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Simplicial structures over the 3-sphere and
generalized higher order Hochschild

homology
Samuel Carolus* and Jacob Laubacher

Abstract. In this paper, we investigate the simplicial structure of a chain
complex associated to the higher order Hochschild homology over the 3-
sphere. We also introduce the tertiary Hochschild homology corresponding
to a quintuple (A,B,C, ε, θ), which becomes natural after we organize the
elements in a convenient manner. We establish these results by way of a bar-
like resolution in the context of simplicial modules. Finally, we generalize the
higher order Hochschild homology over a trio of simplicial sets, which also
grants natural geometric realizations.

1 Introduction

In 1971, higher order Hochschild (co)homology was implicitly defined by
Anderson in [1]. Then in 2000, Pirashvili gave an explicit description in the
homological case for any simplicial set in [22]. In particular, the original
Hochschild (co)homology, introduced in [15], is realized when the simplicial
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set is taken to be S1. More generally, the d-sphere was investigated by Ginot
in [13]. Higher order Hochschild (co)homology has been commonly used to
study deformations of algebras and modules (see [2], [5], [10], [11], or [12]),
and has recent applications to string topology and topological chiral homol-
ogy (see [6] and [14], respectively). In the correct setting, the definition was
extended to accommodate multi-module coefficients in [7], and generalized
to include a not necessarily commutative algebra in both [4] and [8]. Higher
order Hochschild (co)homology was even recently generalized over a pair of
simplicial sets in [9].

In [18] the concept of simplicial modules over a simplicial algebra was
introduced. With these simplicial structures, one can generate appropriate
chain complexes which allow the module structures to be different in each di-
mension. This was a necessary modification to accommodate the secondary
Hochschild cohomology (introduced in [23]), which was the primary objec-
tive of these simplicial structures. The main ingredient was a bar simplicial
module which behaves similarly to that of the well-known bar resolution
associated to an algebra. As a consequence, these simplicial structures have
been associated to the usual Hochschild (co)homology of the associative al-
gebra A with coefficients in the A-bimodule M in [18]. Taking A to be
commutative and M to be A-symmetric, this means that we have the struc-
ture for the higher order Hochschild homology over the d-sphere for d = 1.
The case for d = 2 was done in detail in [16]. In Section 3 of this paper we
expand and give detail for the chain complex associated to the higher order
Hochschild homology over S3, using concepts and techniques from [18]. One
of our main goals is to easily visualize and organize the elements, which take
on the shape of a tetrahedron living in three dimensions. For simplicity, we
strip the tetrahedron into layers so as to manipulate it in two dimensions.
There are several advantages to this description. One is a nice mnemonic
rule for remembering how to collapse the degree n tensor product to degree
n− 1. Another is that in general, higher order Hochschild homology cannot
be realized as a functor like the usual can (as the Ext functor); this simplicial
description is the next best thing.

In Section 4 we use these bar-like resolutions and visual representations
to introduce the tertiary Hochschild homology, which corresponds to a mor-
phism of commutative algebras θ : B −→ C inducing both a B-algebra
and a C-algebra structure on A by way of the morphisms ε : B −→ A and
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ε ◦ θ : C −→ A, respectively. This tertiary Hochschild homology reduces, as
one would hope, to the secondary Hochschild homology (introduced in [18]
and studied in [17]), as well as the usual Hochschild homology, under certain
conditions.

We spend Section 5 generalizing the work done in [9]. Instead of working
under one simplicial set, as is classical, or a pair of simplicial sets, as was
done in [9], we work with a trio of simplicial sets. Our argument can easily
be extended to an n-tuple of simplicial sets for any n > 1. We also note
that we work almost exclusively in the homological case, but these results
similarly hold for the cohomological case.

2 Preliminaries

For this paper, we fix k to be a field and we let all tensor products be over
k unless otherwise stated (that is, ⊗ = ⊗k). We set A to be a commutative
k-algebra and M to be an A-symmetric A-bimodule, unless noted to the
contrary. Furthermore, we assume all k-algebras are associative and have
multiplicative unit.

Definition 2.1. ([23]) We call (A,B, ε) a triple if A is a k-algebra, B is
a commutative k-algebra, and ε : B −→ A is a morphism of k-algebras
such that ε(B) ⊆ Z(A). Call (A,B, ε) a commutative triple if A is also
commutative.

2.1 Simplicial structures Most of the results from this section are
from [18]. First, however, recall the classic definition of a pre-simplicial
module, which can be found in foundational texts like [20], [21], and [25].

Definition 2.2. A pre-simplicial module C• is a collection of k-modules
{Cn}n>0 together with morphisms of k-modules δi : Cn −→ Cn−1 for all
0 6 i 6 n such that

δiδj = δj−1δi (2.1)

whenever i < j.

The following results are from [18]. A pre-simplicial k-algebra is simply
a pre-simplicial object in the category of k-algebras. There is a detailed
definition below.
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Definition 2.3. ([18]) A pre-simplicial k-algebra A is a collection of k-
algebras {An}n>0 together with morphisms of k-algebras δAi : An −→ An−1

for all 0 6 i 6 n such that (2.1) is satisfied.

Definition 2.4. ([18]) We say that M is a pre-simplicial left module over
the pre-simplicial k-algebra A ifM = (Mn)n>0 is a pre-simplicial k-vector
space (satisfies (2.1)) together with a left An-module structure on Mn for
all n > 0 such that we have the following natural compatibility condition:

δMi (anmn) = δAi (an)δMi (mn)

for all an ∈ An, for all mn ∈Mn, and for all 0 6 i 6 n.

One can then define a pre-simplicial right module and a pre-cosimplicial
left module in an analogous way.

Recall the Tensor Lemma from [18], which has been adapted for pre-
simplicial modules below:

Lemma 2.5 (Tensor Lemma). ([18]) Suppose that (X , δXi , σXi ) is a pre-
simplicial right module over a pre-simplicial k-algebra A, and (Y, δYi , σYi )
is a pre-simplicial left module over the same pre-simplicial k-algebra. Then
M = (X ⊗A Y, Di) is a pre-simplicial k-module where Mn = Xn ⊗An Yn
for all n > 0, and we take

Di :Mn = Xn ⊗An Yn −→ Xn−1 ⊗An−1 Yn−1 =Mn−1

determined by

Di(xn ⊗An yn) = δXi (xn)⊗An−1 δ
Y
i (yn).

There is a similar result (the Hom Lemma), also presented in [18], which
produces a cochain complex in the same context. We omit it here, but the
construction combines a pre-simplicial left module X and a pre-cosimplicial
left module Y (both over a pre-simplicial k-algebra A) to generate a pre-
cosimplicial k-module, which we denote HomA(X ,Y). Using simplicial
structures, one can then define the secondary Hochschild (co)homologies,
which are studied in [4], [9], [16], [17], [23], and [24].
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2.2 Higher order Hochschild homology For this section we refer
to [1], [13], [19], and [22]. The explicit construction involving any simplicial
set was defined in [22].

Let V be a finite pointed set. We can identify V with v+ = {0, 1, 2, . . . , v}
where |V | = v + 1. We let L(A,M) be a functor from the category of finite
pointed sets to the category of k-vector spaces. Here we define

L(A,M)(V ) = L(A,M)(v+) = M ⊗A⊗v,

and for ϕ : V = v+ −→W = w+ we have

L(A,M)(ϕ) : L(A,M)(v+) −→ L(A,M)(w+)

which is determined as follows:

L(A,M)(ϕ)(m0 ⊗ a1 ⊗ · · · ⊗ av) = m0b0 ⊗ b1 ⊗ · · · ⊗ bw

where
bi =

∏

{j∈v+ : j 6=0, ϕ(j)=i}
aj .

Take X• to be a pointed simplicial set such that |Xn| = sn + 1. We identify
Xn with (sn)+ = {0, 1, 2, . . . , sn}. Define

CX•
n = L(A,M)(Xn) = M ⊗A⊗sn .

For 0 6 i 6 n and di : Xn −→ Xn−1 we define d∗i := L(A,M)(di) and take
∂n : CX•

n −→ CX•
n−1 as

∂n :=

n∑

i=0

(−1)id∗i .

Definition 2.6. ([1], [22]) The higher order Hochschild homology of A with
coefficients in M over the simplicial set X• is defined to be the homology of
the above complex, and is denoted HX•∗ (A,M).

Remark 2.7. Notice that the degeneracy maps si in the simplicial set play
no role in the definition of higher order Hochschild homology, which is why
it is sufficient to consider pre-simplicial modules in Section 2.1.
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2.3 Higher order Hochschild homology over a simplicial pair
This section is adapted from [9]. There the goal was to write the secondary
Hochschild cohomology as a type of higher order Hochschild cohomology.
Here we present the analogous homological construction.

Definition 2.8. ([9]) Let Γ2 be the category of finite pointed pairs. This
category has objects (U, V ), where V is a pointed set with basepoint ∗ and
U is a pointed subset of V . The morphisms in this category are of the form
φ : (U1, V1) −→ (U2, V2), where φ is a morphism of pointed sets φ : V1 −→ V2

with φ(U1) ⊆ φ(U2).

For a pointed pair (U, V ) with |U | = 1 + n and |V | = 1 +m+ n, we set

L((A,B, ε);M) = M ⊗A⊗n ⊗B⊗m.

Then, for φ : (U1, V1) −→ (U2, V2), we define

L((A,B, ε);M)(φ) : M ⊗A⊗n1 ⊗B⊗m1 −→M ⊗A⊗n2 ⊗B⊗m2

by
L((A,B, ε);M)(φ)(m⊗ a1 ⊗ · · · ⊗ an1 ⊗ b1 ⊗ · · · ⊗ bm1)

= mα0 ⊗ α1 ⊗ · · · ⊗ αn2 ⊗ β1 ⊗ · · · ⊗ βm2

,

where for i ∈ U2, we have

αi =
∏

{j∈U1|j 6=∗,φ(j)=i}
aj

∏

{k∈V1\U1|φ(k)=i}
ε(bk) ∈ A

and for p ∈ V2 \ U2 we have

βp =
∏

{q∈V1\U1|q 6=∗,φ(q)=p}
bq ∈ B.

Here we take the convention that if the product is taken over the empty set
then we put αi = 1 ∈ A and βp = 1 ∈ B.

We notice that L((A,B, ε);M) defines a covariant functor from Γ2 to
the category of k-modules.

Then, for a simplicial pair (X•, Y•), by which we mean a functor from
∆ −→ Γ2, we define a complex as follows: for every q ∈ N, take

C(X•,Y•)
q = L((A,B, ε);M)(Xq, Yq)
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and define a boundary map

∂(X•,Y•) =

q∑

i=0

(−1)id∗i

where
d∗i = L((A,B, ε);M)(di) : C(X•,Y•)

q −→ C
(X•,Y•)
q−1 .

Definition 2.9. ([9]) The homology of the above complex is called the higher
order Hochschild homology associated to the simplicial pair (X•, Y•) of the
commutative triple (A,B, ε) with coefficients in M . In dimension q this is
denoted by H(X•,Y•)

q ((A,B, ε);M).

When one takes X• = Y•, one recovers Definition 2.6. In the cohomo-
logical version presented in [9], it was shown that taking a simplicial pair
(X•, Y•) which models (S1, D2), we recover the secondary Hochschild co-
homology as defined in [23]. A similar result is true for the homological
case.

3 Higher order Hochschild homology over the 3-sphere

While higher order Hochschild (co)homology is defined for any simplicial set,
the most studied cases are when the simplicial set models S1 (which recovers
the usual theory) or S2 (see [5] and [16]). With these classic examples in
mind, we now present a convenient chain complex for computing higher order
Hochschild homology over the 3-sphere S3. Together with the previous work,
this suggests an easy generalization to the d-sphere, although we lack the
dimensions to display an accurate visual representation.

3.1 A simplicial set modeling the 3-sphere The goal of this sub-
section is to detail a simplicial set which models S3 and use it to describe a
chain complex for computing higher order Hochschild homology over S3. Let
the 3-sphere S3 be obtained from the 3-simplex � = [0123] by identifying
the boundary to a single point. We denote this non-degenerate 3-simplex
by 0

0�0
0, as seen in Figure 1.

Then for n > 3, we denote by a
d�bc the degenerate n-simplex obtained by

having a additional copies of the vertex [0], b additional copies of the vertex
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3

0

1

2

Figure 1: The non-degenerate 3-simplex 0
0�0

0 = [0123]

[1], c additional copies of the vertex [2], and d additional copies of the vertex
[3] with a + b + c + d + 3 = n. For instance, 1

0�0
0 denotes the degenerate

4-simplex [00123].
We now define the simplicial set X3

• by X0 = {∗0}, X1 = {∗1}, X2 =
{∗2}, and Xn = {∗n}∪{ad�bc : a, b, c, d ∈ N, a+b+c+d+3 = n} for n > 3.
Notice that |Xn| = 1 for 0 6 n 6 2 and |Xn| = 1 +

(
n
3

)
= 1 + n(n−1)(n−2)

6 for
n > 3.

For 0 6 i 6 n define di : Xn −→ Xn−1 by di(∗n) = ∗n−1 and

di(
a
d�bc) =





∗n−1 if a = 0 and i = 0
a−1
d�bc if a 6= 0 and 0 6 i 6 a
∗n−1 if b = 0 and i = a+ 1
a
d�b−1

c if b 6= 0 and a+ 1 6 i 6 a+ b+ 1

∗n−1 if c = 0 and i = a+ b+ 2
a
d�bc−1 if c 6= 0 and a+ b+ 2 6 i 6 a+ b+ c+ 2

∗n−1 if d = 0 and i = a+ b+ c+ 3
a

d−1�bc if d 6= 0 and a+ b+ c+ 3 6 i 6 n.

(3.1)
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To make this a full simplicial set, the degeneracy maps si : Xn −→ Xn+1

are defined in the obvious way, but since they do not serve a role in defining
higher order Hochschild homology, we omit them here.

Recall that for the usual Hochschild (co)homology, the tensor product
A⊗n is arranged in a line. Also, in the case of higher order Hochschild
(co)homology over S2, the tensor product A⊗

n(n−1)
2 is arranged as the upper

triangular part of an n×n tensor matrix. Now, from the definition of higher
order Hochschild homology (Definition 2.6), we see we shall have a tensor
product A⊗

n(n−1)(n−2)
6 in the case of S3. We will arrange this tensor product

as what we’ll call an upper tetrahedral matrix embedded in an n × n × n
tensor matrix. To do this rigorously, we define a new simplicial set according
to the following picture.

Consider the n × n × n integer lattice labeled by generalizing the po-
sitions of a matrix, starting with (1, 1, 1) on the closest left corner. By a
“row", we mean a collection of positions having the same first coordinate,
by a “column", we mean a collection of positions having the same second
coordinate, and by a “layer", we mean a collection of positions having the
same third coordinate.

Now, for n > 3, notice that the positions corresponding to

xn+ = {(j, k, l) | j, k, l ∈ N, 1 6 j < k < l 6 n}

describe a tetrahedron. These positions form what we call an upper tetrahe-
dral matrix.

Now we shall formalize the relationship between Xn and the upper tetra-
hedral matrix. For n > 3 we identify elements from Xn \{∗n} with elements
from xn+ as follows: we identify a

d�bc ∈ Xn to

(a+ 1, a+ b+ 2, a+ b+ c+ 3) ∈ xn+. (3.2)

Proposition 3.1. Let n > 3. Set Xn = {∗n} ∪ {ad�bc | a, b, c, d ∈ N, a+ b+
c+d+ 3 = n} and xn+ = {(j, k, l) | j, k, l ∈ N, 1 6 j < k < l 6 n}. Then the
map f : Xn \{∗n} −→ xn+ defined by f(ad�bc) = (a+ 1, a+ b+ 2, a+ b+ c+ 3)
is a bijection.

Proof. Notice that if 1 6 j < k < l 6 n, then j − 1 > 0, k − j − 1 > 0,
l−k−1 > 0, n− l > 0, and (j−1)+(k−j−1)+(l−k−1)+(n− l)+3 = n.
So j−1

n−l�
k−j−1
l−k−1 ∈ xn+, and f(j−1

n−l�
k−j−1
l−k−1 ) = (j− 1 + 1, j− 1 + l−k− 1 + 2, j−
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1 + l − k − 1 + k − j − 1 + 3) = (j, k, l), hence f is surjective. Moreover, if
f(ad�bc) = f(wz �xy), then (a+1, a+b+2, a+b+c+3) = (w+1, w+x+2, w+
x + y + 3), so in particular, a = w, b = x, c = y, and hence d = z (since
a+ b+ c+ d = w+ x+ y + z), that is, ad�bc =w

z �xy . Thus f is injective.

Let ∗n correspond to (0, 0, 0). Then equation (3.1), under the identifica-
tion of (3.2), becomes:

di(j, k, l) =





(0, 0, 0) if j = 1 and i = 0

(j − 1, k − 1, l − 1) if j 6= 1 and 0 6 i 6 j − 1

(0, 0, 0) if k = j + 1 and i = j

(j, k − 1, l − 1) if > j + 1 and j 6 i 6 k − 1

(0, 0, 0) if l = k + 1 and i = k

(j, k, l − 1) if l > k + 1 and k 6 i 6 l − 1

(0, 0, 0) if l = n and i = l

(j, k, l) if l < n and l 6 i 6 n.

What we have is the simplicial set (Xn, di) as a model for S3, and an
isomorphic simplicial set (xn+ ∪ {(0, 0, 0)}, di) which represents positions in
the upper tetrahedral tensor matrix of the chain complex for higher order
Hochschild homology over S3.

From the definition of higher order Hochschild homology (Definition 2.6),
we know that CX3

•
n (A,M) = L(A,M)(Xn) = M ⊗A⊗n(n−1)(n−2)

6 .

Notation 3.2. The three-dimensional integer lattice organizing the tensor
product should be kept in mind, but is unwieldy to write on paper. For
this reason, we shall “slice" along the third coordinate and write the three
dimensional picture one layer at a time. To reduce clutter, we shall only
include positions (j, k, l) in each layer which have j 6 k 6 l. Positions
which are not in the set xn+ will be filled in with a placeholder 1.
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Then an element in M ⊗A⊗n(n−1)(n−2)
6 will be written as

m⊗
(

1
)
⊗
(

1 1
1

)
⊗

n⊗

l=3




1 a1,2,l a1,3,l · · · a1,l−1,l 1
1 a2,3,l · · · a2,l−1,l 1

. . . . . .
...

...
1 al−2,l−1,l 1

1 1
1



,

where each l represents one of the aforementioned layers. The three-dimensional
upper tetrahedral matrix can be recovered by lining up all of the 1 ’s. Hence-
forth, any time we slice an upper tetrahedral matrix in this way, we will circle
the upper left hand corner of each layer to remind ourselves of how they align
in three dimensions.

To see how these two representations work, consider the cases n = 2, 3, 4:

m⊗ 1

1 1

1

(a) In three dimensions

m⊗
(

1
)
⊗
(

1 1
1

)

(b) Sliced representation

Figure 2: Upper tetrahedral matrix for M ⊗A0 (n = 2)

Of course, this is not very interesting, so let’s see the first interesting
cases of n = 3 and n = 4:

We then have that di : Xn −→ Xn−1 induces d∗i := L(A,M)(di), and so

d∗i
(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗

n⊗

l=3




1 a1,2,l a1,3,l · · · a1,l−1,l 1
1 a2,3,l · · · a2,l−1,l 1

. . . . . .
...

...
1 al−2,l−1,l 1

1 1
1




)
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m⊗ 1

1

1

1

a1,2,3 1

1

1 1

1

(a) In three dimensions

m⊗
(

1
)
⊗
(

1 1
1

)
⊗




1 a1,2,3 1
1 1

1




(b) Sliced representation

Figure 3: Upper tetrahedral matrix for M ⊗A1 (n = 3)

= mb0,0,0 ⊗
(

1
)
⊗
(

1 1
1

)
⊗

n−1⊗

l=3




1 b1,2,l b1,3,l · · · b1,l−1,l 1
1 b2,3,l · · · b2,l−1,l 1

. . . . . .
...

...
1 bl−2,l−1,l 1

1 1
1




where
bj,k,l =

∏

{(x,y,z)∈xn+ | di(x,y,z)=(j,k,l)}
ax,y,z.

Taking ∂n : M ⊗ A⊗n(n−1)(n−2)
6 −→ M ⊗ A⊗ (n−1)(n−2)(n−3)

6 to be ∂n :=∑n
i=0(−1)id∗i , we have defined the chain complex

. . .
∂n+1−−−−→M ⊗A⊗

n(n−1)(n−2)
6

∂n−−−→M ⊗A⊗
(n−1)(n−2)(n−3)

6
∂n−1−−−−→ . . .

. . .
∂6−−→M⊗A⊗10 ∂5−−→M⊗A⊗4 ∂4−−→M⊗A ∂3−−→M

∂2−−→M
∂1−−→M −→ 0

which we denote by C
X3
•• (A,M).

Remark 3.3. Roughly speaking, each d∗i map represents a different way to
take an upper tetrahedral matrix in an n×n×n integer lattice and collapse
it onto an upper tetrahedral matrix that fits into an (n−1)×(n−1)×(n−1)
integer lattice. We first work through a low dimensional example: consider
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m⊗ 1

1

1

1

1

a1,2,3

a1,2,4

1

1

1 1

1

a1,3,4 1

1 a2,3,4 1

1 1

1

(a) In three dimensions

m⊗
(

1
)
⊗
(

1 1
1

)
⊗




1 a1,2,3 1
1 1

1


⊗




1 a1,2,4 a1,3,4 1
1 a2,3,4 1

1 1
1




(b) Sliced representation

Figure 4: Upper tetrahedral matrix for M ⊗A4 (n = 4)

n = 4. Recall x4
+ consists of the elements (2, 3, 4), (1, 3, 4), (1, 2, 4), and

(1, 2, 3). Then the maps d∗i are as follows:

d0(2, 3, 4) = (1, 2, 3)
d1(2, 3, 4) = (1, 2, 3)
d2(2, 3, 4) = (0, 0, 0)
d3(2, 3, 4) = (0, 0, 0)
d4(2, 3, 4) = (0, 0, 0)
d0(1, 3, 4) = (0, 0, 0)
d1(1, 3, 4) = (1, 2, 3)

d2(1, 3, 4) = (1, 2, 3)
d3(1, 3, 4) = (0, 0, 0)
d4(1, 3, 4) = (0, 0, 0)
d0(1, 2, 4) = (0, 0, 0)
d1(1, 2, 4) = (0, 0, 0)
d2(1, 2, 4) = (1, 2, 3)
d3(1, 2, 4) = (1, 2, 3)

d4(1, 2, 4) = (0, 0, 0)

d0(1, 2, 3) = (0, 0, 0)

d1(1, 2, 3) = (0, 0, 0)

d2(1, 2, 3) = (0, 0, 0)

d3(1, 2, 3) = (1, 2, 3)

d4(1, 2, 3) = (1, 2, 3)
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Therefore, we see that

d∗0
(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗




1 a1,2,3 1
1 1

1


⊗




1 a1,2,4 a1,3,4 1
1 a2,3,4 1

1 1
1



)

= mb0,0,0 ⊗
(

1
)
⊗
(

1 1
1

)
⊗




1 b1,2,3 1
1 1

1




= ma1,2,3a1,2,4a1,3,4 ⊗
(

1
)
⊗
(

1 1
1

)
⊗




1 a2,3,4 1
1 1

1


 .

Observe that d∗0 is removing the first row, column, and layer of the
4 × 4 × 4 integer lattice, which in our upper tetrahedral matrix consists
of the top row, or a1,2,3, a1,2,4, and a1,3,4. The product of these elements
becomes the coefficient of m. What’s left is now a 3× 3× 3 integer lattice,
and we have an upper tetrahedral matrix in there.

Next,

d∗1
(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗




1 a1,2,3 1
1 1

1


⊗




1 a1,2,4 a1,3,4 1
1 a2,3,4 1

1 1
1



)

= mb0,0,0 ⊗
(

1
)
⊗
(

1 1
1

)
⊗




1 b1,2,3 1
1 1

1




= ma1,2,3a1,2,4 ⊗
(

1
)
⊗
(

1 1
1

)
⊗




1 a1,3,4a2,3,4 1
1 1

1


 .

We see that d∗1 collapses the first row, column, and layer of the 4× 4× 4
integer lattice onto the second row, column, and layer, respectively, which
results in a 3 × 3 × 3 integer lattice. This forces some elements from the
upper tetrahedral matrix (namely a1,2,3 and a1,2,4) into a position where
there should be a placeholder 1, so they are replaced with placeholder 1’s
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and their product becomes a coefficient of m. The collapsing induces a
product between a1,3,4 and a2,3,4 which slots in the new position (1, 2, 3).

Also,

d∗2
(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗




1 a1,2,3 1
1 1

1


⊗




1 a1,2,4 a1,3,4 1
1 a2,3,4 1

1 1
1



)

= b0,0,0 ⊗
(

1
)
⊗
(

1 1
1

)
⊗




1 b1,2,3 1
1 1

1




= ma1,2,3a2,3,4 ⊗
(

1
)
⊗
(

1 1
1

)
⊗




1 a1,2,4a1,3,4 1
1 1

1


 .

Here we see a collapse of the second row onto the third row, the second
column onto the third column, and the second layer onto the third layer to
get a 3×3×3 integer lattice. This again forces some elements from the upper
tetrahedral matrix to the boundary (a1,2,3 and a2,3,4), so they are replaced
with placeholder 1’s and their product becomes the coefficient of m. The
collapsing of the second column onto the third forces a product of a1,2,4 and
a1,3,4 which sits in the new position (1, 2, 3).

Now,

d∗3
(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗




1 a1,2,3 1
1 1

1


⊗




1 a1,2,4 a1,3,4 1
1 a2,3,4 1

1 1
1



)

= b0,0,0 ⊗
(

1
)
⊗
(

1 1
1

)
⊗




1 b1,2,3 1
1 1

1




= ma1,3,4a2,3,4 ⊗
(

1
)
⊗
(

1 1
1

)
⊗




1 a1,2,3a1,2,4 1
1 1

1


 .

The description for d∗3 is similar to that of d∗1 and d∗2 with the third row,
column, and layer being collapsed onto the fourth row, column, and layer,
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respectively. By looking carefully at the placeholder 1’s, one can observe

that the first two layers of
(

1
)
⊗
(

1 1
1

)
are unaffected by this map.

Finally,

d∗4
(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗




1 a1,2,3 1
1 1

1


⊗




1 a1,2,4 a1,3,4 1
1 a2,3,4 1

1 1
1



)

= b0,0,0 ⊗
(

1
)
⊗
(

1 1
1

)
⊗




1 b1,2,3 1
1 1

1




= ma1,2,4a1,3,4a2,3,4 ⊗
(

1
)
⊗
(

1 1
1

)
⊗




1 a1,2,3 1
1 1

1


 .

The description here is a kind of mirror to d∗0. Namely, that the last
row, column, and layer are being removed from the 4× 4× 4 integer lattice
to obtain a 3× 3× 3 integer lattice. For the upper tetrahedral matrix, this
corresponds to the elements in the last layer to be multiplied together and
that product becoming the coefficient of m.

Then ∂4 : M ⊗ A ⊗ A ⊗ A ⊗ A −→ M ⊗ A is given by the alternating
sum of the above five terms. That is,

∂4

(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗




1 a1,2,3 1
1 1

1


⊗




1 a1,2,4 a1,3,4 1
1 a2,3,4 1

1 1
1



)

= ma1,2,3a1,2,4a1,3,4 ⊗
(
1
)
⊗
(

1 1
1

)
⊗




1 a2,3,4 1
1 1

1




−ma1,2,3a1,2,4 ⊗
(
1
)
⊗
(

1 1
1

)
⊗




1 a1,3,4a2,3,4 1
1 1

1




+ma1,2,3a2,3,4 ⊗
(
1
)
⊗
(

1 1
1

)
⊗




1 a1,2,4a1,3,4 1
1 1

1




−ma1,3,4a2,3,4 ⊗
(
1
)
⊗
(

1 1
1

)
⊗




1 a1,2,3a1,2,4 1
1 1

1




+ma1,2,4a1,3,4a2,3,4 ⊗
(
1
)
⊗
(

1 1
1

)
⊗




1 a1,2,3 1
1 1

1


 .
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Remark 3.4. One can do similar computations for any n > 1. In general
we have that ∂n : M ⊗ A⊗n(n−1)(n−2)

6 −→ M ⊗ A⊗ (n−1)(n−2)(n−3)
6 with ∂n :=

n∑
i=0

(−1)id∗i determined by

d
∗
0

(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗

n⊗

l=3




1 a1,2,l a1,3,l · · · a1,l−1,l 1
1 a2,3,l · · · a2,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1




)

= m
∏

1<k<l6n

a1,k,l ⊗
(
1
)
⊗
(

1 1
1

)
⊗

n⊗

l=4




1 a2,3,l a2,4,l · · · a2,l−1,l 1
1 a3,4,l · · · a3,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1




,

d
∗
i

(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗

n⊗

l=3




1 a1,2,l a1,3,l · · · a1,l−1,l 1
1 a2,3,l · · · a2,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1




)

= m

i−1∏

j=1

aj,i,i+1

n∏

l=i+2

ai,i+1,l ⊗
(
1
)
⊗
(

1 1
1

)
⊗

i−1⊗

l=3




1 a1,2,l a1,3,l · · · a1,l−1,l 1
1 a2,3,l · · · a2,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1




⊗




1 a1,2,ia1,2,i+1 a1,3,ia1,3,i+1 · · · a1,i−1,ia1,i−1,i+1 1
1 a2,3,ia2,3,i+1 · · · a2,i−1,ia2,i−1,i+1 1

. . .
. . .

.

.

.
.
.
.

1 ai−2,i−1,iai−2,i−1,i+1 1
1 1

1




⊗
n⊗

l=i+2




1 a1,2,l · · · a1,i,la1,i+1,l a1,i+2,l · · · a1,l−1,l 1

. . .
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
1 ai−1,i,lai−1,i+1,l ai−1,i+2,l · · · ai−1,l−1,l 1

1 ai,i+1,lai+1,i+2,l · · · ai,l−1,lai+1,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1




for 1 6 i 6 n− 1, and

d
∗
n

(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗

n⊗

l=3




1 a1,2,l a1,3,l · · · a1,l−1,l 1
1 a2,3,l · · · a2,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1




)
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= m
∏

16j<l<n

aj,l,n ⊗
(
1
)
⊗
(

1 1
1

)
⊗

n−1⊗

l=3




1 a1,2,l a1,3,l · · · a1,l−1,l 1
1 a2,3,l · · · a2,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1




.

Now we shall think of our n × n × n integer lattice again and reframe
these descriptions geometrically. The first row, column, and layer of our
integer lattice consist of indices of the form (1, k, l), (j, 1, l), and (j, k, 1),
respectively. Then d∗0 removes them to get an (n−1)×(n−1)×(n−1) integer
lattice. From our upper tetrahedral matrix, this corresponds to elements in
the top being all multiplied together to become the coefficient on m. The
rest of the integer lattice, and in particular, a smaller upper tetrahedral
matrix, is left intact and is of the correct size.

For the maps d∗i with 0 < i < n, the descriptions are very similar to
each other, so for example, we consider i = 2. This collapses second row,
column, and layer onto the third row, column, and layer, respectively, of the
n×n×n integer lattice to obtain an (n−1)×(n−1)×(n−1) integer lattice.
Notice that indices with a 1 in them are left alone. Some elements of the
upper tetrahedral matrix now lie where placeholder 1’s should be, so they
are replaced with placeholder 1’s and their product becomes the coefficient
onm. These elements are in the positions (j, 2, 3) or (2, 3, l). This collapsing
also makes a product between pairs of elements whose indices are the same in
two coordinates and one has a 2 and the other a 3 in the third coordinate. We
now have an upper tetrahedral matrix which fits in an (n−1)×(n−1)×(n−1)
integer lattice.

Finally, the description for d∗n is the mirror of d∗0. That is, it removes the
last row, column, and layer of the integer lattice. From our upper tetrahedral
matrix, this corresponds to the last layer being all multiplied together and
the product becoming the coefficient of m. The rest of the upper tetrahedral
matrix is left unchanged, and now fits in an (n−1)×(n−1)×(n−1) integer
lattice.

Remark 3.5. This idea of collapsing is in the spirit of the usual description
of the Hochschild homology, and is similar to what has been done for the
higher order over S2 in [16] and for the secondary in [9] and [23]. This
mnemonic rule is the main advantage of this particular description of the
chain complex for computing HS3

∗ (A,M). In the usual case (that is, over
S1), we are collapsing in one dimension, so the i-th face map collapses the
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elements in adjacent positions i and i + 1 of the tensor product together.
Meanwhile, over S2 and for the secondary, we collapse in two dimensions, so
the i-th face map collapses elements in the i-th row and column of the tensor
matrix onto the elements in the (i+1)-st row and column, respectively, onto
each other.

3.2 Simplicial structures over the 3-sphere The scope of this
section is to introduce a pre-simplicial algebra A3(A) and pre-simplicial
modulesM3(M) and B3(A) over A3(A) so that

H∗(M3(M)⊗A3(A) B3(A)) ∼= HS3

∗ (A,M).

This is in the spirit of what was done for the secondary Hochschild coho-
mology in [18] and for the higher order Hochschild homology over S2 in [16].
These can all be thought of as generalizations of the classic bar resolution
that is used for computing the usual Hochschild homology.

Example 3.6. Define the pre-simplicial k-algebra A3(A) by setting An =
A⊗2n2+4n+4. Before we get to defining the morphisms δAi : An −→ An−1,
we first need to subscribe to a polite way to organize our elements.

Picture an (n+2)×(n+2)×(n+2) integer lattice with positions labelled
(j, k, l) where 0 6 j, k, l 6 n + 1. Notice that the n × n × n integer lattice
from the last section is sitting inside at positions (j, k, l) with 1 6 j, k, l 6 n.
Consider the set

yn+ := {(j, k, l) | 0 6 j 6 k 6 l 6 n+ 1 and one of the following:
j = 0 or l = n+ 1 or j = k or k = l}.

At these indices are precisely the faces of a tetrahedron which engulfs our
upper tetrahedral matrix from the previous section. As a picture, sliced
along the third coordinate as before, we have:
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X =

n⊗

l=0




α0,0,l α0,1,l α0,2,l · · · α0,l−2,l α0,l−1,l α0,l,l

α1,1,l α1,l,l

α2,2,l α2,l,l

. . .
...

αl−2,l−2,l αl−2,l,l

αl−1,l−1,l αl−1,l−1,l

αl,l,l




⊗




α0,0,n+1 α0,1,n+1 α0,2,n+1 · · · α0,n−1,n+1 α0,n,n+1 α0,n+1,n+1

α1,1,n+1 α1,2,n+1 · · · α1,n−1,n+1 α1,n,n+1 α1,n+1,n+1

α2,2,n+1 · · · α2,n−1,n+1 α2,n,n+1 α2,n+1,n+1

. . .
...

...
...

αn−1,n−1,n+1 αn−1,n,n+1 αn−1,n+1,n+1

αn,n,n+1 αn,n+1,n+1

αn+1,n+1,n+1




.

Notation 3.7. Similar to our notation from last section, the three dimen-
sional picture can be recovered again by lining up the boxed entries. The
boxes a will appear whenever we are working with the pre-simplicial algebra
or pre-simplicial modules. The circles a will refer to the original construc-
tion from the last section. We make this differentiation because while the
pictures look similar, the index sets are different. In the last section, the
indices ranged from 1 to n, but in the simplicial setting, the indices range
from 0 to n+ 1.

Remark 3.8. Notice that the zeroth, first, second, and last layers are each
an upper triangular matrix, but for layers 3, 4, . . . , n, the positions indexed
by elements in xn+ are not included, so there is empty space in the middle
of these layers. For example, these are the layers for n = 3:

(
α0,0,0

)
⊗
(
α0,0,1 α0,1,1

α1,1,1

)
⊗



α0,0,2 α0,1,2 α0,2,2

α1,1,2 α1,2,2

α2,2,2
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⊗




α0,0,3 α0,1,3 α0,2,3 α0,3,3

α1,1,3 α1,3,3

α2,2,3 α2,3,3

α3,3,3


⊗




α0,0,4 α0,1,4 α0,2,4 α0,3,4 α0,4,4

α1,1,4 α1,2,4 α1,3,4 α1,4,4

α2,2,4 α2,3,4 α2,4,4

α3,3,4 α3,4,4

α4,4,4



.

Now we shall count how many nonempty entries there are. The first
layer is always size 1, and the last layer has (n+3)(n+2)

2 . For 0 < l < n + 1,
the l-th layer has 1 in the left column, 2 each in the l − 1 middle columns,
and l+ 1 in the last column, for a total of 1 + 2(l− 1) + l+ 1 = 3l. In total,

in dimension n we have 1 +
n∑
l=1

3l + (n+1)(n+2)
2 = 2n2 + 4n + 4. Thus, for

the simplicial algebra A3(A) with An = A⊗2n2+4n+4, we arrange this tensor
product as the above upper tetrahedral tensor matrix.

Now we define

δ
A
i (X) =

i−1⊗

l=0




α0,0,l α0,1,l α0,2,l · · · α0,l−2,l α0,l−1,l α0,l,l

α1,1,l α1,l,l
α2,2,l α2,l,l

. . .
.
.
.

αl−2,l−2,l αl−2,l,l
αl−1,l−1,l αl−1,l−1,l

αl,l,l




⊗




α0,0,iα0,0,i+1 α0,1,iα0,1,i+1 · · · α0,i−1,iα0,i−1,i+1 α0,i,iα0,i,i+1α0,i+1,i+1

α1,1,iα1,1,i+1 α1,i,iα1,i+1,i+1

. . .
.
.
.

αi−1,i−1,iαi−1,i−1,i+1 αi−1,i,iαi−1,i+1,i+1
αi,i,iαi,i,i+1αi,i+1,i+1αi+1,i+1,i+1




⊗
n⊗

l=i+2




α0,0,l α0,1,l · · · α0,i,lα0,i+1,l · · · α0,l−1,l α0,l,l

α1,1,l α1,l,l

. . .
.
.
.

αi,i,lαi+1,i+1,l αi,l,lαi+1,l,l

. . .
.
.
.

αl−1,l−1,l αl−1,l,l
αl,l,l




⊗




α0,0,n+1 α0,1,n+1 · · · α0,i,n+1α0,i+1,n+1 · · · α0,n+1,n+1

α1,1,n+1 · · · α1,i,n+1α1,i+1,n+1 · · · α1,n+1,n+1

. . .
.
.
.

. . .
.
.
.

αi,i,n+1αi,i+1,n+1αi+1,i+1,n+1 · · · αi,n+1,n+1αi+1,n+1,n+1

. . .
.
.
.

αn+1,n+1,n+1




.
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As in the last section, we think of these upper tetrahedral tensor matrices
as embedded in an (n+ 2)× (n+ 2)× (n+ 2) integer lattice matrix. Then
we have an explanation for how these face and degeneracy maps work, that
is, similar to that of the higher order Hochschild homology over S3 in the
previous section. Indeed, δAi collapses the i-th row, column, and layer onto
the (i + 1)-st row, column, and layer of the (n + 2) × (n + 2) × (n + 2)
integer lattice, respectively. This yields an (n+ 1)× (n+ 1)× (n+ 1) integer
lattice which preserves the upper tetrahedral matrix. This has the effect
of collapsing an upper tetrahedral sub-matrix found at positions (i, i, i),
(i, i, i+ 1), (i, i+ 1, i+ 1), and (i+ 1, i+ 1, i+ 1) to a point. Note that some
positions on the edges of the tetrahedron have a neighbor collapsed on them
in two orthogonal directions, e.g. for (0, i, i + 1) having both (0, i, i) and
(0, i+ 1, i+ 1). This occurs at the top of the i-th column and at the back of
the i-th row. Otherwise, members of the (i + 1)-st row, column, and layer
have just one neighbor in the i-th row, column, and layer. Moreover, notice
that before the i-th row, column, and layer, no change is made. Finally, after
the (i+ 1)-st row, column, and layer, no change is made except a reduction
of each coordinate by one.

Proposition 3.9. Taking A3(A) to be the collection of k-algebras {An =
A⊗2n2+4n+4}n>0, together with the maps δAi (described above) defines a pre-
simplicial algebra.

Proof. An easy verification of the definition.

These maps are best understood by way of an example. Indeed, consider
an element in A3 = A⊗34. Let

E =
(
α0,0,0

)
⊗
(
α0,0,1 α0,1,1

α1,1,1

)
⊗



α0,0,2 α0,1,2 α0,2,2

α1,1,2 α1,2,2

α2,2,2




⊗




α0,0,3 α0,1,3 α0,2,3 α0,3,3

α1,1,3 α1,3,3

α2,2,3 α2,3,3

α3,3,3


⊗




α0,0,4 α0,1,4 α0,2,4 α0,3,4 α0,4,4

α1,1,4 α1,2,4 α1,3,4 α1,4,4

α2,2,4 α2,3,4 α2,4,4

α3,3,4 α3,4,4

α4,4,4



.
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Then we have:

δ
A
0 (E) =

(
α0,0,0α0,0,1α0,1,1α1,1,1

)
⊗
(
α0,0,2α0,1,2α1,1,2 α0,2,2α1,2,2

α2,2,2

)

⊗



α0,0,3α0,1,3α1,1,3 α0,2,3 α0,3,3α1,3,3

α2,2,3 α2,2,3
α3,3,3




⊗




α0,0,4α0,1,4α1,1,4 α0,2,4α1,2,4 α0,3,4α1,3,4 α0,4,4α1,4,4

α2,2,4 α2,3,4 α2,4,4
α3,3,4 α3,4,4

α4,4,4


 ,

δ
A
1 (E) =

(
α0,0,0

)
⊗
(
α0,0,1α0,0,2 α0,1,1α0,1,2α0,2,2

α1,1,1α1,1,2α1,2,2α2,2,2

)

⊗



α0,0,3 α0,1,3α0,2,3 α0,3,3α1,3,3

α1,1,3α2,2,3 α1,3,3α2,3,3
α3,3,3




⊗




α0,0,4 α0,1,4α0,2,4 α0,3,4 α0,4,4

α1,1,4α1,2,4α2,2,4 α1,3,4α2,3,4 α1,4,4α2,4,4
α3,3,4 α3,4,4

α4,4,4


 ,

δ
A
2 (E) =

(
α0,0,0

)
⊗
(
α0,0,1 α0,1,1

α1,1,1

)

⊗



α0,0,2α0,0,3 α0,1,2α0,1,3 α0,2,2α0,2,3α0,3,3

α1,1,2α1,1,3 α1,2,2α1,3,3
α2,2,2α2,2,3α2,3,3α3,3,3




⊗




α0,0,4 α0,1,4 α0,2,4α0,3,4 α0,4,4

α1,1,4 α1,2,4α1,3,4 α1,4,4
α2,2,4α2,3,4α3,3,4 α2,4,4α3,4,4

α4,4,4


 ,

δ
A
3 (E) =

(
α0,0,0

)
⊗
(
α0,0,1 α0,1,1

α1,1,1

)
⊗



α0,0,2 α0,1,2 α0,2,2

α1,1,2 α1,2,2
α2,2,2




⊗




α0,0,3α0,0,4 α0,1,3α0,1,4 α0,2,3α0,2,4 α0,3,3α0,3,4α0,4,4

α1,1,3α1,1,4 α1,2,4 α1,3,3α1,3,4α1,4,4
α2,2,3α2,2,4 α2,3,3α2,3,4α2,4,4

α3,3,3α3,3,4α3,4,4α4,4,4


 .

Example 3.10. We now introduce the pre-simplicial left module B3(A) over
the pre-simplicial k-algebra A3(A). Simply put, we fill in the tetrahedron
outlined by an element from A3(A). That is, an element in Bn can be
indexed by zn+ := yn+ ∪ xn+ = {(j, k, l) | 0 6 j 6 k 6 l 6 n+ 1}. Thus we set

Bn = A⊗
(n+2)(n+3)(n+4)

6 . An element from Bn will be written in sliced form
as

Y =

n+1⊗

l=0




a0,0,l a0,1,l · · · a0,l−1,l a0,l,l

a1,1,l · · · a1,l−1,l a1,l,l

. . .
...

...
al−1,l−1,l al−1,l,l

al,l,l



.
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Notice that this is similar to an element from An except here, each layer
is a full upper triangular matrix.

The multiplication An×Bn −→ Bn is given by writing Bn = An⊗B′n =
A⊗|x

n
+| ⊗ A|⊗|yn+|, where B′n = A⊗|y

n
+|. Then, for α ∈ An and b ∈ Bn, we

write b = a⊗ b′, and define α · b = α · (a⊗ b′) = (αa)⊗ b′.
Alternatively described, it is given by overlaying the element from An

on the element from Bn. That is, we multiply the elements whose indices
are in yn+. Indeed, given the element Y ∈ Bn with a’s for its entries and the
element X ∈ An with α’s for its entries, we have

XY =

n⊗

l=0




α0,0,la0,0,l α0,1,la0,1,l · · · α0,l−1,la0,l−1,l α0,l,la0,l,l

α1,1,la1,1,l · · · a1,l−1,l α1,l,la1,l,l

. . .
.
.
.

.

.

.
αl−1,l−1,lal−1,l−1,l αl−1,l,lal−1,l,l

αl,l,lal,l,l




⊗




α0,0,n+1a0,0,n+1 α0,1,n+1a0,1,n+1 · · · α0,n,n+1a0,n,n+1 α0,n+1,n+1a0,n+1,n+1

α1,1,n+1a1,1,n+1 · · · α1,n,n+1a1,n,n+1 α1,n+1,n+1a1,n+1,n+1

. . .
.
.
.

.

.

.
αn,n,n+1an,n,n+1 αn,n+1,n+1an,n+1,n+1

αn+1,n+1,n+1an+1,n+1,n+1



.

Furthermore, define

δ
B
i (Y ) =

i−1⊗

l=0




a0,0,l a0,1,l · · · a0,l,l

a1,1,l · · · a1,l,l

. . .
.
.
.

al,l,l




⊗




a0,0,ia0,0,i+1 a0,1,ia0,1,i+1 · · · a0,i−1,ia0,i−1,i+1 a0,i,ia0,i,i+1a0,i+1,i+1

a1,1,ia1,1,i+1 · · · a1,i−1,ia1,i−1,i+1 a1,i,ia1,i,i+1a1,i+1,i+1

. . .
.
.
.

.

.

.
ai−1,i−1,iai−1,i−1,i+1 ai−1,i,iai−1,i,i+1ai−1,i+1,i+1

ai,i,iai,i,i+1ai,i+1,i+1ai+1,i+1,i+1




⊗
n+1⊗

l=i+2




a0,0,l · · · a0,i,la0,i+1,l · · · a0,l,l

. . .
.
.
.

. . .
.
.
.

ai,i,lai,i+1,lai+1,i+1,l · · · ai,l,lai+1,l,l

. . .
.
.
.

al,l,l




.

Remark 3.11. Notice that δBi can be described in much the same way as δAi ,
with the difference that each layer is a full upper triangular matrix. That is,
δBi collapses the i-th row, column, and layer onto the (i+ 1)-st row, column,
and layer. As before, this forces the collapse of the the upper tetrahedral
sub-matrix consisting of positions (i, i, i), (i, i, i + 1), (i, i + 1, i + 1), and
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(i + 1, i + 1, i + 1) to a single point. At the top of column i + 1, the back
of row i + 1, and the right side of layer i + 1 this forces a product of three
elements. Elsewhere on row, column, and layer i+1, we have the product of
just two elements. Before position i, the upper tetrahedral tensor matrix is
unchanged. After position i+ 1, elements are reindexed to lose one in each
coordinate.

Proposition 3.12. Taking B3(A) to be the collection
{Bn = A⊗

(n+2)(n+3)(n+4)
6 }n>0 together with the maps δBi forms a left pre-

simplicial module over the pre-simplicial algebra A3(A).

Proof. An easy verification of the definition.

Example 3.13. Define the pre-simplicial right module M3(M) over the
pre-simplicial k-algebra A3(A) by setting Mn = M and δMi = idM for all
n > 0. The multiplication on Mn is given by

m · (X) = m
∏

(j,k,l)∈yn+

αj,k,l.

This makes sense because M is an A-symmetric A-bimodule and A is com-
mutative. It should be clear that this is indeed a pre-simplicial right module
over A3(A).

From Lemma 2.5 (the Tensor Lemma) we note thatM3(M)⊗A3(A)B3(A)
is a pre-simplicial k-module. In dimension n, we have

Mn ⊗An Bn = M ⊗An A⊗
(n+2)(n+3)(n+4)

6 .

Following Lemma 2.5, the maps Di : M ⊗An A⊗
(n+2)(n+3)(n+4)

6 −→M ⊗An−1

A⊗
(n+1)(n+2)(n+3)

6 (for 0 6 i 6 n) are

Di

(
m⊗An ⊗

n+1⊗

l=0




a0,0,l a0,1,l · · · a0,l−1,l a0,l,l

a1,1,l · · · a1,l−1,l a1,l,l

. . .
.
.
.

.

.

.
al−1,l−1,l al−1,l,l

al,l,l




)

= δ
M
i (m)⊗An−1

δ
B
i

(
⊗

n+1⊗

l=0




a0,0,l a0,1,l · · · a0,l−1,l a0,l,l

a1,1,l · · · a1,l−1,l a1,l,l

. . .
.
.
.

.

.

.
al−1,l−1,l al−1,l,l

al,l,l




)
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= m⊗An−1
⊗

i−1⊗

l=0




a0,0,l a0,1,l · · · a0,l,l

a1,1,l · · · a1,l,l

. . .
.
.
.

al,l,l




⊗




a0,0,ia0,0,i+1 a0,1,ia0,1,i+1 · · · a0,i−1,ia0,i−1,i+1 a0,i,ia0,i,i+1a0,i+1,i+1

a1,1,ia1,1,i+1 · · · a1,i−1,ia1,i−1,i+1 a1,i,ia1,i,i+1a1,i+1,i+1

. . .
.
.
.

.

.

.
ai−1,i−1,iai−1,i−1,i+1 ai−1,i,iai−1,i,i+1ai−1,i+1,i+1

ai,i,iai,i,i+1ai,i+1,i+1ai+1,i+1,i+1




⊗
n+1⊗

l=i+2




a0,0,l · · · a0,i,la0,i+1,l · · · a0,l,l

. . .
.
.
.

. . .
.
.
.

ai,i,lai,i+1,lai+1,i+1,l · · · ai,l,lai+1,l,l

. . .
.
.
.

al,l,l




.

Proposition 3.14. We have that M ⊗An A⊗
(n+2)(n+3)(n+4)

6 is isomorphic to
M ⊗A⊗n(n−1)(n−2)

6 under the obvious isomorphisms

ϕn : M ⊗An A⊗
(n+2)(n+3)(n+4)

6 −→M ⊗A⊗
n(n−1)(n−2)

6

and
ϕ−1
n : M ⊗A⊗

n(n−1)(n−2)
6 −→M ⊗An A⊗

(n+2)(n+3)(n+4)
6 ,

both given below.

Proof. This follows from the fact that A⊗
(n+2)(n+3)(n+4)

6 can be written as
A⊗|z

n
+| = A⊗|y

n
+| ⊗ A⊗|x

n
+| ∼= An ⊗ A|x

n
+| as an An module. So we use

M ⊗An A⊗
(n+2)(n+3)(n+4)

6 ∼= M ⊗An An ⊗A⊗|x
n
+| ∼= M ⊗A⊗n(n−1)(n−2)

6 .
In particular,

ϕn

(
m⊗

n+1⊗

l=0




a0,0,l a0,1,l · · · a0,l−1,l a0,l,l

a1,1,l · · · a1,l−1,l a1,l,l

. . .
.
.
.

.

.

.
al−1,l−1,l al−1,l,l

al,l,l




)

=
∏

(j,k,l)∈yn
+

aj,k,l ·m⊗
(
1
)
⊗
(

1 1
1

)

⊗
n⊗

k=3




1 a1,2,l a1,3,l · · · a1,l−2,l a1,l−1,l 1
1 a2,3,l · · · a2,l−2,l a2,l−1,l 1

. . .
. . .

.

.

.
.
.
.

.

.

.
1 al−3,l−2,l al−3,l−1,l 1

1 al−2,l−1,l 1
1 1

1




,
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and

ϕ
−1
n

(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗

n⊗

l=3




1 a1,2,l a1,3,l · · · a1,l−2,l a1,l−1,l 1
1 a2,3,l · · · a2,l−2,l a2,l−1,l 1

. . .
. . .

.

.

.
.
.
.

.

.

.
1 al−3,l−2,l al−3,l−1,l 1

1 al−2,l−1,l 1
1 1

1




)

= m⊗
(
1
)
⊗
(

1 1
1

)
⊗




1 1 1
1 1

1




⊗
n⊗

l=3




1 1 1 1 · · · 1 1 1
1 a1,2,l a1,3,l · · · a1,l−2,l a1,l−1,l 1

1 a2,3,l · · · a2,l−2,l a2,l−1,l 1

. . .
. . .

.

.

.
.
.
.

.

.

.
1 al−3,l−2,l al−3,l−1,l 1

1 al−2,l−1,l 1
1 1

1




⊗




10,0 10,1 · · · 10,n+1

11,1 · · · 11,n+1

. . .
.
.
.

1n+1,n+1



.

Hence, our result.

Remark 3.15. Let’s go through the details and construct ϕ3 ◦ (D0 −D1 +

D2−D3+D4)◦ϕ−1
4 . An element ofM⊗A⊗4 looks likem⊗

(
1
)
⊗
(

1 1
1

)
⊗




1 a 1
1 1

1


⊗




1 b c 1
1 d 1

1 1
1


. Notice below the switch between the circled

and boxed entries.
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We have that

ϕ3 ◦
4∑

i=0

(−1)
i
Di ◦ ϕ−1

4

(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗




1 a 1
1 1

1


⊗




1 b c 1
1 d 1

1 1
1



)

= ϕ3 ◦ (D0 −D1 +D2 −D3 +D4)
(
m⊗

A⊗52
(
1
)
⊗
(

1 1
1

)
⊗




1 1 1
1 1

1




⊗




1 1 1 1
1 a 1

1 1
1


⊗




1 1 1 1 1
1 b c 1

1 d 1
1 1

1


⊗




1 1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1

1 1
1




)

= ϕ3

(
m⊗

A⊗34
(
1
)
⊗
(

1 1
1

)
⊗




1 a 1
1 1

1




⊗




1 b c 1
1 d 1

1 1
1


⊗




1 1 1 1 1
1 1 1 1

1 1 1
1 1

1



)

− ϕ3

(
m⊗

A⊗34
(
1
)
⊗
(

1 1
1

)
⊗




1 1 1
a 1

1




⊗




1 1 1 1
b cd 1

1 1
1


⊗




1 1 1 1 1
1 1 1 1

1 1 1
1 1

1



)

+ ϕ3

(
m⊗

A⊗34
(
1
)
⊗
(

1 1
1

)
⊗




1 1 1
1 a

1




⊗




1 1 1 1
1 bc 1

d 1
1


⊗




1 1 1 1 1
1 1 1 1

1 1 1
1 1

1



)

− ϕ3

(
m⊗

A⊗34
(
1
)
⊗
(

1 1
1

)
⊗




1 1 1
1 1

1




⊗




1 1 1 1
1 ab c

1 d
1


⊗




1 1 1 1 1
1 1 1 1

1 1 1
1 1

1



)

+ ϕ3

(
m⊗

A⊗34
(
1
)
⊗
(

1 1
1

)
⊗




1 1 1
1 1

1




⊗




1 1 1 1
1 a 1

1 1
1


⊗




1 1 1 1 1
1 b c 1

1 d 1
1 1

1



)

= mabc⊗
(
1
)
⊗
(

1 1
1

)
⊗




1 d 1
1 1

1




−mab⊗
(
1
)
⊗
(

1 1
1

)
⊗




1 cd 1
1 1

1




+mad⊗
(
1
)
⊗
(

1 1
1

)
⊗




1 bc 1
1 1

1




−mcd⊗
(
1
)
⊗
(

1 1
1

)
⊗




1 ab 1
1 1

1




+mbcd⊗
(
1
)
⊗
(

1 1
1

)
⊗




1 a 1
1 1

1


 .
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We notice that this is the same as the formula for ∂4 in the description of
higher order Hochschild homology over S3 (see Remark 3.3).

One can do similar computations for any n > 1. In general we have that

(ϕn−1 ◦D0 ◦ ϕ−1
n )

(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗

n⊗

l=3




1 a1,2,l a1,3,l · · · a1,l−1,l 1
1 a2,3,l · · · a2,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1




)

= m
∏

1<k<l6n

a1,k,l ⊗
(
1
)
⊗
(

1 1
1

)

⊗
n−2⊗

l=4




1 a2,3,l a2,4,l · · · a2,l−1,l 1
1 a3,4,l · · · a3,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1




,

(ϕn−1 ◦Di ◦ ϕ−1
n )

(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗

n⊗

l=3




1 a1,2,l a1,3,l · · · a1,l−1,l 1
1 a2,3,l · · · a2,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1




)

= m

i−1∏

j=1

aj,i,i+1

n∏

l=i+2

ai,i+1,l ⊗
(
1
)
⊗
(

1 1
1

)
⊗

i−1⊗

l=3




1 a1,2,l a1,3,l · · · a1,l−1,l 1
1 a2,3,l · · · a2,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1




⊗




1 a1,2,ia1,2,i+1 a1,3,ia1,3,i+1 · · · a1,i−1,ia1,i−1,i+1 1
1 a2,3,ia2,3,i+1 · · · a2,i−1,ia2,i−1,i+1 1

. . .
. . .

.

.

.
.
.
.

1 ai−2,i−1,iai−2,i−1,i+1 1
1 1

1




⊗
n⊗

l=i+1




1 a1,2,l · · · a1,i,la1,i+1,l a1,i+2,l · · · a1,l−1,l 1

. . .
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
1 ai−1,i,lai−1,i+1,l ai−1,i+2,l · · · ai−1,l−1,l 1

1 ai,i+1,lai+1,i+2,l · · · ai,l−1,lai+1,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1
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for 1 6 i 6 n− 1, and

(ϕn−1 ◦Dn ◦ ϕ−1
n )

(
m⊗

(
1
)
⊗
(

1 1
1

)
⊗

n⊗

l=3




1 a1,2,l a1,3,l · · · a1,l−1,l 1
1 a2,3,l · · · a2,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1




)

= m
∏

16j<k<n

aj,k,n ⊗
(
1
)
⊗
(

1 1
1

)

⊗
n−1⊗

l=3




1 a1,2,l a1,3,l · · · a1,l−1,l 1
1 a2,3,l · · · a2,l−1,l 1

. . .
. . .

.

.

.
.
.
.

1 al−2,l−1,l 1
1 1

1




.

Taking ∂′n : M⊗A⊗n(n−1)(n−2)
6 −→M⊗A⊗ (n−1)(n−2)(n−3)

6 which is determined
by ∂′n :=

∑n
i=0(−1)i(ϕn−1 ◦ Di ◦ ϕ−1

n ), we produce a chain complex of the
form

. . .
∂′n+1−−−−→M ⊗A⊗

n(n−1)(n−2)
6

∂′n−−−→M ⊗A⊗
(n−1)(n−2)(n−3)

6
∂′n−1−−−−→ . . .

. . .
∂′6−−→M⊗A⊗10 ∂′5−−→M⊗A⊗4 ∂′4−−→M⊗A ∂′3−−→M

∂′2−−→M
∂′1−−→M −→ 0.

Comparing this to the construction of HS3

∗ (A,M) explained in Section
3.1, we have the following:

Theorem 3.16. Let A be a commutative k-algebra, and let M be a sym-
metric A-bimodule. Then we have that

H∗(M3(M)⊗A3(A) B3(A)) ∼= HS3

∗ (A,M),

where A3(A), B3(A), andM3(M) are defined as above.

Proof. This follows from the above discussion. First, for each n we have
Mn ⊗An Bn ∼= M ⊗ A⊗n(n−1)(n−2)

6 . Moreover, d∗i as defined in Remark 3.4
has the same formula as ϕn−1 ◦Di ◦ ϕ−1

n for all n > 0 and 0 6 i 6 n.
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4 Tertiary Hochschild homology

The goal here is to expand on the secondary Hochschild homology, which was
introduced in [18] by way of a bar-like resolution. Studied in [17], the sec-
ondary Hochschild homology, denoted H∗((A,B, ε);M), concerns itself with
a triple (A,B, ε), and the complex in dimension n is M ⊗A⊗n ⊗B⊗n(n−1)

2 .
Notice how this is immediately comparable to the usual Hochschild homol-
ogy H∗(A,M), whose complex in dimension n is M ⊗A⊗n.

In this section we work with the k-algebra A, which we take as not
necessarily commutative. Furthermore, M is an A-bimodule, but may not
be A-symmetric.

Definition 4.1. We call (A,B,C, ε, θ) a quintuple if

(i) A is a k-algebra,

(ii) B is a commutative k-algebra,

(iii) ε : B −→ A is a morphism of k-algebras such that ε(B) ⊆ Z(A),

(iv) C is a commutative k-algebra, and

(v) θ : C −→ B is a morphism of k-algebras.

We call (A,B,C, ε, θ) a commutative quintuple if A is also commutative.

Remark 4.2. Notice that conditions (i)-(iii) above make (A,B, ε) into a
triple. Moreover, conditions (ii), (iv), and (v) make (B,C, θ) into a com-
mutative triple, and conditions (i), (iii), (iv), and (v) make (A,C, ε ◦ θ) into
a triple. In particular, A can be thought of as both a B-algebra and a
C-algebra, and B can be realized as a C-algebra.

The next three examples will be important for our construction. In
these examples, we will again prescribe to the organizational convention in-
troduced in Section 3, which details how to arrange elements in a tetrahedral
form and then slice them as layers. Again, one can line up the elements in
the boxes to recover the tetrahedral shape.
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Example 4.3. Let Q = (A,B,C, ε, θ) be a quintuple. We define the pre-
simplicial k-algebra A(Q) by setting An = A⊗B⊗2n+1 ⊗C⊗n2+2n+1 ⊗Aop
for all n > 0. Moreover, for all α ∈ A, β ∈ B, and γ ∈ C, we set

δ
A
0

( (
α0
)
⊗

n⊗

l=1

(
γ0,0,l · · · γ0,l−1,l β0,l

)
⊗




γ0,0,n+1 · · · γ0,n,n+1 β0,n+1

. . .
.
.
.

.

.

.
γn,n,n+1 βn,n+1

αn+1




)

=
(
α0ε(β0,1ε(θ(γ0,0,1))

)
⊗

n⊗

l=2

(
γ0,0,lγ0,1,l γ0,2,l · · · γ0,l−1,l β0,l

)

⊗




γ0,0,n+1γ0,1,n+1γ1,1,n+1 γ0,2,n+1γ1,2,n+1 · · · γ0,n,n+1γ1,n,n+1 β0,n+1β1,n+1

γ2,2,n+1 · · · γ2,n,n+1 β2,n+1

. . .
.
.
.

.

.

.
γn,n,n+1 βn,n+1

αn+1



,

δ
A
i

( (
α0
)
⊗

n⊗

l=1

(
γ0,0,l · · · γ0,l−1,l β0,l

)
⊗




γ0,0,n+1 · · · γ0,n,n+1 β0,n+1

. . .
.
.
.

.

.

.
γn,n,n+1 βn,n+1

αn+1




)

=
(
α0
)
⊗

i−1⊗

l=1

(
γ0,0,l · · · γ0,l−1,l β0,l

)

⊗
(
γ0,0,iγ0,0,i+1 · · · γ0,i−1,iγ0,i−1,i+1 β0,iβ0,i+1θ(γ0,i,i+1)

)

⊗
n⊗

l=i+2

(
γ0,0,l · · · γ0,i−1,l γ0,i,lγ0,i+1,l γ0,i+2,l · · · γ0,l−1,l β0,l

)

⊗




γ0,0,n+1 · · · γ0,i,n+1γ0,i+1,n+1 · · · γ0,n,n+1 β0,n+1

. . .
.
.
.

. . .
.
.
.

.

.

.
γi,i,n+1γi,i+1,n+1γi+1,i+1,n+1 · · · γi,n,n+1γi+1,n,n+1 βi,n+1βi+1,n+1

. . .
.
.
.

.

.

.
γn,n,n+1 βn,n+1

αn+1




for 1 6 i 6 n− 1, and

δ
A
n

( (
α0
)
⊗

n⊗

l=1

(
γ0,0,l · · · γ0,l−1,l β0,l

)
⊗




γ0,0,n+1 · · · γ0,n,n+1 β0,n+1

. . .
.
.
.

.

.

.
γn,n,n+1 βn,n+1

αn+1




)

=
(
α0
)
⊗

n−1⊗

l=1

(
γ0,0,l · · · γ0,l−1,l β0,l

)

⊗




γ0,0,nγ0,0,n+1 γ0,1,nγ0,1,n+1 · · · γ0,n−1,nγ0,n−1,n+1 β0,nβ0,n+1θ(γ0,n,n+1)

γ1,1,n+1 · · · γ1,n−1,n+1 β1,n+1θ(γ1,n,n+1)

. . .
.
.
.

.

.

.
γn−1,n−1,n+1 βn−1,n+1θ(γn−1,n,n+1)

αn+1ε(βn,n+1)ε(θ(γn,n,n+1))



.
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Proof. One can verify that this satisfies (2.1).

Example 4.4. Let Q = (A,B,C, ε, θ) be a quintuple. We define the pre-
simplicial left module B(Q) over the pre-simplicial k-algebraA(Q) by setting
Bn = A⊗n+2 ⊗B⊗ (n+1)(n+2)

2 ⊗ C⊗ (n+1)(n+2)(n+3)
6 for all n > 0. For 0 6 i 6 n,

and for all a ∈ A, b ∈ B, and c ∈ C, we set

δBi
( (

a0

)
⊗

n+1⊗

l=1




c0,0,l · · · c0,l−1,l b0,l
. . .

...
...

cl−1,l−1,l bl−1,l

al



)

=
(
a0

)
⊗

i−1⊗

l=1




c0,0,l · · · c0,l−1,l b0,l
. . .

...
...

cl−1,l−1,l bl−1,l

al




⊗




c0,0,ic0,0,i+1 · · · c0,i−1,ic0,i−1,i+1 b0,ib0,i+1θ(c0,i,i+1)

. . .
...

...
ci−1,i−1,ici−1,i−1,i+1 bi−1,ibi−1,i+1θ(ci−1,i,i+1)

aiai+1ε(bi,i+1)ε(θ(ci,i,i+1))




⊗
n+1⊗

l=i+2




c0,0,l · · · c0,i,lc0,i+1,l · · · c0,l−1,l b0,l
. . .

...
. . .

...
...

ci,i,lci,i+1,lci+1,i+1,l · · · ci,l−1,lci+1,l−1,l bi,lbi+1,l

. . .
...

...
cl−1,l−1,l bl−1,l

al




.

Finally, for each Bn, we define the natural left An-module structure as fol-
lows:

( (
α0

)
⊗

n⊗

l=1

(
γ0,0,l · · · γ0,l−1,l β0,l

)
⊗




γ0,0,n+1 · · · γ0,n,n+1 β0,n+1

. . .
...

...
γn,n,n+1 βn,n+1

αn+1



)
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·
( (

a0

)
⊗

n+1⊗

l=1




c0,0,l · · · c0,l−1,l b0,l
. . .

...
...

cl−1,l−1,l bl−1,l

al



)

=
(
α0a0

)
⊗

n⊗

l=1




γ0,0,lc0,0,l γ0,1,lc0,1,l · · · γ0,l−1,lc0,l−1,l β0,lb0,l
c1,1,l · · · c1,l−1,l b1,l

. . .
...

...
cl−1,l−1,l bl−1,l

al




⊗




γ0,0,n+1c0,0,n+1 · · · γ0,n,n+1c0,n,n+1 β0,n+1b0,n+1

. . .
...

...
γn,n,n+1cn,n,n+1 βn,n+1bn,n+1

an+1αn+1


 .

Proof. One can check that this satisfies (2.1), as well as the compatibility
condition found in Definition 2.4.

Example 4.5. Let M be an A-bimodule which is B-symmetric (and there-
fore C-symmetric, being induced by θ). We define the pre-simplicial right
module S(Q) over the pre-simplicial k-algebra A(Q) by setting Sn = M for
all n > 0. We define the maps δSi = idM for all 0 6 i 6 n, and we take the
obvious right An-module structure. That is,

m·
( (

α0

)
⊗

n⊗

l=1

(
γ0,0,l · · · γ0,l−1,l β0,l

)
⊗




γ0,0,n+1 · · · γ0,n,n+1 β0,n+1

. . .
...

...
γn,n,n+1 βn,n+1

αn+1



)

= αn+1mα0ε
( ∏

16l6n
β0,l

∏

06j6n
βj,n+1

)
ε
(
θ
( ∏

06k<l6n
γ0,k,l

∏

06j6k6n
γj,k,n+1

))
.

Proof. This will clearly satisfy (2.1). The compatibility condition for a pre-
simplicial right module is also immediately satisfied since M is both B-
symmetric and C-symmetric.
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Remark 4.6. Observe that when one takes C = k, then Example 4.3 re-
duces to the simplicial algebra used in [18]. Likewise, Example 4.4 will
recover their bar simplicial module, as well as Example 4.5 identifying to
their simplicial module used in defining the secondary Hochschild homology.

Furthermore, taking C = B = k, one can see that the classic bar resolu-
tion appears as a left A⊗Aop-module, as one would expect.

Remark 4.7. Notice that due to the Tensor Lemma, we have that S(Q)⊗A(Q)

B(Q) is a pre-simplicial k-module.

Definition 4.8. Let Q = (A,B,C, ε, θ) be a triple. The homology of the
complex associated to the pre-simplicial k-module S(Q)⊗A(Q)B(Q) is called
the tertiary Hochschild homology of the quintuple (A,B,C, ε, θ) with coeffi-
cients in M , and this is denoted by H∗((A,B,C, ε, θ);M).

When the quintuple is understood, we can denote this by H∗(Q;M).

Remark 4.9. When we make the necessary identifications, we see that

Cn(Q;M) : = Sn ⊗An Bn

= M ⊗
A⊗B⊗2n+1⊗C⊗n2+2n+1⊗Aop

A
⊗n+2 ⊗ B⊗

(n+1)(n+2)
2 ⊗ C⊗

(n+1)(n+2)(n+3)
6

= M ⊗ A⊗n ⊗ B⊗
n(n−1)

2 ⊗ C⊗
(n−1)n(n+1)

6 .

Under this identification, we will employ circles (instead of the boxes,
which were used in the pre-simplicial setting) to unite the tetrahedral and
sliced formations. See Figure 5 for an element in C4(Q;M) as an example.

Under the identifications in Remark 4.9 and Lemma 2.5 (the Tensor
Lemma), one can then see that the differential nג : Cn(Q;M) −→ Cn−1(Q;M)
is given by:

nג
(
m⊗

(
a1
)
⊗

n⊗

l=2




c1,1,l c1,2,l · · · c1,l−1,l b1,l

c2,2,l · · · c2,l−1,l b2,l

. . .
.
.
.

.

.

.
cl−1,l−1,l bl−1,l

al




)

= ma1ε
( ∏

26k6n

b1,k

)
ε
(
θ
( ∏

16k<l6n

c1,k,l

))
⊗
(
a2
)
⊗

n⊗

l=3




c2,2,l · · · c2,l−1,l b2,l

. . .
.
.
.

.

.

.
cl−1,l−1,l bl−1,l

al
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m⊗
a1

c1,1,2

c1,1,3

c1,1,4

b1,2

c1,2,3

c1,2,4

b1,3

a2

c2,2,3 b2,3

a3

c1,3,4 b1,4

c2,2,4 c2,3,4 b2,4

c3,3,4 b3,4

a4

(a) True tetrahedral form

m⊗
(
a1

)
⊗


 c1,1,2 b1,2

a2


⊗



c1,1,3 c1,2,3 b1,3

c2,2,3 b2,3
a3


⊗




c1,1,4 c1,2,4 c1,3,4 b1,4

c2,2,4 c2,3,4 b2,4
c3,3,4 b3,4

a4




(b) Sliced representation

Figure 5: Arranging the tertiary tensor product in three dimensions

+(−1)
i
n−1∑

i=1

m⊗
(
a1
)
⊗

i−1⊗

l=2




c1,1,l c1,2,l · · · c1,l−1,l b1,l

c2,2,l · · · c2,l−1,l b2,l

. . .
.
.
.

.

.

.
cl−1,l−1,l bl−1,l

al
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⊗




c1,1,ic1,1,i+1 c1,2,ic1,2,i+1 · · · c1,i−1,ic1,i−1,i+1 θ(c1,i,i+1)b1,ib1,i+1

c2,2,ic2,2,i+1 · · · c2,i−1,ic2,i−1,i+1 θ(c2,i,i+1)b2,ib2,i+1

. . .
.
.
.

.

.

.
ci−1,i−1,ici−1,i−1,i+1 θ(ci−1,i,i+1)bi−1,ibi−1,i+1

ε(θ(ci,i,i+1))ε(bi,i+1)aiai+1




⊗
n⊗

l=i+2




c1,1,l · · · c1,i,lc1,i+1,l · · · b1,l

. . .
.
.
.

. . .
.
.
.

ci,i+1,lci,i,lci+1,i+1,l · · · bi,lbi+1,l

. . .
.
.
.
al




+(−1)
n
anmε

( ∏

16j6n−1

bj,n

)
ε
(
θ
( ∏

16j6k6n−1

cj,k,n

))
⊗
(
a1
)

⊗
n−1⊗

l=2




c1,1,l · · · c1,l−1,l b1,l

. . .
.
.
.

.

.

.
cl−1,l−1,l bl−1,l

al



.

It may be helpful to view this chain complex, along with the necessary
maps, in low dimension. As above (Remark 4.9), consider the chain complex
C•(Q;M) given by Cn(Q;M) = M ⊗ A⊗n ⊗ B⊗n(n−1)

2 ⊗ C⊗ (n−1)n(n+1)
6 for

any n > 0, which yields:

. . .
M⊗A⊗3⊗B⊗3⊗C⊗4→−−4ג M⊗A⊗2⊗B⊗C→−−3ג M⊗A→−−2ג M→−−1ג −→ 0.

Moreover, we have that

⊗m)1ג a1) = ma1 − a1m,

2ג

(
m⊗

(
a1

)
⊗
(
c1,1,2 b1,2

a2

))
= ma1ε(b1,2θ(c1,1,2))⊗ a2

−m⊗ a1a2ε(b1,2θ(c1,1,2))

+ a2mε(b1,2θ(c1,1,2))⊗ a1,
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and

3ג

(
m⊗

(
a1

)
⊗
(
c1,1,2 b1,2

a2

)
⊗



c1,1,3 c1,2,3 b1,3

c2,2,3 b2,3
a3



)

= ma1ε(b1,2b1,3θ(c1,1,2c1,1,3c1,2,3))⊗
(
a2

)
⊗
(
c2,2,3 b2,3

a3

)

−m⊗
(
a1a2ε(b1,2θ(c1,1,2))

)
⊗
(
c1,1,3c1,2,3c2,2,3 b1,3b2,3

a3

)

+m⊗
(
a1

)
⊗
(
c1,1,2c1,1,3 b1,2b1,3θ(c1,2,3)

a2a3ε(b2,3θ(c2,2,3))

)

− a3mε(b1,3b2,3θ(c1,1,3c1,2,3c2,2,3))⊗
(
a1

)
⊗
(
c1,1,2 b1,2

a2

)
.

Remark 4.10. Notice that when C = k, we recover the secondary Hochschild
homology of the triple (A,B, ε) with coefficients inM , denotedH∗((A,B, ε);M).
This is not surprising, given Remark 4.6. Moreover, when C = B = k, this
reduces to the usual Hochschild homology of A with coefficients in M , de-
noted H∗(A,M). Formally, we have

H∗((A,B,k, ε, θ);M) = H∗((A,B, ε);M)

and
H∗((A,k,k, ε, θ);M) = H∗((A,k, ε);M) = H∗(A,M).

We also notice that there are natural morphisms from the usual and sec-
ondary Hochschild homologies to this tertiary Hochschild homology. These
are induced by the obvious inclusion maps M ⊗ A⊗n ↪−→ M ⊗ A⊗n ⊗
B⊗

n(n−1)
2 ⊗C⊗ (n−1)n(n+1)

6 andM⊗A⊗n⊗B⊗n(n−1)
2 ↪−→M⊗A⊗n⊗B⊗n(n−1)

2 ⊗
C⊗

(n−1)n(n+1)
6 , respectively.

Example 4.11. Observe

H0((A,B,C, ε, θ);M) = H0((A,B, ε);M) = H0(A,M) =
M

[M,A]
.

Example 4.12. For a commutative quintuple (A,B,C, ε, θ) and a symmet-
ric A-bimodule M , we have that

H1((A,B,C, ε, θ);M) ∼= H1((A,B, ε);M) ∼= M ⊗A Ω1
A|B,
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where Ω1
A|B are the Kähler differentials which are B-linear (and hence C-

linear). In particular, H1((A,B,C, ε, θ);A) ∼= H1((A,B, ε);A) ∼= Ω1
A|B.

Remark 4.13. Observe that Example 4.11 and Example 4.12 behave ex-
actly as one expects, which is inline with the results from [18] and [17],
respectively.

5 Generalized higher order Hochschild homology

In this section, we further generalize higher order Hochschild homology to
depend on a simplicial trio. In [9] we saw how to go from a single simpli-
cial set to a simplicial pair, so here we explain how to define higher order
Hochschild homology for a so-called simplicial trio.

Definition 5.1. Let Γ3 be the category whose objects are trios (U, V,W )
whereW is a finite pointed set with basepoint ∗, V is a pointed subset ofW ,
and U is a pointed subset of V . A morphism f ∈ HomΓ3(U1, V1,W1) −→
(U2, V2,W2) is a morphism of pointed sets f : W1 −→W2 such that f(V1) ⊆
V2 and f(U1) ⊆ U2.

We now construct a covariant functor L((A,B,C, ε, θ);M) from Γ3 to
the category of k-modules. For (U, V,W ) ∈ Γ3, where |U | = 1 + n, |V | =
1 + n+m, and |W | = 1 + n+m+ p, we set

L((A,B,C, ε, θ);M)(U, V,W ) = M ⊗A⊗n ⊗B⊗m ⊗ C⊗p.

If f : (U1, V1,W1) −→ (U2, V2,W2) with |Ui| = 1 + ni, |Vi| = 1 + ni + mi,
and |Wi| = 1 + ni +mi + pi is a morphism in Γ3, we define

L((A,B,C, ε, θ);M)(f) : M⊗A⊗n1⊗B⊗m1⊗C⊗p1 −→M⊗A⊗n2⊗B⊗m2⊗C⊗p2

by

L((A,B,C, ε, θ);M)(f)(m⊗ a1 ⊗ · · · ⊗ an1 ⊗ b1 ⊗ · · · ⊗ bm1 ⊗ c1 ⊗ · · · ⊗ cp1)

= mα0 ⊗ α1 ⊗ · · · ⊗ αn2 ⊗ β1 ⊗ · · · ⊗ βm2 ⊗ γ1 ⊗ · · · ⊗ γp2 ,
where for i ∈ U2, we have

αi =
∏

{j∈U1|j 6=∗,f(j)=i}
aj

∏

{k∈V1\U1|f(k)=i}
ε(bk)

∏

{l∈W1\V1|f(l)=i}
ε(θ(cl)) ∈ A,
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for j ∈ V2 \ U2, we have

βj =
∏

{k∈V1\U1|j 6=∗,f(k)=j}
bk

∏

{l∈W1\V1|f(l)=j}
θ(cl) ∈ B,

and for k ∈W2 \ V2, we have

γk =
∏

{l∈W1\V1|f(l)=k}
cl.

Again we take the convention that if a product is over the empty set, put
αi = 1 ∈ A, βj = 1 ∈ B, and γk = 1 ∈ C.

Definition 5.2. We call a functor ∆op −→ Γ3 a simplicial trio, and denote
it (X•, Y•, Z•).

For a simplicial trio (X•, Y•, Z•) we define the higher order Hochschild
homology associated to the commutative quintuple (A,B,C, ε, θ) and a sym-
metric A-bimoduleM to be the homology of the complex defined as follows:
for q ∈ N, we set C(X•,Y•,Z•)

q = L((A,B,C, ε, θ);M)(Xq, Yq, Zq) and con-
struct the boundary map induced by the simplicial structure on (X•, Y•, Z•).
That is, for di : Zq −→ Zq−1, we define

d∗i = L((A,B,C, ε, θ);M)(di) : C(X•,Y•,Z•)
q −→ C

(X•,Y•,Z•)
q−1

and take ∂(X•,Y•,Z•) : C
(X•,Y•,Z•)
q −→ C

(X•,Y•,Z•)
q−1 to be

∂(X•,Y•,Z•) =

q∑

i=0

(−1)id∗i .

Definition 5.3. We call the homology of the complex defined above the
higher order Hochschild homology associated to the simplicial trio (X•, Y•, Z•)
of the commutative quintuple (A,B,C, ε, θ) with coefficients in M , and this
is denoted by H(X•,Y•,Z•)

∗ ((A,B,C, ε, θ);M).

Remark 5.4. Notice we have

H
(X•,Y•,Y•)
∗ ((A,B,C, ε, θ);M) = H

(X•,Y•)
∗ ((A,B, ε);M),

as the latter is defined in [9]. Moreover, if Z• = Y• = X•, we recover the
original higher order Hochschild homology, that is

H
(X•,X•,X•)
∗ ((A,B,C, ε, θ);M) = HX•∗ (A,M).
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5.1 Ternary Hochschild homology We start by considering a par-
ticular simplicial trio: (X•, Y•, Z•) = (S1, S2, D3). Here the ball D3 is
obtained from the 3-simplex [0123] by collapsing the faces [012] and [123] to
a point (so the boundary of D3 is the union of the faces [013] ∪ [023]). The
sphere S2 is obtained from identifying the boundaries of two copies of the
2-simplicies [013] and [023], and the circle S1 is obtained from the interval
I = [03] by identifying the ends of the interval.

More precisely, we take X• to be the simplicial set whose only non-
degenerate simplex is the 1-simplex I = [03], denoted I0

0 . The basepoint
in dimension n will be denoted ∗n. For n > 2 we denote the degenerate
n-simplex by Iab having a + 1 copies of the vertex [0] and b + 1 copies of
the vertex [3], where a + b + 1 = n. That is, I0

0 is the interval I where
d0(I0

0 ) = d1(I0
0 ) = ∗0, and I0

1 is a 2-simplex [033] with d1(I0
1 ) = d2(I0

1 ) = I0
0

and d0(I0
1 ) = ∗1.

The simplicial set Y• has all of the simplicies from X• together with two
non-degenerate 2-simplicies ∆ = [013] and ∇ = [023]. We denote them by
0∆0

0 and 0∇0
0 respectively, and take d0(0∆0

0) = d2(0∆0
0) = ∗1, d1(0∆0

0) = I0
0 ,

d0(0∇0
0) = d2(0∇0

0) = ∗1 and d1(0∇0
0) = I0

0 . In general, for n > 3, a∆b
c is the

degenerate n-simplex with a+ 1 copies of the vertex [0], b+ 1 copies of the
vertex [1], and c+1 copies of the vertex [3]. Similarly, a∇bc is the degenerate
n-simplex with a + 1 copies of the vertex [0], b + 1 copies of the vertex [2],
and c+ 1 copies of the vertex [3].

Finally, the simplicial set Z• has all the simplicies from Y• as well as a
non-degenerate 3-simplex T = [0123]. Denote it by 0

0T
0
0 and take d0(0

0T
0
0 ) =

d3(0
0T

0
0 ) = ∗2, d1(0

0T
0
0 ) = 0∇0

0, and d2(0
0T

0
0 ) = 0∆0

0. For n > 4, adT
b
c is the

degenerate n-simplex with a+ 1 copies of the vertex [0], b+ 1 copies of the
vertex [1], c+ 1 copies of the vertex [2], and d+ 1 copies of the vertex [3].

In general, we have

Xn = {∗n} ∪ {Iab | a, b ∈ N, a+ b+ 1 = n},

Yn = Xn∪{a∆b
c | a, b, c ∈ N, a+b+c+2 = n}∪{a∇bc | a, b, c ∈ N, a+b+c+2 = n},

and
Zn = Yn ∪ {adT bc | a, b, c, d ∈ N, a+ b+ c+ d+ 3 = n}.

The maps di : Zn −→ Zn−1 are defined as follows:

di(∗n) = ∗n−1, (5.1)
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di( I
a
b ) =





∗a+b if a = 0 and i = 0

Ia−1
b if a 6= 0 and i 6 a
Iab−1 if b 6= 0 and a < i
∗a+b if b = 0 and i = n = a+ 1,

(5.2)

di(
a∆b

c) =





∗a+b+c+1 if a = 0 and i = 0
a−1∆b

c if a 6= 0 and i 6 a
Iac if b = 0 and i = a+ 1
a∆b−1

c if b 6= 0 and a < i 6 a+ b+ 1
∗a+b+c+1 if c = 0 and i = n = a+ b+ 2
a∆b

c−1 if c 6= 0 and i > a+ b+ 2,

(5.3)

di(
a∇bc) =





∗a+b+c+1 if a = 0 and i = 0
a−1∇bc if a 6= 0 and i 6 a
Iac if b = 0 and i = a+ 1
a∇b−1

c if b 6= 0 and a < i 6 a+ b+ 1
∗a+b+c+1 if c = 0 and i = n = a+ b+ 2
a∇bc−1 if c 6= 0 and i > a+ b+ 2,

(5.4)

di(
a
dT

b
c ) =





∗a+b+c+d+2 if a = 0 and i = 0
a−1
d T bc if a 6= 0 and i 6 a
a∇cd if b = 0 and i = a+ 1
a
dT

b−1
c if b 6= 0 and a < i 6 a+ b+ 1

a∆b
d if c = 0 and i = a+ b+ 2

a
dT

b
c−1 if c 6= 0 and a+ b+ 2 6 i 6 a+ b+ c+ 2

∗a+b+c+d+2 if d = 0 and i = n = a+ b+ c+ 3
a
d−1T

b
c if d 6= 0 and a+ b+ c+ 3 6 i.

(5.5)

Notice that |Xn| = 1 + n, |Yn| = 1 + n + n(n − 1), and |Zn| = 1 + n +

n(n− 1) + n(n−1)(n−2)
6 . Thus

L((A,B,C, ε, θ);M)(Xn, Yn, Zn) = M ⊗A⊗n ⊗B⊗n(n−1) ⊗ C⊗
n(n−1)(n−2)

6 ,

which, under the right identification, can be represented as an upper tetra-
hedral tensor matrix, as in Sections 3 and 4.
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Indeed, the element Iab ∈ Xn will correspond to the position (a+ 1, a+
1, a+ 1). The element a∆b

c ∈ Yn will correspond to the position (a+ 1, a+
b + 2, a + b + 2) and the element a∇bc ∈ Yn will correspond to the position
(a + 1, a + 1, a + b + 2). Finally, the element a

dT
b
c ∈ Zn will correspond to

the position (a+ 1, a+ b+ 2, a+ b+ c+ 3). Include the symbol (0, 0, 0) to
correspond to ∗n.

With these identifications, the equations (5.2), (5.3), (5.4), and (5.5)
become

di(j, j, j) =





(0, 0, 0) if j = 1 and i = 0
(j − 1, j − 1, j − 1) if j > 1 and i 6 j − 1
(j, j, j) if j < n and i > j − 1
(0, 0, 0) if j = n and i = n,

(5.6)

di(j, k, k) =





(0, 0, 0) if j = 1 and i = 0
(j − 1, k − 1, k − 1) if j > 1 and i 6 j − 1
(j, k − 1, k − 1) if k = j + 1 and i = j
(j, k − 1, k − 1) if k > j + 1 and j − 1 < i 6 k − 1
(0, 0, 0) if k = n and i = n
(j, k, k) if k < n and i > k,

(5.7)

di(k, k, l) =





(0, 0, 0) if k = 1 and i = 0
(k − 1, k − 1, l − 1) if k > 1 and i 6 k − 1
(k, k, l − 1) if l = k + 1 and i = k
(k, k, l − 1) if l > k + 1 and k − 1 < i 6 l − 1
(0, 0, 0) if l = n and i = n
(k, k, l) if l < n and i > l,

(5.8)

di(j, k, l) =





(0, 0, 0) if j = 1 and i = 0
(j − 1, k − 1, l − 1) if j > 1 and i 6 j − 1
(j, k − 1, l − 1) if k = j + 1 and i = j
(j, k − 1, l − 1) if k > j + 1 and j 6 i 6 k − 1
(j, k, l − 1) if l = k + 1 and i = k
(j, k, l − 1) if l > k + 1 and k 6 i 6 l − 1
(0, 0, 0) if l = n and i = n
(j, k, l) if l < n and i > l.

(5.9)
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All of these can be condensed to this:

di(j, k, l) =





(0, 0, 0) if j = 1 and i = 0

(j − 1, k − 1, l − 1) if j > 1 and 0 6 i 6 j − 1

(j, k − 1, l − 1) if k > j + 1 and j 6 i 6 k − 1

(j, k, l − 1) if l > k + 1 and k 6 i 6 l − 1

(0, 0, 0) if l = n and i = n

(j, k, l) if l < n and l 6 i 6 n.

Under this identification and using the same sliced upper tetrahedral
tensor matrix notation as in the last section, we have that elements in di-
mension n can be written as

m⊗
(
a1,1,1

)
⊗
(
b1,1,2 b1,2,2

a2,2,2

)
⊗

n⊗

l=3




b1,1,l c1,2,l c1,3,l · · · c1,l−1,l b1,l,l
b2,2,l c2,3,l · · · c2,l−1,l b2,l,l

b3,3,l · · · c3,l−1,l c3,l,l

. . .
...

...
bl−1,l−1,l bl−1,l,l

al,l,l



,

where aj,j,j ∈ A, bj,k,l ∈ B, and cj,k,l ∈ C. We again recover the correct
three dimensional picture by lining up the boxed entries. For instance, see
Figure 6 for the case n = 4.

We then observe d∗i behaves similarly to the morphisms described in
Remark 3.4, with the small change that we apply ε and θ wherever the
collapsing passes elements from B into A and elements from C into B. That
is, we have

d
∗
0

(
m⊗

(
a1,1,1

)
⊗
(
b1,1,2 b1,2,2

a2,2,2

)
⊗

n⊗

k=3




b1,1,l c1,2,l · · · c1,l−1,l b1,l,l

b2,2,l · · · c2,l−1,l b2,l,l

. . .
.
.
.

.

.

.
bl−1,l−1,l bl−1,l,l

al,l,l




)

=
∏

1<k<l6n

ε(θ(c1,k,l)) ·
n∏

l=2

ε(b1,1,lb1,l,l) · a1,1,1 ·m⊗
(
a2,2,2

)
⊗
(
b2,2,3 b2,3,3

a3,3,3

)
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m⊗
a1,1,1

b1,1,2

b1,1,3

b1,1,4

b1,2,2

c1,2,3

c1,2,4

b1,3,3

a2,2,2

b2,2,3 b2,3,3

a3,3,3

c1,3,4 b1,4,4

b2,2,4 c2,3,4 b2,4,4

b3,3,4 b3,4,4

a4,4,4

Figure 6: Arranging the ternary tensor product in three dimensions

n⊗

l=4




b2,2,l c2,3,l · · · c2,l−1,l b2,l,l

b3,3,l · · · c3,l−1,l b3,l,l

. . .
.
.
.

.

.

.
bl−1,l−1,l bl−1,l,l

al,l,l



,

d
∗
i

(
m⊗

(
a1,1,1

)
⊗
(
b1,1,2 b1,2,2

a2,2,2

)
⊗

n⊗

l=3




b1,1,l c1,2,l · · · c1,l−1,l b1,l,l

b2,2,l · · · c2,l−1,l b2,l,l

. . .
.
.
.

.

.

.
bl−1,l−1,l bl−1,l,l

al,l,l




)

= m⊗
(
a1,1,1

)
⊗
(
b1,1,2 b1,2,2

a2,2,2

)
⊗

i−1⊗

l=1




b1,1,l c1,2,l · · · c1,l−1,l b1,l,l

b2,2,l · · · c2,l−1,l b2,l,l

. . .
.
.
.

.

.

.
bl−1,l−1,l bl−1,l,l

al,l,l
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⊗




b1,1,ib1,1,i+1 c1,2,ic1,2,i+1 · · · c1,i−1,ic1,i−1,i+1 θ(c1,i,i+1)b1,i,ib1,i+1,i+1

b2,2,ib2,2,i+1 · · · c2,i−1,ic2,i−1,i+1 θ(c2,i,i+1)b2,i,ib2,i+1,i+1

. . .
.
.
.

.

.

.
bi−1,i−1,ibi−1,i−1,i+1 θ(ci−1,i,i+1)bi−1,i,ibi−1,i+1,i+1

ε(bi,i,i+1bi,i+1,i+1)ai,i,iai+1,i+1,i+1




⊗
n⊗

l=i+2




b1,1,l c1,2,l · · · c1,i,lc1,i+1,l · · · b1,l,l

. . .
.
.
.

. . .
.
.
.

θ(ci,i+1,l)bi,i,lbi+1,i+1,l · · · bi,l,lbi+1,l,l

. . .
.
.
.

al,l,l




for 1 6 i 6 n− 1, and finally,

d
∗
n

(
m⊗

(
a1,1,1

)
⊗
(
b1,1,2 b1,2,2

a2,2,2

)
⊗

n⊗

l=3




b1,1,l c1,2,l · · · c1,l−1,l b1,l,l

b2,2,l · · · c2,l−1,l b2,l,l

. . .
.
.
.

.

.

.
bl−1,l−1,l bl−1,l,l

al,l,l




)

=
∏

16j<l<n

θ(cj,l,n) ·
n−1∏

l=1

ε(bl,n,nbl,l,n) · an,n,n ·m⊗
(
a1,1,1

)
⊗
(
b1,1,2 b1,2,2

a2,2,2

)

⊗
n−1⊗

l=3




b1,1,l c1,2,l · · · c1,l−1,l b1,l,l

b2,2,l · · · c2,l−1,l b2,l,l

. . .
.
.
.

.

.

.
bl−1,l−1,l bl−1,l,l

al,l,l



.

Using similar language as the last section, we have a reasonable mnemonic
rule for remembering how these maps work. We see that d∗0 takes off the
top of the upper tetrahedral tensor matrix, applies θ and ε to pass to A as
needed, and the product of all of these elements becomes the coefficient on
m. Missing its top, the rest is an upper tetrahedral tensor matrix which now
fits in an (n− 1)× (n− 1)× (n− 1) integer lattice.

Next, d∗i collapses the i-th row, column, and layer onto the (i+1)-st row,
column, and layer. Of course, ε and θ are used to make sure the elements
are in the correct k-algebra for the position in which they end up. This new
upper tetrahedral tensor matrix now fits in an (n − 1) × (n − 1) × (n − 1)
integer lattice.

Finally, d∗n removes the back of the upper tetrahedral matrix, applies the
appropriate morphism to pass to A, and the product of all those elements
becomes the coefficient on m.
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Definition 5.5. Call the homology of the above complex the ternary
Hochschild homology of the commutative quintuple (A,B,C, ε, θ) with coef-
ficients in M . Denote it by HT

∗ ((A,B,C, ε, θ);M).

Remark 5.6. Observe that

HT
n ((A,B,C, ε, θ);M) ∼= H(S1,S2,D3)

n ((A,B,C, ε, θ);M)

by construction of the former, so the ternary Hochschild homology can be
thought of as a type of higher order Hochschild homology.

Remark 5.7. Although similar in name, notice the distinction between
the tertiary and ternary Hochschild homologies. We observe, without going
through the details, that the tertiary Hochschild homology (see Definition
4.8) can also be written as a higher order Hochschild homology associated
to a simplicial trio (X ′•, Y

′
• , Z

′
•). This simplicial trio (X ′•, Y

′
• , Z

′
•) is similar

to the simplicial trio (X•, Y•, Z•) used for the ternary Hochschild homology.
Take X ′• = X•, take Y ′• to be Y• but without the a∇bc’s, and take Z ′• to be
Z• but gain the a∇bc’s. However, one notices that the tertiary and ternary
Hochschild homologies do agree when taken over a commutative quintuple
(A,B,B, ε, id).

Remark 5.8. Notice that when C = B = k, we have that ε : k −→ A is the
inclusion from A being a k-algebra, and θ : k −→ k is the identity. Hence,
we recover the usual Hochschild homology.

Indeed, we have several natural morphisms between the ternary Hochschild
homology and other familiar homologies. The first is ι∗1 : Hn(A,M) −→
HT
n ((A,B,C, ε, θ);M) induced by the inclusion ι1 : A⊗n ↪−→ A⊗n⊗B⊗n(n−1)⊗

C⊗
n(n−1)(n−2)

6 . There are two natural morphisms ι∗2, ι∗3 : Hn((A,B, ε);M) −→
HT
n ((A,B,C, ε, θ);M) induced by the two obvious inclusions ι2 and ι3 of

A⊗n ⊗ B⊗n(n−1)
2 ↪−→ A⊗n ⊗ B⊗n(n−1) ⊗ C⊗n(n−1)(n−2)

6 . That is, each of ι2
and ι3 is the identity on A, and we can map an element bj,l ∈ B⊗

n(n−1)
2 to

either position (j, j, l) or (j, l, l) in A⊗n ⊗B⊗n(n−1) ⊗ C⊗n(n−1)(n−2)
6 .

Finally, there is the obvious morphism between the tertiary and ternary
Hochschild homologies θ∗ : Hn((A,B,C, ε, θ);M) −→ HT

n ((A,B,C, ε, θ);M).
This is induced by the morphism of commutative k-algebras θ : C −→ B in
the natural index.
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6 Observations and future work

We notice that there is nothing special about investigating S3 in Section
3. As already mentioned, analogous constructions have already been done
for S1 via the classic bar resolution (see [18]), as well as S2 (see [16]). In
fact, one can perform similar constructions for Sd for any d > 1 where the
simplest simplicial set modeling Sd is obtained by considering a d-simplex
and identifying the boundary to a single point. However we very quickly
run out of dimensions to adequately visualize the elements, but they are
organized in a very similar fashion as what was presented in Section 3.
So instead of a 3-dimensional tetrahedral tensor matrix representation, we
would need a d-dimensional hyper-cube matrix representation, but indexing
the elements would be similar.

We also observe that there was nothing special about focusing on ho-
mology. The cohomology can be done in an almost identical fashion. One
would still use the pre-simplicial algebra in Example 3.6 and the bar-like res-
olution in Example 3.10. However, we would need to use the Hom Lemma
(instead of the Tensor Lemma) along with a pre-cosimplicial module defined
very similarly to the pre-simplicial module in Example 3.13. As mentioned
earlier, we concerned ourselves solely with pre-simplicial modules (instead
of simplicial modules) since the face maps are sufficient to obtain a chain
complex. We did this to simplify the construction, as adding the degeneracy
maps adds a considerable and unnecessary length to what we desired.

The description for higher order Hochschild cohomology over S2 was
refined in [5], which lead to the observation of the existence of a G-algebra
structure for H∗S2(A,A) by way of an operad. Using the obvious description
adapted from Section 3 for H∗S3(A,A), one can imagine the existence of an
operad which would be described in three dimensions quite similarly to what
was realized in two dimensions in [5].

For Section 4, we again note that the tertiary Hochschild cohomology
can be defined in a completely similar fashion, but we omitted it in this
paper. This construction can be seen in full detail in [3]. This cohomology
is interesting since A is now simultaneously viewed as a B-algebra and a
C-algebra (due to Remark 4.2). This was used to study deformations of
algebras A that have this B-algebra and C-algebra structure in [3].

One of the main motivations for us to consider the tertiary Hochschild
homology in Section 4 was due to the organization of the elements inspired
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from Section 3. However, just as before, there is nothing special about the
tertiary. One could conceivably define quaternary and quinary Hochschild
homologies, and so on. One runs in to the same issues as above where the
real challenge is not necessarily organizing the elements, but accurately and
conveniently visualizing them. One also wonders if the tertiary Hochschild
homology fits into some long exact sequence relating to the other Hochschild
homologies that have been studied.

In the constructions presented in Sections 3 and 4, a bar-like resolution
is used. This is similar to what was done in [16] and [18]. One of the main
questions that one could ask is if we can replace these modules just like the
classic bar resolution can be replaced by any other projective resolution of
the algebra. It’s not too difficult to come up with sufficient conditions of
what a replacement could look like, but finding a practical example seems
to be our major issue.

The obvious visual representation that we have exploited throughout
the paper led us to the generalization presented in Section 5. Since we have
already established that there is nothing special about three dimensions,
we note that of particular interest is to view a higher order Hochschild
homology associated to a simplicial n-tuple defined in a natural way. Taking
the n-tuple to model (S1, S2, . . . , Sn−1, Dn) would give a nice geometric-
inspired generalization. This is what was done in [9] when they considered
a simplicial pair (S1, D2). As above, however, one must combat a difficult
visual representation, of which we intentionally omit in this paper.
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