆µ0 for some given initial step size∆µ0, whereas fork ≥ 1 the predicted

step size∆µ(0)
k is chosen by

(4.30) ∆µ
(0)
k :=

( ‖∆x(0)(µk)‖
‖x̃(µk) − x̃(0)(µk)‖

√
2 − 1

2Θ(µk)

)1/2

∆µk−1 ,

where∆µk−1 is the computed continuation step size,∆x(0)(µk) is the first Newton cor-
rection (see below), andΘ(µk) < 1 is the contraction factor associated with a successful
previous continuation step.

Corrector step: As a corrector, we use Newton’s method applied toF (x(µk+1), µk+1) =
0 with x̃(0)(µk+1) as a start vector. In particular, forℓ ≥ 0 and jℓ ≥ 0 we compute
∆x(jℓ)(µk+1) according to

(4.31) F ′(x̃(jℓ)(µk+1), µk+1) ∆x(jℓ)(µk+1) = − F (x̃(jℓ)(µk+1), µk+1)

and∆x
(jℓ)

(µk+1) as the associated simplified Newton correction
(4.32)

F ′(x̃(jℓ)(µk+1), µk+1) ∆x
(jℓ)

(µk+1) = − F (x̃(jℓ)(µk+1) + ∆x(jℓ)(µk+1), µk+1) .

We monitor convergence of Newton’s method by means of

Θ(jℓ)(µk+1) := ‖∆x(jℓ)
(µk+1)‖/‖∆x(jℓ)(µk+1)‖ .

In case of successful convergence, we accept the current step size and proceed with the
next continuation step. However, if the monotonicity test

(4.33) Θ(jℓ)(µk+1) < 1

fails for somejℓ ≥ 0, the continuation step has to be repeated with the reduced step size

(4.34) ∆µ
(ℓ+1)
k :=

(
√

2 − 1

g(Θ(jℓ))

)1/2

∆µ
(ℓ)
k , g(Θ) :=

√
Θ + 1 − 1
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until we either achieve convergence or for some prespecifiedlower bound∆µmin observe

∆µ
(ℓ+1)
k < ∆µmin .

In the latter case, we stop the algorithm and report convergence failure.

Actually, we perform the correction step by an inexact Newton method featuring right-
transforming iterations. The derivatives have been computed by automatic differentiation.
For details we refer to ANTIL et al. [2007], HOPPE, PETROVA and SCHULZ [2002],
HOPPE and PETROVA [2004], HOPPE, LINSENMANN and PETROVA [2006], WIT-
TUM [1989].

Figure 4.17 (middle) shows the optimized design of the outlet boundary of a piston duct
in the rebound stage (cf. subsection 4.2) and details of the optimized outlet boundary for
various electric field strengths (the lines show the different designs for increasing elec-
tric field strengths from right to left). Although the designs do not differ that much, the
specification of a best compromise is the subject of a furtheroptimization routine.
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