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ABSTRACT. In this paper, we construct Hölder maps to Carnot groups equip-
ped with a Carnot metric, especially the first Heisenberg group H. Pansu and
Gromov [7] observed that any surface embedded in H has Hausdorff dimen-
sion at least 3, so there is no α–Hölder embedding of a surface into H when
α> 2

3 . Züst [17] improved this result to show that when α> 2
3 , any α–Hölder

map from a simply-connected Riemannian manifold to H factors through a
metric tree. In the present paper, we show that Züst’s result is sharp by con-
structing ( 2

3 −ϵ)–Hölder maps from D2 and D3 toH that do not factor through

a tree. We use these to show that if 0 < α < 2
3 , then the set of α–Hölder maps

from a compact metric space to H is dense in the set of continuous maps and
to construct proper degree–1 maps from R3 to H with Hölder exponents arbi-
trarily close to 2

3 .

1. INTRODUCTION AND STATEMENT OF RESULTS

The first Heisenberg groupH, equipped with a Carnot metric, is a subrieman-
nian manifold. The Hausdorff dimension of such a manifold is greater than its
topological dimension; the Heisenberg group, for instance, has topological di-
mension 3 and Hausdorff dimension 4. It follows that there is no surjective
Lipschitz map from R3 to H, since Lipschitz maps cannot increase Hausdorff
dimension. Indeed, the image of the 3–dimensional unit ball D3 under an α–
Hölder map has Hausdorff dimension at most 3

α , so when α > 3
4 , there is no

α–Hölder map from D3 toHwhose image contains a metric ball.
When α < 3

4 , a construction like that of Kaufman [10] can be used to con-
struct an α–Hölder map from D3 to H whose image contains a ball, but when
2
3 < α < 3

4 , the topology of such maps is very restricted. These conditions arise
from the fact, proved by Gromov in [7, 0.6.C, 2.1] and therein also attributed to
Pansu, that any surface embedded in H has topological dimension 2 but Haus-
dorff dimension at least 3, so if α > 2

3 , then the image of a surface under an α–
Hölder map cannot be a surface. Indeed, Züst [17] showed that if M is a simply-
connected Riemannian manifold and f : M →H is α–Hölder with α> 2

3 , then f
factors through a metric tree. Moreover, Le Donne and Züst [11] proved that if
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α > 1
2 then any α–Hölder surface in H (if it exists) must intersect many vertical

lines in a topological Cantor set.
In [7, 0.5.C], Gromov asked:

Given two [Carnot–Carathéodory] spaces V and W and a real
number 0 < α ≤ 1, describe the space of Cα–maps f : W → V .
For example, when can each continuous map W → V be uni-
formly approximated by Cα–maps? When can W be Cα–embed-
ded into V ? When are V and W Cα homeomorphic? etc.

The special case of finding the maximumα such that there is anα–Hölder home-
omorphism from R3 to H has become known as the Hölder equivalence prob-
lem. It follows from the results of Pansu and Gromov [7, 2.1] or Züst [17], both
mentioned above, that if α > 2

3 then there is no locally α–Hölder homeomor-
phism from R3 to H and that continuous maps from R3 to H cannot be approxi-
mated by α–Hölder maps. On the other hand, a smooth or C 2 map from R3 toH
is locally 1

2 –Hölder, so a continuous map from R3 to H can be approximated by
a locally 1

2 –Hölder map, and there are many locally 1
2 –Hölder homeomorphisms

from R3 toH.
In this paper, we will partially answer Gromov’s question by showing that

there are many α–Hölder maps from Rn to H for α arbitrarily close to 2
3 , in-

cluding maps that are topologically nontrivial (e.g., proper and degree–1) and
maps that approximate arbitrary continuous functions. Our constructions build
on techniques developed in [15] and [12]. Results like this were first suggested
by unpublished work of Piotr Hajłasz, Jake Mirra, and Armin Schikorra, who
explored constructing Hölder maps by numerical methods and found results
pointing to the possible existence of nontrivial surfaces in H with Hölder expo-
nent larger than 1

2 [13].
Our first result provides Hölder extensions of maps from subsets of R2 to gen-

eral Carnot groups equipped with a Carnot metric. In order to state our theorem
we recall the following definition. A pair (X ,Y ) of metric spaces X and Y is said
to have theα–Hölder extension property, 0 <α≤ 1, if there exists L ≥ 1 such that
for every subset Z ⊂ X every (λ,α)–Hölder mapϕ : Z → Y has an (Lλ,α)–Hölder
extension ϕ : X → Y .

Theorem 1.1. Let G be a Carnot group of step k, endowed with a Carnot metric
dc . Then the pair (R2, (G ,dc )) has the α–Hölder extension property for every α <

2
k+1 .

In particular, given a closed Lipschitz curve γ : S1 → H, we can extend γ to a
α–Hölder map of a disc for any α < 2

3 . Our construction produces a disc which
is not even locally an embedding, even if γ is an embedding, and it is an open
question (see [7, 0.5.D]) whether there are α–Hölder embeddings from R2 to H
for 1

2 <α< 2
3 .

We can extend the construction used in the theorem above to produce Hölder
maps from 3–dimensional Riemannian manifolds to H. Let dR be the distance
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coming from a left-invariant Riemannian metric on H and let dc be the associ-
ated Carnot metric. LetHZ be the integer lattice inH.

Theorem 1.2. For any α< 2
3 there is a locally α–Hölder map g : (H,dR ) → (H,dc )

which is HZ–equivariant (that is, g (h · x) = h · g (x) for all h ∈HZ and x ∈H) and
equivariantly homotopic to the identity.

As a consequence, we obtain the following approximation result.

Theorem 1.3. Let Y be a compact metric space and let 0 <α< 2
3 . Any continuous

map ϕ : Y →H can be approximated uniformly by α-Hölder maps.

This exponent is sharp; when 2
3 < α ≤ 1, [17] implies that any α-Hölder map

ψ : D2 → H factors through a metric tree, so ψ(∂D2) has filling radius zero. A
curve with nonzero filling radius cannot be uniformly approximated by curves
with filling radius zero, so if ϕ : D2 →H is a continuous map such that ϕ(∂D2) is
a simple closed curve, then ϕ cannot be uniformly approximated by α–Hölder
maps when α> 2

3 .
The map constructed in Theorem 1.2 is self-similar, and by taking a tangent

cone at a carefully-chosen point, we furthermore obtain the following result.
Recall that a continuous map between metric spaces is called proper if preim-
ages of compact sets are compact. A Euclidean similarity is a composition of a
scaling, translation, and rotation/reflection. A Heisenberg similarity is a scaling
composed with a left-translation.

Theorem 1.4. For any ϵ > 0, there is an 0 < ϵ′ < ϵ such that there is a globally
( 2

3 − ϵ′)–Hölder map F : R3 → (H,dc ) which is proper and of degree 1. This map
is self-similar in the sense that there is a Euclidean similarity h : R3 → R3 and a
Heisenberg similarity m : H → H, both with scaling factors bigger than 1, such
that m(F (h−1(x))) = F (x) for all x ∈R3.

Gromov showed [7, 3.1.A] that α–Hölder maps from R3 to H must have local
degree zero when α> 2

3 and asked whether this exponent can be improved; this
construction shows that Gromov’s result is sharp.

We now give an outline of the proofs of our results. In order to prove Theo-
rem 1.1 it is enough to show that there exists L ≥ 1 such that every λ-Lipschitz
curve γ : S1 → (G ,dc ) admits an (Lλ,α)–Hölder extension f : D2 → (G ,dc ) to the
2–dimensional unit ball D2 (see [12, Theorem 6.4]).

We construct such an extension using methods based on the Hölder exten-
sion results in [12]. The main ingredient is the so-called coarse Dehn function,
also known as Gromov’s mesh function, which is roughly defined as follows. Let
X be a geodesic metric space and ε > 0. For r > 0 the coarse Dehn function
ArX ,ε(r ) is the smallest number such that any closed curve in X of length at most
r can be subdivided into ArX ,ε(r ) closed curves of length at most ε. We refer to
Section 2 for a precise definition. When X is a Carnot group G of step s, equipped
with a Carnot metric dc , it can be shown that

Ar(G ,dc ), r
n

(r ) ≤C ·ns+1 (1)
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(see Lemma 3.3).
Fix a closed Lipschitz curve γ in (G ,dc ) of length r . Using the bound (1) we

can construct nested subdivisions of γ as follows. Let n ∈N be sufficiently large,
only depending on α and C , and set N = C ns+1. Then there exist closed curves
γ1

1, . . . ,γ1
N of length n−1r that subdivide γ. Each curve γ1

j can then be subdivided

into curves γ2
( j−1)N+1, . . . ,γ2

j N of length n−2r , and so on. We will construct the

Hölder extension f of γ so that its image is the closure of the union
⋃︁

i , j γ
i
j .

We start by constructing a family of nested discs in D2. Let B 0
1 = D2 and let

B 1
1 , . . . ,B 1

N ⊂ B 0
1 be disjoint discs of equal radius ρ, where ρ ≈ N− 1

2 . We repeat
the process on each disc; for each i ≥ 0 and j = 1, . . . , N i , we choose N disjoint
discs of radius ρi+1 inside B i

j and label them B i+1
( j−1)N+1, . . . ,B i+1

j N . Let Mi = D2 \⋃︁
j intB i

j , so that

S1 = M0 ⊂ M1 ⊂ M2 ⊂ ·· · ⊂ D2

is an increasing sequence of subsets and
⋃︁

i Mi is the complement of a Cantor
set K .

Next, we define f on the boundaries of the discs so that f (∂D2) = γ and
f (∂B i

j ) = γi
j for every i and j . We extend f to the rest of D2 by noting that the

complement D2 \
⋃︁

i , j ∂B i
j consists of the Cantor set K =⋂︁

(D2 \Mi ) and infinitely
many connected components that are each homeomorphic to a genus 0 surface
with N +1 boundary components. Let

Si
j = B i

j \
j N⋃︂

m=( j−1)N+1
intB i+1

m

be one such component. Then f sends the outer boundary ∂B i
j to γi

j and the N

inner boundary components to N curves γi+1
m that subdivide γi

j . Consequently,

we can extend f over Si
j so that

f (Si
j ) ⊂

j N⋃︂
m=( j−1)N+1

γi+1
m

and f is Lipschitz on Si
j . This defines f on D2 \ K . If we construct the exten-

sions to the Si
j ’s carefully, we can ensure that f is Hölder on D2 \K and extend f

continuously to K to obtain the desired map.
Note that f is far from injective. In fact, for any neighborhood U of K , the

image f (D2 \ U ) has Hausdorff and topological dimension 1; actually, the re-
striction f |D2\U factors through a graph.

This construction uses two main ideas: First, we can reduce the problem of
constructing a Hölder extension of a closed curve γ to the subproblem of con-
structing Hölder extensions of each curve in a subdivision of γ. That is, we can
extend γ by subdividing γ into γ1, . . . ,γN , constructing a map from an N –holed
disc M to G that sends the outer boundary of M to γ and the boundaries of the
holes to the γi ’s, and constructing Hölder extensions of the γi ’s. Second, we
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don’t need to actually solve any of the subproblems. As long as we can split the
original problem into smaller and smaller subproblems, we can pass to a limit
where all of them disappear.

We use a version of these ideas to construct the map from (H,dR ) to (H,dc )
in Theorem 1.2, but the extra dimension adds some complications. To simplify
matters, consider constructing a map g from the Euclidean ball D3 to (H,dc ).
As in the two-dimensional case, one can construct a sequence of nested sets
M1 ⊂ M2 ⊂ ·· · ⊂ D3, where Mi consists of D3 with ki balls B i

1, . . . ,B i
ki

removed.
One could attempt to construct a Hölder map by following the outline of Theo-
rem 1.1. That is, each ball B i

j contains some collection of smaller balls C1, . . . ,Cm .

If g is already defined on the outer sphere ∂B i
j , one can extend it to B i

j \
⋃︁

k Ck so

that it sends the inner spheres to a subdivision g (∂C1), . . . , g (∂Cm) of g (∂B i
j ). The

images g (∂Mi ) then form a sequence of finer and finer subdivisions of g (∂D3),
and we can extend the map to all of D3 by passing to a limit.

The main difficulty with this outline is that the spheres and their subdivisions
need to be parametrized by Hölder maps. These are more difficult to construct
than the horizontal subdivisions of curves that we used in the two-dimensional
case. That is, in the two-dimensional case, we reduced from a horizontal curve
γ to its horizontal subdivision γ1, . . . ,γN by constructing a map from a N –holed
disc M to the horizontal graph

⋃︁
i γi that sends the outer boundary to γ and the

inner boundaries to the γi . Since the edges of the graph are horizontal, the map
on M can be taken to be Lipschitz and thus Hölder. Suppose instead that S is a
sphere inH, subdivided into spheres S1, . . . ,SN . Then there are continuous maps
from the N –holed ball M to

⋃︁
Si that send the outer boundary to S and the inner

boundaries to the Si ’s, but those maps may not be Hölder, even if all of the Si ’s
are images of Hölder spheres.

This is difficult to solve directly, so in Sections 4–5, we develop a different ap-
proach to constructing Hölder maps. We give a brief sketch. We start by choos-
ing a 0 < s < 1 and constructing a sequence of simplicial complexes Xi . We scale
the metric on Xi so that each simplex is a regular simplex with sides of length si

and ask that the Xi approximate (H,dc ) more and more closely in the sense that
there are C > 1 and bilipschitz homeomorphisms ιi : Xi → (H,dR ) that satisfy

C−1dXi (x, y)−C si ≤ dc (ιi (x), ιi (y)) ≤C dXi (x, y)+C si

for all x, y ∈ Xi .
We construct a map P : X0 → H by composing a sequence of Lipschitz cel-

lular maps Qi : Xi → Xi+1 that are admissible maps. An admissible map is a
cellular map such that for each d > 0 and each d–cell δ ∈F d (Xi ), there is a col-
lection of closed balls Bδ

1 , . . . ,Bδ
lδ
⊂ δ with disjoint interiors such that Qi sends

each Bδ
j homeomorphically to a d–cell of Xi+1 and collapses δ\

⋃︁
j Bδ

j to a lower-
dimensional set, i.e.,

Qi (δ\
⋃︂

j
Bδ

j ) ⊂ X (d−1)
i+1 ,
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Q0 Q1

FIGURE 1. The maps Pi and Qi send uncollapsed balls (small
triangles) to cells of Xi+1 by similarities and collapse the region
outside the uncollapsed balls to lower-dimensional skeleta. The
four mid-sized triangles on the left are the uncollapsed balls of
P1 = Q0 and the small triangles are uncollapsed balls of P2 =
Q1 ◦Q0. Note that Pi collapses more and more of X0 to the 1–
skeleton of Xi as i increases.

where X (d−1)
i+1 denotes the (d −1)–skeleton of Xi+1. We call the Bδ

i ’s uncollapsed

balls, and we construct Qi so that the Bδ
i ’s are pairwise disjoint, as in Figure 1.

Let

Pi =Qi−1 ◦ · · · ◦Q0 : X0 → Xi .

If the Qi ’s have small displacement in the sense that dc (ιi+1(Qi (x)), ιi (x)) ≲ si ,
then ιi ◦ Pi converges uniformly to a locally Hölder map P : X0 → H; indeed,
dc (ιi ◦Pi ,P ) ≲ si . Since ι0 is a bilipschitz homeomorphism from X0 → (H,dR ),
the map g = P ◦ ι−1

0 will also be locally Hölder.
In fact, this construction results in a map based on nested subdivisions of

curves and spheres, like the one outlined above. As i increases, Pi sends larger
and larger pieces of X0 to the 1–skeleton of Xi . That is, for any d , let M (d)

i =
P−1

i (X (d)
i ) be the preimage of the d–skeleton of Xi . The cellularity of Qi implies

that M (1)
i ⊂ M (1)

i+1 for all i . Let δ be a 2–cell of X0 and let Mδ,i := δ∩M (1)
i . This is

the complement of the uncollapsed discs of Pi . Each uncollapsed disc of Pi+1 is
contained in an uncollapsed disc of Pi (see Figure 1), so

⋃︁
i M (1)

i contains all of δ
except for a Cantor set.

Let γ := P (∂δ); when s is sufficiently small, γ will be a (1− ϵ)–Hölder curve
in H with diameter roughly 1. Such curves are generally not differentiable, so
they do not have horizontal velocities, but several authors have noted that they
satisfy an integral version of the horizontality condition, see for instance [11,
Lemma 3.1]. Let Mδ,i := δ∩ M (1)

i be the complement of the uncollapsed discs

of Pi . Then Pi (Mδ,i ) ⊂ X (1)
i , and there is an N such that Mδ,i is an N –holed

disc. The outer boundary of Mδ,i is ∂δ, so the images of the inner boundaries
of Mδ,i subdivide γ into closed curves γ1, . . . ,γN , each of diameter roughly si .
As i increases, these subdivisions grow finer and finer, and as in the proof of
Theorem 1.1, the restriction P |δ is Hölder.
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We see the same picture in the 3–cells. Let ∆ be a 3–cell of X0 and let S :=
P (∂∆) be a Hölder sphere. Let M∆,i := ∆∩M (2)

i ; as before, this is ∆ minus some
uncollapsed balls. Since Pi (M∆,i ) is 2–dimensional, P sends the outer boundary
of M∆,i to S and sends the inner boundaries of M∆,i to a subdivision of S into
Hölder spheres of diameter roughly si . As i increases, the subdivisions grow
finer and finer, so that ultimately P |∆ is Hölder.

Though we can write P in terms of subdivisions, our bound on the Hölder
exponent takes a different approach. We sketch the bound here; for full details,
see Section 5. The main idea of the Hölder bound is that because dc (ιi ◦Pi ,P )≲
si , the Hölder exponent of P is bounded by the growth rate of Lip(Pi ), and we
control Lip(Pi ) by placing geometric conditions on the Qi ’s.

First, we require that Qi is Lipschitz on X (1)
i with Lipschitz constant indepen-

dent of s. This ensures that Lip(Pi |X (1)
0

) does not grow too quickly. Second, we

require that there is an 0 < a < s such that for all i , the uncollapsed balls of Qi

are disjoint regular simplices of radius asi and that Qi sends each uncollapsed
ball to a cell of Xi+1 by a similarity with scaling factor s

a .
The Dehn function of the Heisenberg group puts an upper bound on the size

of a. That is, if δ is a 2–cell of Xi , then Qi (∂δ) is a curve of length roughly si

in Xi+1, which is to say that Qi (∂δ) is a loop of roughly s−1 edges. Filling such
a loop with a disc typically requires on the order of s−3 triangles, so Qi |δ might
have roughly s−3 uncollapsed balls. If these all have radius asi and are contained

in a ball of radius si , then a ≲ s
3
2 . In fact, we may choose Qi so that a = cs

3
2 for

some c independent of s.
We claim that there is a C such that(︂ s

a

)︂i
≤ Lip(Pi ) ≤C

(︂ s

a

)︂i
.

The lower bound follows from considering uncollapsed balls. If B is an uncol-
lapsed ball of Pi , then for each 0 ≤ j < i , P j (B) is contained in an uncollapsed
ball of Q j . Since Q j scales P j (B) by s

a , the composition Pi scales B by a factor of(︁ s
a

)︁i .
The upper bound is more difficult, but the key idea is that for any x ∈ X0, we

may consider the sequence Di (x) of integers such that Di (x) is the dimension
of the cell of Xi whose interior contains Pi (x). This sequence is non-increasing,
and if Di (x) > 1 and Pi (x) is not contained in an uncollapsed ball of Qi , then
Di+1(x) < Di (x). Since Di (x) ≤ 3, this can happen at most three times. That
is, for all but at most three values of i , either Pi (x) lies in an uncollapsed ball
of Qi or Pi (x) ∈ X (1)

i . But Qi is s
a –Lipschitz on uncollapsed balls and uniformly

Lipschitz on X (1)
i , so

Lip(Pi ) ≤C
(︂ s

a

)︂i

for some C depending on maxi Lip(Qi ).
We use this bound and the bound dc (ιi ◦Pi ,P ) ≲ si to show that P is locally

log s
log a –Hölder, see Section 5. Since a ≈ s

3
2 , log s

log a approaches 2
3 as s → 0.



8 STEFAN WENGER AND ROBERT YOUNG

1.1. Structure of paper. In Section 2 we establish basic notation used through-
out the text. We furthermore recall the precise definition of the coarse Dehn
function ArX ,ε and the definition of an admissible map between complexes. Fi-
nally, we collect some background on Carnot groups needed for the rest of the
paper. In Section 3 we deduce Theorem 1.1 from the extension results proved in
[12].

In Section 4 we construct the triangulations Xi of H and the maps Qi : Xi →
Xi+1 used in the sketch. In practice, the Xi ’s are all scalings of one triangula-
tion X0 and the Qi ’s are all scalings of one map X0 → X1. We compose scalings
of Q to produce a map P from X0 to (H,dc ). We give two constructions of Q;
to prove Theorem 1.2, we mainly need bounds on the Lipschitz constant of Q
and the volume of its cells, but to prove Theorem 1.4, we need some additional
conditions, which are provided by Lemma 4.3 and Lemma 4.4. These lemmas
deal with approximating continuous maps to arbitrary simplicial complexes by
admissible maps, and we defer their proofs to Appendix A.

In Section 5 we show that the map P satisfies the properties of Theorem 1.2
and prove Theorem 1.3. In Section 6 we analyze the tangent cone of P and prove
Theorem 1.4.

1.2. Acknowledgments. The authors would like to thank Assaf Naor for sug-
gesting Theorem 1.3 and to thank the referee for their hard work reading the
original version of the paper and providing critical feedback.

2. PRELIMINARIES

2.1. Basic definitions and notation. The Euclidean metric on Rd will be de-
noted by | · |. For x ∈ Rd and r > 0, we let B(x,r ) := {x ∈ Rd : |x| ≤ r } and let
Dd := B(0,1) be the closed unit ball.

Let (X ,dX ) be a metric space. The length of a curve c in X is denoted by ℓdX (c)
or simply by ℓ(c). Let (Z ,dZ ) be another metric space. A mapϕ : Z → X is called
(λ,α)–Hölder if

dX (ϕ(z),ϕ(z ′)) ≤λ ·dZ (z, z ′)α

for all z, z ′ ∈ Z . We say ϕ is α–Hölder if it is (λ,α)–Hölder for some λ> 0.
Let U ⊂Rd be open. The (parametrized) volume of a Lipschitz mapϕ : U → X

is defined by

vold (ϕ) = vold (ϕ; X ) =
ˆ

X
#{z ∈U :ϕ(z) = x}dH d (x),

where H d denotes the d–dimensional Hausdorff measure on X . If X is a Rie-
mannian manifold or a CW complex with piecewise Riemannian metric then,
by the area formula, vold (ϕ) agrees with the volume defined by integrating the
jacobian of the derivative of ϕ.

2.2. Admissible maps. Let X be a simplicial complex. For d ≥ 0 we denote by
F d (X ) the set of closed d–simplices in X and by X (d) the d–skeleton of X . Let
F (X ) be the set of cells in X of every dimension.
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We say that a continuous map f : Dn → X (n) is an admissible map if there is
a collection of closed subsets B1, . . . ,Bk ⊂ Dn , called uncollapsed balls, such that
the interiors of the Bi are pairwise disjoint, f sends each Bi homeomorphically
to an n–cell of X , and f (Dn \

⋃︁
Bi ) ⊂ X (n−1). We call k the admissible volume of

f , denoted avol( f ; X ) or simply avol( f ) when it is clear what the target complex
is. This differs slightly from the definition given in [2], where the target space is
a CW complex and the uncollapsed balls are open balls.

Given simplicial complexes X and Y , we call a continuous map f : X → Y
admissible if f is cellular (i.e., f (X (i )) ⊂ Y (i ) for all i ) and for every d–cell σ ∈
F d (X ) with d > 0, the map f |σ is admissible in the sense above. Note that if X ,
Y , and Z are simplicial complexes and f : X → Y and g : Y → Z are admissible,
then g ◦ f is admissible.

2.3. The coarse Dehn function. The coarse Dehn function which we introduce
here is a slight variant of Gromov’s definition of mesh function given in [6], see
also [3, III.H.2.1] or [4]. A triangulation of the closed unit disc D2 is a homeo-
morphism from D2 to a combinatorial 2–complex τ in which every 2–cell is a
triangle. We endow D2 with the cell-structure of τ. Let X be a geodesic metric
space and c : S1 → X a Lipschitz curve. Let ϵ > 0. An ϵ-filling of c is a pair (P,τ)
consisting of a triangulation τ of D2 and a continuous map P : τ(1) → X such that
P |S1 = c and such that ℓ(P |∂F ) ≤ ϵ for every triangle F in τ. The ϵ-area of c is

Arϵ(c) := min
{︁|τ| | (P,τ) is an ϵ-filling of c

}︁
.

Here, |τ| denotes the number of triangles in τ. If no ϵ-filling exists then we set
Arϵ(c) :=∞. The ϵ-coarse Dehn function of X is defined by

ArX ,ϵ(r ) := sup
{︁
Arϵ(c) | c : S1 → X Lipschitz, ℓ(c) ≤ r

}︁
for r > 0.

It is not difficult to show that the asymptotic growth of ArX ,ϵ(r ) is a quasi-
isometry invariant. Moreover, under mild conditions on the underlying space
the function ArX ,ϵ(r ) has the same growth as the so-called Lipschitz Dehn func-

tion δ
Lip
X (r ) (see [12]). We will however not need this. Recall here that the Lips-

chitz Dehn function δ
Lip
X (r ) measures how much (parametrized) area is needed

to fill a curve of length r by a Lipschitz disc in X .

2.4. Carnot groups and Carnot-Carathéodory distance. A connected, simply-
connected nilpotent Lie group G is called a Carnot group if its Lie algebra g ad-
mits a stratification into subspaces

g=V1 ⊕·· ·⊕Vk

such that [V1,Vi ] =Vi+1 for all i = 1, . . . ,k −1 and [V1,Vk ] = 0. Here, [V1,Vi ] is the
subspace spanned by the elements [v, v ′] with v ∈V1 and v ′ ∈Vi . The number k
is called the step or nilpotency class of G .
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As G is a simply-connected nilpotent Lie group, the exponential map exp: g→
G is a diffeomorphism. Since it is Carnot, G comes with a family of scaling ho-
momorphisms δr : G →G for r ≥ 0. They are given by

δr (exp(v)) = exp

(︄
k∑︂

i=1
r i vi

)︄
for v = v1 +·· ·+ vk with vi ∈Vi . The derivative Dxδr of δr at x ∈G is given by

Dxδr (D0Lx (v)) = r i ·D0Lδr (x)(v) (2)

for all v ∈Vi , where Lx denotes left-translation by x and 0 is the identity element
of G .

The horizontal bundle T H is the subbundle of TG obtained by left-translation
of the subspace V1. Let g0 be a left-invariant Riemannian metric on G such that
at 0 the subspaces Vi are pairwise orthogonal with respect to g0. Let dR be the
distance coming from g0. A curve c : [0,1] → G which is absolutely continuous
with respect to dR is called horizontal if c ′(t ) ∈ Tc(t )H for almost every t ∈ [0,1].
The Carnot-Carathéodory distance (or Carnot metric for short) associated with
dR is defined by

dc (x, y) := inf{ℓR (c) | c : [0,1] →G horizontal curve from x to y}.

Here, ℓR (c) denotes the length of c with respect to the metric dR . It can be shown
that the Carnot-Carathéodory distance is always finite and thus defines a met-
ric. It is moreover left-invariant and 1-homogeneous with respect to the scaling
automorphisms; that is,

dc (δr (x),δr (x ′)) = r dc (x, x ′)

for all x, x ′ ∈ G and all r > 0. The topologies induced on G by dR and dc agree,
however it is well-known that these metrics are not even locally bilipschitz equiv-
alent (except when G is abelian). Throughout this article, when we talk about a
Carnot metric on G we always mean one which is associated with a distance
coming from a left-invariant Riemannian metric such that at 0 the subspaces Vi

are orthogonal.
We will need the following simple facts.

Lemma 2.1. Let G be a Carnot group of step k. Let dR be the distance coming
from a left-invariant Riemannian metric on G and let dc be the associated Carnot
metric. Then there exists L ≥ 1 such that

(i) dR (x, x ′) ≤ dc (x, x ′) ≤ L ·dR (x, x ′)+L for all x, x ′ ∈G.
(ii) for every x ∈G the curve γ(r ) := δr (x) satisfies

ℓR (γ|[s,t ]) ≤ L · (dc (x,0)+1)k · |t − s|
for all 0 ≤ s ≤ t ≤ 1.

We provide a short proof for the convenience of the reader, compare with [14].
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Proof. The first inequality in (i) is clear. To prove the second inequality in (i),
notice that

L := sup{dc (y, z) : dR (y, z) ≤ 1} = sup{dc (0, x) : dR (0, x) ≤ 1} <∞.

Let x, x ′ ∈G be distinct and set l := dR (x, x ′). Let γ : [0, l ] → (G ,dR ) be a geodesic
from x to x ′, parametrized by arc-length. Let m be the largest integer smaller
than l . Then

dc (x, x ′) ≤
m∑︂

i=1
dc (γ(i −1),γ(i ))+dc (γ(m),γ(l )) ≤ L ·dR (x, x ′)+L,

which proves the second inequality in (i).
We now prove statement (ii). For x ∈ G define the curve γx : [0,1] → G by

γx (r ) := δr (x). Notice that

L := sup{∥γ′x (r )∥ : dR (0, x) ≤ 1,r ∈ [0,1]} <∞.

Let x ∈G and 0 ≤ s < t ≤ 1. Suppose that dR (0, x) ≤ 1. Then

ℓR (γx |[s,t ]) =
ˆ t

s
∥γ′x (r )∥dr ≤ L · |t − s| ≤ L · (dc (x,0)+1)k · |t − s|.

Now suppose that dR (0, x) > 1. Let β be a geodesic with respect to dR from 0
to x. By (2), if ξ ∈ (0,1), then

ℓR (δξ ◦β) ≤ ξℓR (β) = ξdR (0, x).

Let ξ= (dR (0, x))−1, so that dR (0,δξ(x)) ≤ ℓR (δξ ◦β) ≤ 1.
By (2), δξ−1 distorts length by at most a factor of ξ−k , so

ℓR (γx |[s,t ]) ≤ ξ−k ·ℓR (δξ ◦γx |[s,t ]) = ξ−k ·ℓR (γδξ(x)|[s,t ]) ≤ L ·ξ−k · |t − s|
and thus

ℓR (γx |[s,t ]) ≤ L · (dR (0, x))k · |t − s| ≤ L · (dc (0, x))k · |t − s|.
This proves statement (ii). □

Finally, we consider the first Heisenberg group which is the Carnot group of
step 2 given byH :=R3 with the multiplication

(x, y, z) · (x ′, y ′, z ′) = (x +x ′, y + y ′, z + z ′+x y ′). (3)

A basis of left-invariant vector fields onH is given by

X = ∂

∂x
, Y = ∂

∂y
+x

∂

∂z
, Z = ∂

∂z
,

and the Lie algebra h of H has the stratification h = span{X ,Y }⊕ span{Z }. We
denote byHZ :=Z3 the integer lattice inH.

Let g0 be a left-invariant Riemannian metric onH such that at 0 the subspaces
V1 and V2 are orthogonal. It follows from (2) that for r ≥ 1 the scaling automor-
phism δr on H distorts 2–dimensional area in (H, g0) at most by a factor r 3 and
3–dimensional volume by a factor of exactly r 4.
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3. FROM TRIANGULATIONS TO HÖLDER EXTENSIONS

In this section we prove Theorem 1.1. The main ingredient is the next theo-
rem, which follows from the results proved in [12].

Theorem 3.1. Let X be a complete, geodesic metric space. Suppose there exist
K ≥ 1 and β≥ 2 such that for all r > 0 and n ∈Nwe have

ArX , r
n

(r ) ≤ K ·nβ.

Then for every α< 2
β the pair (R2, X ) has the α–Hölder extension property.

Proof. Let K ≥ 1 and β ≥ 2 be as in the statement of the theorem and let α < 2
β .

Choose n so large that

η := logn

log(2
√︁

K nβ)
= logn

log2+ 1
2 · logK + β

2 · logn
>α.

It follows from Proposition 7.4 in [12] that the space X is η–Hölder 1–connected
and, in particular, also α–Hölder 1–connected. Thus, there exists C ≥ 1 such
that every λ-Lipschitz curve c : S1 → X admits a (Cλ,α)–Hölder extension to
D2. Now, Theorem 6.4 in [12] implies that the pair (R2, X ) has the α–Hölder
extension property, which completes the proof. □

We now apply the theorem to Carnot groups:

Corollary 3.2. Let G be a Carnot group and let dc be a Carnot metric on G. Let
K ≥ 1 and β≥ 2 be such that for all r ≥ 1,

Ar(G ,dc ),1(r ) ≤ K · rβ.

Then the pair (R2, (G ,dc )) has the α–Hölder extension property for all α< 2
β .

Proof. Let n ∈ N and r > 0. Since scaling automorphisms are 1–homogeneous
with respect to dc we have

Ar(G ,dc ), r
n

(r ) = Ar(G ,dc ),1(n) ≤ K ·nβ

and hence the corollary follows from Theorem 3.1. □

Now, Theorem 1.1 follows from the corollary above together with the next
lemma.

Lemma 3.3. Let G be a Carnot group of step k and let dc be a Carnot metric on G.
Then there exists K ≥ 1 such that

Ar(G ,dc ),1(r ) ≤ K · r k+1

for all r ≥ 1.

The lemma could easily be deduced from the upper bound on the growth of
the Lipschitz Dehn function proved in [14] and the fact that the coarse Dehn
function has the same growth as the Lipschitz Dehn function (see e.g. [12]). We
prefer to give a direct proof here.
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Proof. Let dR be a left-invariant Riemannian metric on G such that dc is the
Carnot metric associated with dR . Let L ≥ 1 be as in Lemma 2.1.

Using the scaling homomorphisms it suffices to show that there exists K such
that

Ar(G ,dc ),6L(r ) ≤ K · r k+1 (4)

for all r ≥ 6L. In order to prove (4) let c : S1 → (G ,dc ) be a Lipschitz curve of
length r ≥ 6L. We may assume that c has constant speed and that c passes
through 0 ∈G .

We construct a 6L-filling (P,τ) of c as follows. Let M ∈ N be the smallest in-

teger larger than r
L and set vl := e

2πl i
M for l = 0, . . . , M −1. Furthermore, let m be

the smallest integer larger than L · (r +1)k . We define a triangulation τ of D2 as
follows. The set of vertices of τ is the subset of D2 given by the points v0,0 = 0

and v j ,l := j
m · vl for j = 1, . . . ,m and l = 0, . . . , M −1. For l = 0, . . . , M −1 we add

edges between the points v j ,l and v j+1,l for j = 0, . . . ,m −1, where we have set
v0,l = v0,0, between v j ,l and v j ,l+1 for j = 1, . . . ,m, where v j ,M = v j ,0, and be-
tween v j ,l and v j+1,l+1 for j = 1, . . . ,m−1. This gives a triangulation τ of D2 con-

sisting of less than 2mM triangles and thus |τ| ≤ K r k+1, where K only depends
on L and k. We now define a map P : τ(1) → G by setting P |S1 := c and by defin-
ing P (v j ,l ) := δ j

m
(c(vl )). We extend P to τ(1) by mapping the edges in τ(1) \ S1 to

geodesics with respect to the dc -distance. It remains to show that ℓc (P |∂F ) ≤ 6L
for every triangle F in τ, where ℓc denotes the length with respect to the Carnot
metric dc . For this we use the estimates in Lemma 2.1. Firstly, we have

dc (P (v j ,l ),P (v j ,l+1)) = j

m
·dc (c(vl ),c(vl+1)) ≤ j

m
·ℓc (c|[vl ,vl+1]) ≤ L.

Secondly, writing γl (t ) := δt (c(vl )) we obtain that

dc (P (v j ,l ),P (v j+1,l )) ≤ L ·ℓR (γl |[︂ j
m , j+1

m

]︂)+L ≤ L2 · (r +1)k · 1

m
+L ≤ 2L.

The two inequalities together finally yield

dc (P (v j ,l ),P (v j+1,l+1)) ≤ 3L,

from which it follows that ℓc (P |∂F ) ≤ 6L for every triangle F in τ. This proves
(4). □

4. CONSTRUCTING HÖLDER MAPS FROM ADMISSIBLE MAPS

While one can construct Hölder maps from discs to Carnot groups by con-
structing a sequence of nested subdivisions, it is difficult to generalize this con-
struction to higher-dimensional domains. Instead, we will construct Hölder
maps using admissible maps.

As in the introduction, we will construct a sequence of simplicial complexes
X0, X1, . . . , equipped with path metrics, a sequence of maps ιi : Xi → H, and a
sequence of admissible maps Qi : Xi → Xi+1. We then define Pi : X0 → Xi ,

Pi :=Qi−1 ◦ · · · ◦Q0,
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and let P : X0 →H, P := limi ιi ◦Pi . The map P is the desired Hölder map. In this
section, we will give the details of the construction by defining Xi , ιi , and Qi ,
and in the next section, we will show that P is Hölder.

We will define the Xi ’s to be scalings of a single triangulation X of H. Re-
call that HZ ⊂ H is the lattice of integer points. Let X be an HZ–equivariant
piecewise-linear (PL) triangulation of H. That is, X is a tuple X = (Y , ι,ζ) of a
simplicial complex Y , a PL homeomorphism ι : Y → H, and a left HZ–action
ζ[g ] : Y → Y , g ∈ HZ, such that ι(ζ[g ](x)) = g ι(x) for all g ∈ HZ, x ∈ Y . The ex-
istence of such a ι relies on the fact that by (3), ifα : Rn →H is affine, then for any
g ∈H, the translate v ↦→ gα(v) is also affine. This induces a subdivision ofH into
simplices

(︁
ι(σ)

)︁
σ∈F (Y ). Since ι is equivariant, the action ofHZ onH permutes the

simplices in this subdivision. We write x ∈ X to denote a point in the underlying
simplicial complex Y of X and define g x = ζ[g ](x) for g ∈ HZ, x ∈ X . Let d∆ be
the standard metric on X , i.e., the path metric such that every simplex of X is
isometric to the unit regular simplex. Since ι is PL, it is a bilipschitz equivalence
from (X ,d∆) to (H,dR ), where dR is the Riemannian metric onH.

Let n > 1 be a large integer to be chosen later, and let s = n−1. For each i
and for each i ≥ 0, let Xi be X scaled by si . That is, Xi = (Y , ιi ,ζi ), where ιi =
δn−i ◦ ι and ζi [g ](x) = ζ[δni (g )](x) = δni (g )x for all g ∈ HZ, x ∈ X . Then Xi is a
triangulation of H, and for each σ ∈F (Xi ) with dimσ> 0, the simplex ιi (σ) has
dc –diameter roughly si . Furthermore, ιi isHZ–equivariant, i.e., for all x ∈ Xi ,

ιi (ζi [g ](x)) = δn−i

(︁
ι
(︁
ζ[δni (g )](x)

)︁)︁= δn−i

(︁
δni (g )ι(x)

)︁= gδn−i (ι(x)) = g ιi (x).

As before, for x ∈ Xi , we let g x denote ζi [g ](x).
We equip Xi with the metric di = si d∆. Since ι is a bilipschitz equivalence

from d∆ to dc and dc is quasi-isometric to dR (Lemma 2.1), ι is a quasi-isometry
from (X ,d∆) to (H,dc ). That is, there is a k > 1 such that for any x, y ∈ X0,

k−1d∆(x, y)−k ≤ dc (ι(x), ι(y)) ≤ kd∆(x, y)+k. (5)

By the scale-invariance of dc , dc (ιi (x), ιi (y)) = si dc (ι(x), ι(y)), so multiplying (5)
by si gives

k−1di (x, y)−ksi ≤ dc (ιi (x), ιi (y)) ≤ kdi (x, y)+ksi . (6)

That is, (Xi ,di ) approximates (H,dc ) more and more closely as i increases.
We will construct P : X0 → H from a sequence of HZ–equivariant admissible

maps Qi : Xi → Xi+1. Since all of the Xi ’s have the same underlying simplicial
complex, we can construct the Qi ’s as a scaling of a map Q : X → X which is
equivariant as a map from X0 to X1, that is, Q(ζ0[g ](x)) = ζ1[g ](Q(x)) for all g ∈
HZ, x ∈ X . Since ζi [g ](x) = ζ[δni (g )](x) for all g ∈HZ, x ∈ X , we have Q(ζ[g ](x)) =
ζ[δn(g )](Q(x)) and

Q(ζi [g ](x)) =Q(ζ[δni (g )](x)) = ζ[δni+1 (g )](Q(x)) = ζi+1[g ](Q(x))

for any i ≥ 0. That is, if Q is HZ–equivariant as a map from X0 to X1, then it is
HZ–equivariant as a map from Xi to Xi+1 for any i ≥ 0.
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We construct Q so that it satisfies the following properties. A similarity from
one simplex to another is a map that scales the metric by a constant factor, i.e.,
a rotation or reflection followed by a scaling.

Lemma 4.1. There are c,n0 > 1 such that for every n > n0 there is an admissible,
surjective, degree–1, HZ–equivariant Lipschitz map Q : X0 → X1 that has the fol-
lowing properties. Let Qi : (Xi ,di ) → (Xi+1,di+1) denote Q viewed as a map from
Xi to Xi+1.

(1) For all i , Lip(Qi ) = Lip(Q) and Lip(Qi |X (1)
i

) < c.

(2) Qi has small displacement. That is, for every x ∈ Xi ,

dc (ιi (x), ιi+1(Qi (x))) < csi .

(3) Let a = c−1n− 3
2 ; note that 0 < a < s < 1. For σ ∈ F d (Xi ) with d = 2,3,

every uncollapsed ball B of Qi |σ is a regular simplex with edges of length
asi , i.e., B is a copy of σ scaled by a.

(4) For any uncollapsed ball B, the restriction Qi |B is a similarity from B to a
simplex of Xi+1, with scale factor s

a .
(5) There is an r > 0 independent of n such that for any σ ∈F 3(X0), there is a

q ∈H such that

dc (q, ι1(Q(X0 \σ))) > r.

Before we prove the lemma, we will sketch how to use the lemma to con-
struct Hölder maps. Indeed, the map in Theorem 1.2 can be constructed from a
map Qi that satisfies conditions (1), (3), (4), and the condition that there is some
D(n) > 0 such that

dc (ιi (x), ιi+1(Qi (x))) < D(n)si for all x ∈ X . (7)

This is a version of (2) in which the bound on displacement is allowed to depend
on n.

Given Q and Qi satisfying these conditions, we let Pi : X0 → Xi , Pi = Qi−1 ◦
· · · ◦Q0. We claim that (ιi ◦Pi )i converges uniformly as i →∞. By equation (7),
for any x ∈ X0, we have

dc
(︁
ιi (Pi (x)), ιi+1(Pi+1(x))

)︁= dc
(︁
ιi (Pi (x)), ιi+1(Qi (Pi (x)))

)︁< D(n)si ,

so (ιi ◦Pi )i is uniformly Cauchy. Let P : X0 →H, P = limi ιi ◦Pi . Since s ≤ 1
2 ,

dc
(︁
ιi (Pi (x)),P (x)

)︁< D(n)si

1− s
≤ 2D(n)si . (8)

Combining (6) and (8) with a bound on the growth of the Lipschitz constants
of the Pi ’s leads to Hölder bounds on P . For example, condition (1) of Lemma 4.1
implies the following bound.

Lemma 4.2. Let Qi , Pi , and P be as above and let ϵ > 0. If n is sufficiently large,
then P |X (1)

0
is locally (1−ϵ)–Hölder.
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Proof. Let x, y ∈ X (1)
0 such that 0 < d0(x, y) < 1. Let ρ = s

c < 1 and let i ≥ 0 be the
integer such that ρi+1 ≤ d0(x, y) < ρi . By condition (1) of Lemma 4.1 and the fact
that Qi is cellular, we have Lip(Pi |X (1)

0
) ≤ c i . Let k be as in (6). Then by (8),

dc (P (x),P (y)) ≤ 4D(n)si +dc (ιi (Pi (x)), ιi (Pi (y)))

≤ 4D(n)si +kc iρi +ksi = 4D(n)+2k

s
si+1 ≤ K ′d0(x, y)

log s
logρ ,

where K ′ = K ′(n) = 4D(n)+2k
s . As n →∞,

lim
n→∞

log s

logρ
= lim

n→∞
− logn

− logn − logc
= 1.

When n is large enough that log s
logρ > 1−ϵ,

dc (P (x),P (y)) ≤ K ′d0(x, y)
log s
logρ ≤ K ′d0(x, y)1−ϵ,

as desired. □

That is, a bound of the form Lip(Pi ) ≲ K (n)Li implies that P is locally log s
log s

L
–

Hölder. To prove Theorem 1.2, it suffices to show that Lip(Pi ) ≲ K (n) · ( s
a )i for

some K (n), and we will use conditions (3) and (4) to prove this bound in Sec-
tion 5.

When n is sufficiently large, condition (5) lets us show that for anyσ ∈F 3(X0),
there is a y ∈σ such that

dc (P (y),P (X0 \σ)) > r −2cs > r

2
;

we will use this in Section 6 to construct a proper tangent cone of P and prove
Theorem 1.4.

Since Theorem 1.2 relies only on the existence of a map satisfying equation (7)
and conditions (1), (3), and (4), we will sketch the construction of such a map for
readers who are primarily interested in Theorem 1.2. For each vertex v ∈F 0(X0),
choose Q(v) to be a vertex of X1 that minimizes the distance dc (ι0(v), ι1(Q(v))).
By (6), for each edge e = [v, w], we have d1(Q(v),Q(w)) ≲ 1. Define Q on e to
be a shortest path in X (1)

1 from Q(v) to Q(w), parametrized with constant speed.
There is a c0 > 0 independent of n such that this path has at most c0n edges, so
Lip(Q|X (1)

0
) ≤ c0, i.e., Q satisfies condition (1).

For every triangleσ ∈F 2(X0), the image Q(∂σ) is a closed curve in X (1)
1 with at

most 3c0n edges. Since the Heisenberg group has a cubic Dehn function, results
of [2] imply that there is a c1 > 0 such that we can extend Q to an admissible
map onσwith avol(Q|σ) ≤ c1n3. We can take the uncollapsed discs of Q|σ to be a
collection of disjoint balls. There is a homeomorphism fromσ to itself that sends
these disjoint balls to a collection of disjoint regular simplices of edge length
roughly (︃

1

c1n3

)︃ 1
2 ≈ n− 3

2 .
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We compose Q with this homeomorphism so that it satisfies condition (3), and
by applying a further homotopy, we can ensure that it satisfies condition (4), see
Lemma 4.4 and Appendix A.

Now, for every tetrahedron ∆ ∈ F 3(X0), the image Q(∂∆) is a 2–sphere in X1

consisting of at most 4c1n3 triangles. The filling volume function of the Heisen-

berg group grows like FV3(t ) ≈ t
4
3 , so, using results of [2] again, we can extend

Q to an admissible map on ∆ with disjoint uncollapsed balls and avol(Q|∆) ≤
FV3(4c1n3) ≤ c2n4. There is a homeomorphism that sends the uncollapsed balls
of Q|∆ to disjoint simplices, so we can adjust Q to satisfy conditions (3) and (4).

All of these constructions can be done equivariantly, so Q can be chosen to
be HZ–equivariant. Since HZ acts cocompactly on H, the map ι1 ◦Q ◦ ι−1

0 has
bounded displacement; say that there is some D(n) such that

dc (ι0(x), ι1(Q(x))) ≤ D(n)

for all x ∈ X . Then

dc (ιi (x), ιi+1(Qi (x))) = dc (δsi (ι0(x)),δsi (ι1(Q(x)))) ≤ si D(n),

so equation (7) holds. Then Q and the Qi satisfy the desired conditions, so Q
can be used in the proof of Theorem 1.2. Readers who are primarily interested
in Theorem 1.2 may turn to Section 5 for the proof.

To achieve conditions (2) and (5) as well, we need stronger control over the
geometry of Q. We thus construct Q by first constructing a mapφ : X0 →Hwhich
is close to ι, then approximating ι−1

1 ◦φ by an admissible map A : X0 → X1, and
finally adjusting A to satisfy conditions (3) and (4). Let κ > 0 be small enough
that for every 3–simplex∆ ∈F 3(X0), the image ι0(∆) contains a dc –ball of radius
κ. Any curve in H can be approximated arbitrarily closely by a horizontal curve,
so there is an HZ–equivariant PL map φ : X0 → H such that φ is horizontal on
every edge of X0 and

dc (φ(x), ι0(x)) < κ

2
(9)

for all x ∈ X0. Then ι−1
1 ◦φ is an HZ–equivariant PL map from X0 to X1. By the

following lemma, which is proved in Appendix A, we can approximate ι−1
1 ◦φ by

an admissible map A : X0 → X1.

Lemma 4.3. Let Y , Z be finite dimensional simplicial complexes equipped with
the standard metric, and let ψ : Y → Z be a Lipschitz map. Then there is an ad-
missible Lipschitz map ψ : Y → Z such that:

(1) For a subset S ⊂ Z , let suppS be the smallest subcomplex of Z containing
S. For any simplex σ ∈F (Y ), we have ψ(σ) ⊂ suppψ(σ).

(2) For any edge e ∈F 1(Y ), ψ(e) is an edge path parametrized with constant
speed.

(3) For any simplex σ ∈F (Y ),

avol(ψ|σ) ≤ b · ∑︂
σ′∈F (σ)

voldim(σ′)(ψ|σ′) (10)

for some constant b depending only on the dimension of Z .
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If ψ is equivariant then ψ can be taken to be equivariant as well.

Let A = ι−1
1 ◦φ : X0 → X1 be the map obtained by applyinh Lemma 4.3 to the

map ψ = ι−1
1 ◦φ. We claim that A is Lipschitz on X (1)

0 with a Lipschitz constant
independent of n and that avol(A|σ) ≲C nd+1 for all d ≥ 2 and σ ∈F d (X0). The
bound on the Lipschitz constant will help us achieve condition (1) in Lemma 4.1,
and the bound on avol(A|σ) will help us achieve conditions (3) and (4).

Let
M = max

σ∈F d (X0),d≥1
vold

R (φ|σ),

where vold
R is d–volume with respect to the Riemannian metric dR on H. This

maximum exists because there are only finitely many cells of HZ\X0. We can
bound the number of uncollapsed discs of A in terms of M and n. Let ℓ0 and
ℓ1 = n−1ℓ0 be length with respect to d0 (the standard metric) and d1, and let
vold

0 and vold
1 denote d–volume with respect to d0 and d1.

Let e be an edge of X0. Then A|e is an edge path in X1. By (10),

ℓ1(A|e ) = n−1 avol(A|e ) ≤ n−1b
(︁
ℓ0(ι−1

1 ◦φ|e )+2
)︁
.

Since φ is horizontal on each edge e of X0 and ι is bilipschitz,

ℓ0(ι−1
1 ◦φ|e ) = ℓ0(ι−1 ◦δn ◦φ|e ) ≈ ℓR (δn ◦φ|e ) = nℓR (φ|e ) ≤ nM .

Therefore,
ℓ1(A|e ) ≤ n−1b(nM +2) ≤ bM +2bn−1,

so A|X (1)
0

is ((M +2)b)–Lipschitz.

Recall from Section 2.4 that δn distorts 2–dimensional area by a factor of at
most n3 and distorts 3–dimensional volume by a factor of n4. Thus if d ≥ 2,

vold
0 (ι−1

1 ◦φ|σ) ≈ vold
R (δn ◦φ|σ) ≤ nd+1M .

It follows that there is a C =C (X ,φ) > 1 such that Lip(A|X (1)
0

) <C and

avol(A|σ) ≤C nd+1 (11)

for any d ≥ 2 and any σ ∈F d (X0).
We construct Q by adjusting A to make the uncollapsed balls into regular sim-

plices. We use the following lemma, which will be proved in Appendix A. A col-
lared ball in a d–dimensional manifold M is the image of the radius– 1

2 Euclidean

d–ball B(0, 1
2 ) ⊂Rd under an embedding of the unit ball B(0,1).

Lemma 4.4. Let Y , Z be finite dimensional simplicial complexes equipped with
a multiple of the standard metric, and let f : Y → Z be an admissible map. For
each simplex σ ∈ F d (Y ) with d ≥ 2, let Bσ

1 , . . . ,Bσ
avol( f |σ) ⊂ σ be the uncollapsed

balls of f |σ and let τσi = f (Bσ
i ) ∈F d (Z ) be the corresponding cells of Z .

Let Cσ
1 , . . . ,Cσ

avol( f |σ) ⊂σ be disjoint collared balls and let gσi : Cσ
i → τσi be home-

omorphisms with the same orientation as f |Bσ
i

. Then f is homotopic to an admis-
sible map h : Y → Z such that:

(1) h agrees with f on Y (1).
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(2) For each simplex σ ∈ F d (Y ) with d ≥ 2, the uncollapsed balls of h|σ are
the Cσ

i ’s, and for each i , h agrees with gσi on Cσ
i .

(3) For every simplex σ ∈F d (Y ), h(σ) ⊂ supp f (σ).

If f is Lipschitz and the gσi ’s are Lipschitz, we can take h to be Lipschitz on each
cell of Y ; if f and the gσi ’s are equivariant, we can take h to be equivariant as well.

We use these lemmas to prove Lemma 4.1.

Proof of Lemma 4.1. We first construct Q. Let c > 0 be a large number to be cho-
sen later. For each simplex σ ∈ F d (X0) with d ≥ 2, let Bσ

1 , . . . ,Bσ
avol(A|σ) be the

uncollapsed balls of A|σ and let τσi = A(Bσ
i ) ∈F d (X1).

Let C > 1 be as in the remarks after Lemma 4.3, so that Lip(A|X (1)
0

) < C and

avol(A|σ) ≤ C nd+1 for each d = 2,3 and each simplex σ ∈ F d (X0). Let β > 0 be
small enough that for d = 2,3 and for any N > 0, one can construct N disjoint

regular simplices of edge length βN− 1
d in the interior of the unit regular simplex

∆d (for instance, by inscribing a cube in ∆d , subdividing the cube into a grid

with ⌈N− 1
d ⌉ grid cells on an edge, then inscribing a regular simplex in each grid

cell).
Let c0 =β−1C

1
2 . For any c > c0 and d = 2,3,

a = c−1n− 3
2 <βC− 1

2 n− 3
2 ≤β(C nd+1)−

1
d .

Thus for each d = 2,3 and each cell σ ∈F d (X0), we can construct

Cσ
1 , . . . ,Cσ

avol(A|σ) ⊂ intσ

which are disjoint regular simplices of edge length a. For each σ and i , let
gσi : Cσ

i → τσi be a similarity with the same orientation as A|Bσ
i

and scale factor
diamτσi
diamCσ

i
= s

a .

Let Q : X0 → X1 be a Lipschitz, HZ–equivariant, admissible map satisfying
Lemma 4.4 for this choice of Cσ

i and gσi . Then Q0 = Q satisfies conditions (3)
and (4) of Lemma 4.1. Since Qi is the same map as Q, with the metric on the
domain and range scaled by si , Qi satisfies conditions (3) and (4) for any i .

We claim that Qi satisfies the rest of the desired conditions. Since di = si d0

for all i , we have Lip(Q) = Lip(Qi ) for all i . By Lemma 4.4, Q|X (1)
0

= A|X (1)
0

, so

Lip(Qi |X (1)
i

) <C by our choice of C . Thus, (1) holds when c >C .

Condition (2) claims that dc (ι0(x), ι1(Q(x))) ≲ 1 for all x ∈ X0. Let x ∈ X0 and
let σ be a simplex of X0 that contains x. Then

dc (ι0(x), ι1(Q(x))) ≤ dc (ι0(x),φ(x))+dc (φ(σ), ι1(Q(x)))+diamφ(σ).

By (9), dc (ι0(x),φ(x)) < κ
2 ≲ 1. Likewise,

diamφ(σ) ≤ max
δ∈F (X0)

diamφ(δ)≲ 1.

Finally, we have

Q(x) ∈Q(σ) ⊂ supp A(σ) ⊂ suppsupp(ι−1
1 (φ(σ))) = supp(ι−1

1 (φ(σ))).
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Since simplices of X1 have side length s,

d1(Q(x), ι−1
1 (φ(σ))) ≤ s.

By (6),

dc (ι1(Q(x)),φ(σ)) ≤ 2ks ≲ 1.

Summing these inequalities, we find that there is a universal constant c2 > 0
such that dc (ι0(x), ι1(Q(x))) ≤ c2. Then condition (2) holds for all c > c2.

In fact, ι0 and ι1 ◦Q : X0 →H are homotopic by a straight-line homotopy that
moves each point distance at most c2. Since ι0 is a degree–1 map, so is ι1 ◦Q.
Thus Q is a surjective, degree–1 map.

Finally, recall that by the construction of ι0, there is a κ> 0 such that for every
σ ∈F 3(X0), there is a point q ∈H such that if y ∈ X0 \ intσ, then dc (q, ι0(y)) > κ.
By (9),

dc (q,φ(y)) > κ

2
. (12)

Let r = κ
4 , let

D = max
α∈F (X0)

diam ι0(α)

and let n0 = 4D
κ . Suppose that n > n0.

Suppose that τ ∈F 3(X0) and τ ̸=σ. Since τ⊂ X0 \ intσ, we have dc (q,φ(τ)) >
κ
2 , and we claim that dc (q, ι1(Q(τ))) > r . By Lemma 4.3 and Lemma 4.4,

Q(τ) ⊂ supp A(τ) = supp
(︂
ι−1
1 ◦φ(τ)

)︂
⊂ supp

(︁
ι−1
1 (φ(τ))

)︁
.

That is, for any w ∈Q(τ), there are z ∈ τ and α ∈F (X1) such that {w, ι−1
1 (φ(z))} ⊂

α and thus

dc (ι1(w),φ(z)) ≤ diam ι1(α) ≤ Dn−1 ≤ κ

4
.

By the triangle inequality,

dc (q, ι1(w)) ≥ dc (q,φ(z))−dc (φ(z), ι1(w)) > κ

4
= r.

Therefore, dc (q, ι1(Q(τ))) > r . Since this holds for every τ ̸=σ, we have

dc (q, ι1(Q(X0 \σ))) > r.

This proves condition (5). □

5. HÖLDER BOUNDS FOR P

Let c be as in Lemma 4.1. By condition (2) of Lemma 4.1, for any x ∈ X0, we
have dc (ιi (Pi (x)), ιi+1(Pi+1(x))) < csi , so the Pi ’s converge uniformly. Let P =
limi ιi ◦Pi . Then

dc
(︁
ιi (Pi (x)),P (x)

)︁< csi

1− s
≤ 2csi . (13)

In this section, we will prove an exponential bound on Lip(Pi ) and combine
it with (13) to prove Hölder bounds on P . We bound Lip(Pi ) as follows.
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Lemma 5.1. Let c, n, a = c−1n− 3
2 , and Qi : Xi → Xi+1 be as in Lemma 4.1. Let

Pi = Qi−1 ◦ · · · ◦Q0. There is a C > 0 depending on X and n such that Lip(Pi ) ≤
C · ( s

a )i .

Proof. Let λi : X0 →R be the local Lipschitz constant

λi (x) = lim
r→0+ Lip(Pi |B(x,r )),

where B(x,r ) denotes the ball with respect to d0. Let L = Lip(Q1); since the Qi ’s
are scalings of Q1, we have L = Lip(Qi ) for all i . Since Qi scales uncollapsed balls
by s

a , we have s
a ≤ L, but s

a will typically be much smaller than L. In general,
λi+1(x) ≤ Lλi (x), and we will prove the lemma by showing that λi+1(x) ≤ s

aλi (x)
for all but six values of i .

For each i , define Di : X0 → {0,1,2,3} so that Di (x) is the dimension of the
smallest cell of Xi containing Pi (x). Let

Dˆ︁ i (x) = lim
r→0+ maxDi (B(x,r )).

Then Dˆ︁ 0(x) = 3 and Dˆ︁ i (x) ≥ Di (x) for all x and i . Since Qi is a cellular map, we
have Di+1(x) ≤ Di (x) and Dˆ︁ i+1(x) ≤ Dˆ︁ i (x) for all x and i .

Let x ∈ X0. We claim that Dˆ︁ i (x) = Di (x) = Di+1(x) for all but at most six values
of i and that if Dˆ︁ i (x) = Di (x) = Di+1(x), then λi+1(x) ≤ s

aλi (x).
First, since (Di (x))i is non-increasing, there are at most three values of i such

that Di (x) ̸= Di+1(x). Suppose that Dˆ︁ i (x) ̸= Di (x); we must have Dˆ︁ i (x) > Di (x).
Let d = Di (x), so that Pi (x) ∈ X (d)

i . By condition (3) of Lemma 4.1, there is an
r > 0 such that Pi (B(x,r )) does not intersect any uncollapsed (d + 1)–ball and
thus Pi+1(B(x,r )) ⊂ X (d)

i+1, i.e., Dˆ︁ i+1(x) ≤ Di (x) < Dˆ︁ i (x). Since (Dˆ︁ i (x))i is non-
increasing, this can happen for at most three values of i . There are thus at most
six values of i such that Di (x) ̸= Di+1(x) or Dˆ︁ i (x) ̸= Di (x).

For every other value of i , we have Dˆ︁ i (x) = Di (x) = Di+1(x). If Dˆ︁ i (x) ≤ 1, then
there is some r > 0 such that Pi (B(x,r )) ⊂ X (1)

i . By condition (1) of Lemma 4.1,
Lip(Qi |Pi (B(x,r ))) < c ≤ s

a , so λi+1(x) ≤ s
aλi (x).

Otherwise, if Dˆ︁ i (x) > 1, let d = Di (x). Since Di (x) = Di+1(x), Pi (x) lies in the
interior of some uncollapsed d–ball B of Qi (x). Since Dˆ︁ i (x) = d , there is some
r > 0 such that Pi (B(x,r )) ⊂ X (d)

i . Thus, if r > 0 is sufficiently small, we have
Pi (B(x,r )) ⊂ B . Since Qi rescales B by a factor of s

a , we have λi+1(x) =λi (x) s
a .

Thus, for up to six values of i , we have λi+1(x) ≤ Lλi (x), and for all the rest,
λi+1(x) ≤ s

aλi (x). Since λ0(x) = 1, this implies

λi (x) ≤ L6
(︂ s

a

)︂i

for all x. Since X0 is a path metric space,

Lip(Pi ) ≤ sup
x∈X0

λi (x) ≤ L6
(︂ s

a

)︂i
,

as desired. □
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Given the lemma, one can use (13) to show that P is locally Hölder and prove
Theorem 1.2. This is the same argument as in Lemma 4.2.

Proof of Theorem 1.2. Let α < 2
3 and let c > 1 be as in Lemma 4.1. Since a =

c−1n− 3
2 and s = n−1,

lim
n→∞

log s

log a
= lim

n→∞
logn−1

logc−1n− 3
2

= 2

3
.

Let n be large enough that log s
log a ≥α. Let k > 1 be the quasi-isometry constant of

ι as in (5) and (6), and let C be as in Lemma 5.1 so that Lip(Pi ) ≤C · ( s
a )i .

We claim that P is locally (K ,α)–Hölder, where K = 4c+kC+k
s . Let x, y ∈ X0 such

that 0 < d0(x, y) < 1. Let i ≥ 0 be the integer such that ai+1 ≤ d0(x, y) < ai . Then,
by (13) and (6),

dc (P (x),P (y)) ≤ 4csi +dc (ιi (Pi (x)), ιi (Pi (y)))

≤ 4csi +k Lip(Pi )ai +ksi ≤ K si+1 ≤ K d0(x, y)α,

as desired.
Since ι0 is a bilipschitz equivalence from (H,dR ) to X0, the composition g =

P ◦ ι−1
0 : (H,dR ) → (H,dc ) is an HZ–equivariant, locally α–Hölder map. Since H is

contractible, any such map is equivariantly homotopic to the identity. □

We prove Theorem 1.3 by using g to construct a sequence of locally Hölder
maps that converge to the identity map.

Proof of Theorem 1.3. Let Y be a compact metric space and let ϕ : Y → H be a
continuous map. Let ϵ> 0 and let 0 <α< 2

3 .
We first approximate ϕ by a Lipschitz map. Let δ > 0 be such that if x, y ∈ H

and dR (x, y) < δ, then dc (x, y) < ϵ
2 . Let B ⊂ H be a ball containing ϕ(Y ) and

note that the Riemannian metric on B is bilipschitz equivalent to the Euclidean
metric on B (with a constant depending on the radius of B). Lipschitz maps
from Y to R3 are dense in the space of continuous maps by [8, 6.8] or by the
Stone-Weierstrass theorem, so there is a Lipschitz map λ : Y → (H,dR ) such that
dR (ϕ(y),λ(y)) < δ for every y ∈ Y and hence dc (ϕ(y),λ(y)) < ϵ

2 .
By Theorem 1.2, there is an HZ–equivariant map g : (H,dR ) → (H,dc ) that is

locally α–Hölder. The HZ–equivariance of g implies that there is an m > 0 such
that m ≥ dc (x, g (x)) for all x ∈H. Let r = ϵ

2m . For any x ∈H,

dc
(︁
x, (δr ◦ g ◦δ−1

r )(x)
)︁= r ·dc

(︁
δ−1

r (x), g (δ−1
r (x))

)︁≤ r m = ϵ

2
.

Letψ= δr ◦g ◦δ−1
r ◦λ. Thenψ is locallyα–Hölder with respect to dc , and since

Y is compact, a locally α–Hölder map from Y toH is globally α–Hölder. For any
y ∈ Y ,

dc (ϕ(y),ψ(y)) ≤ dc (ϕ(y),λ(y))+dc (λ(y),ψ(y))

≤ ϵ

2
+dc

(︁
λ(y), (δr ◦ g ◦δ−1

r )(λ(y))
)︁≤ ϵ,
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so ψ is an α–Hölder map that is ϵ–close to ϕ. □

6. A GLOBALLY HÖLDER MAP FROM R3 TO (H,dc )

In this section, we prove Theorem 1.4 by constructing a self-similar globally
Hölder map from R3 toH.

First, we show that the construction in Section 4 produces a self-similar map.
Recall that all the complexes Xi have the same underlying simplicial complex
X and that all of the maps Q : X0 → X1 and Qi : Xi → Xi+1 are the same as maps
from X to X . The main difference between the Xi ’s is that they are equipped with
different metrics di = si d∆, different actions ζi [g ] = ζ[δni (g )] (where ζ[g ] : X →
X is the action ofHZ on X ), and different equivariant maps ιi : X →H, ιi = δn−i ◦ι
(where ι : X →H is an equivariant homeomorphism).

In this section, we will identify all of the Xi ’s with X . Under this identification,

Pi =Qi−1 ◦ · · · ◦Q0 =Q i .

Lemma 6.1. With notation as in Section 4, let σ ∈ F 3(X ). Let D ⊂ X be an un-
collapsed ball of Q and suppose that there is a g ∈HZ such that Q(D) = ζ[g−1](σ).
Let τ=Q(D).

With respect to the standard metric d∆, D is a regular simplex with side length a
andσ is a regular simplex with side length 1, and there is a similarity h : (D,d∆) →
(σ,d∆) with scaling factor a−1 > 1 and a Heisenberg similarity m : H→H, m(x) =
gδn(x) such that:

P (x) = m(P (h−1(x))) for all x ∈σ, (14)

and

P (y) = m−1(P (ζ[g ](Q(y)))) for all y ∈ X . (15)

Proof. Let m(x) = gδn(x). Since P = limi→∞ ιi ◦Q i and P is equivariant,

m(P (y)) = lim
i→∞

gδn(ιi (Q i (y))) =
lim

i→∞
g ιi−1(Q i−1(Q(y))) = g P (Q(y)) = P (ζ[g ](Q(y))).

Applying m−1 to both sides proves (15).
Equation (14) follows from (15). By condition (3) of Lemma 4.1, D is a regular

simplex with sides of d∆–length a and Q sends D to τ by a similarity that scales
the d∆–metric by a−1. Let h : D →σ be the similarity h = ζ[g ]◦Q|D : D →σ. Let
x ∈σ and let y = h−1(x). By (15),

P (x) = P (ζ[g ](Q(y))) = m(P (y)) = m(P (h−1(x))),

which proves (14).
□

If we can find simplicesσ satisfying Lemma 6.1, we can use them to construct
self-similar Hölder maps F : R3 → H, i.e., maps such that there are expanding
similarities m : H→ H and h : R3 → R3 that satisfy m(F (h−1(x))) = F (x) for all
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x ∈ R3. In order to prove Theorem 1.4, however, we want F to be proper, i.e.,
F−1(K ) is compact for every compact K ⊂H.

Since m is expanding, it has a unique fixed point q ∈ H. If F is proper and
F (p) = q , then F (h(p)) = m(F (p)) = q , so h(p) ∈ F−1(q), i.e., F−1(q) is invariant
under h. But the only compact sets that are invariant under h are the empty
set and the set {p} where p is the unique fixed point of h. Thus, in order to use
Lemma 6.1 to construct a proper self-similar map F : R3 → H, we will need to
adjust the construction so that there is a point q ∈H such that P−1(q) is a single
point.

We need the following lemma (see also [16]).

Lemma 6.2. Let d ≥ 3, let Y be a (d −2)–connected simplicial complex, and let
f : Dd → Y be a continuous map such that f (∂Dd ) ⊂ Y (d−1) and f (Dd ) ⊂ Y (d).
For each d–cell δ ∈F d (Y ), the degree of f is the same at every point in the interior
of δ; let degδ( f ) be this degree. Then there is an admissible map g : Dd → Y which
agrees with f on ∂Dd and such that for every d–cell δ ∈ F d (Y ), the number of
uncollapsed balls in g−1(δ) is |degδ( f )|.
Proof. The image f ([Dd ]) of the fundamental class of Dd is a cellular d–chain in
Y that can be written

f ([Dd ]) = ∑︂
δ∈F d (Y )

degδ( f )[δ],

where [δ] represents the fundamental class of δ, and ∂ f ([Dd ]) = f ([∂Dd ]).
Let k = ∑︁

δ |degδ( f )| and let B1, . . . ,Bk ⊂ intDd be k disjoint smoothly em-
bedded balls. For each ball, choose a cell δi ∈ F d (Y ) and a homeomorphism
gi : Bi → δi so that each cell δ is chosen |degδ( f )| times and so that the orienta-
tion of gi corresponds to the sign of degδ( f ).

We will extend the maps gi to the desired map g . We proceed as in [15]. Con-
sider the complement E = Dd \

⋃︁
i int(Bi ). Choose v ∈ ∂Dd and for each i , let

vi ∈ ∂Bi . For each i , let γi be a simple smooth curve connecting v to vi , and sup-
pose that the γi ’s are disjoint. The interior of the complement E \

⋃︁
i γi is home-

omorphic to an open d–ball, and we can give E the structure of a CW complex
with vertices v, v1, . . . , vk ; edges γ1, . . . ,γk ; (d −1)–cells ∂Dd , ∂B1, . . . ,∂Bk ; and a
single d–cell, which we call σ. Define g on E (d−1) so that it agrees with g on ∂Dd

and with gi on each ∂Bi ; since Y is connected, we can extend g on each edge. It
remains to extend g on σ.

Since Y is (d − 2)–connected, so is Y (d−1), and Hurewicz’s Theorem implies
that πd−1(Y (d−1)) ∼= Hd−1(Y (d−1)). Let α : Sd−1 → E (d−1) be the attaching map of
σ. Then

g (α([Sd−1])) = f ([∂Dd ])−∑︂
i

g ([∂Bi ])

=∑︂
δ

degδ( f )[∂δ]−∑︂
δ

degδ( f )[∂δ]

= 0.
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Therefore, g ◦α is null-homotopic, and the obstruction to extending g to a map
from Dd to Y (d−1) vanishes. □

Applying this lemma to Q produces a map that satisfies Lemma 4.1 and also
has a simplex with a small preimage.

Lemma 6.3. For any sufficiently large n, there is an admissible Lipschitz map
Q : X → X which isHZ–equivariant as a map from X0 to X1, satisfies Lemma 4.1,
and satisfies the following conditions.

• For every σ ∈ F 3(X ), there is a τ ∈ F 3(X ) such that σ = ζ[g ](τ) for some
g ∈HZ and Q−1(intτ) is the interior of a single uncollapsed ball in σ.

• Let r > 0 be as in Lemma 4.1. For every y ∈ X \ intσ,

dc (P (y), ι1(τ)) ≥ r

2
.

Proof. By Lemma 6.2, for any sufficiently large n, there is a map Q satisfying
Lemma 4.1 with the property that for every σ ∈ F 3(X ) and every δ ∈ F 3(X ),
exactly |degδ(Q|σ)| uncollapsed balls of Q|σ map to δ.

Let σ ∈F 3(X ). By Lemma 4.1, there are r > 0 and q ∈H such that if y ∈ X \σ,
then dc (q, ι1(Q(y))) > r . Suppose that n > 8c

r and that n is large enough that for
any dc –ball B of radius r n

4 inH, there is a g ∈HZ such that g ι(σ) ⊂ B . Then there
is a g ∈HZ such that

g ι(σ) ⊂ B
(︂
δn(q),

r n

4
;dc

)︂
,

where B(q,r ;dc ) is the metric ball with respect to dc . Let τ= ζ[g ](σ). Then

ι1(τ) = δn−1 (g ι(σ)) ⊂ B
(︂
q,

r

4
;dc

)︂
,

and by the triangle inequality, for every y ∈ X \σ,

dc (ι1(Q(y)), ι1(τ)) > 3r

4
,

i.e., Q(y) ̸∈ τ. Thus Q−1(τ) ⊂ σ. Since Q is degree–1, we have degτ(Q|σ) = 1, so
there is exactly one uncollapsed ball that maps to τ. Finally, by (13) and our
choice of n, for every y ∈ X \σ,

dc (P (y), ι1(τ)) > 3r

4
−2cs > r

2
.

By continuity, if y ∈ X \ intσ, then dc (P (y), ι1(τ)) ≥ r
2 . □

Now we prove Theorem 1.4.

Proof of Theorem 1.4. Let σ ∈ F 3(X ) and let τ satisfy Lemma 6.3 for some large
n to be chosen later. Let D ⊂σ be the uncollapsed ball of Q such that Q(D) = τ.
Let g ∈HZ be such that τ= ζ[g−1]σ.

By Lemma 6.1, there are a similarity h : D →σwith scale factor a−1 and a sim-
ilarity m : H→H, m(x) = gδn(x) such that P (x) = m(P (h−1(x))) for all x ∈σ. We
identifyσwith a unit simplex inR3 and D ⊂σwith a subset of that simplex. Then
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we can extend h to a similarity h : R3 →R3 that sends D to σ and has scaling fac-
tor n. Since n > 1, h has a unique fixed point p such that limi→∞ h−i (x) = p for
every x ∈R3; since h−1(σ) = D ⋐σ, we have p ∈ intD ⊂ intσ.

We define F : R3 →H as follows. Let x ∈ R3. Since limi→∞ h−i (x) = p, there is
an i ∈Z such that h−i (x) ∈σ. Let

F (x) = mi (P (h−i (x))).

Then F is well-defined; if i < j and h−i (x) ∈σ, then Lemma 6.1 implies

mi (P (h−i (x))) = mi (m j−i ◦P ◦hi− j (h−i (x))) = m j (P (h− j (x))).

Furthermore, for all x ∈ hi (σ), we have h−1(x) ∈ hi−1(σ), so

m(F (h−1(x))) = m(mi−1(P (h−i+1(h−1(x))))) = m−i (P (hi (x))) = F (x).

That is, F is self-similar.
It remains to show that F is globally Hölder, proper, and degree 1.

First, we show that F is η–Hölder for η := log s
log a . Since P is locally η–Hölder, the

restriction P |σ is (C ,η)–Hölder for some constant C . Let x, y ∈ R3. Then there
exists i ∈Z such that x, y ∈ hi (σ) and

dc (F (x),F (y)) = dc (mi (P (h−i (x))),mi (P (h−i (y))))

= ni dc (P (h−i (x)),P (h−i (y)))

≤C ni |h−i (x)−h−i (y)|η

≤C ni (ai |x − y |)η
=C |x − y |η.

Thus F is globally η–Hölder.
Next, we show F is proper. Let q := F (p) = P (p) ∈H. Then q is the unique fixed

point of m, because m(q) = m(F (p)) = F (h(p)) = F (p). Let r be as in Lemma 6.3,
so that dc (P (y), ι1(τ)) > r

2 for every y ∈ X \σ. We will show that if n is sufficiently
large, and z ∈ R3 \σ, then dc (P (z), q) > r

4 . We will then use self-similarity to
conclude that F is proper.

First, we claim that when n is sufficiently large

dc (P (y), q) > r

4
for all y ∈ X \ intσ. (16)

Let c be as in Lemma 4.1 and Lemma 6.3 and suppose that n > 8c
r . Since p ∈ D ,

we have Q(p) ∈ τ. On one hand, by Lemma 6.3, for any y ∈ X \ intσ, we have
dc (P (y), ι1(Q(p))) ≥ r

2 ; on the other hand, by (13),

dc (q, ι1(Q(p))) = dc (P (p), ι1(Q(p))) < 2cs < r

4
,

so the triangle inequality implies (16).
Now suppose that z ∈ R3 \σ. Let i > 0 be such that h−i (z) ∈ σ \ D and let

y = h−i (z) so that F (z) = mi (P (h−i (z))) = mi (P (y)). Since y ∈ σ \ D , we have
Q(y) ̸∈ intτ and ζ[g ](Q(y)) ̸∈ intσ. By (15),

P (y) = m−1(P (ζ[g ](Q(y)))),
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so by (16),

dc (P (y), q) = n−1dc (m(P (y)), q) = n−1dc
(︁
P (ζ[g ](Q(y))), q

)︁> r

4n
,

and
dc (F (z), q) = ni dc (P (y), q) > r

4
,

as desired.
By the scale-invariance of F , if z ∈R3 \hi (σ), then dc (F (z), q) > r

4 ni . Let K ⊂H
be a compact set. Then there is some i ∈Z such that K ⊂ B(q, r

4 ni ;dc ) and thus
F−1(K ) ⊂ hi (σ). Since F−1(K ) is closed and bounded, it is compact. Therefore,
the preimage of any compact set is compact, and F is proper.

Finally, we claim that F has degree 1. It suffices to show that degq (F ) = 1. Let

B = B(q, r
4 ;dc ). Then F−1(B) ⊂σ, so

degq (F ) = degq (F |σ) = degq (P |σ) = degq (P ) = 1.

Since F is proper, the degree is constant onH. □

APPENDIX A. PROOFS OF LEMMAS 4.3 AND 4.4

The aim of the appendix is to prove Lemmas 4.3 and 4.4. We first show:

Lemma A.1. Let Z be a finite dimensional simplicial complex equipped with the
standard metric and let ϱ : Dd → Z be a Lipschitz map such that ϱ(∂Dd ) ⊂ Z (d−1).
Then ϱ is homotopic relative to ∂Dd to an admissible map ϱ : Dd → Z with

avol(ϱ) ≤ c ·vold (ϱ),

where c only depends on the dimension of Z . The homotopy between ϱ and ϱ

is Lipschitz with image in supp(ϱ(Dd )) and its (d +1)–volume is bounded from
above by c ·vold (ϱ).

If d = 1 then we may assume that ϱ is an edge path parametrized with con-
stant speed.

Proof. By the (proof of the) Federer-Fleming deformation theorem, see for ex-
ample [5, Theorem 10.3.3], ϱ is Lipschitz homotopic relative to ∂Dd to a map
ϱ̂ : Dd → Z (d) such that the d–volume of ϱ̂ and the (d + 1)–volume of the ho-
motopy are both bounded from above by c · vold (ϱ) for some constant c only
depending on the dimension of Z . Moreover, the image of the homotopy is
contained in supp(ϱ(Dd )). Arguing almost as in the proof of Lemma 2.3 of [2],
one shows that ϱ̂ is homotopic relative to ∂Dd to an admissible map ϱ with
avol(ϱ) ≤ c ·vold (ϱ) through a Lipschitz homotopy of zero volume and with im-
age in supp(ϱ̂(Dd )). This proves the lemma. □

Proof of Lemma 4.3. Denote by N the dimension of Y . Let ψ : Y → Z be as in
the statement of the lemma. For 0 ≤ d ≤ N , let Yd be the mapping cylinder of
the inclusion Y (d) ⊂ Y , i.e.

Yd = (Y × {0})∪ (Y (d) × [0,1]) ⊂ Y × [0,1].
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We will construct ψ by constructing a sequence of auxiliary maps ψd : Yd → Z
such that for all d and all y ∈ Y , ψd (y,0) =ψ(y), ψd+1 extends ψd , and ψ|Y (d) :=
ψd (·,1) satisfies the conditions of the lemma. Then ψ = ψN (·,1) is the desired
map.

Let ψ0 be the Lipschitz map that coincides with ψ on Y × {0} and such that
for v ∈ F 0(Y ) the following holds: ψ0(v,1) is a point in Z (0) which is closest to
ψ0(v,0) =ψ(v) andψ0(v, ·) is the constant speed parametrization of the segment
between its endpoints. Since ψ0(v,1) and ψ(v) lie in the same simplex of Z ,
ψ|Y (0) := ψ0(·,1) satisfies the lemma and each segment ψ0(v × [0,1]) has length
at most 1.

We use Lemma A.1 to extend ψ0 to a map ψ1 as follows. Let e ∈ F 1(Y ) be an
edge. Then (e × {0})∪ (∂e × [0,1]) is a path in Y0, and

αe =ψ0|(e×{0})∪(∂e×[0,1])

is a path in Z . By Lemma A.1, we can define ψ1 on e × [0,1] so that ψ1|e×{1} is a
constant-speed edge path approximatingαe and so thatψ1|e×[0,1] is a homotopy
between αe and its approximation. We obtain ψ1 by repeating this process for
every edge of Y .

Then ψ1 is a Lipschitz map extending ψ0 and it has the following properties.
For each edge e ∈ F 1(Y ), ψ1|e × {1} is an edge path parametrized with constant
speed. Moreover, the length of ψ1|e×{1} and the 2–volume of ψ1|e×[0,1] are both
bounded from above by c ·ℓ(αe ) ≤ c ·ℓ(ψ|e )+2c for some c = c(dim Z ). Finally,
ψ1(e × [0,1]) ⊂ supp(ψ(e)), so ψ|Y (1) :=ψ1(·,1) satisfies the lemma.

We repeat the process to obtain a Lipschitz map ψd : Yd → Z for each d =
2,3, . . . , N . That is, we suppose that ψd−1 is already defined and for each σ ∈
F d (Y ), we define

ασ =ψd−1|(σ×{0})∪(∂σ×[0,1]).

This is a Lipschitz map from a d–disc to Z . By Lemma A.1, we can define ψd

on σ× [0,1] so that ψd |σ×{1} is an admissible map approximating ασ and so that
ψd |σ×[0,1] is the homotopy between ασ and its approximation.

Thenψd extendsψd−1 and has the following properties. For every σ ∈F d (Y )
the restriction ψd |σ×{1} is admissible and ψd (σ× [0,1]) ⊂ supp(ψ(σ)). Moreover,
both avol(ψd |σ×{1}) and vold+1(ψd |σ×[0,1]) are bounded from above by

c ·vold (ασ) ≤ c ·vold (ψ|σ)+ c ·vold (ψd−1|∂σ×[0,1]) ≤ bd

∑︂
σ′∈F (σ)

voldim(σ′)(ψ|σ′)

for some bd > 0 depending on d and the dimension of Z . That is, ψ|Y (d) :=
ψd (·,1) satisfies the lemma for some constant bN depending on the dimensions
of Y and Z , and we define ψ := ψN (·,1). In fact, if σ ∈ F d (Y ) and d > dim Z ,
then avol(ψ|σ) = 0, so ψ satisfies the lemma for b = bdim Z .

If ψ is equivariant then we can take all the maps ψd to be equivariant as well,
and hence also ψ. □

In preparation for the proof of Lemma 4.4 we first establish the following re-
sults.
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Lemma A.2. Let Z be a finite dimensional simplicial complex. If f : Dd → Z is
an admissible map with uncollapsed balls B1, . . . ,Bk , it is homotopic to an admis-
sible map f ′ : Dd → Z such that f and f ′ agree on Dd \

⋃︁
Bi , avol( f ) = avol( f ′),

and each uncollapsed ball B ′
i of f ′ is a collared ball contained in Bi .

Proof. Each Bi is homeomorphic to a closed ball. Let B ′
i ⊂ Bi be the image of the

ball B(0, 1
2 ) ⊂Rd under a homeomorphism from B(0,1) ⊂Rd to Bi . Then there is

a map ζi : Bi → Bi that sends B ′
i homeomorphically to Bi , such that ζi (Bi \ B ′

i ) ⊂
∂Bi and ζi is the identity on ∂Bi . Let f ′ : Dd → Z be the map such that f ′ agrees
with f outside the uncollapsed balls Bi and such that f ′(x) = f (ζi (x)) for all
x ∈ Bi . This is an admissible map whose uncollapsed balls are the collared balls
B ′

1, . . . ,B ′
k . □

Lemma A.3. Let Z be a finite dimensional simplicial complex and let f : Dd → Z
be an admissible map with uncollapsed balls B1, . . . ,Bk . Let σi = f (Bi ) ∈ F d (Z )
for all i . Let C1, . . . ,Ck ⊂ Dd be a set of disjoint collared balls, and for i = 1, . . . ,k,
let ϕi : Ci → σi be a homeomorphism such that ( f |Bi )−1 ◦ϕi : Ci → Bi preserves
orientation. Then there is an admissible map g : Dd → Z with uncollapsed balls
C1, . . . ,Ck such that g |Ci = ϕi and g |∂Dd = f |∂Dd . Furthermore, there is a homo-
topy between f and g that fixes ∂Dd pointwise and has image in supp f (Dd ). If
f |∂Dd and ϕi are Lipschitz then we can take g to be Lipschitz as well.

Proof. By Lemma A.2, we may suppose that the Bi are disjoint collared balls.
By the uniqueness of connected sums, the complements J = Dd \

⋃︁
i int(Bi ) and

K = Dd \
⋃︁

i int(Ci ) are homeomorphic; indeed, any collection of orientation-
preserving homeomorphisms hi : ∂Ci → ∂Bi can be extended to a homeomor-
phism h : K → J that fixes ∂Dd pointwise. Thus, there exists a homeomorphism
h : Dd → Dd which fixes ∂Dd pointwise and satisfies h|Ci = ( f |Bi )−1 ◦ϕi for all
i = 1, . . . ,k. Let g = f ◦h. This map has the desired restrictions. Since h is homo-
topic to idDd , g is homotopic to f .

Suppose now that f |∂Dd and the ϕi are Lipschitz. Then g (Dd ) ⊂ f (Dd ) ⊂
supp f (Dd ) and g (K ) ⊂ Z (d−1). Since supp g (K ) ⊂ Z (d−1) is locally Lipschitz n–
connected for every n we can use the Lipschitz extension theorems in [1] or [9]
to approximate g arbitrarily closely by an admissible Lipschitz map g ′ which still
satisfies g ′|Ci =ϕi and g ′|∂Dd = f |∂Dd and is still homotopic to f via a homotopy
that fixes ∂Dd pointwise. □

We are ready to prove Lemma 4.4.

Proof of Lemma 4.4. We construct a homotopy between f and a suitable map
h satisfying the properties of the lemma by repeatedly applying Lemma A.3 as
follows. Let N be the dimension of Y . For 1 ≤ d ≤ N set

Yd = (Y × {0})∪ (Y (d) × [0,1]) ⊂ Y × [0,1].

We will define maps Hd : Yd → Z such that Hd+1 extends Hd and such that HN is
the desired homotopy. Let H1 be the map such that H1(y,0) = f (y) for all y ∈ Y
and H1(y, t ) = f (y) for all (y, t ) ∈ Y (1) × [0,1].
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Let 2 ≤ d ≤ N and suppose that we have already defined Hd−1 with Hd−1|σ×{1}

admissible and Hd−1(σ× [0,1]) ⊂ supp f (σ) for all σ ∈F d−1(Y ). Let σ ∈F d (Y ).
Then Hd−1(∂σ× [0,1]) ⊂ supp f (∂σ) ⊂ Z (d−1) and thus Hd−1 is admissible on
the d–disc (σ× {0})∪ (∂σ× [0,1]). By Lemma A.3 there exists a continuous map
Hd |σ×[0,1] which coincides with Hd−1 on (σ× {0}) ∪ (∂σ× [0,1]) and such that
Hd |σ×{1} satisfies Lemma 4.4. That is, Hd |σ×{1} is admissible and its uncollapsed
balls are the Cσ

i ’s and for each i it agrees with gσi on Cσ
i . Moreover, Hd (σ×

[0,1]) ⊂ supp f (σ). Since σ was arbitrary this defines a map Hd on all of Yd .
Applying this construction repeatedly we obtain maps Hd : Yd → Z for d =

2, . . . , N . The map H = HN : Y × [0,1] → Z is a homotopy from f to the map
h : Y → Z given by h = HN (·,1) and it follows from the construction that h has
the properties asserted in the statement of the lemma. □
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