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Abstract
Although the raison d’etre of the brain is the survival of the body, there are relatively few theoretical studies of closed-loop
rhythmic motor control systems. In this paper we provide a unified framework, based on variational analysis, for investigating
the dual goals of performance and robustness in powerstroke–recovery systems. To demonstrate our variational method, we
augment two previously published closed-loop motor control models by equipping each model with a performance mea-
sure based on the rate of progress of the system relative to a spatially extended external substrate—such as a long strip of
seaweed for a feeding task, or progress relative to the ground for a locomotor task. The sensitivity measure quantifies the
ability of the system to maintain performance in response to external perturbations, such as an applied load. Motivated by
a search for optimal design principles for feedback control achieving the complementary requirements of efficiency and
robustness, we discuss the performance–sensitivity patterns of the systems featuring different sensory feedback architec-
tures. In a paradigmatic half-center oscillator-motor system, we observe that the excitation–inhibition property of feedback
mechanisms determines the sensitivity pattern while the activation–inactivation property determines the performance pattern.
Moreover, we show that the nonlinearity of the sigmoid activation of feedback signals allows the existence of optimal combi-
nations of performance and sensitivity. In a detailed hindlimb locomotor system, we find that a force-dependent feedback can
simultaneously optimize both performance and robustness, while length-dependent feedback variations result in significant
performance-versus-sensitivity tradeoffs. Thus, this work provides an analytical framework for studying feedback control of
oscillations in nonlinear dynamical systems, leading to several insights that have the potential to inform the design of control
or rehabilitation systems.
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1 Introduction

Physiological systems underlying vital behaviors such as
breathing, walking, crawling, and feeding, must generate
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motor rhythms that are not only efficient, but also robust
against changes in operating conditions. Although central
neural circuits have been shown to be capable of produc-
ing rhythmic motor outputs in isolation from the periphery
(Brown 1911, 1914; Harris-Warrick and Cohen 1985; Pear-
son 1985; Smith et al. 1991), the role of sensory feedback
should not be underestimated. Sensory feedback can play a
crucial role in stabilizing motor activity in response to unex-
pected conditions. For example, modeling work suggests
that walking movements can be stably restored after spinal
cord injury by enhancing the strengths of the afferent feed-
back pathways to the spinal central pattern generator (CPG)
(Markin et al. 2010; Spardy et al. 2011). Feedback control
can also improve the performance and efficiency of move-
ments. For instance, in a model of feeding motor patterns in
the marine mollusk Aplysia californica, seaweed intake can
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be increased by strengthening the gain of sensory feedback
to a specific motor neural pool (Wang et al. 2022).

We are interested in understanding how sensory feedback
contributes to control and stabilization within a specific class
of rhythmic motor behaviors, namely, behaviors in which an
animal (or robot) repeatedly engages and disengages with
the outside world (see Fig. 1, top). We refer to the phase
of the motion during which the animal is in contact with
an external substrate as the power stroke, and the compo-
nent during which the animal is disengaged as the recovery
phase.Thedecompositionof a repetitivemovement into pow-
erstroke and recovery applies naturally tomanymotor control
systems, including locomotion (Jahn and Votta 1972) and
swallowing (Shaw et al. 2015); a similar dynamical structure
also appears in mechanical stick–slip systems (Galvanetto
and Bishop 1999) as well as abstract two-stroke relaxation
oscillators (Jelbart and Wechselberger 2020). In the motor
control context, when the animal is in contact with an exter-
nal substrate or load opposing the motion, we say the animal
makes “progress" (food is consumed, distance is traveled,
oxygen is absorbed) relative to the outside world. During
the recovery phase, the animal disconnects from the external
component, and repositions relative to the substrate in order
to prepare for the next power stroke. Consider, for example,
the ingestive behavior of Aplysia (Shaw et al. 2015; Lyttle
et al. 2017; Wang et al. 2022). When the animal’s grasper is
closed on a stipe of seaweed, it drags the food into the buccal
cavity; meanwhile, the food applies a mechanical load on
the grasper. Then the grasper opens, releasing its grip on the
food. The grasper moves in the absence of the force exerted
by the seaweed and returns to the original position to begin
the next swallowing cycle.

In this paper, we present a novel analysis of feedback
control for powerstroke–recovery systems. To quantitatively
evaluate the behavior of a systemcontrolled bydifferent feed-
back mechanisms, wemeasure the sensitivity (or robustness)
and performance (or efficiency) (see Fig. 1, bottom). The
complementary objectives of sensitivity and performance
have been studied in a variety of motor control systems,
from both empirical and theoretical perspectives (Lee and
Tomizuka 1996; Yao et al. 1997; Ronsse et al. 2008; Hutter
et al. 2014; Lyttle et al. 2017; Sharbafi et al. 2020; Mo et al.
2023). There are a myriad of ways to interpret performance
and robustness used by engineers, biologists, neuroscientists,
and appliedmathematicians.Herewe define the performance
of a powerstroke–recovery system to be the total progress
divided by the period of the rhythm (i.e., the average rate of
progress), and the sensitivity to be the ability of the system
to maintain performance in response to some specific exter-
nal perturbation, such as an increased mechanical resistance
while pulling on a load, or increased slope while walking.
That is, we take the sensitivity to be the derivative of the per-
formancewith respect to the external perturbation parameter.

As a step towards first-principles—based design of sensory
feedback mechanisms, we aim to understand what aspects
of sensory feedback contribute to the coexistence of high
performance and low sensitivity.

The ubiquity of powerstroke–recovery systems, and the
importance of the dual goals of robustness and efficiency,
motivate us to develop analytical tools for systematically
studying both quantities simultaneously. In this work we
apply mathematical tools based on variational analysis to
evaluate the two objectives applicable for any powerstroke–
recovery system. The key quantities in our analysis are the
infinitesimal shape response curve (iSRC) and local timing
response curve (lTRC) recently established and validated by
Wang et al. (2021, 2022) and generalized in Yu and Thomas
(2022);Yu et al. (2023). The iSRCdescribes, to first order, the
distortion of an oscillator trajectory—the shape response—
under a sustained perturbation. In contrast, the lTRC captures
the effect of the perturbation on the timing of the oscilla-
tor trajectory within any defined segments of the trajectory
(such as the powerstroke and recoveryphases).Both the iSRC
and the lTRC complement the more widely known infinitesi-
mal phase response curve (iPRC), which quantifies the effect
of a transient perturbation on the global limit cycle timing
(Brown et al. 2004; Izhikevich and Ermentrout 2008; Ermen-
trout and Terman 2010; Schultheiss et al. 2012; Zhang and
Lewis 2013).

Based on the iSRC and lTRC approach, we propose a
general framework to investigate robust and efficient control
through diverse feedback architectures.We apply ourmethod
to two neuro-mechanical models, each possessing a natural
powerstroke–recovery structure but different in their levels
of details and perturbations. The first model is based on an
abstract CPG-feedback-biomechanics system introduced in
Yu and Thomas (2021) which studied the relative contribu-
tions of feedforward and feedback control (an idea going
back to Kuo 2002). We extend this model to incorporate an
externally applied load, enabling us to define quantitative
measures of both performance and robustness, as the sys-
tem alternately grasps and releases the external substrate.
The second model, due to Markin et al. (Markin et al. 2010;
Spardy et al. 2011), represents a locomotor system with a
single-joint limb, and features more detailed CPG circuitry
as well as more realistic afferent feedback pathways. We
modify the Markin model so that the limb “walks” up an
“incline”; modifying the angle of the incline introduces a
parametric perturbation that allows us to define performance
and robustness.

The activity of sensory feedback pathways is difficult
to measure in many physiological systems; for this reason
sensory feedback is the “missing link" for understanding
the design and function of many biological motor systems.
Specifically, in many experimental biological systems, the
dynamics of the isolated CPG and the form of the muscle
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Fig. 1 Schematic of dynamics and analysis of a powerstroke–recovery
system. Top left: The system trajectory sketched in a 3D space, for
illustration. The vertical axis represents a body variable (e.g., foot) and
the xy-plane represents brain variables. A specific model system can
have multiple brain and body variables. The system trajectory makes
an entry to a constraint surface (blue shaded parallelogram) at the land-
ing point A, followed by motion confined to move along the surface
(red wave) and then a liftoff at point B back into the unconstrained
space. The motion of the system is thereby partitioned into a power-
stroke phase and a recovery phase. Top right: A system of differential
equations governs the dynamics of the powerstroke–recovery system.
The brain and body variables are denoted by a and x, respectively. Dur-
ing recovery the body variable is unconstrained, while it is confined to
a lower-dimensional manifold during powerstroke. An external load,
represented by κ , is imposed on the system when the body is in con-

tact with the hard surface. Bottom: Two objectives in the control of
the system’s response to a sustained external perturbation away from a
default value κ0. Performance, Q0, measures the average rate of task
progress of the system (e.g., food consumed, distance traveled), defined
to be the total progress y0 over a cycle divided by the cycle period T0,
when κ = κ0 (see Eq. (2)). Sensitivity, S0, measures the (infinitesimal)
robustness of the system performance against the perturbation, defined
to be the derivative of the performance with respect to the perturbation
parameter evaluated at κ0. It accounts for the interaction of both the
shape and timing effects of the perturbation on the trajectory: y1 is the
linearized shift in the shape of the trajectory while T1 is the linearized
shift in the trajectory timing (see Eq. (12)). The two quantities can be
captured by recently developed variational analysis tools—the infinites-
imal shape response curve (iSRC) and the local timing response curve
(lTRC), respectively (Wang et al. 2021)

activation in response to descending motor signals is well
characterized, while the precise form of the sensory feedback
remains unkown. From a practical perspective, descending
motor signals are generally carried by large-diameter axons
from which it is easier to record high-quality (high signal-
to-noise) traces, relative to ascending sensory signals, which
are generally carried by much smaller diameter axons with
poor signal-to-noise properties.

Given a particular specification of central neural circuit,
descending output, and biomechanical response elements,
but with the precise form of sensory feedback unknown, we
can think of the pursuit of performance and/or robustness as
an optimization (or dual optimization) problem on the space
of sensory feedback functions. However, this is an infinite
dimensional space of inputs to a highly nonlinear system.
That is, the mapping from sensory feedback function to sys-
tem trajectories to system performance and/or robustness is

highly nonlinear and possibly non-convex. It may have mul-
tiple nonequivalent optima. Therefore, to restrict the problem
to a manageable scope, in the specific cases studied here we
restrict attention to sensory feedback functions with a pre-
scribed, but plausible form, such as a sigmoid specified by
a threshold and slope parameters, or multiple channels with
different relative gain parameters, and study the restricted
optimization problem there. Moreover, for simplicity, in the
models we consider here, we restrict attention to sensory
feedback that either monotonically increases or monotoni-
cally decreases with variables such asmuscle length, tension,
and/or velocity.

Our analysis of these two systems—onemore abstract and
the other more realistic—illustrates a technical framework
for studying performance and sensitivity of powerstroke–
recovery motor systems, leading to several insights that have
the potential to inform the design of control or rehabil-
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itation systems. For example, (i) the excitation–inhibition
property of feedback signals determines the sensitivity pat-
tern while the activation–inactivation property determines
the performance pattern; (ii) the strong nonlinearity of
feedback activation with respect to biomechanical vari-
ables may contribute to achievable performance–sensitivity
optima; (iii) force-dependent feedback can prevent the per-
formance/robustness tradeoffs commonly occuring with the
length-dependent feedback. These findingsmay yield impor-
tant information for future work modeling biphasic rhythm
generation, in that they provide insights that could guide
the design of feedback systems to accomplish well-balanced
efficient and robust powerstroke–recovery activities in bio-
logical and robotic experiments.

The broad aim of this paper is to establish variational
methods for multi-objective optimization of powerstroke–
recovery systems. To this end, we organize the paper as
follows.

• We introduce and give a general definition of a “power-
stroke–recovery” motor control system at the beginning
of Sect. 2. Although such systems are ubiquitous in the
physiology ofmotor control, to the best of our knowledge
they have previously not been systematically defined nor
studied.

• We illustrate the particular features of recently estab-
lished variational tools (such as the local timing response
curve) as applied to powerstroke–recovery systems, in the
rest of Sect. 2. For these systems, the quantities of inter-
est (performance and sensitivity) take on specific forms
that we describe in detail.

• To show the breadth of applicability of the general anal-
ysis, we apply it to example model systems embodying
a variety of feedback mechanisms, namely

– Several versions of a nominal half-center oscillator
model, each with a different feedback architecture
(Sect. 3)

– Adetailed, physiologically-groundedhindlimbmodel
incorporatingmultiple types of feedback operating in
parallel within one model (Sect. 4).

• In Sect. 5 we summarize the framework, as well as the
main observations and insights that we obtain from the
models; we also discuss limitations, connections to pre-
vious literature, and possible implications of our results
for biology and engineering as well as future directions.

2 Mathematical formulation

The motor systems we consider integrate central neural cir-
cuitry, biomechanics, and sensory inputs from the periphery
to form a closed-loop control system. The model systems

we study fall within the following general framework (Shaw
et al. 2015; Lyttle et al. 2017; Yu and Thomas 2021):

da
dt

= f(a) + g(a, x),
dx
dt

= h(a, x) + j(x, κ). (1)

Here, a and x are vectors representing the neural activity vari-
ables and mechanical state variables, respectively; the vector
field f(a) represents the intrinsic neural dynamics of the cen-
tral pattern generator when isolated from the rest of the body;
h(a, x) captures the biomechanical dynamics driven by the
central inputs; g(a, x) carries the sensory feedback from the
periphery, which modulates the neural dynamics; j(x, κ) is
an externally applied load to the mechanical variables con-
trolled by a load parameter κ .1

In the powerstroke–recovery systems, we assume the load
interacts with the mechanics only during the powerstroke
phase. The portion of the trajectory comprising the power-
stroke phase is specified separately for each model. For the
purposes of this paper we assume the vector fields f, g,h, j
are sufficiently smooth (e.g., twice differentiable). Specif-
ically, we assume that any nonsmoothness in the vector
fields is limited to a finite number of transition surfaces—
for example at points marking the powerstroke–recovery
transitions—and that the limit cycle trajectories are them-
selves piecewise differentiable, with at most a finite number
of points of nondifferentiability.

Formanynaturally occurring control systems, themechan-
ical variables x may include both the position and velocity
of different body components, as well as muscle activation
variables. The sensory feedback function g may be diffi-
cult to ascertain experimentally. For example, the feedback
could have an excitatory effect on the neural dynamics, or
an inhibitory effect, or a mixture at different points within a
single movement; it may depend not only on neural outputs
but also the length, velocity, or tension of the mechanical
components; it may arise from multiple channels each with
different gain. Given the broad varieties of the possible feed-
back functions, we restrict the scope of our investigation to
some biologically plausible forms for the specific models we
consider in Sects. 3 and 4.

2.1 Performance and sensitivity

Suppose for κ ∈ I ⊂ R, system (1) has an asymptotically
stable limit cycle solution γκ(t) with period Tκ . Let qκ rep-
resent the rate at which the system advances relative to the

1 At first glance, the additive form of (1) may appear restrictive. We
note, however, that for conductance-based neural controllers f and g
would typically involve currents through separate ion channels. Simi-
larly, mechanical perturbations would typically be described by forces.
Because both currents and forces combine additively, the form of (1)
can embrace a large range of motor control models.
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outsideworld, and let yκ represent the total progress achieved
over one limit cycle, i.e.,

yκ =
∫ Tκ

0
qκ(γκ(t)) dt .

We note that in general, the instantaneous performance mea-
sure q may depend both on the system variables x and on the
control parameter κ .

We consider the task performance of the system, denoted
by Q, to be the progress divided by the limit-cycle period, or
equivalently, the mean value of the rate of progress averaged
around the limit cycle, defined as follows

Q(κ) = 1

Tκ

∫ Tκ

0
qκ(γκ(t)) dt = yκ

Tκ

. (2)

For a powerstroke–recovery system,wechoose the time coor-
dinate so that t = 0 coincides with the beginning of the
powerstroke phase, and write T ps

κ for the duration of the
power stroke.We adopt the convention that during the recov-
ery phase, the position with respect to the outside world is
held fixed (qκ ≡ 0),2 and denote T re

κ as the recovery phase
duration (T ps

κ + T re
κ = Tκ ). In such a system, we write the

performance (2) as

Q(κ) = 1

Tκ

∫ T ps
κ

0
qκ(γκ(t)) dt . (3)

Assume that κ0 ∈ I, which represents the unperturbed
load. When the system is subjected to a small static pertur-
bation on the load, κ0 → κε = κ0 + ε ∈ I, the original
limit cycle trajectory γκ0 is shifted to a new trajectory γκε ,
and its ability to resist the external change to maintain the
performance is considered as a measure of robustness for the
system. Since the sensory feedback pathways regulate the
system dynamics, it would be desirable to obtain a feedback
function g so that the system is most robust against the load
change, i.e.,

g∗(a, x) = argmin
g(a,x)

|Q(κε) − Q(κ0)|. (4)

Suppose we can expand Q(κε) around κ0:

Q(κε) = Q(κ0) + ε
∂Q

∂κ
(κ0) + O(ε2).

2 This convention is consistent with a simplified single-limb swing-
stance model (Markin et al. 2010; Spardy et al. 2011) as well as with a
simplified model of feeding biomechanics in Aplysia californica (Shaw
et al. 2015; Lyttle et al. 2017; Wang et al. 2022).

Then the minimization problem (4) to the first order reduces
to

g∗(a, x) = argmin
g(a,x)

∣∣∣∣ε ∂Q

∂κ
(κ0)

∣∣∣∣ = argmin
g(a,x)

∣∣∣∣∂Q∂κ
(κ0)

∣∣∣∣ .

We quantify the sensitivity of the original system to be

S =
∣∣∣ ∂Q

∂κ
(κ0)

∣∣∣, which describes the (infinitesimal) response

of the task performance to the external perturbation on
the load. When S = 0 with a certain feedback function,
Q(κε) ≈ Q(κ0), which implies a strong ability of the sys-
tem to maintain performance homeostasis.3 Define a (linear)
functional J : q → S, and the problem falls into a functional
minimization problem, ming J [g], which attains the mini-
mum with some feedback function g∗ when the functional
derivative ∂ J/∂g∗ = 0. Finding g∗ when the underlying sys-
tem has a limit cycle (as opposed to the more often studied
case of fixed-point homeostasis) is an open problem that we
do not attempt to solve here. Instead, we focus on a limited
range of g functions with practical significance and inves-
tigate the constrained optimization problem for the optimal
feedback structure within that range.

2.2 Variational analysis

Variational analysis using the infinitesimal shape response
curve (iSRC) and the local timing response curve (lTRC) is
the key tool in our derivation of the performance sensitivity

S =
∣∣∣ ∂Q

∂κ
(κ0)

∣∣∣. In this section, we present a brief review

of the theory and then provide two analytical methods to
calculate the sensitivity. More mathematical details are given
in Appendix C.

Consider system (1) written in the form

dz
dt

= Fκ(z), (5)

where z = (a, x)ᵀ and Fκ(z) is the corresonding vector field
parameterized by the load κ ∈ I. For convenience, we write
trajectories γκε as γε and γκ0 as γ0; we write other quantities
similarly. Expanding the perturbed trajectory yields

γε(τε(t)) = γ0(t) + εγ1(t) + O(ε2). (6)

The timing function τε(t) rescales the perturbed trajectory
to match the unperturbed trajectory, so that the series (6) is
uniform with respect to the time coordinate. As discussed in

3 Homeostasis refers to the situation when a quantity remains approxi-
mately constant as a parameter varies over some range (Golubitsky and
Stewart 2017, 2018; Golubitsky and Wang 2020). For limit cycle sys-
tems, Yu and Thomas (2022) defined a homeostasis criterion in terms
of the zero derivative(s) of the averaged quantity with respect to the
perturbation parameter.
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Wang et al. (2021), τε(t) can be any smooth, monotonically
increasing function mapping the interval [0, T0) to the inter-
val [0, Tε). We discuss the choice of τε further below. The
linear shift in the shape of the unperturbed trajectory, γ1(t), is
referred to as the iSRC. It satisfies a nonhomogeneous vari-
ational equation (Wang et al. 2021; Yu and Thomas 2022)

dγ1(t)

dt
= DF0(γ0(t))γ1(t) + ν1(t)F0(γ0(t)) + ∂Fκ (γ0(t))

∂κ

∣∣∣∣
ε=0

,

(7)

where ν1(t) = ∂2τε(t)
∂ε∂t

∣∣
ε=0 measures the local timing sensi-

tivity to the perturbation. The initial condition for the iSRC
Eq. (7) is

γ1(0) = lim
ε→0

pε − p0
ε

, (8)

where pε and p0 represent the intersection points of the tra-
jectories with a smooth Poincaré section transverse to both
the perturbed and unperturbed limit cycles, so that γ1(0) indi-
cates the linear displacement of the unperturbed intersection
point. For more details about the iSRC, see Appendix C.2,
Wang et al. (2021) and Yu and Thomas (2022).

To solve the iSRC Eq. (7), the lTRC is built to yield
the timing sensitivity ν1 local to each phase of the motion.
Approximate the perturbed phase durations by

T ps
ε = T ps

0 + εT ps
1 + O(ε2),

T re
ε = T re

0 + εT re
1 + O(ε2).

Wang et al. (2021) and Yu et al. (2023) developed a formula
to calculate the first-order approximation for the duration
change in phase i ∈ {ps, re}, given by

T i
1 = ηi (zin0 ) · ∂zinκ

∂κ

∣∣∣∣
ε=0

− ηi (zout0 ) · ∂zoutκ

∂κ

∣∣∣∣
ε=0

+
∫ tout

t in
ηi (γ0(t)) · ∂Fκ(γ0(t))

∂κ

∣∣∣∣
ε=0

dt . (9)

Here, zin0 and zout0 denote the unperturbed entry point to, and
exit point from, the specific phase, respectively. Vector ηi ,
defined to be the gradient of the remaining time of the trajec-
tory until exiting phase i , is referred to as the lTRC for phase
i . It satisfies the adjoint equation

dηi

dt
= −DF0(γ0(t))

ᵀηi ,

with a boundary condition

ηi (zout0 ) = − nout

(nout)ᵀF0(zout0 )
,

where nout is a normal vector of the exit boundary surface at
zout0 . When the vector field F changes discontinuously across
the surface defining the boundary between two regions, the
Jacobian DF should be evaluated as a one-sided limit, taken
from the interior of the local region.With a linear time scaling
for (6) (and setting t = 0 to be the start of the power stroke),
i.e.,

for t ∈ [0, T ps
0 ), τε(t) = τ

ps
ε (t) := T ps

ε

T ps
0

t

for t ∈ [T ps
0 , T0), τε(t) = τ reε (t) := τ

ps
ε (T ps

0 )

+ T re
ε

T re
0

(t − T ps
0 ),

the local timing sensitivity function in (7) reduces to

ν
ps
1 = T ps

1

T ps
0

, νre1 = T re
1

T re
0

,

which can be obtained by using Eq. (9) for each phase. See
Appendix C.1, Wang et al. (2021), and Yu et al. (2023) for
more details about the lTRC formulation.

The variational analysis above allows us to analyze the
performance sensitivity of powerstroke–recovery systems.
In Yu and Thomas (2022) we provided a formula for the sen-
sitivity of any averaged quantity with respect to an arbitrary
control parameter, as long as the quantity of interest does
not have explicit dependence on the control parameter. We
generalize the approach of Yu and Thomas (2022) to allow
for dependence of the instantaneous performance qκ(x) on
both the state x and the parameter κ , and obtain

∂Q

∂κ
(κ0) = 1

T ps
0

∫ T ps
0

0

[
β0

(
∇q0(γ0(t)) · γ1(t)

+∂qκ(γ0(t))

∂κ

∣∣∣∣
ε=0

)
+ β1q0(γ0(t))

]
dt . (10)

The first term in the integral arises from the impact of the
perturbation on the shape of the trajectory (γ1) as well as
directly on the quantity of interest (∂qκ/∂κ). Hereβ0 denotes
the proportion of the powerstroke duration within the period
(β0 = T ps

0 /T0). The second term indicates the impact of the
perturbation on the timing of the trajectory, in that β1 rep-
resents the linear shift in β0 in response to the perturbation,
which can be analytically evaluated by

β1 = ∂βκ

∂κ

∣∣∣∣
ε=0

= T ps
1 T0 − T ps

0 T1
T 2
0

.

The derivation of formula (10) is given in Appendix C.3.
Given the special structure of powerstroke–recovery sys-

tems, we can derive a more succinct expression for ∂Q/∂κ .
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For any value of κ, the second definition in (2) gives

∂Q

∂κ
(κ) = 1

T 2
κ

(
∂ yκ
∂κ

Tκ − yκ
∂Tκ

∂κ

)

= yκ
Tκ

(
1

yκ

∂ yκ
∂κ

− 1

Tκ

∂Tκ

∂κ

)

= Q(κ)

(
1

yκ

∂ yκ
∂κ

− 1

Tκ

∂Tκ

∂κ

)
. (11)

Recall at κ = κε , we write yε and Tε as shorthand for yκε and
Tκε . We can expand the perturbed progress yε and period Tε

around ε = 0 as

yε = y0 + εy1 + O(ε2),

Tε = T0 + εT1 + O(ε2),

where y1 is approximately given by the net change of the
mechanical component of the iSRC γ1 (cf. Eqs. (7) and (8))
within the powerstroke phase, and T1 is the linear shift in the
total period, readily given by T1 = T ps

1 + T re
1 (cf. Eq. (9)).

Therefore, Eq. (11) at κ = κ0 becomes

∂Q

∂κ
(κ0) = Q0

(
y1
y0

− T1
T0

)
, (12)

which, like (10), incorporates both the shape and timing
effects of the perturbation in twodistinct terms. Equation (12)
also suggests that the sensitivity can be directly given by the
absolute difference between the first-order timing change
and shape change induced by the perturbation. When the
two effects completely offset each other, the system achieves
“perfect" robustness.

The two expressions given by (10) and (12) for calculating
the sensitivity of the task performance for powerstroke–
recovery systems allow us to compare different sensory
feedback mechanisms in pursuit of an efficient and robust
motor pattern. In the following sections we develop two
illustrative examples: an abstract CPG-motor model intro-
duced in Yu and Thomas (2021), and an unrelated realistic
locomotor model studied in Markin et al. (2010) and Spardy
et al. (2011). The two examples show a variety of differences
in their model construction, but our analytic framework is
broad enough to address both and give useful insights. Sim-
ulation codes required to produce each figure are available
at https://github.com/zhuojunyu-appliedmath/Powerstroke-
recovery. Instructions for reproducing each figure in the
paper are provided (see the README file at the github site).
Figures for this paper were produced using MatLab release
R2023b.

3 Application: HCOmodel with external load

In Yu and Thomas (2021), we studied a simple closed-loop
model combining neural dynamics and biomechanics, as
sketched in Fig. 2. The CPG sytem comprises a half-center
oscillator (HCO) with two conductance-based Morris–Lecar
neurons (Morris and Lecar 1981; Skinner et al. 1994). Out-
puts from the HCO drive a simple biomechanical system,
which follows a Hill-type kinetic model based on experi-
mental data from the marine mollusk Aplysia californica (Yu
et al. 1999). Sensory feedback from the periphery couples
the body and brain dynamics, allowing the system to interact
with the changing outside world, and to modulate the cen-
tral neural activities adaptively. However, the previous study
of this model did not explore the performance with respect
to a physical task; rather, the CPG followed an autonomous
clocklike pattern. To perform a more meaningful analysis
for understanding principles of closed-loop motor control,
here we augment the model from Yu and Thomas (2021) by
incorporating a mechanical load exerted in a specific direc-
tion with recurrent engagement and disengagement with the
system, which enables us to apply our quantitative measures
of progress and sensitivity of the system.

3.1 The equations of the HCOmodel

The model equations we consider are as follows. For i, j =
1, 2 and j 	= i ,

C
dVi
dt

= Iext − gL(Vi − EL) − gCaM∞(Vi )(Vi − ECa)

−gKNi (Vi − EK)

−gCPGsyn SCPG∞ (Vj )
(
Vi − ECPG

syn

)

−gFBsynS
FB∞ (L j )(Vi − EFB

syn),

dNi

dt
= λN (Vi )(N∞(Vi ) − Ni ),

d Ai

dt
= τ−1{U (Vi ) − [β + (1 − β)U (Vi )]Ai },

dx

dt
= 1

b
(F2 − F1 + rκF�). (13)

Variable Vi denotes the membrane voltage for HCO neuron
cell i , and Ni is the gating variable for the potassium current
in cell i . The two neuron cells are coupled by fast inhibitory
synapses, and the coupling function is given by

SCPG∞ (Vj ) = 1

2

(
1 + tanh

(
Vj − Ethresh

Eslope

))
,

which closely approximates a Heaviside step function with
Ethresh denoting the synaptic threshold.
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Fig. 2 Schematic of
components and basic behavior
of the HCO model system,
adapted from Yu and Thomas
(2021). The CPG circuit of the
system comprises a half-center
oscillator, represented by
mutually inhibitory cell 1 and
cell 2. Output from each neuron
drives its ipsilateral muscle
pulling a limb. The muscle
stretch and contraction in turn
produce reflex commands to a
feedback receptor, which sends
an inhibitory signal to its
contralateral neuron. The limb
interacts with an external
substrate, which imposes a
mechanical load opposing the
limb movement. Inhibitory
connections end with a round
ball, and excitatory connections
end with a triangle. In a single
movement cycle, the
powerstroke phase (panel A to
panel B) occurs when the body
(red dashed rectangle) moves
forward while the foot is fixed,
subjected to the load F� opposite
to the movement direction (blue
arrow). The recovery phase
follows (panel B to panel C),
during which the body is fixed
and the foot is lifted off the
substrate and repositions for the
next power stroke (green arrow)

Powerstroke

Body moves; foot is fixed.
Muscle 1 contracts.

Recovery

Foot moves; body is fixed.
Muscle 2 contracts.

A

B

C

In the third equation of (13), Ai ≥ 0 represents the acti-
vation of the i th muscle. The neural outputs from the HCO
drive the associated muscle, modeled as

U (Vi ) = 1.03 − 4.31 exp (−0.198(Vi/2)), Vi ≥ 16.

The biomechanics is represented by the movement of an
object (nominally, a pendulum or limb), with each side con-
nected to one of the twomuscles. The object position relative
to the center of mass of the organism, denoted as x , is con-
trolled by the muscle forces F1 and F2 acting on it. An
external load F� is exerted on the object only during the
powerstroke phase, as specified by the indicator variable r
defined to be

r =
{
1, power stroke,
0, recovery.

We assume that the powerstroke phase is at work when V1 is
in the active state (V1 > Ethresh), whereas the load is absent
from the system when V1 is inhibited (V1 ≤ Ethresh). Param-
eter κ describes the strength of the load, which is considered
as the perturbation parameter for this model.

The system completes an intact closed loop through the
sensory feedback induced by the biomechanics on the CPG
in the form of feedback currents, e.g.,

gFBsynS
FB∞ (L j )

(
Vi − EFB

syn

)
,
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where L j is the length of muscle j , and the function SFB∞ (L j )

describes the feedback synaptic activation. We assume that
the feedback conductance has fast dynamics, following a
sigmoid function. As discussed in Yu and Thomas (2021),
the feedback synaptic architecture affords eight variations,
depending on whether the feedback is (i) inhibitory or exci-
tatory, (ii) activated by muscle contraction or muscle stretch,
and (iii) modulatory on the contralateral or ipsilateral neu-
ron. For example, when the feedback current is inhibitory
to its contralateral neuron and activated when the muscle is
contracted, then for the Vi -equation we set EFB

syn = −80 mV
and

SFB∞ (L j ) = 1

2

(
1 − tanh

(
L j − L0

Lslope

))
. (14)

Fig. 2 illustrates the system controlled by the inhibitory-
contralateral-decreasing feedback mechanism, and Fig. 3
shows a typical solution for the system. In contrast, set-
ting EFB

syn = 80 mV for the excitatory feedback current,
or setting the sigmoid function to be increasing for the
muscle-stretch activated case, or changing L j -dependence
to Li -dependence for the ipsilateral mechanism, would spec-
ify other possible mechanisms.We compare the performance
and sensitivity of all different realizations of each of the eight
variations of the feedback control scheme below. The force
terms F1,2, as well as additional details about the functions
in system (13), parameter values used for simulations, and
simulation codes are given in Appendix A.1.

3.2 Analysis of the HCOmodel

In order to establishmeasures of performance and sensitivity,
we assume that the system advances only during the power-
stroke phase. That is, the rate at which the system makes
progress is given by

q = −r
dx

dt
,

as indicated in Fig. 3D, F. Therefore, by (3), the performance
(i.e., the average rate of progress) is

Q(κ) = 1

Tκ

∫ Tκ

0

(
−r

dx

dt

)
dt

= − 1

Tκb�

∫ T ps
κ

0
(F2 − F1 + κF�) dt . (15)

When a sustained small perturbation is applied to the load,
κ0 → κ0 + ε, the solution trajectory shifts in both its shape
and timing, and the performance of the perturbed system is

consequently different from the performance of the unper-
turbed system. As a reference, Fig. 4A, B, E, F compare
the trajectories of the unperturbed solution with κ0 = 1
for the system shown in Fig. 3 and the perturbed solution
with κε = 2, and Fig. 4C, D, G, H illustrate the iSRC γ1
of the unperturbed trajectory, specified by Poincaré section
{V1 = 0, dV1/dt > 0}. Note that for visual convenience,
the large perturbation (ε = 1) is applied here, but in our
actual analysis the perturbation magnitude should be small
(|ε| 
 1). Our analysis yields several observations about the
role of the inhibition-contralateral-decreasing sensory feed-
back in regulating the system’s response to the perturbation,
as discussed in detail below.

With the perturbation (increased load), the transition from
the power stroke to recovery is advanced, i.e., the power-
stroke phase is shorter. As indicated in Fig. 4F, the immediate
effect of the perturbation is the positive displacement and
slower change rate in the x-variable, which occurs because
the object is being pulled by the stronger load opposite to
its movement direction. Correspondingly, muscle 2, whose
length is L2 = 10 − x , is more contracted than it is in the
unperturbed case. The sensory feedback current injected to
neuron 1, with synaptic activation given by (14), is therefore
larger and gives more inhibition to the active neuron 1. As a
result, the active V1 crosses the synaptic threshold and termi-
nates the powerstroke phase at an earlier time, as indicated
in Fig. 4A. The iSRC in each direction is consistent with the
associated trajectory comparison. The significant negative
peak in the V1-component at the end of powerstroke phase
(panel C) suggests that V1 of the perturbed solution at the
rescaled time already decreases to the synaptic threshold and
jumps down to the inhibited state, indicating the transition
out of the power stroke is advanced. Since κ directly impacts
dx/dt , we see a different effect on x (panel H) than the other
variables.

Both efficiency (high performance) and robustness (low
sensitivity) are important features of motor control systems
interacting with the outside world. The performance for the
perturbed system in Fig. 4 is smaller than the unperturbed
system (Qε = 0.87 × 10−3, Q0 = 1.23 × 10−3), due to the
larger magnitude in the progress decrease relative to that in
the period. To measure the ability of maintaining the perfor-
mance, we quantify the sensitivity of the original system in
response to an infinitesimal sustained perturbation, following
(10), to be

∂Q

∂κ
(κ0) = 1

T ps
0

∫ T ps
0

0

[
− β0

(
∇

(
dx

dt

)
· γ1(t) + F�

b�

)

−β1

(
dx

dt

)]
dt . (16)
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Fig. 3 A typical solution for the system (13) in the absence of perturba-
tion (κ0 = 1), plotted over two periods with T0 = 3055 ms. The system
is governed by the inhibitory-contralateral feedback mechanism, with a
decreasing sigmoid activation function SFB∞ given by (14), and threshold
L0 = 10 (panel E). Blue trace: cell/muscle 1. Red trace: cell/muscle
2. The gray shaded regions represent the powerstroke phase, defined

by the active state of cell 1 (V1 > Ethresh, panel A), with duration
T ps
0 = 1544 ms; the white regions represent the recovery phase with

duration T re
0 = 1511 ms. The systemmakes progress during the power-

stroke phase at rate q = −dx/dt , while it maintains its position during
the recovery phase (compare panels D and F)

One can also estimate the sensitivity by (12), where y1 cor-
responds to the x-component of γ1. That is,

∂Q

∂κ
(κ0) = Q0

⎛
⎝ γ1,x∫ T ps

0
0 (dx/dt) dt

− T1
T0

⎞
⎠ .

To evaluate the joint goals of high performance and low
sensitivity, and to investigate how they are affected by
sensory feedback, we will simultaneously study the two
measures plotted together, while manipulating the shape of
the feedback activation function. Specifically, we will vary
the steepness parameter Lslope and position/half-threshold
parameter L0 of the sigmoid synaptic feedback activation
function SFB∞ . Figure5 shows the results for all eight sensory
feedback mechanisms.

The eight superficially distinct feedback architectures can
be reduced to four fundamentally different mechanisms in
terms of their performance and sensitivity. The contralateral
mechanism of muscle-stretch activated (increasing) current
with threshold L0 = 10 + θ (θ ∈ R), is equivalent
to the ipsilateral mechanism of muscle-contraction acti-
vated (decreasing) current with threshold L0 = 10 − θ .
Specifically, substituting the contralateral-increasing feed-
back activation with L0 = 10 + θ to the V1-equation of
system (13) yields

dV1
dt

= · · · − gFBsynS
FB∞ (L2)(V1 − EFB

syn)

= · · · − gFBsyn
2

(
1 + tanh

(
10 − x − (10 + θ)

Lslope

))

(
V1 − EFB

syn

)

= · · · − gFBsyn
2

(
1 + tanh

(−x − θ

Lslope

)) (
V1 − EFB

syn

)

= · · · − gFBsyn
2

(
1 − tanh

(
x + θ

Lslope

))(
V1 − EFB

syn

)

= · · · − gFBsyn
2

(
1 − tanh

(
10 + x − (10 − θ)

Lslope

))

(
V1 − EFB

syn

)
,

where the last equation is exactly the case for the ipsilateral-
decreasing feedback with L0 = 10 − θ . Note that for
the unloaded model in Yu and Thomas (2021), only the
inhibition–excitation property of the feedback makes a fun-
damental difference regarding the stability and robustness
of the system. However, when we incorporate mechanical
interactions with an external substrate, the activating prop-
erty of the feedback must be taken into account. In the
following, we will discuss the performance and sensitiv-
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Fig. 4 The iSRC analysis for system (13).A,B,E,F: Time series of the
unperturbed trajectory (solid, same as Fig. 3) and perturbed trajectory
with load κε = 2 (dashed), both of which are initiated at the start of their
respective powerstroke phase. The perturbed trajectory is uniformly
time-rescaled by tε = T0

Tε
t to compare with the unperturbed trajectory,

where T0 = 3055 and Tε = 2831. The shaded regions represent the
powerstroke phase for the unperturbed case, whereas the vertical green
dotted lines represent the time at which the phase for the perturbed

case switches from power stroke to recovery, which is advanced due
to the perturbation. C, D, G, H: The components for the iSRC γ1(t)
of the unperturbed trajectory, with the initial condition defined by the
Poincaré section {V1 = 0, dV1/dt > 0}. The negative responses in the
V1, N1, A1 directions at the end of power stroke are consistent with the
earlier transition to the recovery phase shown in panels A, B, C. The
accumulating positive response of x results from the direct effect of
perturbation, which shows a stronger resistance to the limb movement

ity for the four contralateral feedback mechanisms, which
we call inhibition-increasing (II), inhibition-decreasing (ID),
excitation-increasing (EI), and excitation-decreasing (ED).
The other four ipsilateral feedback mechanisms can be
applied accordingly.

3.3 Performance and sensitivity of the HCOmodel

Our analysis of theHCOmodel, subject to an applied external
load, leads to the following observations from Fig. 5:

1. Excitatory feedback is advantageous over inhibitory
feedback in terms of performance.

2. The qualitative patterns of performance are reversed with
respect to the steepness of synaptic activation function in
the activating and inactivating feedback mechanisms.

3. The qualitative patterns of sensitivity are reversed with
respect to the steepness of synaptic activation function in
the excitatory and inhibitory feedback mechanisms.

4. When the sigmoid activation function SFB∞ is approxi-
mately linear over the working range of the limb, the
performance–sensitivity changes approximately linearly
with the slope of SFB∞ .

5. As the working range of the limb extends beyond the
linear regime of SFB∞ , the performance–sensitivity curve
can become strongly nonlinear and even non-monotonic,
leading to well-defined simultaneous optima in both per-
formance and sensitivity.

We discuss each of these points in turn below.
Excitatory sensory feedback outperforms inhibitory feed-
back. This conclusion is evident from Fig. 5, in the higher
location of the performance–sensitivity pattern for eachof the
excitation mechanisms relative to that for all of the inhibition
mechanisms. To understand the advantage of excitatory over
inhibitory feedback in this model system, Fig. 6 compares
the trajectories of two systems, one with excitatory constant
feedback and the other with inhibitory constant feedback.
These systems correspond respectively to the two green dots
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Fig. 5 Performance–sensitivity patterns of all eight sensory feedback
architectures in the HCO model. A Contralateral feedback. B Ipsilat-
eral feedback. Each panel includes four subarchitectures: excitatory
feedback (upper ensembles) versus inhibitory feedback (lower ensem-
bles), and inactivating feedback (dots) versus activating feedback (+
signs). Specifically, the dot trace indicates decreasing synaptic feed-
back activation SFB∞ (muscle-contraction activated feedback), while the
plus trace indicates increasing activation SFB∞ (muscle-stretch activated
feedback). The half-threshold position parameter L0 of SFB∞ is var-
ied over {9, 10, 11}, colored by blue, black, and red, respectively. A
green dot at the center of each ensemble indicates the system with con-
stant feedback (SFB∞ ≡ 0.5). Starting from this constant feedback case,

the performance–sensitivity curve of each mechanism becomes distinct
as the shape of SFB∞ becomes steeper (i.e., Lslope decreases) until it
approaches a Heaviside step function (Lslope → 0). The contralateral
feedback mechanism with increasing (resp. decreasing) sigmoidal acti-
vation SFB∞ with L0 = 10+θ is functionally equivalent to the ipsilateral
mechanism with decreasing (resp. increasing) sigmoidal activation SFB∞
with L0 = 10 − θ , reducing the eight feedback architectures to four
fundamentally different classes. Blue arrow (panel A top) marks the
most advantageous configuration among those tested, and black arrow
marks the sub-optimal configuration with high performance and low
sensitivity

in Fig. 5A. In the excitatory system, the extra excitation to
Vi due to the feedback has two opposing effects. On the
one hand, it advances the time at which the active neuron
“jumps down” to the inhibited state and thus shortens both
the powerstorke phase and the total period T , relative to the
system with constant inhibitory feedback. Panel F of Fig. 6
shows the projection of the trajectory on the (V1, N1) plane
with points plotted at constant time intervals. Note the rapid
change in the voltage component relative to the slower gat-
ing variable. The significant timing change results from the
exponential deceleration of the dynamics of the active neu-
ron when approaching the jump-down point, as shown by the
contraction of points before jumping in panel F. Although the
(V1, N1) projection of the two trajectories during the active
state does not differ much spatially, the difference in time
needed to cover the small spatial difference is significant.
On the other hand, the constant excitatory drive also reduces
the net progress y of the system per cycle. In particular, the
progress y of the systemdeclines due to the shortermovement
time (panel E). The net performance (Q = y/T , Eq. (2)) is

determined by both the timing T and shape y of the trajec-
tory. For the excitatory system, the resulting performance is
in fact larger than for the inhibitory system, because the rel-
ative change in period is larger than the relative decrease
in progress. Therefore, regardless of the structure of the
feedback pathway, any system equipped with the excitatory
sensory feedback is always advantageous over the system
with the inhibitory sensory feedback in terms of their perfor-
mance.
The performance patterns in the decreasing and increasing
feedback mechanisms are qualitatively reversed with respect
to the steepness of SFB∞ . For example, as SFB∞ changes from
constant to approaching a Heaviside step function, the per-
formance of the II mechanism with L0 = 11 (red dots
in Fig. 5A bottom) monotonically increases while the per-
formance of the corresponding ID mechanism (red + in
Fig. 5A bottom) decreases monotonically. Figure7 illus-
trates two systems controlled by the ID mechanism with
L0 = 11 but different Lslope values. When SFB∞ is more shal-
low (dashed), the inhibitory feedback current to cell 1 is less
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Fig. 6 Comparison of trajectories for the constant inhibitory feedback
system (solid lines) and constant excitatory feedback system (dashed
lines), plotted over one period. The only difference in the setting for the
two systems is the synaptic feedback reversal potential, EFB

syn = +80
or −80 mV, respectively. The gray shaded region represents the pow-
erstroke phase of the inhibitory system; the vertical green dotted line
denotes the transition time of the excitatory system out of the power
stroke, and the vertical green dashed line denotes the end of its recov-
ery phase. Panel F shows the projection of the trajectories to the (V1, N1)

phase plane, where the successive dots are equally spaced in time. The

inhibitory trajectory is in dark blue (generally passing through more
negative voltages) and the excitatory trajectory in light blue (generally
higher voltages). The excitatory feedback current raises the voltage of
the active neuron and greatly shortens both the powerstroke and recov-
ery phases (panels A, F). The limb makes smaller progress due to the
shorter powerstroke duration (panels D, E), but the decrease in magni-
tude is smaller than the decrease in the period. Hence, the performance
of the excitatory-feedback case is larger than the inhibitory-feedback
case

intense, due to the smaller synaptic activation over the con-
traction regime of muscle 2 (panel E). This makes neuron
1 (the neuron driving the powerstroke) more active, switch-
ing earlier to the inhibited state, and thus giving a shorter
duration power stroke (panel A). The progress of the limb
over the shorter powerstroke phase is however larger, which
is opposite to the excitatory situation in Fig. 6. This out-
come occurs because the effect of the duration decrease is
not comparable to the effect of the faster velocity around the
end of power stroke. The progress velocity over the power-
stroke phase is controlled by the force generated by muscle
1, which becomes stronger due to the increased muscle acti-
vation A1 (panel C). Therefore, by decreasing the steepness
of SFB∞ for the ID mechanism, the muscles act on the limb
in a stronger and faster fashion, leading to the enhanced per-
formance. In contrast, by applying a similar analysis, we
observe that the corresponding II mechanism, for which the
muscle-stretch activated feedback current gives more inhi-
bition to the active neuron 1, has the opposite effect (not
shown). This example illustrates how two mechanisms with
the opposite activating property of the sensory feedback can

have qualitatively distinct performance changes when the
sensitivity of the feedback pathway to the biomechanics is
varied.
The sensitivity profiles of the excitatory and inhibitory sys-
tems to an applied load are qualitatively reversed with
respect to the steepness of the synaptic activation function.
Consider the two contralateral-decreasing mechanisms with
L0 = 9 (see the two blue dot curves in Fig. 5A). As Lslope

becomes smaller, the sensitivity of the ED mechanism first
decreases to almost 0 (perfect robustness) and then increases,
whereas the sensitivity of the corresponding ID mecha-
nism first increases to the maximum and then decreases.
Recall that following Eq. (12), the sensitivity can be written
as

S =
∣∣∣∣∂Q∂κ

(κ0)

∣∣∣∣ = Q0

∣∣∣∣ y1y0 − T1
T0

∣∣∣∣ .

This expression contains two terms—y1/y0 accounts for the
effect of the perturbation on the system progress (shape),
while T1/T0 accounts for the effect on the period (tim-
ing). To the extent that the two effects are large and of
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Fig. 7 Comparison of the dynamics of two systems controlled by the
ID mechanism with L0 = 11 and Lslope = 0.5 (solid traces) versus
Lslope = 2 (dashed traces). The gray shaded region denotes the pow-
erstroke phase of the first (steeper slope) system (T ps

0 = 1547); the
green vertical dotted line represents the end of the powerstroke phase
for the second system (T ps

0 = 1511), and the green vertical dashed
line represents the end of its full cycle. During the powerstroke phase,
the less steep synaptic activation SFB∞ (panel E) reduces the feedback

inhibition to V1, leading to greater activation of the neuron driving
the powerstroke (“neuron 1”), and earlier transition into the recovery
phase (panelA). The activation of muscle 1 becomes stronger due to the
larger V1 (panelC), which results in a stronger force being generated by
muscle 1. This enhanced force pulls the object forward more quickly,
especially around the end of power stroke (panel D). Due to the faster
movement, the object makes greater progress in an even shorter time
(panel F), thereby outperforming the system with the more steep SFB∞
curve

opposite signs, the system becomes more sensitive; in con-
trast, the cancellation of the two effects leads to a robust
system. Figure8 shows the two effects in the ED mech-
anism (red) and ID mechanism (blue) with L0 = 9 and
Lslope varied over (0.6, 40). We observe that the stronger
mechanical load exerts positive effects on both the timing
and shape for the system with the excitatory sensory feed-
back mechanism, by prolonging the limit cycle period and
increasing the progress of the limb (positive red curves),
but the shape effect is more profound. As Lslope decreases,
the improvement in the progress becomes less significant,
while the timing changes more dramatically, which leads to
a reduction in the sensitivity. The sensitivity minimum is
attained when the two effects completely offset each other at
Lslope ≈ 0.6, where the system ismost robust against the per-
turbation. In contrast, the perturbation allows the systemwith
the inhibitory feedback to make larger progress in a shorter
time (negative blue solid and positive blue dashed); this pos-
sibility was mentioned in the discussion of Fig. 7. Although
making greater progress in a shorter time in response to
perturbation improves performance, it is not beneficial to
the robustness of the system in terms of maintaining per-
formance homeostasis. Moreover, as Lslope decreases, both

effects become stronger, inducing the system to be even
more sensitive. Apart from this example, the excitation–
inhibition property of the sensory feedback in this model
always offers qualitatively reversed sensitivity patterns when
we consider the steepness variation of the feedback activation
curve. The variational analysis serves as a tool to examine the
coordinated effects of perturbation on the trajectory geom-
etry and timing, and to identify mechanisms with superior
robustness.
When SFB∞ is approximately linear over the working range
of the muscles and limb, the performance–sensitivity curve
changes approximately linearly with Lslope. As an illustra-
tion, Fig. 9 zooms in on the patterns shown in Fig. 5A with
Lslope varied among (2,∞), overwhich SFB∞ is approximately
linear within the possible range of muscle length. On this
scale, a fundamental ambiguity arises on account of the dual
goals of performance and robustness. Without specifying a
relative weighting between these two quantities, there is no
well justified way to choose which of the three traces in the
upper ensemble, all moving up and to the left, are preferred.
The red, black, and blue traces all simultaneously increase
performance while decreasing sensitivity, relative to the con-
stant feedback case (green dot). Among the lower ensemble,
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Fig. 8 Effects of the increased load on the period (T1/T0, solid) and on
the progress (y1/y0, dashed) of the trajectories for the ED systems (red)
and ID systems (blue) with L0 fixed at L0 = 9 and Lslope varied over
(0.6, 40). (Note this is a subset of the ranges plotted in Fig. 5, limited
to the region in which sensitivity varies monotonically.) The absolute
difference between the two effects accounts for the sensitivity of the
system. In the excitatory system, the positive T1/T0 and y1/y0 indicate
that the perturbed system spends longer time to make larger progress.
The decrease of Lslope reduces y1/y0 while T1/T0 is increased, so the
sensitivity decreases, until perfect robustness is attained at Lslope ≈ 0.6,
i.e., where the two red curves meet each other. In the inhibitory system,
T1/T0 is negative, indicating that the perturbation shortens the working
period. The effects on the progress and period both become stronger
with the decrease of Lslope, so the system becomes more sensitive to
the perturbation

the blue curve can be rejected as its components exhibit a
tradeoff: the robustness is enhanced with decreased perfor-
mance. Moreover, within the linear regime, the performance
and sensitivity can both be improved indefinitely by increas-
ing the feedback gain. The possibility of disambiguating the
two effects and finding a globally optimal solution arises only
when the parameters are varied enough for nonlinear effects
to come into play, as shown next.
The nonlinearity of the synaptic feedback activation function
allows the existence of optimal combinations of performance
and sensitivity. As the linear regime of SFB∞ extends beyond
the working range of muscle length and the curvature of the
sigmoid SFB∞ becomes more pronounced, some sharp turn-
ing points arise in the performance–sensitivity curve of each
feedback mechanism, either in terms of performance or sen-
sitivity or both. In general, along a continuous curve in the
(sensitivity S, performance Q) plane, indexed by a param-
eter μ (here, the sigmoid steepness parameter Lslope), there
will be an optimal region marked at one end by the con-
dition (∂S/∂μ = 0, ∂Q/∂μ 	= 0) and at the other end
by (∂S/∂μ 	= 0, ∂Q/∂μ = 0). Depending on the relative
weight given to S and Q, the optimal value ofμwill place the

Fig. 9 Detail from Fig. 5A, expanded to show the region of approx-
imate linearity. Colors as in Fig. 5A. The steepness parameter Lslope

of the synaptic feedback activation function SFB∞ is varied over (2,∞).
Correspondingly, the gain of the sigmoid ranges from zero to 0.5. With
the small gain, the sigmoid SFB∞ is almost linear over the working range
of the muscle length, and the performance–sensitivity curve for each
case changes approximately linearly with respect to Lslope

system somewhere within this segment of the (S(μ), Q(μ))

curve. In the case of the HCO system, the optimal curve
among those tested (L0 = 9, top blue dots in Fig. 5A) makes
a hairpin turn in the upper left corner of the plot (blue arrow),
leading to relatively unambiguous identification of the opti-
mal value of the slope parameter Lslope. In such cases, these
optimal points, or narrowly identified optimal regions, indi-
cate the possibility of well-defined simultaneous optima in
both of the performance and sensitivity patterns. Thus our
results suggest the possibility to realize these joint goals
through adjusting the structure of the sensory feedbackmech-
anisms more broadly. Note that the nearby black trace with
L0 = 10 shows a qualitatively different result on the sensi-
tivity, which gives rise to a sub-optimal mechanism (black
arrow). In Appendix A.2 we show the higher-resolution
pattern by considering smaller increments of the position
parameter L0 and slope parameter Lslope around the optimal
and sup-optimal points.

The preceding observations have provided several insights
that could support the design of sensory feedback pathways,
such as the selection of excitatory versus inhibitory feedback
currents, and activation versus inactivation with muscle con-
traction, as well as the shape of the feedback activation curve,
to promote efficiency and robustness in other more realistic
HCO-motor models with analogous configurations.
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4 Application: Markin hindlimbmodel with
imposed slope

The second closed-loop powerstroke–recovery example we
consider is based on a neuromechanical model proposed by
Markin et al. (2010), as sketched in Fig. 10. The model
consists of a spinal central pattern generator controlling the
movement of a single-joint limb. The CPG sends output
via efferent activation of two antagonist (flexor and exten-
sor) muscles to a mechanical limb segment, which in turn
generates afferent feedback signals to the CPG. The model
system performs rhythmic locomotion, comprising a stance
phase, during which the limb is in contact with the ground,
and a swing phase, during which the limb moves without
ground contact. Thus the system falls within the class of
powerstroke–recovery systems.

Everyday experience teaches us that normal walking
movements are robust against gradual changes in the slope of
the terrain, although the detailed shape and timing of the limb
trajectory changes as one ascends (or descends) a steeper or
shallower incline. As a proxy for this form of parametric per-
turbation of rhythmicwalkingmovements,we extendMarkin
et al’s model to include an incline parameter, simulating the
effects of a change in the ground slope. We use this param-
eter in our analysis of performance and sensitivity, to define
the sensitivity of the system’s progress relative to the exter-
nal substrate (the ground) in response to this environmental
change.

4.1 The equations of theMarkin model

Following Markin et al. (2010), we model the central pattern
generator as a multi-layer circuit, consisting of a half-center
rhythm generator (RG) containing flexor neurons (RG-F)
and extensor neurons (RG-E). These RG neurons project
to pattern formation (PF) neurons (PF-F and PF-E, respec-
tively) and to inhibitory interneurons (In-F and In-E) which
mediate reciprocal inhibition between the flexor and exten-
sor half-centers. Given sufficient tonic supra-spinal drive, the
CPGgenerates rhythms of alternating activation of flexor and
extensor neurons, and the output of PF neurons induces alter-
nating activity in flexor and extensor motor neurons (Mn-F
and Mn-E). An additional circuit of interneurons (Int and
Inab-E) provides a disynaptic pathway from the extensor side
to Mn-E.

The dynamics of the RG, PF, and Mn neurons are each
described by two first-order ordinary differential equations,
governing each cell’s membrane potential Vi and the slow
inactivation gate hi of a persistent sodium current:

C
dVi
dt

= −INaP(Vi , hi ) − IK(Vi ) − ILeak(Vi )

−ISynE(Vi ) − ISynI(Vi ),

Fig. 10 Schematic of Markin hindlimb model with imposed slope,
adapted from Markin et al. (2010). The spinal CPG, consisting of
RhythmGenerator (RG) and Pattern Formation (PF) half-center oscilla-
tors, as well as Interneurons (In-E/F), receives tonic supra-spinal drive,
and generates alternating activation driving corresponding flexor and
extensor Motor neurons (Mn). An additional circuit including more
interneurons (Int and Inab-E) is incorporated to provide disynaptic exci-
tation to Mn-E. The Mn cells activate antagonistic flexor and exentors
muscles, which control the motion of a single-joint limb. Sensory feed-
back from muscle activation, which comes in three types (Ia, Ib, and
II), provides excitation to the ipsilateral neurons of the CPG. Inhibitory
connections end with a round ball, and excitatory connections end with
a black arrow. The limb stands on the ground with slope specified by κ ,
which we take as our perturbation parameter. During a single locomo-
tion cycle, the ground reaction force is active on the limb in the stance
phase where the limb velocity q̇ is positive (red arrow) but not in the
swing phase where q̇ < 0 (blue arrow)

dhi
dt

= (h∞(Vi ) − hi )/τh(Vi ). (17)

Here, INaP, IK, and ILeak refer to the persistent sodium
current, potassium current, and leak current, respectively,
described by

INaP(Vi , hi ) = gNaPmNaP(Vi )hi (Vi − ENa),

IK(Vi ) = gKm
4
K(Vi )(Vi − EK),

ILeak(Vi ) = gL(Vi − EL).

Excitatory and inhibitory currents to neuron i are respectively
represented by ISynE(Vi ) and ISynI(Vi ), given by
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ISynE(Vi ) = gsynE(Vi − EsynE)⎛
⎝∑

j

a ji f (Vj ) + cid +
∑
k

wki skfbk

⎞
⎠ ,

ISynI(Vi ) = gsynI(Vi − EsynI)
∑
j

b ji f (Vj ). (18)

The nonlinear function f describes the output activity of
neuron j , defined to be

f (Vj ) =
{
1
/ (

1 + exp
(
− Vj−V1/2

k

))
, Vj ≥ Vth,

0, otherwise,
(19)

where Vth is the synaptic threshold. Parameter a ji defines
the weight of the excitatory synaptic input from neuron j to
neuron i , while b ji defines the weight of the inhibitory input
from j to i ; ci represents the weight of the excitatory drive d
to neuron i ; wki defines the synaptic weight of afferent feed-
back fbk to neuron i , with the feedback strength sk . Details
on the feedback terms fbk will be provided at the end of this
section.

The dynamics of the interneurons, In-F, In-E, Int, and
Inab-E, are each described by a single first-order equation:

C
dVi
dt

= −ILeak(Vi ) − ISynE(Vi ) − ISynI(Vi ), (20)

where the currents are in the same form as above. As shown
in Fig. 10, the source of excitatory inputs ISynE to these
interneurons comes from RG, supra-spinal drive, and sen-
sory feedback. Note that In-E and In-F in particular do not
receive any inhibitory input or excitatory supra-spinal drive,
so the right-hand side of their voltage equation has ISynI = 0
and ci = 0.

Themotor neurons,Mn-F andMn-E, respectively activate
two antagonistic muscles, the flexor (F) and extensor (E),
controlling a simple single-joint limb. The limb motion is
described by a second-order differential equation:

I q̈ = 1

2
mgls cos q − bq̇ + MF (q, q̇, VMn-F, t)

+ME (π − q,−q̇, VMn-E, t) + MGR(q, κ), (21)

where q represents the angle of the limb with respect to the
horizontal. The first term accounts for the moment of the
gravitational force; MF and ME are the moments of the mus-
cle forces; MGR denotes the moment of the ground reaction
force which is active only during the stance phase, given
by

MGR(q, κ) =
{ −MGRmax cos (q − κ), q̇ ≥ 0 (stance/power stroke),
0, q̇ < 0 (swing/recovery).

(22)

Note that the stance (powerstroke) phase is defined when the
limb angular velocity v = q̇ is nonnegative, while the swing
(recovery) phase occurs when the velocity is negative. We
expand on the original model from Markin et al. (2010) by
introducing parameter κ to describe the slope of the ground
whereon the limb stands. Thus κ will play the role of the load
parameter subjected to perturbations for this model.

The feedback signals from the extensor and flexor mus-
cle afferents provide excitatory inputs to the RG, PF, In,
and Inab-E neurons. Muscle afferents provide both length-
dependent feedback (type Ia from both muscles and type
II from the flexor) and force-dependent feedback (type Ib
from the extensor). Linear combinations of feedback terms
fbk ∈ {Ia-F, II-F, Ia-E, Ib-E}, written as∑

k wki skfbk in (18),
are fed into each side of the model—Ia-F and II-F feedback
go to the flexor neurons and Ia-E and Ib-E to the extensor
neurons. The feedback terms are in the form

Ia = kvIasign(v
m)|vnorm|ρv +kdIadnorm+knIa f (VMn) + CIa,

II = kdIIdnorm + knII f (VMn) + CII,

Ib = kFIbFnorm.

(23)

For more details about the mathematical formulations, func-
tional forms, and parameter values of the entire model, see
Appendix B.

4.2 Analysis of the Markinmodel

Figure 11 shows the time courses of the output of neurons
f (Vi ), limb angle q, and feedback activity fbk in the default
flat-ground system where κ = 0. Unlike the HCO model,
where the active states of neurons overlap with the pow-
erstroke and recovery phases, here the extensor and flexor
active phases are slightly shifted relative to the stance and
swing phases Spardy et al. (2011). The excitatory feedback
of types Ia and II increase during the silent phase of the asso-
ciated neuron receiving the signal, reaching a peak just before
the target neuron becomes active; these feedback signals then
decreases during the active phase of the neuron. In contrast,
the Ib-E feedback signal, which is solely dependent on the
extensor muscle force, is active only when the extensor neu-
rons are active. It remains low until the onset of activation in
the extensor units, at which point it jumps up to a high level
and then recedes. The different types of the feedback path-
ways induce distinct performance–sensitivity patterns, as we
will discuss in Sect. 4.3.

For this model, we define the performance to be the aver-
age distance the limb moves along the ground during the
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Fig. 11 A typical solution for
the Markin model, in A RG
output, B PF output, C In output,
D Mn output, E Int (blue) and
Inab-E (red) output, F limb
angle, G Ia-F feebback activity,
H Ia-E feedback activity, I II-F
feedback activity, and J Ib-E
feedback activity. The flexor
side is colored by blue and the
extensor side is colored by red.
The gray shaded region
indicates the stance phase (the
powerstroke) during which the
limb angle is positive in velocity
(panel F), and the white region
indicates the swing phase. The
stance and swing phases are
slightly shifted relative to the
extensor and flexor active
phases in the CPG. Note that for
rat hindlimb walking, the
extensor muscle dominates the
stance/powerstroke phase
Markin et al. (2010)

stance phase, given by

Q(κ) = ls
Tκ

∫ T st
κ

0
− d

dt
(cos (q(γκ(t)) − κ)) dt . (24)

Here T st
κ denotes the stance duration and ls is the limb

length. Figure12 compares the time series of the perturbed
system subjected to a small change in the ground slope
(κε = ε = 0.01) with the unperturbed system. As indicated
by the green dotted vertical line, the perturbation prolongs
the stance phase and delays the transition to the swing phase,
in that the system decelerates because of the steeper ground
slope (panel B). Consequently, the progress becomes smaller
(panel D), and the performance is further deteriorated due
to a longer period (Q0 = 0.1506, Q(ε) = 0.1375). Note
that this model and the HCO model have different condi-
tions for transitioning between the powerstroke and recovery
phases. In the HCO model the transition is determined by
the neuron activation, while in the biophysically-grounded
Markin model the transition is determined by the mechani-
cal condition q̇ = 0. This difference accounts for the opposite
responses of the transition timing to analogous environmental
challenges:when increasing thedifficulty of the task theHCO
powerstroke-to-recovery transition moves earlier, while the
Markin model’s transition is delayed. Put another way, the
powerstroke of the perturbed HCO system contracts rela-

tive to the net period, while in the Markin model it expands
(cf. Fig. 4).

In the following,we studyhow theperformance–sensitivity
pattern is affected by the strength of each afferent feedback
pathway, represented by sk where k ∈ {Ia-F, II-F, Ia-E, Ib-E}
in (18). Figure13 shows the patterns as one of the four
feedback strengths is varied, with the other three strengths
fixed at the normal strength sk = 1. Before we discuss the
patterns in Sect. 4.3, note that the possible range of each
strength allowing for stable progressive locomotor oscilla-
tions is remarkably different:

sIa-F ∈ [0.59, 2.67], sIa-E ∈ [0.64, 4.82],
sII-F ∈ [0, 4.99], sIb-E ∈ [0, 7.68].

In particular, the system canmaintain stable oscillations upon
cutting off the II-F or Ib-E feedback pathway, but cannot
sustain oscillations without the Ia-type feedback. We finish
this subsection by examining the mechanism underlying the
failure of movement as the strength parameter is out of the
range.

The Markin model system features fast–slow dynamics
(Rubin and Terman 2002), as the persistent sodium inacti-
vation time constant τh(Vi ) in (17) is large over the relevant
voltage range, so h evolves on a slower timescale than Vi .
The activity of neuron i can be therefore determined from
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Fig. 12 Comparison of time
series of A output of RG
neurons, B limb angle, C output
of Mn neurons, and D progress,
for the unperturbed trajectory
(solid, same as Fig. 11) and
perturbed trajectory (dashed)
with ground slope κε = 0.01.
Both are initiated at the start of
their respective stance phase.
The perturbed trajectory is
uniformly time-rescaled by
tε = T0

Tε
t , where T0 = 1035 and

Tε = 1104. The shaded regions
represent the stance phase for
the unperturbed case, whereas
the vertical green dotted lines
represent the onset of the swing
phase for the perturbed case,
which is delayed due to the
steeper ground. Compare Fig. 4

Fig. 13 Performance–sensitivity patterns of the Markin model for dif-
ferent feedback strengths. The black dot represents the default system
with the normal feedback strength (all sk = 1). In each curve, the
strength for only one feedback pathway is varied, with the other three
strengths fixed at one. The number at each end indicates the maximal
or minimal strength allowing for stable progressive locomotor oscil-
lations. The purple arrow marks the most advantageous configuration
among those tested

the location of the intersection of its nullclines in the (Vi , hi )
phase plane. To illustrate the mechanism underlying the
transition between phases, Fig. 14 shows the nullcline con-
figuration and the corresponding positions of RG and In
neurons in the default system around the CPG transition.
Starting from the extensor-inhibited state (panelsA), because
the V -nullcline and h-nullcline of RG-E intersect at a silent
stable fixed point, RG-E cannot escape from the silent state
and trade dominance on its own. However, In-E, due to the

increasing excitatory inputs from Ia-E and Ib-E feedback
(Fig. 11), is able to cross the synaptic threshold first and
begin to inhibit RG-F (panels B). This inhibition raises the
V -nullcline of RG-F, followed by the decrease of RG-F volt-
age, weakening its excitation to the downstream In-F. This
reduction of excitation results in the decrease of In-F voltage.
Consequently, RG-E receives less inhibition from In-F, low-
ering the V -nullclines of RG-E, such that the critical point
moves to themiddle branchof itsV -nullcline, andhence,RG-
E can reach the left knee and jump to the right branch. This
transfer of active and silent states indicates that the In cells
and excitatory sensory feedback dominate the transitions in
the CPG. In the case without sufficiently strong feedback
inputs to the silent In cell, the ipsilateral RG neuron will
become deadlocked in silence, and thus the locomotion will
fail.

Disentangling the effects of changing the strength of an
afferent feedback pathway is nontrivial, because of themulti-
plicity of pathways impacting the activities of many neurons
and limb within the system. For instance, Fig. 15 shows the
feedback and neuron dynamics in the cases sIa-F = 0.63
(dashed) and sIa-F = 0.6 (solid), which is approaching the
minimal allowable strength of Ia-F. Varying the strength of
the Ia-F pathway alone leads to a chain of changes in all
system components including the extensor feedback, and
significantly impacts the transition timing. Although the
magnitude of the feedback signals does not differ much in
the two systems, yet the system with smaller sIa-F accumu-
lates feedback excitation more slowly. This circumstance is
due to the interplay of spatial and timing measures of dis-
tance in the fast–slow dynamical systems (Terman et al.
1998; Rubin and Terman 2002; Yu et al. 2023), in which
a small spatial difference translates into a significant tempo-
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Fig. 14 Escape of In triggers CPG transitions. Top: Nullclines and
positions of RG neurons (dots) in the (VRG, hRG) phase plane.Bottom:
Voltages of In neurons (diamonds) at corresponding times. Blue indi-
cates flexor V -nullcline, voltage and/or h values. Red indicates extensor
nullcline and values. The h-nullcline is shown in green. The vertical
magenta line represents the synaptic voltage threshold Vth. Arrowsmark
the direction the neurons are moving. AWhen the extensor neurons are
at the inhibited state, the h-nullcline intersects the inhibited V -nullcline

ofRG-Eat the left branch.Excitation from feedback allows In-E to reach
the threshold first, independently of RG-E. B When In-E jumps above
the threshold it begins to inhibit RG-F, which raises the V -nullcline of
RG-F. The downstream In-F, receiving less excitation from RG-F, thus
reduces its voltage and gives less excitation to RG-E, which lowers
the V -nullcline of RG-E. As a result, RG-E lies above the left knee of
its V -nullcline, so it jumps across the threshold and becomes active,
switching the dominance in the CPG (not shown)

ral extension. Decreasing the feedback strength sIa-F further
(below 0.59) makes it impossible for the extensor feedback
to jump up; consequently the In-E neuron will not be facil-
itated to escape from the inhibited state (not shown) and
the movement will stall. This outcome may seem counter-
intuitive, since reducing the flexor feedback strength should
make the flexor Inmore difficult to escape; however, its direct
effect on the mechanics in turn influences the extensor feed-
back to an analogous (Ia-E) or even more significant (Ib-E)
extent (see Eq. (23)). We observe similar situations beyond
the nonzero extrema of other feedback strengths, in which
either In-F or In-E fails to escape from the silent state and
compromises the whole locomotor oscillation.

4.3 Performance and sensitivity of theMarkinmodel

Whenanalyzing the abstractHCOmodel,we considered both
ipsilateral and contralateral feedback, both excitatory and
inhibitory. In contrast, each of the three sensory feedback
pathways in the Markin model is ipsilateral and excitatory.
Although the two models are quite different in their level of
details, feedback variations, and the type of perturbation, we
compare and contrast the two models as far as we can in the
Discussion. In this section, by varying the strength of each
feedback pathway,we study the performance–sensitivity pat-
terns of the Markin model as shown in Fig. 13 and yield the
following observations.

Trade-offs between performance and sensitivity often occur
as the afferent feedback strength changes As the strength
parameter is varied, the system shows a performance–
sensitivity tradeoff when the curve either moves up and to
right (performance improves while robustness decreases) or
moves down and to left (robustness increases while per-
formance declines). Specifically, the system is not able to
generate simultaneously efficient and robust movement with
the whole flexor-feedback (Ia-F and II-F) variations as well
as with the large Ia-E and small Ib-E variations. For example,
Fig. 16 compares the performance of the default system to
the system with a stronger Ia-F pathway (sIaf = 1.1). Sim-
ilarly to Fig. 15, the increase in the Ia-F strength advances
the stance-swing transition, leading to a shortened working
period and reduced progress. Since the change in the shape
is more significant than the change in the timing, the perfor-
mance (Q0 = y0/T0) declines. Note that in theHCO systems
featuring either excitatory feedback or inhibitory feedback,
the dominance between the shape and timing is reversed
(cf. Fig. 6). These examples indicate the interplay of tempo-
ral and spatial effects in the performance measure. Likewise,
the sensitivity measure, given by (10) or (12), also consists
of two factors—the timing response to the perturbation and
the shape response. Although the system with strengthened
Ia-F feedback is inferior to the default system in terms of
performance, it benefits from enhanced robustness. In con-
trast, weakening the Ia-F strength contributes to an improved
performance at the cost of responding more sensitively to
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Fig. 15 Effects of reduced
sensory feedback gain sIa-F to In
cells near the collapse point.
Dashed curves: sIa-F = 0.63.
Solid curves: sIa-F = 0.6. For all
plots, red traces indicate
extensor and blue traces indicate
flexor quantities. The vertical
green dotted and dashed lines
indicate the end of stance and
swing phases for the case
sIa-F = 0.63. The shaded and
white regions represent the
stance and swing phases,
respectively, for the case
sIa-F = 0.6, both of which are
significantly prolonged. Further
reduction of sIa-F below 0.59
leads to stalling (convergence to
a stable fixed point). Panels G
and H plot the weighted
feedback inputs (

∑
k wki sk fbk )

fed into each In cell. Although
the feedback magnitude does
not differ much between the two
cases, the time to reach the peak
is significantly different, which
affects the extensor-flexor
transition and the following
stance-swing transition

external perturbations. With such a performance–sensitivity
tradeoff, the system cannot simultaneously achieve the dual
goals of efficiency and robustness, especially when varying
the flexor-feedback pathway(s) alone.
Force-dependent feedback gain can optimize both perfor-
mance and robustness simultaneously. We observe that the
force-dependent feedback pathway (type Ib from the exten-
sor) impacts performance and robustness very differently
than the length-dependent feedback pathways (types Ia and
II). In contrast to the length-dependent feedback, the force-
dependent feedback is only active during the active phase of
the associated motor neuron, reflecting the fast–slow dynam-
ics of the CPG (see Eq. (23) and Fig. 11). Notably, the
performance–sensitivity tradeoff disappears with sIb-E vari-
ations, and an optimal value of sIb-E arises, giving the best
combination of the pair (S, Q) (purple arrow in Fig. 13).
Around the optimal point, the performance saturates while
the sensitivity changes dramatically, and at sIb-E ≈ 5.5, the
sensitivity attains zero, indicating that the system achieves
infinitesimal homeostasis (Yu and Thomas 2022) concurrent
with peak performance. We verify this perfect robustness
by plotting the coordinated effects of the slope perturba-
tion on the system trajectory’s shape and timing in Fig. 17
as sIb-E varies over (1, 7). For values of sIb-E above the
optimum, the robustness decreases dramatically. Indeed, the

underlying oscillation fails when sIb-E reaches about 7.7, pre-
sumably due to a global bifurcation. As the sIb-E parameter
approaches this point, the trajectory period and amplitude
might be insensitive to the parameter variation but the inher-
ent sensitivity to perturbations may dramatically increase.
This circumstance is also observed in the HCO model when
(subcritical) pitchfork bifurcations occur (Yu and Thomas
2021). On the contrary, with a strong Ia-E pathway (left
corner of Fig. 13), the system maintains robustness while
its performance significantly decreases, which also appears
around a (subcritical) Hopf bifurcation as shown in Yu and
Thomas (2021). Although a detailed bifurcation analysis of
oscillation termination is beyond the scope of this paper, our
observations demonstrate the difficulty of achieving the joint
goals of high performance and low sensitivity in a realis-
tic rhythmic physiological system. The variational method,
by incorporating both temporal and spatial factors, offers
the possibility of an analytic framework that may assist to
identify the optimal sensory feedback control mechanism in
regulating the system’s efficiency and robustness.
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Fig. 16 Comparison of the dynamics of two systems with sIaf = 1
(solid traces) versus sIaf = 1.1 (dashed traces). The other three feed-
back strengths are fixed at one. The shaded region and white region
denote the stance phase and swing phase, respectively, for the first sys-
tem. The vertical green dotted and dased lines represent the end of the
stance phase and swing phase, respectively, for the second system, both

of which are advanced due to the faster decay and accumulation of feed-
back excitation to In neurons (panel C). The limb therefore makes less
progress during the shorter stance phase (panel D). Since the temporal
decrease in the total period is less dominant than the spatial decrease in
the progress, the performance (progress/period) of the system with the
larger Ia-F strength is inferior to the default system (0.1457 vs. 0.1505)

Fig. 17 Effects of the Ib-E feedback strength sIb-E ∈ (1, 7) on
the timing (T1/T0, red) and on the shape (y1/y0, blue) of the solu-
tion trajectories for the Markin model. The purple dot represents the
zero-sensitivity value, where sIb-E = 5.5, which also corresponds to
near-peak performance (cf. purple arrow in Fig. 13)

5 Discussion

Efficiency and robustness are important aspects of control
systems in both engineering and biological contexts. The

application of conceptual and mathematical ideas from con-
trol theory in the physiological sciences has a long history
(Baylis 1966; Grodins et al. 1967; Khoo 2018). In motor
control, viewed through the lens of systems engineering,
the concepts of robustness and efficiency can help quantify
different aspects of system performance underlying bio-
logical fitness. The roles of feedforward, reciprocal, and
feedback motor pathways in contributing to robustness and
efficiency must be investigated on a case-by-case basis. In
many instances, control theorists have observed tradeoffs
between efficiency and robustness, although the definitions
of these terms may vary from one context to another (Kuo
2002;Boulet andDuan2007;Ronsse et al. 2008;Vasconcelos
et al. 2009; Alfaro et al. 2010; Sariyildiz and Ohnishi 2013).
These authors describe a fundamental tradeoff between effi-
ciency and robustness, in the sense that the system improves
efficiency at the cost of becoming increasingly fragile to a
slight change in any parameter. Hence, an important aspect
of controller design is to achieve an acceptable balance
between the goals of increasing performance versus main-
taining robustness to external changes, when these objectives
are in conflict. Throughout this paper, we interpret efficiency
as quantifying how well a system performs, and robustness
as quantifying the stability of efficiency with respect to para-
metric perturbations.

A remarkable feature of rhythmic motor systems under-
lying a wide range of animals’ physiological behaviors
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(crawling, breathing, scratching, swallowing) is the closed-
loop control structure, which integrates brain, body, and
environment via sensory feedback (Chiel and Beer 1997;
Diekman et al. 2017; Lyttle et al. 2017; Chen et al. 2021;
Korkmaz et al. 2021). In particular, feedback control plays
a significant role in regulating the robustness and efficiency
of these rhythmic movements.4 Through afferent feedback
pathways, sensory information can communicate current
demands, thereby allowing the system to update the corre-
spondingmovement on short time scales. In thisway, sensory
feedback may improve performance; however, robustness
remains a critical issue. For example, Kuo (2002) and Yu
and Thomas (2021) discussed the fundamental properties of
the trade-off between efficiency and robustness for a com-
bined feedback–feedforward model for rhythm generation.
These papers demonstrated that a system with pure feedback
control, analogous to a chain reflex system, can compen-
sate for unexpected disturbances, but shows poor robustness
to imperfect sensors, and that the best trade-off requires a
proper design incorporating both feedback and feedforward
pathways.

In the present paper, we propose a unified framework to
investigate how the architecture of sensory feedback influ-
ences the efficiency and robustness of rhythmic systems. In
the particular context of a general powerstroke–recovery sys-
tem, where the system repeatedly engages and disengages
with the outside world, we measure the efficiency of the
system, i.e., the task performance, in terms of the physical
progress of the system over the working period (or equiv-
alently, the mean rate of progress). This measure of the
task performance is adopted from Lyttle et al.’s study of the
feeding behavior of the sea slug Aplysia californica, which
considered mean seaweed consumption rate (cm/sec) (Lyttle
et al. 2017; Wang et al. 2022). This measure can be gen-
eralized to any powerstroke–recovery systems in which the
progressive activity is important. We probe the robustness
of the system by studying its ability to maintain task per-
formance despite external perturbations. Following Yu and
Thomas (2022), we generalize the analytic formula for this
robustness (or sensitivity) measure by using the infinites-
imal shape response curve (iSRC) and the local timing
response curve (lTRC) developed in Wang et al. (2021).
These tools provide a mathematically grounded numerical
quantification of the system’s response to perturbations. By
simultaneously studying the two objectives, we compare the
performance–sensitivity patterns obtained in different feed-
back architectures, and identify optimal designs achieving
the joint requirements of high performance and low sensitiv-
ity.

4 The significance of sensory feedback may vary depending on the
length scale of the animals, e.g., in small insects versus large mammals
(Sutton et al. 2023).

Here, we consider the control problem with two spe-
cific neuromechanical systems that produce powerstroke–
recovery oscillations. In the paradigmatic half-center oscil-
lator (HCO)-motor model with an external load, adapted
from Yu and Thomas (2021), we conduct a comprehen-
sive analysis of different feedback mechanisms in the hopes
that we uncover insights that may apply more broadly. We
study both contralateral and ipsilateral feedback architec-
tures, both excitatory and inhibitory feedback modes, and
both activating and inactivating pathways, in terms of their
performance–sensitivity patterns. First,wefind that exchang-
ing excitatory and inhibitory architectures reverses the effect
of increasing feedback gain on the sensitivity. Second, we
observe that the performance response is reversed depend-
ing on whether the feedback is activated or inactivated by
muscle contractions. More interestingly, as the sigmoid acti-
vation of the feedback signal (as a function of limb position)
becomes increasingly nonlinear over the working range of
the limb, a well-defined simultaneous optimum in perfor-
mance and sensitivity arises. These findings may guide the
selection of modeling frameworks to capture experimental
observations or design aims for more realistic brain-body-
environment systems with analogous architectures in future
work.

In the hindlimb locomotor model (Markin et al. 2010),
based on experimental measurements from spindle primary
afferents in the cat, we modify the model by imposing a
ground slope, and then manipulate the gain parameters for
each of four sensory feedback pathways. We find that the
force-dependent (type Ib-E) feedback can simultaneously
optimize both performance and robustness, while the length-
dependent (types Ia-E, Ia-F, and II-F) feedback variations
result in marked performance-versus-sensitivity trade-offs.
Indeed, as discussed in Yu and Thomas (2021), the situation
that the performance is increased by sacrificing the robust-
ness is also observed in the abstract HCO-motor model when
the systemapproaches a subcritical pitchfork bifurcation; and
also, the situation that the robustness is improved at the cost
of losing efficiency occurs when the system approaches a
subcritical Hopf bifurcation.

However, it is difficult to pursue further comparisons
between the two models. In the HCO model, we consider
only one feedback pathway, solely dependent on the muscle
length. In contrast, the locomotor model possesses multiple
feedback channels, each of which relies on several compo-
nents includingmuscle length,muscle velocity,motor neuron
output, or muscle force. As argued in Katz (2023), although
focusing on a specific model can advance understanding of
the neural basis of behavior in species with similar devel-
opmental and physical constraints, doing so may overlook
insights that could be obtained by considering convergent
evolution as a framework leading to more general principles.
Our HCO model can provide a mechanistic understanding
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leading to predictions about structure-function relationships,
and allows us to compare different kinds of architectures that
are “equivalent” only at a more general level. On the other
hand the detailed Markin model is just one specific archi-
tecture where perhaps alternative architectures could have
evolved to serve the same purpose. Thus, although the anal-
ogy between the HCO-motor and the Markin-motor model
is limited, both models are worth studying from a conceptual
point of view. In particular, we note that the Ia- and II-type
afferent feedback inMarkin’smore realistic locomotormodel
is ipsilateral, excitatory, and increasing with muscle length;
the performance–sensitivity pattern for this combination of
elements nominally falls into the upper ensemble of the HCO
model’s ipsilateral patterns (Fig. 5B, upper star traces). In the
HCO setting, these patterns are always advantageous over
other patterns in terms of performance, and give rise to the
only (performance, sensitivity) optimum. This superiority
could be interpreted as suggesting that our modeling anal-
ysis might be consistent with the action of natural evolution
by which species adapt to environmental demands.

Apart from the restricted scope of feedback functions
considered in our examples, it would be desirable to have
greater insights into the way any form of sensory feedback
shapes the attributes of motor control systems, both in terms
of performance and in terms of robustness. However, given
the complexity and difficulty to ascertain sensory feedback
signals experimentally, it is natural to restrict attention to
monotonically increasing or decreasing sensory feedback
signals, such as an excitatory or inhibitory conductance in a
central pattern generator that increases or decreases steadily
as a function of limb position, muscle stretch, muscle veloc-
ity, or other biomechanical variables. A realistic example is
the responses of cat spindle (group Ia and group II) afferents,
whichmonotonically changewithmuscle length and velocity
signals, and tendon organ (group Ib) afferents, which scales
in approximate proportion to muscle forces (Prochazka and
Gorassini 1998; Prochazka 1999). Another example is the
chemosensory pathway in the respiratory control system,
which has beenmodeled by a sigmoidal relationship between
the arterial partial pressure of oxygen and the conductance
representing external drive to the CPG (Diekman et al. 2017).
Moreover, biological signals are typically limited in range.
For instance, the firing rate of a neuron is bounded below
by zero and typically bounded above by a maximal firing
rate which is related, for example, to the neuron’s absolute
refractory period.

The muscle dynamics of the HCO model was inspired
in part by Aplysia’s I2 muscle (Yu et al. 1999). A nominal
feeding model, featuring grasper-retraction (powerstroke)
and grasper-protraction (recovery), has been well studied
by Chiel and colleagues (Shaw et al. 2015; Lyttle et al.
2017; Wang et al. 2022). In their model, the propriocep-
tive feedback input is assumed to be affine linear with the

grasper position—decreasing for the protraction neural pool
while increasing for the retraction neural pool. Depending
on the grasper position and proprioceptive neutral posi-
tion, the feedback signal can switch between excitation and
inhibition during a single swallowing cycle. In our HCO
model, we only consider the same formof feedback functions
for all neurons and the excitation–inhibition property does
not change during the whole movement. These differences
point out an interesting and important direction for further
study—whether mixed inhibitory and excitatory feedback
in a single pathway, or heterogeneous activating/inactivating
feedback across different pathways—could provide more
realistic models for a broader range of specific motor sys-
tems.

Finally, we apply a fast–slow decomposition analysis to
the Markin model when discussing the failure of oscilla-
tions as the feedback gain parameter reaches the collapse
point. Although the stance and swing phases in the loco-
motion system do not differ much concerning their time
scale, it is nevertheless possible that in some powerstroke–
recovery systems, the powerstroke, under a heavy load,
could proceed on a slow timescale while the recovery could
proceed on a fast timescale. In this case one might con-
nect powerstroke–recovery systems to two-stroke relaxation
oscillators as studied in depth by Jelbart and Wechselberger
(2020), an interesting direction for future work. Another
avenue for future inquiry would be to consider the scaling
of robustness and sensitivity structures, as studied here, in
motor systems spanning a range of length and time scales
(Sutton et al. 2023). The approaches we use here should be
applicable to these systems as well.

AHCOmodel details

A.1 Model details

For completeness, we list here the full equations of the HCO
modelwith an externally applied load, as introduced inSect. 3
and originally proposed in Yu and Thomas (2021). For cell
i, j = 1, 2 and j 	= i ,

C
dVi
dt

= Iext − gL(Vi − EL) − gCaM∞(Vi )(Vi − ECa)

− gKNi (Vi − EK)

− gCPGsyn SCPG∞ (Vj )
(
Vi − ECPG

syn

)

− gFBsynS
FB∞ (Li, j )(Vi − EFB

syn),

dNi

dt
= λN (Vi )(N∞(Vi ) − Ni ),
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where

SCPG∞ (Vj ) = 1

2

(
1 + tanh

(
Vj − Ethresh

Eslope

))
,

SFB∞ (Li, j ) = 1

2

(
1 ± tanh

(
Li, j − L0

Lslope

))
,

M∞(Vi ) = 1

2

(
1 + tanh

(
Vi − E1

E2

))
,

N∞(Vi ) = 1

2

(
1 + tanh

(
Vi − E3

E4

))
,

λN (Vi ) = φN

(
cosh

(
Vi − E3

2E4

))
.

The force of muscle i is given by

Fi (t) = F0 · ai (t) · LT (Li (t)).

Here,

LT (Li ) = − 3
√
3

1250
(Li − 1)(Li − 5)(Li − 15), 5 ≤ Li ≤ 15,

L1 = 10 + x, L2 = 10 − x, −5 ≤ x ≤ 5,

and

ai (t) = g[Ai (t) − a0]+, 0 < ai ≤ 1,

where

d Ai

dt
= τ−1{U (Vi ) − [β + (1 − β)U (Vi )]Ai },

U (Vi ) = 1.03 − 4.31 exp (−0.198(Vi/2)), Vi ≥ 16.

Note that in the U -equation, we leave implicit a conversion
factor from mV to Hz. The limb position is controlled by

dx

dt
= 1

b
(F2 − F1 + rκF�),

where

r =
{
1, power stroke,
0, recovery.

Table 1 specifies the fixed parameter values used for sim-
ulations, and Table 2 lists the feedback parameter combi-
nation for each figure of the HCO application. The simula-
tion codes are available from https://github.com/zhuojunyu-
appliedmath/Powerstroke-recovery. Instructions for repro-
ducing each figure and table in the paper are provided (see
the README file at the github site).

Table 1 Fixed parameter values of the HCO model

Parameter Value Unit Parameter Value Unit

C 1 µF/cm2 E3 0 mV

Iext 0.8 µA/cm2 E4 15 mV

gL 0.005 µS/cm2 Ethresh 15 mV

gCa 0.015 µS/cm2 Eslope 2 mV

gK 0.02 µS/cm2 φN 0.0005 ms−1

gCPGsyn 0.005 µS/cm2 κ 2 None

gFBsyn 0.001 µS/cm2 F� 2 N

EL −50 mV F0 10 N

ECa 100 mV b 4×103 Nms/cm

EK −80 mV τ 2.45 None

ECPG
syn −80 mV g 2 None

E1 0 mV a0 0.165 None

E2 15 mV β 0.703 None

A.2 Fine structure of performance and sensitivity
near the optimum

In the top ensemble of Fig. 5A, the solid blue (L0 = 9)
and black (L0 = 10) curves show qualitatively different
results on the sensitivity, giving rise to an optimal point and
a sub-optimal point for simultaneously achieving high per-
formance and low sensitivity. In order to resolve the fine
structure of the two objective functions near these two points,
we consider smaller increments of change in the feedback
parameters (L0, Lslope) around the two points, as shown in
Figs. 18 and 19. Over this range, the sensitivity of the system
changes dramatically (Fig. 18, panel A) while the perfor-
mance maintains a high level (panel B, where the relative
difference between maximum and minimum performance is
within 1%), and thus, the key to achieving the two-objective
optimization is to reduce sensitivity. The green parabolic
path traces the systems with almost zero sensitivity, which
is superimposed on the performance surface (panel C). The
feedback parameter combinations lying on this path endow
the system with perfect robustness and high efficiency. An
optimal mechanism we identified in Fig. 5A, located on this
path (blue arrow), is one possibility. The black arrow marks
the sub-optimal point discussed previously, where the sensi-
tivity is slightly higher than on the curve of optima.

On the one hand, the performance–sensitivity patterns
shown in Fig. 5 are a simplification because the real situation
is complicated due to the parabolic zero-sensitivity curve.
On the other hand, by considering multiple sensory feed-
back architectures (contralateral vs ipsilateral, activating vs
inactivating, excitatory vs inhibitory), the figure enables us
to exclude some architectures and suggests the possibility
of attaining the efficiency-robustness goal within a narrow
range of feedback variations.
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Table 2 Feedback parameter combinations for the HCO figures

EFB
syn (mV) L0 (cm) Lslope (cm) Mechanism

Fig. 2 −80 10 1 Inhibition-decreasing

Fig. 3 −80 10 1 Inhibition-decreasing

Fig. 4 Top: 80; bottom: −80 {9, 10, 11} [0.0001, 50000] As in figure

Fig. 5 Solid: −80; dashed: 80 10 50,000 Inhibition- versus excitation-constant

Fig. 6 −80 11 Solid: 0.5; dashed: 2 Inhibition-decreasing

Fig. 18 Sensitivity and performance near the optimum and sub-
optimum identified in Fig. 5A (blue and black arrows), with smaller
increments in the feedback parameters (Lslope, L0). The sensitivity
varies significantly (panel A), while the performance maintains a high
level, where the relative difference between maximum and minimum
performance is within 1% (panel B). The points on the green parabola
in panel A have almost zero sensitivity, which is superimposed on the

performance surface (panelC). The systemwith the feedback parameter
combination lying on the green “optima path”, achieves the joint goals
of low sensitivity and high performance, and the optimal configuration
tested in Fig. 5A, marked by the blue arrow, is located on this path.
The black arrow corresponds to the sub-optimal point tested in Fig. 5A,
which is inferior in sensitivity
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Fig. 19 Performance–sensitivity patterns near the optimum and sub-
optimum identified in Fig. 5A (blue and black arrows), with smaller
increments in the feedback parameters (Lslope, L0) (as in Fig. 18). The
blue and black curves correspond to the two paths shown in the top
ensemble of Fig. 5A, with the blue dot and black dot representing the
optimum and sub-optimum configuration, respectively. The magenta
curve approximates the Pareto (dual optimality) front among the cases
tested (Pareto et al. 1964)

BMarkinmodel details

Based on Markin et al. (2010) and Spardy et al. (2011), the
following provides modeling details not specified in Sect. 4,
especially on the biomechanics and feedback dynamics. The
limbmotion is described by a second-order differential equa-
tion:

I q̈ = 1

2
mgls cos q − bq̇ + MF (q, q̇, VMn-F, t)

+ME (π − q,−q̇, VMn-E, t) + MGR(q),

where I = ml2s /3 is the moment of inertia of the limb with
respect to the suspension point and b is the angular viscosity
in the hinge joint. The first term accounts for the moment
of the gravitational force; MF and ME are the moments of
the muscle forces (see below); MGR represents the moment
of the ground reaction force which is active only during the
stance phase, given by

MGR(q) =
{ −MGRmax cos (q − κ), q̇ ≥ 0 (stance / power stroke),
0, q̇ < 0 (swing / recovery).

The parameter κ describes the slope where the limb stands
on, which is considered as the load parameter subjected to
perturbations for this model. This parameter is not included
in the original model Markin et al. (2010); in effect in the
original model κ ≡ 0.

In the muscle model, the muscle length is calculated as

LF =
√
a21 + a22 − 2a1a2 cos q,

LE =
√
a21 + a22 − 2a1a2 cos (π − q),

and the moment arm is given by

hF = (a1a2 sin q)/LF , hE = (a1a2 sin (π − q))/LE ,

for the flexormsucle and extensormuscle, respectively.Mus-
cle velocities are defined as

vmF = vhF , vE = −vhE ,

where v = q̇ denotes the limb angular velocity. The total
force in each muscle follows the Hill-type model:

F = Fmax( f (V )Fl Fv + Fp),

Constant Fmax is the maximal isometric force; f (V ) is the
output of the corresponding motorneuron. The force-length
dependence Fl is given by5

Fl = exp

(
−

∣∣∣∣ l
β − 1

w

∣∣∣∣
)ρ

,

where l is the normalized muscle length corresponding to
Fl = 1, i.e., l = L/Lopt. The force-velocity dependence Fv

is given by

Fv =
{

b1−c1vm

vm+b1
, vm < 0,

b2−c2(l)vm

vm+b2
, vm ≥ 0,

where c2(l) = −5.34l2 + 8.41l − 4.7. The passive force Fp

is calculated as follows:

Fp = 3.5 ln

(
exp

(
l − 1.4

0.05

)
+ 1

)

− 0.02 (exp (−18.7(l − 0.79)) − 1) .

Given the above, the muscle moments are given by MF =
FFhF and ME = −FEhE .

To complete the model, the afferent feedback terms fed
into the CPG neurons are in the form

Ia = kvIasign(v
m)|vnorm|ρv + kdIadnorm + knIa f (VMn) + CIa,

II = kdIIdnorm + knII f (VMn) + CII,

Ib = kFIbFnorm.

5 Careful investigation on the code provided byMarkin revealed a typo
in the function Fl in the original papers. Here is the correct version.
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Here,vnorm denotes thenormalizedmuscle velocity (vm/L th);
dnorm denotes the normalized muscle length ((L − L th)/L th

if L ≥ L th and 0 otherwise); Fnorm denotes the normalized
muscle force ((F − Fth)/Fmax if F ≥ Fth and 0 otherwise).
The other functions in the CPG model are

mK(V ) = 1/

(
1 + exp

(
−V + 44.5

5

))
,

mNaP(V ) = 1/

(
1 + exp

(
−V + 47.1

3.1

))
,

h∞(V ) = 1/

(
1 + exp

(
V + 51

4

))
,

τh(V ) = 600/ cosh

(
V + 51

8

)
.

The values of the weight parameters for synaptic connec-
tions are provided in Table 3, and the other parameter values
are listsed in Table 4. Simulation codes required to produce
each figure are available at https://github.com/zhuojunyu-
appliedmath/Powerstroke-recovery.

C Variational analysis

The tools in the variational analysis were developed inWang
et al. (2021) and generalized in Yu and Thomas (2022) and
Yu et al. (2023). Consider a parameterized continuous-time
dynamical system defined on a domain � ⊂ R

n ,

dz
dt

= Fκ(z), (25)

where z ∈ �, κ ∈ I ⊂ R, andFκ (·) is either smooth or piece-
wise smooth in both z and κ . Suppose Fκ(·) admits a family
of hyperbolic and asymptotically attracting limit cycles for
κ ∈ I including κ0, which we consider as the unperturbed
limit cycle γ0(t). We assume that the domain is partitioned
into two subdomains � = RI ∪ RII with the subdomain
boundaries transverse to the flow of the unperturbed limit
cycle, and that Fκ(·) is smooth within each subdomain.

C.1 Local timing response curve (lTRC)

For z ∈ Ri , i = I, II, let �i (z) be the time remaining until
the unperturbed trajectory beginning at z exits the region. By
construction, along γ0,

d�i

dt
(z) = −1, z ∈ Ri.

Hence, by the chain rule

F0(z) · ∇�i (z) = −1, (26)

where we write F0(·) for Fκ0(·). Define the local timing
response curve (lTRC) for subdomain Ri to be ηi (t) :=
∇�i (z(t)). Differentiating both sides of (26) with respect
to t yields

dηi

dt
= −DF0(γ0(t))

ᵀηi , (27)

where DF0 denotes the Jacobian of F0. Let z
out,i
0 denote the

exit point of tracjectory γ0 from region Ri and nout,i denote a
normal vector of the exit boundary of Ri at zout,i0 . Following
(26),

F0

(
zout,i0

)
· ∇�i

(
zout,i0

)
= −1,

which gives the boundary condition of ηi ,

ηi
(
zout,i0

)
= − nout,i

(nout,i )ᵀF0

(
zout,i0

) . (28)

The adjoint Eq. (27) together with the boundary condition
(28) defines the lTRC within region Ri .

One application of the lTRC is to calculate the duration the
trajectory spent in each region (phase). For a small positive
ε, consider κε = κ0+ε ∈ I and the corresponding perturbed
trajectory γε. We assume that

T i
ε = T i

0 + εT i
1 + O(ε2),

where T i
0 and T i

ε represent the duration of the unperturbed
trajectory and the perturbed trajectory spent in phase i ,
respectively, and T i

1 is therefore the linear shift in the phase
duration in response to the perturbation. In Yu et al. (2023),
we provide a general expression for T i

1 :

T i
1 = ηi (zin,i0 ) · ∂zin,iκ

∂κ

∣∣∣∣
ε=0

− ηi (zout,i0 ) · ∂zout,iκ

∂κ

∣∣∣∣
ε=0

+
∫ tout,i

t in,i
ηi (γ0(t)) · ∂Fκ(γ0(t))

∂κ

∣∣∣∣
ε=0

dt . (29)

Here, at time t in,i the unperturbed limit cycle γ0 enters phase
i and at time tout,i it exits the phase; zin,iκ and zout,iκ represent
the entry point to and exit point from the phase i , respec-
tively, for the limit cycle trajectory with κ . The expression
shows that the first-order shift in the phase duration consists
of three terms: the first term accounts for the impact of the
perturbation on the entry point to the region; the second term
arises from the impact on the exit point; the integral term
shows the impact on the vector field during the transit from
ingress to egress.
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Table 3 Synaptic connection weights of the Markin model

RG-F RG-E In-F In-E PF-F PF-E Mn-F Mn-E Int Inab-E

Drive connections, ci

Supra-spinal drive, d 0.08 0.08 0.40 0.40

External drive, dInt 0.18

Excitatory connections, a ji

RG-F 0.41 0.70

RG-E 0.41 0.70

PF-F 1.95

PF-E 1.30 0.35

Inab-E 0.82

Inhibitory connections, b ji

In-F 2.20 6.60

In-E 2.20 6.60 2.80

Int 0.55

Feedback connections, wki

Ia-F 0.06 0.27 0.19

II-F 0.0348 0.1566 0.1102

Ia-E 0.06 0.44 0.10 0.16

Ib-E 0.066 0.484 0.11 0.176

The first row denotes the target neurons and the first column denotes the sources

Table 4 Parameter values of the
Markin model

Parameter Value Unit Parameter Value Unit

C 20 pF MGRmax 585 Nmm

ENa 55 mV a1 60 mm

EK −80 mV a2 7 mm

EL for RG, PF, Mn −64 mV Fmax for flexor 72.5 N

EL for others −60 mV Fmax for extensor 37.7 N

EsynE −10 mV β 2.3 None

EsynI −70 mV w 1.6 None

gNaP for RG 3.5 nS ρ 1.62 None

gNaP for PF 0.5 nS Lopt 68 mm

gNaP for Mn 0.3 nS b1 −0.69 None

gK 4.5 nS b2 0.18 None

gL 1.6 nS c1 0.17 None

gsynE 10 nS kvIa 6.2 None

gsynI 10 nS kdIa 2 None

V1/2 −30 mV knIa 0.06 None

Vth −50 mV CIa 0.026 None

k for Mn 3 mV kdII 1.5 None

k for others 8 mV knII 0.06 None

d 1.4 None CII 0 None

sk As in figure None kFIb 1 None

m 300 g ρv 0.6 None

g 0.00981 mm/ms2 L th for Ia 60.007 mm

ls 300 mm L th for II 58.457 mm

b 0.002 gmm2/ms Fth 3.393 N

123



306 Biological Cybernetics (2024) 118:277–309

C.2 Infinitesimal shape response curve (iSRC)

Consider the perturbed trajectory γε and the unperturbed tra-
jectory γ0. Within each subdomain Ri , we expand γε :

γε(τ
i
ε (t)) = γ0(t) + εγ1(t) + O(ε2),

where τ iε (t) is introduced as a rescaled time coordinate so
that the expansion is uniform with respect to t . It satisfies

τ iε (0) = 0, τ iε (t + T i
0 ) = τ iε (t) + T i

ε

The vector function γ1(t) is defined as the infinitesimal shape
response curve (iSRC), which is piecewise-specified with
period T0. In region Ri , the iSRC satisfies a nonhomogenous
variational equation

dγ i
1 (t)

dt
= DF0(γ0(t))γ

i
1 (t) + νi1(t)F0(γ0(t)) + ∂Fκ (γ0(t))

∂κ

∣∣∣∣
ε=0

,

(30)

where νi1 = ∂2τ iε (t)
∂ε∂t

∣∣
ε=0 measures the (local) timing sensi-

tivity to the perturbation in region Ri . In the special case
of τ iε with a linear scaling, i.e., τ iε (t) = (T i

ε /T i
0 )t , we have

νi1 = T i
1/T i

0 independent of t , where T i
1 is given by (29).

The iSRC Eq. (30) requires an initial condition, which is

γ i
1(t

in,i ) = lim
ε→0

piε − pi0
ε

,

where piε and pi0 represent the intersection points of the
limit cycle trajectories with the boundary surfaces between
regions. Generally, changing the surfaces (initial conditions)
results in the consequent iSRC functions related by a simple
phase shift, which has no effect on the sensitivity given by
(10). See Lemma 1 in Yu and Thomas (2022) or Lemma 2.3
in Wang et al. (2021)) for proof.

C.3 Derivation of sensitivity formula (10)

This section presents the derivation of Eq. (10). It is a general
formula to calculate the sensitivity of an averaged quantity
with respect to the change in any parameter, applicable to
the powerstroke–recovery systems. The derivation follows
the same exposition given in Yu and Thomas (2022) but with
some modifications.

Denote the unperturbed limit cycle (with κ0) by x and the
perturbed limit cycle (with κε = κ0 + ε) by y, respectively.
Denote the periods by

Fig. 20 Discretization of limit cycles by points comprising the limit
cycles’ orbits satisfying (25), illustrating the construction for compar-
ing the average of a quantity around the two orbits. Figure modified
from Yu and Thomas (2022). The loop x (blue trace) represents the
unperturbed limit cycle with the default parameter value κ0; the loop
y (red trace) represents the perturbed limit cycle with κε = κ0 + ε.
Each orbit consists of two phases—powerstroke (ps) and recovery (re).
During the powerstroke, each orbit is divided into n1 steps of equal
time T ps

x /n1 or T
ps
y /n1, respectively, giving points (x

ps
1 , xps2 , . . . , xpsn1−1)

and (yps1 , yps2 , . . . , ypsn1−1). During the recovery, each orbit is divided
into n2 steps of equal time T re

x /n2 or T re
y /n2, respectively, giving

points (xre1 , xre2 , . . . , xren2−1) and (yre1 , yre2 , . . . , yren2−1). The phase tran-
sition points are marked as xrp, xpr, yrp, ypr correspondingly

Tx = T ps
x + T re

x , Ty = T ps
y + T re

y .

During the powerstroke, each limit cycle orbit is divided into
n1 steps of equal time T ps

x /n1 or T
ps
y /n1; during the recovery,

each orbit is divided into n2 steps of equal time T re
x /n2 or

T re
y /n2. Let n = n1 + n2. Mark off the points as in Fig. 20.

Then,

xpsk = x
(

k

n1
T ps
x

)
, ypsk = y

(
k

n1
T ps
y

)
, k = 0, 1, . . . , n1,

xrek = x
(
T ps
x + k

n2
T re
x

)
, yrek = y

(
T ps
y + k

n2
T re
y

)
,

k = 0, 1, . . . , n2.

Note that at the powerstroke-to-recovery (pr) transition state,

xpr = xpsn1 = xre0 , ypr = ypsn1 = yre0 ,

and at the recovery-to-powerstroke (rp) transition state,

xrp = xps0 = xren2 , yrp = yps0 = yren2 .

Let Qx be the average of the quantity q(x) around the trajec-
tory x, i.e.,
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Qx = 1

Tx

∫ Tx

0
q(x(t)) dt

= 1

Tx

[∫ T ps
x

0
q(x(t)) dt +

∫ Tx

T ps
x

q(x(t)) dt

]
, (31)

and similarly Qy . Suppose q and the limit cycles are piece-
wise smooth,where the discontinuity occurs at the transitions
between the two phases. As n1, n2 → ∞, following (31),
since the set of discontinuous points has measure zero, we
have

Qx = 1

Tx

[
T ps
x

n1

n1−1∑
k=0

q(xpsk ) + T re
x

n2

n2−1∑
k=0

q(xrek )

]
+ O

(
1

n2

)

= 1

n1

n1−1∑
k=0

T ps
x

Tx
q(xpsk ) + 1

n2

n2−1∑
k=0

T re
x

Tx
q(xrek ) + O

(
1

n2

)
,

with a similar expression for Qy . Then,

Qy − Qx = 1

n1

n1−1∑
k=0

(
T ps
y

Ty
q(ypsk ) − T ps

x

Tx
q(xpsk )

)

+ 1

n2

n2−1∑
k=0

(
T re
y

Ty
q(yrek ) − T re

x

Tx
q(xrek )

)
+ O

(
1

n2

)
.

Let the fraction of the powerstroke duration be β, i.e.,

β = T ps

T
, 1 − β = T re

T
.

Expand βy and q(yk) around ε = 0:

βy = βx + εβ1 + O(μ2),

q(ypsk ) = q(xpsk ) + ∇q(xpsk ) · (ypsk − xpsk ) + ε
∂q(xpsk )

∂κ

+ O(ε2), k = 1, 2, . . . n1 − 1,

q(yrek ) = q(xrek ) + ∇q(xrek ) · (yrek − xrek ) + O(ε2),

k = 1, 2, . . . n2 − 1,

where β1 represents the linear shift in βx under the per-
turbation. Since the quantity q may be explicitly affected
by the perturbation during the powerstroke, then there is an
additional term ∂q

∂κ
in the expansion of q(ypsk ). Note that the

gradient ∇q is not well-defined at the discontinuous points.
Then,

Qy − Qx = 1

n1

n1−1∑
k=1

[
β yq(ypsk ) − βxq(xpsk )

]

+ 1

n2

n2−1∑
k=1

[
(1 − β y)q(yrek ) − (1 − βx )q(xrek )

]

+ 1

n1

[
β yq(yrp) − βxq(xrp)

]

+ 1

n2

[
(1 − β y)q(ypr) − (1 − βx )q(xpr)

]

+ O

(
1

n2

)

= 1

n1

n1−1∑
k=1

[
βx∇q(xpsk ) · (ypsk − xpsk ) + εβx ∂q(xpsk )

∂κ

+εβ1q(xpsk )
]

+ 1

n2

n2−1∑
k=1

[
(1 − βx )∇q(xrek ) · (yrek − xrek ) − εβ1q(xrek )

]

+ 1

n1

[
βx (q(yrp) − q(xrp)) + εβ1q(yrp)

]

+ 1

n2

[
(1 − βx )(q(ypr) − q(xpr)) − εβ1q(ypr)

]

+ O(ε2) + O

(
1

n2

)
.

Using the iSRC γ1 of x, we obtain

Qy − Qx

= ε

n1

n1−1∑
k=1

[
βx∇q(xpsk ) · γ1(x

ps
k ) + βx ∂q(xpsk )

∂κ
+ β1q(xpsk )

]

+ ε

n2

n2−1∑
k=1

[
(1 − βx )∇q(xrek ) · γ1(xrek ) − β1q(xrek )

]

+ 1

n1

[
βx (q(yrp) − q(xrp)) + εβ1q(yrp)

]

+ 1

n2

[
(1 − βx )(q(ypr) − q(xpr)) − εβ1q(ypr)

] + O(ε2)

+ O

(
1

n2

)
.

Dividing both sides by ε yields

Qy − Qx

ε

= 1

n1

n1−1∑
k=1

[
βx∇q(xpsk ) · γ1(x

ps
k ) + βx ∂q(xpsk )

∂κ
+ β1q(xpsk )

]

+ 1

n2

n2−1∑
k=1

[
(1 − βx )∇q(xrek ) · γ1(xrek ) − β1q(xrek )

]

+ βx

εn1

(
q(yrp) − q(xrp)

) + β1

n1
q(yrp)

+ 1 − βx

εn2

(
q(ypr) − q(xpr)

) − β1

n2
q(ypr)

+ O(ε) + O

(
1

n2

)
.

Taking the limits ε → 0 and n1, n2 → ∞, we obtain

∂Q

∂κ
(κ0)
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= 1

T ps
x

∫ T ps
x

0

[
βx∇q(x(t)) · γ1(t) + βx ∂q(xpsk )

∂κ
+ β1q(x(t))

]
dt

+ 1

T re
x

∫ Tx

T ps
x

[
(1 − βx )∇q(x(t)) · γ1(t) − β1q(x(t))

]
dt

+ lim
ε→0

n1→∞

βx

εn1

(
q(yrp) − q(xrp)

)

+ lim
ε→0

n2→∞

1 − βx

εn2

(
q(ypr) − q(xpr)

)
.

For the last two terms, use the directional derivative in the
direction (sayu) tangent to the recovery–powerstroke bound-
ary, and expand q(yrp) and q(ypr) to be

q(yrp) = q(xrp) + ε∇uq(xrp) + O(ε2)

q(ypr) = q(xpr) + ε∇uq(xpr) + O(ε2)

Then,

lim
ε→0

n1→∞

1

εn1

(
q(yrp) − q(xrp)

) = lim
ε→0

n1→∞

1

εn1

(
ε∇uq(xrp) + O(ε2)

)

= lim
n1→∞

∇uq(xrp)
n1

= 0,

lim
ε→0

n2→∞

1

εn2

(
q(ypr) − q(xpr)

) = lim
n2→∞

∇uq(xpr)
n2

= 0.

Therefore, we obtain the sensitivity of the average Q for the
unperturbed system:

∂Q

∂κ
(κ0) = 1

T ps
0

∫ T ps
0

0

[
β0

(
∇q0(γ0(t)) · γ1(t) + ∂qκ (γ0(t))

∂κ

∣∣∣∣
ε=0

)

+β1q0(γ0(t))
]
dt

+ 1

T re
0

∫ T0

T ps
0

[
(1 − β0)∇q0(γ0(t)) · γ1(t) − β1q0(γ0(t))

]
dt .

(32)

Note that when q represents the change rate of progress, then
for the models considered here (and for Shaw et al.’s Aplysia
feeding model (Shaw et al. 2015; Lyttle et al. 2017; Wang
et al. 2022)) q vanishes during the recovery, indicating that
q0(γ0(t)) ≡ 0 for t ∈ (T ps

0 , T0] and that the second integral
in (32) reduces to zero. Formula (10) is derived.
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