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ON THE CONTROL PROBLEM ASSOCIATED

WITH THE HEATING PROCESS

F.N. Dekhkonov

Abstract: In the papaer, we consider the initial-boundary problem for the heat con-
duction equation inside a bounded domain. On the part of the border of the considered
domain, the value of the solution with control parameter is given. Restrictions on the
control are given in such a way that the average value of the solution in some part of
the considered domain gets a given value. It is supposed that on the boundary of this
domain the heat exchange takes place according to Newton’s law. The control parameter
is equal to the magnitude of output of hot or cold air and is defined on a given part of
the boundary, and the weight function is not assumed to be strictly positive in the given
domain. Then, we found the dependence T (θ) on the parameters of the temperature
process when θ is close to critical value.
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1. Introduction

Consider in the bounded domain � ⊂ R3 with piecewise smooth boundary ∂�

the heat conduction equation

ut(x, t) = �u(x, t), x ∈ �, t > 0, (1)

with boundary conditions

∂u

∂n
+ h(x)u(x, t) = 0, x ∈ ∂� \ � , t > 0, (2)

∂u

∂n
= a(x)µ(t), x ∈ � , t > 0, (3)

and initial condition

u(x, 0) = 0. (4)

Here � is some subset of ∂� (heater or air conditioner) with piecewise smooth

boundary ∂� and with mes � > 0 (we denote by mes � the surface measure of � ,

distinct from Lebesgue measure |� | ).
We suppose that h(x) (thermal conductivity of the walls) and a(x) (the density

of the power of the heater or air conditioner) are given piecewise smooth non-negative

functions, which are not identically zero. The condition (3) means that there is a

blast of hot (or cold) air with magnitude of output given by a measurable real-valued
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function µ(t), and condition (2) means that on the surface ∂� a heat exchange takes

place according to Newton’s law (see, e.g. [1, , Sect. III.1.4]).

We may extend both functions h(x) and a(x) to the whole boundary ∂� by

setting h(x) = 0 for x ∈ � , and a(x) = 0 for x /∈ � . In this case we may write the

conditions (2) and (3) in the following form

∂u(x, t)

∂n
+ h(x)u(x, t) = a(x)µ(t), x ∈ ∂�, t > 0. (5)

By the solution of the initial boundary value problem (1)–(5), we mean the

generalized solution defined in [2] (see Chapter III, Sec. 5).

Let M > 0 be some given constant. We say that the function µ(t) is an ad-

missible control if this function is measurable on the half line t ≥ 0 and satisfies the

following constraint

|µ(t)| ≤M, t ≥ 0. (6)

Let the function ρ : �→ R satisfies conditions
∫

�

ρ(x) dx = 1, ρ(x) ≥ 0.

For any θ > 0 consider the condition
∫

�

u(x, t)ρ(x) dx = θ. (7)

Note that the weight function ρ(x) is not assumed to be strictly positive. In

particular, the value (7) may be the average value over some subdomain of the main

region �.

Denote by the symbol T (θ) the minimal time required to reach the given value

θ by the average value of the temperature. This means that the equation (7) is

fulfilled for t = T (θ) and is not valid for t < T (θ).

We present the critical value θ∗ such that for any θ < θ∗ there exists the required

admissible control µ(t) and corresponding value of T (θ) < +∞, and for θ ≥ θ∗ the

equality (7) is impossible.

The purpose of this work is to determine the dependence T (θ) on the parameters

of the temperature process when θ is close to critical value.

The difference between the problem under consideration and paper [3] is that

in this work the weight function ρ(x) is not required to be exactly greater than zero

in the given domain. Therefore, we considered the three-dimensional domain in this

work. A special case of this problem is studied in [4, 5].

We recall that the time-optimal control problem for partial differential equa-

tions of parabolic type was first investigated in [6] and [7]. More recent results

concerned with this problem were established in [3–5, 8–10]. Detailed information

on the problems of optimal control for distributed parameter systems is given in [11]

and in the monographs [12–14].
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To formulate the main result we describe some spectral properties of the corre-

sponding self-adjoint extension of Laplace operator.

Consider the following eigenvalue problem for the Laplace operator

−�vk(x) = λk vk(x), x ∈ �, (8)

with boundary condition

∂vk(x)

∂n
+ h(x)vk(x) = 0, x ∈ ∂�. (9)

Under assumptions made above this problem is self-adjoint in L2(�, dx) and

there exists a sequence of eigenvalues {λk} so that

λ1 ≤ λ2 ≤ · · · ≤ λk → +∞, k →∞.
The corresponding eigenfunctions form a complete orthonormal system {vk}k∈N

in L2(�, dx) and these functions belong to C(�), where � = � ∪ ∂�.

It is well-known that the asymptotic behavior of the solution of the heat conduc-

tion equation mainly depends on the first (minimal) eigenvalue of the corresponding

selfadjoint extension of Laplace operator (see, e.g. [1]).

We obtain an estimate of the minimal time of heating by the characteristics of

the first eigenfunction v1.

According to (8), we get

λk = −(�vk, vk) =

∫

�

|∇vk(x)|2 dx+

∫

∂�

|vk(x)|2h(x) dσ(x) ≥ 0.

If h(x) ≥ 0 and h(x) 6≡ 0 then λ1 > 0. Indeed, assume that λ1 = 0. Then the

first eigenfunction is an harmonic function

�v1(x) = 0,

and, in accordance with the theorem of Giraud and Theorem I.5.II in the book [15],

we may state that v1 ≡ 0.

According to the non-negative of the first eigenfunction (see, e.g. [16]) and from

the orthogonality of the eigenfunctions v1 and v2, we can write

λ1 < λ2.

Recall that we consider the behavior of the function

U(t) =

∫

�

u(x, t)ρ(x) dx, (10)

where the solution u(x, t) of the problem (1)–(4) depends on the control function

µ(t).

Set

θ∗ = M

∫

�

[(−�)−1ρ(x)]a(x) dσ(x), (11)

and

b =
M

λ1
· (ρ, v1)

∫

�

v1(y)a(y) dσ(y). (12)
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Theorem 1. Let θ∗ > 0 be defined by equation (11). Then

(1) for every θ from the interval 0 < θ < θ∗ there exist T (θ) such that

U(t) < θ, 0 < t < T (θ),

and

U(T (θ)) = θ;

(2) for θ → θ∗ the following estimate is valid:

T (θ) = ln
1

ε(θ)
+

1

λ1
ln b+O(ελ2−λ1),

where ε = |θ∗ − θ|1/λ1 ;

(3) for every θ ≥ θ∗ the T (θ) does not exists.

The proof of theorem we give step by step as propositions.

2. The main integral equation

We consider the following Green function:

G(x, y, t) =
∞∑

k=1

e−λktvk(x)vk(y), x ∈ �, y ∈ �, t > 0.

This function is the solution of the initial-boundary value problem for the equa-

tion

Gt(x, y, t) = �G(x, y, t), x ∈ �, t > 0,

with boundary condition

∂G(x, y, t)

∂n
+ h(x)G(x, y, t) = 0, x ∈ ∂�, t > 0,

and initial condition

G(x, y, 0) = δ(x− y).
Set

H(x, t) =

∫

�

ρ(y)G(x, y, t) dy, x ∈ �, t > 0. (13)

It is clear that the function (13) is a solution of the following initial-boundary

value problem:

Ht(x, t)−�H(x, t) = 0, x ∈ �, t > 0,

∂H(x, t)

∂n
+ h(x)H(x, t) = 0, x ∈ ∂�, t > 0,

and

H(x, 0) = ρ(x), x ∈ �.
In this using the spectral theorem in L2(�, dx) we may write

H(x, t) =

∞∫

0

e−λt dEλρ(x).
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Obviously,

H(x, t) = (ρ, v1)e
−λ1tv1(x) + H1(x, t), t ≥ 0, (14)

where

H1(x, t) =

∞∫

λ2

e−λt dEλρ(x). (15)

Set

Ak =

∫

�

vk(y)a(y) dσ(y).

Proposition 1. The following estimate is true:

A1 =

∫

�

v1(y)a(y)dσ(y) > 0. (16)

Proof. Assume that this integral is equal to 0. Then on some surface �1 ⊂ �
v1 equals 0:

v(s) = 0, s ∈ �1.
It follows from (9) that

∂v(s)

∂n
= 0, s ∈ �1.

Hence, v1(x) is a solution to homogeneous Cauchy problem and from the uniqueness

of the solution v1(x) ≡ 0, and this contradicts the assumption that v1(x) is an

eigenfunction.

Proposition 1 proved.

Set

G2(x, y) =

∞∑

k=2

vk(x)vk(y)

λ2
k

. (17)

Proposition 2. The function H1(x, t) satisfies the following estimate:
∣∣H1(x, t)

∣∣ ≤ ‖�ρ‖
√
G2(x, x)e

−λ2t, t ≥ 0,

uniformly in x ∈ �.

Proof. From (15) we can write

H1(x, t) =

∞∫

λ2

e−λt dEλρ(x) =

∞∑

k=2

(ρ, vk)e
−λktvk(x), t ≥ 0.

Then we have

|H1(x, t)|2 =

∣∣∣∣∣
∞∑

k=2

(ρ, vk)e
−λktvk(x)

∣∣∣∣∣

2

≤
(
∞∑

k=2

|(ρ, vk)|2λ2
k

)(
∞∑

k=2

e−2λkt|vk(x)|2λ−2
k

)
, t ≥ 0.
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Then we get the following estimate:

|H1(x, t)| ≤ ‖�ρ‖
√
G2(x, x)e

−λ2t.

Proposition 2 proved.

Now we introduce the kernel of a main integral operator:

K(t) =

∫

�

H(y, t)a(y)dσ(y). (18)

According to (14), we may write

K(t) = (ρ, v1)e
−λ1t

∫

�

v1(y)a(y) dσ(y) +

∫

�

H1(y, t)a(y) dσ(y)

= A1 · (ρ, v1)e−λ1t + β(t)e−λ2t, (19)

where

|β(t)| ≤ B = ‖�ρ‖
∫

�

√
G2(y, y)a(y) dσ(y).

The proof of the following Proposition 3 and Proposition 4 can be seen [8].

Proposition 3. The derivative of the kernel (18) satisfies the following esti-

mates:

K ′(t) =
O(1)√
t
, 0 < t < 1,

and

K ′(t) = −λ1A1e
−λ1t +O(1)e−λ2t, t ≥ 1.

where A1 is defined by the equality (16).

Proposition 4. Let u(x, t) be the solution of the initial-boundary value prob-

lem (1)–(4). Then the following equality

u(x, t) =

t∫

0

µ(s) ds

∫

�

G(x, y, t− s)a(y) dσ(y),

is valid.

According to condition (10) we can write

∫

�

ρ(x)u(x, t) dx =

t∫

0

µ(s) ds

∫

∂�

a(y) dσ(y)

∫

�

ρ(x)G(x, y, t − s) dx = U(t)

Then, from (13) and (18), we get the following integral equation:

∫

�

ρ(x)u(x, t) dx =

t∫

0

K(t− s)µ(s) ds = U(t). (20)
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3. Proof of Theorem 1

Set

L(x, t) =

t∫

0

H(x, s) ds. (21)

Then we can write

L(x, t) =
∞∑

k=1

(ρ, vk)vk(x)

t∫

0

e−λks ds =
∞∑

k=1

1− e−λkt

λk
(ρ, vk)vk(x)

= (−�)−1ρ(x)− e−λ1t

λ1
(ρ, v1)v1(x)− L1(x, t),

where

L1(x, t) =

∞∑

k=2

e−λkt

λk
(ρ, vk)vk(x).

We have the following estimate:

|L1(x, t)| ≤ e−λ2t

(
∞∑

k=2

|(ρ, vk)|2
)1/2( ∞∑

k=2

|vk(x)|2
λ2
k

)1/2

.

Hence,

|L1(x, t)| ≤ e−λ2t
√
G2(x, x)‖ρ‖. (22)

Further,
∫

�

L(x, t)a(x) dσ(x) =

∫

�

[(−�)−1ρ(x)]a(x) dσ(x)

− A1

λ1
(ρ, v1)e

−λ1t −
∫

�

L1(x, t)a(x) dσ(x). (23)

We introduce a specific heating as

Q(t) =

t∫

0

K(t− s)ds =

t∫

0

K(s) ds. (24)

The physical meaning of this function is evident: Q(t) equals the average tempera-

ture of � in case where the heater is acting unit load (see, e.g. [3, 8]).

It is clear that Q(0) = 0 and Q′(t) = K(t) ≥ 0.

According to (18), we have

∫

�

L(x, t)a(x) dσ(x) =

t∫

0

ds

∫

�

H(x, s)a(x) dσ(x) =

t∫

0

K(s) ds = Q(t). (25)

Set

Q∗ = lim
t→∞

Q(t) =

∞∫

0

K(s) ds. (26)
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Obviously, the average temperature of � in the case where the heater is acting with

unit load cannot exceed Q∗.

Set

θ∗ = MQ∗. (27)

Then, according to (22) and (23)

θ(t) = MQ(t) = θ∗ − be−λ1t +O(e−λ2t), (28)

where b defined by (12).

According to (26)–(28), for every θ from the interval 0 < θ < θ∗ there exist

T (θ) such that

U(t) < θ, 0 < t < T (θ), (29)

and we may write

U(T (θ)) = θ. (30)

Proposition 5. There exist T (θ) > 0 and a real-valued measurable function

µ(t) so that |µ(t)| ≤M and the following equality

T∫

0

K(T − s)µ(s) ds = U(T ), (31)

is valid.

Proof. This follows from the properties of the function Q. Indeed, if we set

µ(t) = M , then

t∫

0

K(t− s)µ(s) ds = M

t∫

0

K(t− s) ds = MQ(t),

and because of (31) there exists T (θ) > 0 so that MQ(T ) = U(T ).

Proposition 5 proved.

Remark. It is clear that the value T (θ), which was found in Proposition 5,

gives a solution to the problem. Namely, T (θ) is the root of the equation

Q(T ) =
U(T )

M
=

θ

M
. (32)

Proposition 6. Let f(r) be increasing on the interval (0, 1] and for some β > 0

f(r) = br +O(r1+β). (33)

Then for inverse function r = f−1(s) the following estimate is valid:

ln
1

r
= ln

1

s
+ ln b+O(sβ), (34)

where b defined by (12).

Proof. According to (33),

s = br
[
1 + α(r)

]
, (35)
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where

α(r) = O(rβ). (36)

Note that f(r) > 0 on the interval 0 < r ≤ 1. Hence,

s ≥ Cr, 0 < r ≤ 1. (37)

Then

r(s) = f−1(s) ≤ 1

C
· s,

and

r(s) = O(s). (38)

Hence,

α(r(s)) = O(sβ).

Then, according to (35),

ln
1

s
= ln

1

br
+ ln

1

1 + α(r)
= ln

1

br
− ln[1 + α(r)]

= ln
1

r
+ ln

1

b
+O(|α(r)|) = ln

1

r
− ln b+O(sβ). (39)

Proposition 6 proved.

Corollary. The following equality is true:

t = ln
1

|θ∗ − θ(t)|1/λ1
+

1

λ1
ln b+O(|θ∗ − θ(t)|(λ2−λ1)/λ1). (40)

Indeed, according to (28),

θ∗ − θ(t) = be−λ1t +O(e−λ2t). (41)

Set

r = e−λ1t, s = θ∗ − θ(t), β =
λ2

λ1
− 1. (42)

Then

e−λ2t = e−λ1t(1+β) = r1+β .

We can apply Proposition 6 and get

t =
1

λ1
ln

1

θ∗ − θ(t) +
1

λ1
ln b+O(|θ∗ − θ(t)|β).

Then, for θ → θ∗, we have the following estimate:

T (θ) = ln
1

ε(θ)
+

1

λ1
ln b+O(ελ2−λ1),

where

ε = |θ∗ − θ|1/λ1 .

The proof of Theorem 1 follows from Propositions 5 and 6.
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