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Abstract 

This paper analyzes the second-best pricing and investment policy for transport 
networks with a revenue-recycling mechanism in which the toll revenue is used as 
transport investments or subsidies, as in London’s congestion charging scheme.  The 
results of this paper demonstrate that the way toll revenue is used significantly modifies 
the usual results, where a lump-sum transfer is assumed.  First, revenue-recycling as 
investment has an effect that works to increase the second-best toll when the benefits 
from it are larger than the costs.  Revenue-recycling as a subsidy does not have such an 
effect.  Second, ‘partial’ cost–benefit analysis that focuses only on the targeted transport 
mode would usually lead to a false conclusion as to whether the toll revenues should be 
used as transport investments, subsidies, or general tax revenues.  The ‘full’ cost–
benefit analysis, which includes changes in consumer surplus and producer surplus in 
all transport modes, is necessary. 
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1 Introduction 

In many large cities throughout the world, motorization causes severe road 

congestion.  For instance, Transport for London (2003, p.53) reports that the average 

all-day speed had declined gradually before the congestion charging scheme was 

introduced, and was 14.2 km per hour in central London in 2002.  One of the economic 

solutions proposed for such road congestion, at least since Walters (1961) and Vickery 

(1963), has been a congestion tax.  The standard argument for the congestion tax asserts 

that given no distortion in other parts of the economy, the congestion tax policy can 

attain a first-best situation if the congestion tax is set equal to the congestion externality, 

which is the difference between the average cost of auto transport and the marginal cost.  

The cost recovery theorem2, originally derived by Mohring and Harwitz (1962) and 

Strotz (1965), shows that the revenue from the first-best congestion tax is just sufficient 

to finance optimal capacity.  However, congestion tax policies are rarely adopted, 

although recent developments in information and technology make the technological 

barrier to introducing them much lower. 

In actual situations, there are reasons why introducing the first-best congestion tax 

policies is difficult, even if technological problems are completely resolved.  First, 

congestion tax policies are unpopular among citizens.  They may be unaware of the 

benefits from reduced travel costs by decreased congestion, but they are aware of the 

increased price.  Congestion tax policies are also vulnerable to the criticism that the 

government wants to introduce them as excuses for another stable revenue source.  

Second, in the trend of privatization, it becomes common for different transport modes 

                                                 
2 This naming is based on De Palma and Lindsey (2007).  Other recent articles on this issue (e.g., Bichsel 
(2001) and Verhoef and Rouwendal (2004)) call it the revenue-recycling result (or theorem). 
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to be run by different organizations.  For instance, the ownership and operation structure 

of the transport network in Tokyo is very complicated.  Railways, other than some 

subways, are owned and run by private firms on a stand-alone basis.  Highways were 

privatized in 2005.  Highway assets are owned by the national government, but the 

operation and maintenance are delegated to the privatized firm, Metropolitan 

Expressway Co., Ltd., which leases the highway assets and pays fees from collected 

highway tolls.  Ordinary roads are owned and operated by the national and local 

governments, which collect fuel taxes and construct roads.  Such a complex ownership 

and operation structure would make it difficult to implement the first-best policy for the 

entire transport network. 

The congestion charging scheme introduced in London in 2003 is noteworthy.  One 

of the important features of this is that it has a clear link between the revenue from the 

charge and the use of the revenue, which is by law limited to spending on improving 

transport in London.  However, the analyses of congestion taxes so far have not 

formerly dealt with how to use the revenue from congestion tax; that is, past studies 

have at least implicitly assumed that the revenue is returned via lump-sum transfer, 

although some articles (e.g., Small (1992) and Goodwin (1994)) have proposed 

practical suggestions on how to use it.3  Therefore, the existing literature cannot give us 

direct insights on how to evaluate a London-type congestion charging scheme. 

The purpose of this paper is to analyze the second-best pricing and investment policy 

for transport networks with a built-in mechanism where the revenue from the pricing is 

                                                 
3 Small (1992) suggests that one-third of the revenues should be allocated to each of the following 
categories: (i) monetary reimbursement to travelers as a group; (ii) substitution for general taxes; and (iii) 
new transportation services.  Goodwin’s (1994) suggestion is that one-third of the revenues should be 
allocated to: (i) improvements to the effectiveness of the alternative methods of transport, especially 
public transport; (ii) improvements in the quality of roads; and (iii) general tax revenue. 
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used as an investment or subsidy, which is called a ‘revenue-recycling’ mechanism 

within transport networks, adopting terminology similar to that introduced by 

Bovenberg and Goulder (2002), and to clarify the difference from the standard 

argument using a simple stylized model.  The model in this paper has the following 

features.  A representative consumer demands transport services on two routes: route 1 

and route 2.  The relationship between the two routes may be substitutes or 

complements.  For instance, they may be roads and substitute public transit.  Another 

example is an urban highway and a complementary rural highway.  For the transport 

authority, the price of route 2 is exogenous, possibly because route 2 is operated by 

another body based on its own principle or route 2 is untolled transport mode (e.g., rural 

road).  The transport authority collects the revenue from route 1 and uses part of it for 

revenue-recycling within transport networks, which includes investment in route 1 and 

investment and a subsidy for route 2 in this paper.  The remaining revenue is assumed to 

be returned via lump-sum transfer.  The ratio of the revenue that is used as investments 

or subsidies within transport networks is called the degree of revenue-recycling. 

The main results of this paper are summarized as follows.  For concreteness, the 

results are explained here following a typical case in which routes 1 and 2 are roads and 

substitute public transit whose price is higher than its marginal cost. 

First, suppose that the transport authority can determine both the road price and the 

degree of revenue-recycling.  Controlling the degree of revenue-recycling is equivalent 

to controlling the amount of the investment or subsidy.  Therefore, the problem 

considered here is reduced to that of the second-best policy with overpriced public 

transport.  In the case of revenue-recycling as investment in roads, the road price is 

higher than the first-best, influenced by overpriced public transit, but given this road 
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price, the investment in roads is the first-best level.  In the case of revenue-recycling as 

investment in public transit, the result is the same regarding the road price.  However, 

the investment is made in overpriced public transit and consequently is distorted.  When 

the revenue is recycled as subsidies for public transit with investments in roads and 

public transport fixed, the prices of roads and public transit are at their first-best level.  

This is because a high price in public transit is completely corrected by a subsidy for it. 

Second, suppose that the transportation authority can change the road price; however, 

the degree of revenue-recycling is fixed.  An example is London’s congestion charging 

scheme, where the revenue is used to improve transport in London by law.  When the 

marginal benefit of investment in roads or public transit is larger than its marginal cost, 

the road price is higher.  This will be called the second-best investment effect.  The 

second-best investment effect makes the road price higher, if the revenue from roads is 

used as investment in roads or public transit whose marginal benefit is larger than the 

marginal cost.  If the revenue is recycled as subsidies for public transit with investments 

in roads and public transit fixed, the second-best investment effect disappears, because 

such subsidies do not correct the distortion in investment. 

Third, consider a choice as to whether the road revenue should be returned via the 

revenue-recycling mechanism in the form of investments or subsidies within transport 

networks or via general-purpose taxes, given the fixed road price.  For example, there 

has been an active debate in Japan about whether the revenue from fuel taxes should be 

used for purposes other than construction of roads or not, although all the revenue is 

now purported to be used for construction of roads.  A ‘full’ cost–benefit analysis 

including all the parts of the transport network can deal with this issue.  A ‘partial’ cost–

benefit analysis, which only takes into account the transport mode for which the 
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revenue is recycled, is invalid, unless the price equals the marginal cost in all the parts 

of the transport networks or the demand in each route is fixed. 

The structure of the paper is as follows.  In section 2, a basic model is presented.  

Section 3 deals with the case where the revenue from route 1 is used for an investment 

in route 1.  In section 4, the revenue from route 1 is used for an investment in route 2.  

Section 5 focuses on the case where the revenue is used to provide a subsidy for route 2.  

Section 6 concludes the analysis. 

2 Model 

A representative consumer demands the composite consumer good z , a transport 

service in route 1, and a transport service in route 2.  The transport demand in each 

route is 1x  and 2x .  The superscripts denote routes throughout the paper.  We assume 

that both routes are congestible through their own demand and that congestion increases 

travel time. 

The utility function of a representative consumer is: 

(1) 1 2( , )U z u x x= + , 

which is assumed to be strictly concave.  The quasilinear utility function of (1) implies 

that income effects are ignored.  This simplifying assumption can be justified in that the 

share of transport expenditure in total household expenditure is usually low.  The price 

of the composite consumer good, z , is normalized to unity.  Denoting the monetary 

price of each route by 1τ  and 2τ , the budget constraint of the representative consumer 

is: 

(2) 1 1 2 2wl z x xτ τ= + + , 
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where w  is an hourly wage rate and l  is hours of labor.  For the sake of simplicity, we 

assume that the consumption of the composite consumer good, z , does not require time. 

Denoting travel times in routes 1 and 2 by 1t  and 2t , the time constraint is: 

(3) 1 1 2 2L l t x t x= + + , 

where L  is fixed available time, exclusive of leisure, for the representative consumer.  

Erasing l  from (2) and (3), we obtain a generalized budget constraint, including a time 

constraint: 

(4) 1 1 2 2y z p x p x= + + , 

where ( )y wL≡  is maximum income and 

(5) i i ip wtτ≡ +  

is a generalized price of route i ( 1,2i = ). 

The travel time in each route, it , is longer when congestion is more severe and the 

capacity investment, iI , is smaller, that is: 

(6) ( , )i i i it t x I=  where 0i
i
x

t >  and 0i
i
I

t <  1,2i = . 

Throughout the paper, the subscripts denote partial derivatives unless otherwise 

noted.  Because our analysis is unaffected by the level of the unit rental price of the 

capacity investment, we set it at one.  For the same reason, the monetary cost in each 

route is set at zero.  Therefore, the average cost per transport service in each route, ic , 

is: 

(7) ( , ) ( , )i i i i i ic x I wt x I≡  1,2i = , 

where 0i
i
x

c >  and 0i
i
I

c < .  Substituting (7) into (5), we rewrite the generalized price in 

each route as: 
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(8) ( , )i i i i ip c x Iτ= + . 

A representative consumer maximizes his or her utility, (1), subject to the 

generalized budget constraint, (4).  Maximization yields the following first-order 

conditions: 

(9) 1 2( , )i
i

x
u x x p=  1,2i = . 

From (9), we derive the demand functions 1 1 2( , )x p p  and 2 1 2( , )x p p , which satisfy: 

(10) 2 1 1 2
1 2
p p x x

x x u= = − . 

When 1x  and 2x  are substitutes with respect to the generalized prices, 

2 1 1 2
1 2 0
p p x x

x x u= = − > , which implies 1 2 0
x x

u < .  On the contrary, when they are 

complements, 2 1 1 2
1 2 0
p p x x

x x u= = − < , which implies 1 2 0
x x

u > . 

Substituting (8) for 1 1 2( , )x p p  and 2 1 2( , )x p p  and rearranging, we obtain 

1 1 2 1 2( , , , )x I Iτ τ  and 2 1 2 1 2( , , , )x I Iτ τ .  Therefore, from (1), (4), and (8), the total surplus, 

TS , can be written as: 

(11) 

1 1 2 2 1 2

1 1 2 2 1 2 1 1 2 2 1 2

1 1 2 1 2 2 1 2 1 2

1 1 1 2 1 2 1 1 1 2 1 2

2 2 1 2 1 2 2 2 1 2 1 2 1 2

( , )
( ( , , , ), ( , , , ))

( ( , , , ), ) ( , , , )
( ( , , , ), ) ( , , , ) .

TS U x x I I
y p x p x u x x x x I I
y u x I I x I I
c x I I I x I I
c x I I I x I I I I

τ τ

τ τ

τ τ τ τ

τ τ τ τ

τ τ τ τ

= + + − −

= − − + + + − −

= +

−

− − −

 

Maximizing (11) with respect to 1τ , 2τ , 1I , and 2I  yields the following first-best 

results: 

(12) i
i i i

x
c xτ =  1,2i = , and 

(13) 1i
i i
I

c x− =  1,2i = . 
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(12) shows that the monetary price of each route equals the marginal congestion 

externality, which is the (social) marginal cost.  (13) shows that the marginal benefit of 

investment, which stems from reduced congestion, equals the marginal cost of it. 

Actual situations commonly differ from the first-best case.  Government policies are 

implemented not only for efficiency but also for equity or other purposes.  Even if the 

government only cared about efficiency, it would be difficult to implement integrated 

pricing and investment policies unless it owned and operated all transport networks 

where minute pricing was technically feasible.  This requirement is usually difficult to 

satisfy, however. 

From the following section, we focus on the second-best situation where at least the 

monetary price in route 2 is fixed, possibly because route 2 is operated by another body 

based on its own principle or route 2 is untolled transport mode (e.g., rural road).  

100a % of the revenue from the monetary price (toll, fare, and taxes) in route 1 is 

assumed to be used within transport networks as investments or subsidies, and the 

remaining 100(1 )a− % of the revenue is assumed to be returned via a lump-sum 

transfer, where a  is a parameter that shows the degree of revenue-recycling within 

transport networks.  When 0a = , all the revenue is returned via lump-sum transfer.  To 

exclude this uninteresting case, we assume 0 1a< ≤ .  It is useful to summarize the 

cases to be analyzed in Table 1, delineating control variables, which the transport 

authority can change, and exogenous variables.  In Table 1, 2S  denotes the subsidy for 

route 2.  We do not analyze a trivial case where the revenue from route 1 is used as a 

subsidy for route 1. 
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Section 3-1 3-2 3-3 4-1 4-2 4-3 5-1 5-2 5-3 
Type of 

Revenue-
recycling 

 
1 1 1I a xτ=  

 

 
2 1 1I a xτ=  

 

 
2 1 1S a xτ=  

 
Control 

Variables 
1,aτ  1τ  a  1,aτ  1τ  a  1,aτ  1τ  a  

Exogenous 
Variables 

2 2, Iτ  2 2, ,I aτ 1 2 2, , Iτ τ  1 2,I τ 1 2, ,I aτ 1 2 1, , Iτ τ 2 1 2, ,I Iτ  2 1 2, , ,I I aτ 1 2 1 2, , ,I Iτ τ

 
Table 1 The cases to be analyzed 

 
 

3 Revenue-recycling from Route 1 to Route 1 as Investments 

In this section, we consider pricing and investment policies in route 1, given that 

route 2 is independently operated on its own standard, including full-cost basis, price-

cap regulation, simple profit maximizing, etc.  Therefore, the analysis in this section is 

that of second-best in which the monetary price and investment in route 2, 2τ  and 2I , 

are fixed with 2τ  and 2I  under a revenue-recycling mechanism within route 1.  Denote 

the revenue from the monetary price (e.g., toll, fare, and taxes) of route 1 by 1R : 

(14) 1 1 1R xτ= . 

100a % of the revenue is assumed to be used for an investment in route 1, and the 

remaining 100(1 )a− % of the revenue is assumed to be returned via a lump-sum 

transfer.  Therefore, we have: 

(15) 1 1 1 1I aR a xτ= = . 

From (8), (9), and (15), 1 1 2 2( , ; , )x a Iτ τ  and 2 2 2 2( , ; , )x a Iτ τ  are derived.  Modifying 

(11), the total surplus can be written as: 
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(16) 

1 1 2 2 2 1 2 2

1 1 1 2 2 1 1 1 2 2 1 1 2 2

2 2 1 2 2 2 2 1 2 2 1 1 1 2 2 2

( ( , ; , ), ( , ; , ))

( ( , ; , ), ( , ; , )) ( , ; , )

( ( , ; , ), ) ( , ; , ) ( , ; , ) .

TS y u x a I x a I

c x a I a x a I x a I

c x a I I x a I a x a I I

τ τ τ τ

τ τ τ τ τ τ τ

τ τ τ τ τ τ τ

= +

−

− − −

 

3-1 Second-best pricing and investment when the monetary price of route 1 and 

the degree of revenue-recycling are controllable 

First, we consider the case where the transport authority can control both the 

monetary price of route 1, 1τ , and the degree of revenue-recycling, a .  Controlling the 

degree of revenue-recycling means controlling the level of investments, but the 

maximum amount of investments is constrained by the revenue from route 1.  Generally, 

an interior solution is not guaranteed to exist in the range of 0 1a< < .  We assume here 

that an interior solution exists in that range and delegate the analysis of corner solution 

of 1a =  to the next section.  Maximizing (16) with respect to 1τ  and a  yields: 

(17) 1 1

1 2

1 1

2 1 2 1
1 1 1 2 2 2

1 1 1 1( ) a a
x x

a a

x I x I
c x c x

x I x I
τ τ

τ τ

τ τ
−

= − −
−

 and 

(18) 1
1 1 1
I

c x− = , 

where, from (A8) in Appendix 1, 1 1

1 1

2 1 2 1

1 1 1 1 0a a

a a

x I x I
x I x I
τ τ

τ τ

−
<

−
 if routes 1 and 2 are substitutes 

regarding ip  and 1 1

1 1

2 1 2 1

1 1 1 1 0a a

a a

x I x I
x I x I
τ τ

τ τ

−
>

−
 if they are complements regarding ip . 

The first term on the right-hand side of (17) represents the marginal congestion 

externality in the same way as (12).  The second term on the right-hand side of (17) 

stems from the second-best situation where the monetary price of route 2 cannot be 

optimally adjusted.  The monetary price of route 1 must be set to take into account the 
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preexisting price distortions in route 2.  The second term on the right-hand side of (17) 

is hereafter called the ‘congestion spill-over effect’ following Verhoef et al. (1996).  For 

example, suppose that routes 1 and 2 are a congested highway and a substitute less-

congested railway, and that the railway fare is higher than its congestion externality, 

because of full-cost basis pricing including the railway construction cost.  In this case, 

the congestion spill-over effect is positive, because it is socially desirable to make use 

of less congested railways in route 2 by setting a high price in route 1 and converting 

the demand from routes 1 to 2. 

In Verhoef et al. (1996), the congestion spill-over effect is represented by 

1 1

2

2 1 1

2 2
2

x x
x

x x x

u
c x

c u
⎛ ⎞−

− ⎜ ⎟⎜ ⎟−⎝ ⎠
.  The second term on the right-hand side of (17) coincides with their 

expression for a special case.  If (i) routes 1 and 2 are perfect substitutes and (ii) there 

exists no revenue-recycling, that is, 

(19) 1 2( )U z u x x= + +  

in (1) and 0a = , the second term of the right-hand side of (17) is reduced to 

1 1

2

2 1 1

2 2
2

x x
x

x x x

u
c x

c u
⎛ ⎞−

− ⎜ ⎟⎜ ⎟−⎝ ⎠
. 

Controlling the degree of revenue-recycling, a , means controlling the investment 

level in route 1, 1I .  (18) coincides with (13), which demonstrates that the degree of 

revenue-recycling must be set so that the marginal benefit of investment in route 1, 1I , 

equals the marginal cost even in the second-best case.  This result relies on the fact that 

investment is made for route 1 where the monetary price of route 1 is adjusted.  The 
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result will be changed in the analysis in section 4 where the investment is made for 

route 2 whose price is unadjusted. 

3-2 Second-best pricing when the degree of revenue-recycling as investment in 

route 1 is fixed 

Second, we focus on the case where the degree of revenue-recycling is fixed.  The 

analysis includes the case where the revenue allocation between general tax revenue and 

investment in route 1 is predetermined but the monetary price of route 1 is controllable 

for the transport authority.  The analysis also includes the case of corner solution ( 1a = ), 

in which all the revenue is used for the investment in route 1.  Maximizing (16) with 

respect to 1τ  yields: 

(20) 1 1 1

1 2

1 1

2 1 1 1
1 1 1 2 2 2

1 1

( 1)
( ) I

x x

x c x I
c x c x

x x
τ τ

τ τ

τ τ
− −

= − − − 4, 

where, from (A8) in Appendix 1, 1

1

2

1 0
x
x
τ

τ

<  if routes 1 and 2 are substitutes regarding ip  

and 1

1

2

1 0
x
x
τ

τ

>  if they are complements regarding ip , and 1

1

1

1 0
I
x
τ

τ

<  from (A6). 

The first and second terms of the right-hand side of (20) can be interpreted in the 

same way as that of (17).  The third term of the right-hand side of (20) shows the effects 

of revenue-recycling as investment in route 1 when the degree of revenue-recycling is 

fixed.  This effect stems from the fact that the investment in route 1 can not be adjusted.  

We call this effect the second-best investment effect.  When 1
1 1 1
I

c x− > , that is, the 

marginal benefit of the investment in route 1 is larger than its marginal cost, which is 

                                                 
4 A simpler version of this equation is derived in Kidokoro (2005). 



GRIPS Policy Information Center                                                Discussion Paper:08-07 

 14

unity, the second-best investment effect works to make the monetary price of route 1 

higher.  If 2
2 2 2

x
c xτ = , that is, the congestion spill-over effect is zero, the second-best 

investment effect makes the monetary price of route 1 higher than the first-best level, as 

long as 1
1 1 1
I

c x− > .  The higher monetary price than the first-best is justified, because the 

investment in route 1 through revenue-recycling additionally magnifies the total surplus.  

Whether the marginal benefit of investment is larger than its marginal cost or not 

determines the direction of the second-best investment effect, which is unaffected by the 

relationship between routes 1 and 2, i.e., whether they are substitutes or complements. 

3-3 Second-best investment for route 1 when the monetary price of route 1 is 

fixed 

Third, we analyze the case where the monetary price of route 1 is fixed.  This 

analysis includes the case where the monetary price is politically predetermined at a 

certain level and difficult to adjust; however, the transport authority can adjust the 

budget for the investment in route 1.  In this section, we focus on how to determine the 

degree of revenue-recycling. 

Partially differentiating (16) with respect to a  yields: 

(21) 1 2 1
1 1 1 1 2 2 2 2 1 1 1( ) ( ) ( 1)a a a ax x I

TS c x x c x x c x Iτ τ= − + − + − − , 

where 1 0ax >  and 1 0aI >  from (A2) and (A7) in Appendix 1.  From (A4), 2 0ax <  if 

routes 1 and 2 are substitutes regarding ip  and 2 0ax >  if they are complements 

regarding ip . 

(21) clarifies that it is generally incorrect to determine the degree of revenue-

recycling focusing only on the marginal benefit of investment and its marginal cost in 
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route 1, as Arnott and Yan (2000) point out.  For example, suppose that the monetary 

price of highways is lower than its social marginal cost because of congestion, but for 

substitute railways, the reverse situation holds.  In this case, the first and second terms 

of the right-hand side of (21) are negative, because the demand in route 1 is increased 

and that in route 2 is decreased.  Therefore, if a naive transport authority implements 

investment up to the point where the marginal benefit of investment in highways equals 

its marginal cost, 0aTS < , that is, overinvestment occurs.  This result suggests that the 

total surplus is possibly higher if the revenue from the highway toll is returned not via 

highway investment but via general-purpose taxes, even when the cost–benefit analysis 

for highways is favorable.  This ‘partial’ investment rule, which compares the marginal 

benefit of the invested route and its marginal cost, is true only when i) the monetary 

price of each route is its first-best level or ii) the transport demand in each route does 

not change. 

The practical solution to this problem is to implement cost–benefit analysis including 

all the transport networks.  Integrating (21) with respect to a  and rearranging yields: 

(22) 
1 2

1 2

1 1 2 2
1 1 2 2 1( ) ( )

WO WO W W

W W WO WO

p p a a

p p a a

d x d xTS x dp x dp da da I
da da
τ τ

Δ = + + + − Δ∫ ∫ ∫ ∫ , 

where 1 1 1W WOI I IΔ ≡ − .  The superscripts W  and WO  represent ‘the case where the 

degree of revenue-recycling is changed’ and ‘the case where the degree of revenue-

recycling is not changed’. 

The first term of the right-hand side in (26) is consumer surplus in route 1, the 

second term is consumer surplus in route 2, the third term is producer surplus in route 1, 

and the fourth term is producer surplus in route 2.  From (22), in order to determine the 

degree of revenue-recycling, the usual procedure of cost–benefit analysis suffices, 
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noting that each route corresponds to each market and that the correct benefits are the 

sum of consumer and producer surpluses in all routes. 

4 Revenue-recycling from Route 1 to Route 2 as Investments 

We turn our analysis to the case where the revenue from route 1 is used for the 

investment in route 2.  For example, in London’s congestion charging scheme, the 

revenue from congestion charging is used for the investment in public transit.  This is 

the case where route 1 is roads and route 2 is public transit.  Another example is to 

construct rural highways using the toll revenue from urban highways, where route 1 is 

urban highways and route 2 is rural highways. 

In this section, the monetary price in route 2 and investment in route 1, 2τ  and 1I , 

are fixed with 2τ  and 1I .  100 a % of the revenue from route 1 is used for the 

investment in route 2: 

(23) 2 1 1 1I aR a xτ= = . 

The remaining 100 (1 )a− % is returned via a lump-sum transfer. 

From (5), (9), and (23), 1 1 2 1( , ; , )x a Iτ τ  and 2 1 2 1( , ; , )x a Iτ τ  are derived.  The total 

surplus in this case is as follows. 

(24) 

1 1 2 1 2 1 2 1

1 1 1 2 1 1 1 1 2 1

2 2 1 2 1 1 1 1 2 1 2 1 2 1 1 1 1 2 1 1

( ( , ; , ), ( , ; , ))

( ( , ; , ), ) ( , ; , )

( ( , ; , ), ( , ; , )) ( , ; , ) ( , ; , )

TS y u x a I x a I

c x a I I x a I

c x a I a x a I x a I a x a I I

τ τ τ τ

τ τ τ τ

τ τ τ τ τ τ τ τ τ τ

= +

−

− − −
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4-1 Second-best pricing and investment when the monetary price of route 1 and 

the degree of revenue-recycling are controllable 

First, we consider the case where the transport authority can control both the 

monetary price of route 1, 1τ , and the degree of revenue-recycling as investment in 

route 2, a .  As in the analysis in section 3-1, controlling the degree of revenue-

recycling means controlling the level of investment in route 2; however, an interior 

solution is not guaranteed to exist in the range 0 1a< < .  We assume here that an 

interior solution exists in that range and delegate the analysis of the corner solution of 

1a =  to section 4-2.  Maximizing (24) with respect to 1τ  and a  yields: 

(25) 1 1

1 2

1 1

2 2 2 2
1 1 1 2 2 2

1 2 1 2( ) a a
x x

a a

x I x I
c x c x

x I x I
τ τ

τ τ

τ τ
−

= − −
−

 and 

(26) 1 1

2 2

1 1

2 1 2 1
2 2 2 2 2

1 2 1 21 ( ) a a
I x

a a

x x x x
c x c x

x I x I
τ τ

τ τ

τ
−

− = + −
−

, 

where from (A16) in Appendix 2, 1 1

1 1

2 2 2 2

1 2 1 2 0a a

a a

x I x I
x I x I
τ τ

τ τ

−
<

−
 if routes 1 and 2 are substitutes 

regarding ip  and 1 1

1 1

2 2 2 2

1 2 1 2 0a a

a a

x I x I
x I x I
τ τ

τ τ

−
>

−
 if they are complements regarding ip .  From (A17) 

in Appendix 2, 1 1

1 1

2 1 2 1

1 2 1 2 0a a

a a

x x x x
x I x I
τ τ

τ τ

−
<

−
. 

From (25) and (26), the following four cases are possible, depending on the sign of 

2
2 2 2

x
c xτ −  and the relationship between routes 1 and 2: 

i) 1
1 1 1

x
c xτ >  and 2

2 2 1
I

c x− <  if routes 1 and 2 are substitutes and 2
2 2 2

x
c xτ > , 

ii) 1
1 1 1

x
c xτ <  and 2

2 2 1
I

c x− >  if routes 1 and 2 are substitutes and 2
2 2 2

x
c xτ < , 
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iii) 1
1 1 1

x
c xτ <  and 2

2 2 1
I

c x− <  if routes 1 and 2 are complements and 2
2 2 2

x
c xτ > , 

iv) 1
1 1 1

x
c xτ >  and 2

2 2 1
I

c x− >  if routes 1 and 2 are complements and 2
2 2 2

x
c xτ < . 

The results of i) to iv) can be understood intuitively.  In the case of 2
2 2 2

x
c xτ > , it is 

desirable to increase investment in route 2 to eliminate the distortion from a high price, 

and consequently, 2
2 2 1
I

c x− <  holds.  On the contrary, in the case of 2
2 2 2

x
c xτ < , a 

decrease in investment in route 2 is desirable to eliminate the distortion from a low price, 

and hence, 2
2 2 1
I

c x− >  holds.  If routes 1 and 2 are substitutes, the congestion spill-over 

effect yields 1
1 1 1

x
c xτ >  when 2

2 2 2
x

c xτ >  and 1
1 1 1

x
c xτ <  when 2

2 2 2
x

c xτ < .  If they are 

substitutes, the congestion spill-over brings 1
1 1 1

x
c xτ <  when 2

2 2 2
x

c xτ > , and 1
1 1 1

x
c xτ >  

when 2
2 2 2

x
c xτ < .  This result is an expansion of Wheaton (1978), which derives the 

second-best investment level under a distorted price for a single road. 

4-2 Second-best pricing when the degree of revenue-recycling as investment in 

route 2 is fixed 

Second, we examine the case where the degree of revenue-recycling as investment in 

route 2 is fixed.  The analysis includes the case of a corner solution ( 1a = ).  

Maximizing (24) with respect to 1τ  yields: 

(27) 1 2 1

1 2

1 1

2 2 2 2
1 1 1 2 2 2

1 1

( 1)
( ) I

x x

x c x I
c x c x

x x
τ τ

τ τ

τ τ
− −

= − − − , 

where, from (A14) in Appendix 2, 1

1

2

1 0
I
x
τ

τ

< .  The sign of 1

1

2

1

x
x
τ

τ

 does not correspond to 

whether routes 1 and 2 are substitutes or complements from (A9) and (A11) in 
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Appendix 2.  An increase in the monetary price of route 1 causes three effects on route 2.  

The first effect is an increase or a decrease in demand in route 2 by the relationship of 

substitutes or complements between routes 1 and 2.  This is the same as in the analysis 

in section 3-2.  The second effect is an increase in demand in route 2 by an increase in 

investment in route 2.  The third effect is a decrease in demand in route 2 through 

reduced revenue-recycling, because an increase in the monetary price of route 1 causes 

a decrease in the demand in route 1, which results in a decrease in the revenue from 

route 1 and investment in route 2 ceteris paribus.  Because of the second and third 

effects, the relationship between the sign of 1

1

2

1

x
x
τ

τ

 and the substitute or complement 

relationship between routes 1 and 2 is ambiguous here. 

The third term of the right-hand side of (27) represents the second-best investment 

effect in the same way as in (20).  The second-best investment effect is positive if the 

marginal benefit of investment is larger than its marginal cost in route 2, not in route 1.  

That is, the second-best investment effect makes the monetary price of route 1 higher in 

this case.  This property justifies an increase in the monetary price of route 1 in the 

situation where the degree of revenue-recycling as investment in route 2 is 

predetermined and the investment in route 2 is socially insufficient.  The result suggests 

that a very high congestion charge in London, 8 GBP a day in 2007, can be justified 

under its implementation scheme where all the revenue from congestion charging is 

determined by law to be used to improve a transport network in London and investment 

is made for substitute public transit. 
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4-3 Second-best investment for route 2 when the monetary price of route 1 is 

fixed 

Third, we analyze the case where the monetary price of route 1 is fixed.  This 

includes the case where the monetary price is predetermined at a certain level and 

politically difficult to change but the transport authority can adjust the degree of 

revenue-recycling as investment in route 2. 

Partially differentiating (24) with respect to a  yields: 

(28) 1 2 2
1 1 1 1 2 2 2 2 2 2 2( ) ( ) ( 1)a a a ax x I

TS c x x c x x c x Iτ τ= − + − + − − , 

where 2 0ax >  and 2 0aI >  from (A12) and (A15) in Appendix 2.  From (A10), 1 0ax <  if 

routes 1 and 2 are substitutes regarding ip  and 1 0ax >  if they are complements 

regarding ip . 

(28) suggests that it is generally false to determine the degree of revenue-recycling 

focusing only on the marginal benefit of investment and the marginal cost of the 

invested route in the same way as the analysis in section 3-3.  For example, suppose that 

the monetary price of highways is lower than its social marginal cost because of 

congestion; however, for substitute railways, the reverse situation holds.  In this case, 

the first and second terms of the right-hand side of (28) are positive.  Therefore, it is 

possible that 0aTS > , i.e., underinvestment occurs, even if the marginal benefit of 

investment is smaller than its marginal cost in route 2.  This result suggests that the total 

surplus is possibly higher if the revenue from route 1 is returned via railway investment, 

even when the cost–benefit analysis considering railways is unfavorable.  The ‘partial’ 

investment decision rule, which compares the marginal benefit of the invested route and 
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its marginal cost, is valid only when i) the monetary price is the first-best level or ii) the 

transport demand in each route is fixed. 

Integrating (28) with respect to a  and rearranging yields: 

(29) 
1 2

1 2

1 1 2 2
1 1 2 2 2( ) ( )

WO WO W W

W W WO WO

p p a a

p p a a

d x d xTS x dp x dp da da I
da da
τ τ

Δ = + + + − Δ∫ ∫ ∫ ∫ , 

where 2 2 2W WOI I IΔ ≡ − . 

(29) can be interpreted in the same way as (22).  The first, second, third, and fourth 

terms of the right-hand side in (29) are consumer surplus in route 1, consumer surplus in 

route 2, producer surplus in route 1, and producer surplus in route 2.  (29) shows that 

the usual procedure of cost–benefit analysis is applicable to determine the degree of 

revenue-recycling, if the transport authority takes into account the fact that each route 

corresponds to each market, and the correct benefits are the sum of consumer and 

producer surpluses in all routes. 

5 Revenue-recycling from Route 1 to Route 2 as a Subsidy 

In this section, we consider the case where the revenue from route 1 is used as a 

subsidy for route 2 and make clear the difference between revenue-recycling as an 

investment and as a subsidy.  In this section, the monetary price in route 2 and the 

investment levels in routes 1 and 2 are fixed with 2τ , 1I , and 2I .  The monetary price 

of route 2 is now modified as: 

(30) 2 2 2 2 2 2 2 2 2 2 2( , ) ( , )p s wt x I s c x Iτ τ= − + = − + , 

where 2s  is a subsidy per transport service in route 2 and is endogenously determined to 

satisfy: 

(31) 2 1 1 1 2 2S aR a x s xτ= = = . 
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From (5), (9), (30), and (31), 1 1 2 1 2( , ; , , )x a I Iτ τ  and 2 1 2 1 2( , ; , , )x a I Iτ τ  are derived.  

The total surplus can be written as: 

(32) 

1 1 2 1 2 2 1 2 1 2

1 1 1 2 1 2 1 1 1 2 1 2

2 2 1 2 1 2 2 1 2 1 2 1 2

( ( , ; , , ), ( , ; , , ))

( ( , ; , , ), ) ( , ; , , )

( ( , ; , ), ) ( , ; , , ) .

TS y u x a I I x a I I

c x a I I I x a I I

c x a I I x a I I I I

τ τ τ τ

τ τ τ τ

τ τ τ τ

= +

−

− − −

 

5-1 Second-best pricing and subsidy when the monetary price of route 1 and 

the degree of revenue-recycling are controllable 

First, we consider the case where the transport authority can set both the monetary 

price of route 1, 1τ , and the degree of revenue-recycling as a subsidy for route 2, a .  

Following the analysis in sections 3-1 and 3-2, an interior solution of a  is not 

guaranteed in the range of 0 1a< < .  We assume that an interior solution exists in that 

range and delegate the analysis of the corner solution of 1a =  to section 5-2.  

Maximizing (32) with respect to 1τ  and a  yields: 

(33) 1
1 1 1

x
c xτ =  and 

(34) 2
2 2 2 2

x
s c xτ − = . 

When the investment levels are fixed, the first-best result can be attained by 

controlling the monetary price of route 1, 1τ , and the degree of revenue-recycling as a 

subsidy for route 2, a .  (34) demonstrates that 2s  should be set at the level where the 

effective monetary price of route 2 for a consumer is its social marginal cost.  The 

monetary price of route 2, 2τ , is fixed, but a subsidy, 2s , is controllable by changing a .  

This means that the transport authority can implement the first-best price in route 2, by 

adjusting the degree of revenue-recycling as a subsidy for route 2.  Given the first-best 
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pricing in route 2, the transport authority should implement first-best pricing in route 1 

too.  This is why (33) is the same as (12). 

5-2 Second-best pricing when the degree of revenue-recycling as a subsidy for 

route 2 is fixed 

Second, we focus on the case where the degree of revenue-recycling as subsidy for 

route 2 is fixed.  Maximizing (32) with respect to 1τ  yields: 

(35) 1

1 2

1

2
1 1 1 2 2 2 2

1( )
x x

x
c x s c x

x
τ

τ

τ τ= − − − . 

The sign of 1

1

2

1

x
x
τ

τ

 does not correspond to whether routes 1 and 2 are substitutes or 

complements from (A18) and (A20) in Appendix 3, because a change in the monetary 

price of route 1 causes two additional effects in route 2, which are the same as (27), 

other than a change in its demand by the relationship of substitutes or complements. 

Note that no second-best investment effect exists in (35), differently from (20) and 

(27).  The investment level in route 2 is fixed here.  A subsidy for route 2 therefore does 

not adjust the distortion in investment that causes the second-best investment effect. 

5-3 Second-best subsidy when the monetary price of route 1 is fixed 

Lastly, we examine how to determine the degree of revenue-recycling as the subsidy 

for route 2 when the monetary price of route 1 is fixed. 

Partially differentiating (32) with respect to a  yields: 

(36) 1 2
1 1 1 1 2 2 2 2( ) ( )a a ax x

TS c x x c x xτ τ= − + − , 
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where 2 0ax >  from (A21) in Appendix 3.  From (A19) in Appendix 3, 1 0ax <  if routes 1 

and 2 are substitutes regarding ip  and 1 0ax >  if they are complements. 

(36) shows that the benefits from revenue-recycling as a subsidy for route 2 are 

affected by the price distortion in both routes.  Consider the following two examples.  

First, suppose that the monetary price of highways is lower than their social marginal 

cost because of congestion, but for substitute railways, the reverse situation holds.  In 

this case, the first and second terms of the right-hand side of (42) are positive, because a 

subsidy for route 2 decreases demand in congested route 1 and increases demand in 

uncongested route 2.  Therefore, 0aTS > , which means that this subsidy is welfare 

improving.  Second, suppose that the monetary price of urban highways is lower than its 

social marginal cost because of congestion, but for complementary rural highways, the 

reverse situation is true.  In this case, the first term of the right-hand side of (36) is 

negative but the second term is positive, because a subsidy for route 2 increases demand 

both in congested route 1 and in uncongested route 2.  Therefore, it is undetermined 

whether the total surplus is increased or not by this revenue-recycling scheme. 

Integrating (36) with respect to a  and rearranging yields: 

(37) 
1 2

1 2

1 1 2 2
1 1 2 2 2 2( ) ( ) ( )

WO WO W W

W W WO WO

p p a a

p p a a

d x d xSS x dp x dp da da s x
da da
τ τ

Δ = + + + − Δ∫ ∫ ∫ ∫ , 

where 2 2 2 2 2 2( ) W W WO WOs x s x s xΔ ≡ − . 

As in (22) and (29), the first, second, third, and fourth terms of the right-hand side in 

(37) represent consumer surplus in route 1, consumer surplus in route 2, producer 

surplus in route 1, and producer surplus in route 2.  The cost–benefit formula is the 

same as the case of revenue-recycling as investments, and consequently, the transport 
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authority does not need to be conscious of whether the revenue is used for investments 

or subsidies in implementing cost–benefit analysis. 

6 Conclusion 

This paper examines the effects of revenue-recycling in a situation where at least in a 

certain part of the transport network, its monetary price cannot be adjusted, taking into 

account the fact that various transportation modes are commonly operated without 

perfect coordination.  The results have implications for actual policies.  First, in a 

congestion charging scheme in London, where the transport authority is required to use 

all the revenue to improve London’s transportation system by law, a higher charge than 

the first-best level could be justified by the second-best investment effect, if the 

marginal benefit of investment in public transit is larger than its marginal cost.  This is 

not true, however, if the revenue is used as a subsidy for public transit.  Second, in 

Japan, there has been active political debate on whether the revenue from the fuel taxes 

should be used only for construction of roads or for general-purpose taxes.  The cost 

recovery theorem supports the former, but the argument based on a simple cost recovery 

theorem is weak, because it ignores the pricing and investment distortions in at least 

some parts of the transportation networks.  To analyze this issue, full cost–benefit 

analysis, which includes all the transport networks, is necessary.  The current cost–

benefit analysis for roads in Japan does not consider the effects on other transport 

modes.  This implies that a false conclusion regarding the use of the revenue from fuel 

taxes can be derived if the debate is based on the current ‘partial’ cost–benefit analysis. 

Two caveats are necessary to assess the results in this paper. 
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First, the analysis in this paper disregarded the marginal cost of public funds.  

Existing studies (e.g., Ballard (1985)) shows that the marginal cost of public funds 

differ by the type of tax.  If the marginal cost of public funds by toll or tax for transport 

is larger compared with other taxes, the benefits from revenue-recycling will be reduced.  

On the contrary, if the reverse is true, the benefits will be enhanced.  To examine these 

issues, we need empirical analysis of the marginal cost of public funds in transport 

sectors. 

Second, our analysis focused on revenue-recycling within transport sectors, but 

revenue-recycling with other sectors is possible, although public acceptability would 

become more important in this case.  This point relates to the argument of the ‘double 

dividend’ of environmental taxes.  Bovenberg and Goulder (2002) and Salanie (2003, 

Chapter 10) prove that the double-dividend hypothesis generally fails in the case of 

exchange of labor taxes for environmental taxes.  The intuitive explanation is as follows.  

Environmental taxes are more narrowly based than labor taxes.  Swapping broad-based 

taxes with narrow-based taxes provides distortion, which yields a reduction in the real 

wage and a corresponding drop in employment.  On the contrary, Parry and Bento 

(2001) assert that the congestion tax is one exception to this argument and that the 

double dividend does in fact exist.  The reason why the double-dividend hypothesis fails 

is that labor supply decreases.  They argue that the double dividend could arise in the 

case of a congestion tax, because the reduction in congestion associated with the 

congestion tax could increase labor supply.  Following Parry and Bento (2001), it is 

possible that revenue-recycling with sectors other than transport could yield large 

benefits.  The analysis of revenue-recycling between the transport and nontransport 

sectors is deferred to future research.
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Appendices 

Appendix 1 Comparative Statistics for the Model in Section 3 

By totally differentiating (5), (9), and (15) and rearranging, it is shown that 

1 1 2 2( , ; , )x a Iτ τ  and 2 1 2 2( , ; , )x a Iτ τ  satisfy the following relationship: 

(A1) 1 2 2 2 1

11 2 1 11 ( )(1 )
x x x I

x D u wt ax wt
τ

−= − + , 

(A2) 2 2 2 1

11 2 1 1 11 ( ) 0a x x x I
x D u wt x wtτ−= − > , 

(A3) 1 1 2 1

12 1 11 ( )(1 )
x x I

x D u ax wt
τ

−= − + , 

(A4) 1 2 1

12 1 1 11 ( ) 0a x x I
x D u x wtτ−= − < , 

where: 

(A5) 
1 1 1 2 2 2 1 2

1 1 2 2 1 2 2 1 1 1 2 2 2

1 2 2

2 2 1 2

1 ( )( ) ( )

( ) ( ).
x x x x x x x x

x x x x x x x x x x x x x

D u wt u wt u

u u u wt u wt u c

= − − −

= − − − −
 

We assume that 1
1 1 1 1

1 2 0
x

t t a tτ= + > , where 1
it  ( 1,2i = ) denotes the partial derivative 

of 1t  with respect to the i -th argument.  (This is the only exceptional usage of 

subscripts in this paper.)  Note that an increase in the demand in route 1 has two effects 

on travel time, 1t .  One is the effect that high demand in route 1 increases congestion 

and increases travel time.  The other is the effect that high demand in route 1 increases 

the revenue from route 1, increases investments in route 1, and reduces travel time.  The 

above assumption implies that the former effect outweighs the latter effect and that the 

overall effect of an increase in the demand in route 1 is to increase travel time.  This 

assumption is needed to exclude the situation where an increase in the demand in route 

1 reduces the travel time in route 1.  This assumption, together with the strict concavity 
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of the utility function and 2
2 0
x

t > , yields 1 0D > .  Likewise, an increase in the 

monetary price of route 1, 1τ , not only increases the generalized price in route 1 but also 

increases the investment in route 1.  The latter effect results in a decrease in the 

generalized price in route 1, but this effect is assumed to be smaller than the former 

effect, that is, 1 1
1 1 11 0

I
p ax wt
τ
= + > .  This assumption yields 1

1 0x
τ
< . 

We denote the elasticity of demand in route 1 with respect to its monetary price by 

1
1 1

1

x
x
τ
τ

ε ≡ − .  Because it is natural to consider that this should be lower than one5, 1ε <  

is assumed to hold.  Because 1
1 0x
τ
<  implies 0ε > , we obtain: 

(A6) 1 1

1 1

1 1 1 1
1

1 1

11 0
I ax a x

a
x x
τ τ

τ τ

τ
τ

ε
+ ⎞⎛= = − <⎜ ⎟

⎝ ⎠
. 

From (A2), we also have: 

(A7) 1 1 1 1 1 0a aI x a xτ τ= + > . 

From (A1)–(A4), (A6), and (A7), we derive: 

(A8) 1 1 1 1 2

1 1 1 2 2 2

2 1 2 1 2

1 1 1 1 1 2
a a x x

a a x x x

x I x I x u
x I x I x u wt
τ τ τ

τ τ τ

− −
= =

− −
. 

If routes 1 and 2 are substitutes regarding the generalized prices, 1 2 0
x x

u <  implies 

that (A8) is negative.  If they are complements regarding them, 1 2 0
x x

u >  implies that 

(A8) is positive. 

                                                 
5 In a survey paper on the price elasticities of transport demand by Oum et al. (1992, Tables 1 and 2), the 
price elasticities of automobile usage are shown to range from 0.09 to 0.52 and that of urban transit are 
shown to range from 0.1 to 0.6 with only a few exceptions. 
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Appendix 2 Comparative Statistics for the Model in Section 4 

By totally differentiating (5), (9), and (23) and rearranging, it is shown that 

1 1 2 1( , ; , )x a Iτ τ  and 2 1 2 1( , ; , )x a Iτ τ  satisfy the following relationship: 

(A9) { }1 2 2 2 2 1 2

11 2 1 22 ( )
x x x I x x

x D u wt ax wt u
τ

−= − − , 

(A10) 1 2 2

11 1 1 22 ( )a x x I
x D u x wtτ−= − , 

(A11) { }1 1 2 2 1 1 1

12 2 1 1 12 ( )
x x I x x x

x D u awt u wt x
τ

τ− ⎡ ⎤= − + − +⎣ ⎦ , 

(A12) 1 1 1 2

12 1 1 1 22 ( ) 0a x x x I
x D u wt x wtτ−= − > , 

where: 

(A13) 
1 1 1 2 2 2 1 2 1 2 2

1 1 2 2 1 2 1 2 2 2 2 1 1 2 1 2

1 2 1 2

2 1 2 2 1 2

2 ( )( ) ( )

( ) ( ) .
x x x x x x x x x x I

x x x x x x x x x x x x x I x x

D u wt u wt u u a wt

u u u wt u wt wt u a wt u

τ

τ

= − − − −

= − − − − +
 

If routes 1 and 2 are substitutes regarding the generalized price, that is, 1 2 0
x x

u < , then 

2 0D >  and 1
1 0x
τ
<  from the strict concavity of the utility function, 1

1 0
x

t > , 2
2 0
x

t > , and 

2
2 0
I

t < .  If they are complements regarding the generalized price, that is, 1 2 0
x x

u > , then 

the signs of 2D  and 1
1x
τ

 are ambiguous.  This is because an increase in the monetary 

price of route 1 has the effect of increasing the demand in route 1, which is caused by an 

increase in demand in complement route 2, through an increase in investment in route 2.  

We assume that this effect is so small that 2 0D >  and 1
1 0x
τ
<  hold even if routes 1 and 

2 are complements. 

By the assumption that the elasticity of demand in route 1 with respect to its 

monetary price is lower than one, we have: 
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(A14) 1 1

1 1

2 1 1 1
1

1 1

11 0
I ax a x

a
x x
τ τ

τ τ

τ
τ

ε
+ ⎞⎛= = − <⎜ ⎟

⎝ ⎠
, 

where 0 1ε< <  from 1
1 0x
τ
< .  From (A10), we obtain: 

(A15) 
{ }1 1 2 2 1 2 1 2 2 2 2 1 1

1 1 2 1 2 2
2 1 1 1 1

( ) ( )
0

2
x x x x x x x x x x x x x

a a

x u u u wt u wt wt u
I x a x

D
τ

τ τ
− − − −

= + = > . 

From (A9)–(A12), (A14), and (A15), we obtain: 

(A16) 1 1 1 2

1 1 2 2 2

2 2 2 2

1 2 1 2 2
a a x x

a a x x x

x I x I u
x I x I u wt
τ τ

τ τ

− −
=

− −
. 

If routes 1 and 2 are substitutes regarding the generalized prices, 1 2 0
x x

u <  implies 

that (A16) is negative.  If they are complements regarding them, 1 2 0
x x

u >  implies that 

(A16) is positive.  We also obtain: 

(A17) 1 1 2

1 1 2 2 2

2 1 2 1 2

1 2 1 2 2 0a a I

a a x x x

x x x x wt
x I x I u wt
τ τ

τ τ

− −
= <

− −
. 

Appendix 3 Comparative Statistics for the Model in Section 5 

By totally differentiating (5), (9), (30), and (31) and rearranging, it is shown that 

1 1 2 1 2( , ; , , )x a I Iτ τ  and 2 1 2 1 2( , ; , , )x a I Iτ τ  satisfy the following relationship: 

(A18) 1 2 2 2 1 2

1 1
11 2

2 23
x x x x x

axx D u wt u
x xτ

τ− ⎧ ⎫⎞⎛
= − + −⎨ ⎬⎟⎜

⎝ ⎠⎩ ⎭
, 

(A19) 1 2

1 1
11

23 ( ) 0a x x

xx D u
x
τ− ⎞⎛

= − − <⎟⎜
⎝ ⎠

, 

(A20) 1 1 2 1 1 1

1 1
12 1

2 13
x x x x x

axx D u u wt
x xτ

τ− ⎧ ⎫⎞⎛
= − − − +⎨ ⎬⎟⎜

⎝ ⎠⎩ ⎭
, 
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(A21) 1 1 1

1 1
12 1

23 ( ) 0a x x x

xx D u wt
x
τ− ⎞⎛

= − − >⎟⎜
⎝ ⎠

, 

where: 

(A22) 
1 1 1 2 2 2 1 2 1 2

1 1 2 2 1 2 1 2 2 1 1 1 2 1 2

1 1 1
1 2

2 2 2

1 1 1
2 1 1 2

2 2 2

3 ( )
( )

( ) ( ) .
( )

x x x x x x x x x x

x x x x x x x x x x x x x x x

a x aD u wt u wt u u
x x

a x au u u wt u u wt wt u
x x

τ τ

τ τ

⎧ ⎫ ⎞⎛
= − − − − +⎨ ⎬ ⎟⎜

⎩ ⎭ ⎝ ⎠
⎧ ⎫

= − − − − + −⎨ ⎬
⎩ ⎭

 

If routes 1 and 2 are substitutes regarding the generalized price, that is, 1 2 0
x x

u < , then 

3 0D >  and 1
1 0x
τ
<  from the strict concavity of the utility function, 1

1 0
x

t > , and 2
2 0
x

t > .  

If they are complements regarding the generalized price, that is, 1 2 0
x x

u > , then the signs 

of 3D  and 1
1x
τ

 are ambiguous.  This is because an increase in the monetary price of 

route 1 has the effect of increasing demand in route 1, which is caused by an increase in 

demand in complement route 2, through an increase in the subsidy for route 2.  As in 

Appendix 2, we assume that this effect is so small that 3 0D >  and 1
1 0x
τ
<  hold even if 

routes 1 and 2 are complements. 
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