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Introduction

One of the basic properties of the observations that com-
prise most geophysical time series is that they are not sta-
tistically independent. As a result, any given observation is 
influenced by, correlated with, or related to all of the previ-
ous values in the series, to a greater or lesser extent. Thus, 
one of the classic problems in time series analysis arises, 
autocorrelation between the observations in the record. In 
some cases, we only need to consider the correlation 
between a given value and its closest neighbors that pre-
cede it in time, which we refer to as short-term correlation 
or short-term persistence. However, a given value may 

also be correlated with distant neighbors in the time series 
as well. When there is significant correlation between val-
ues that are far apart relative to the sampling interval, then 
long-range correlation or long-range persistence (LRP) 
enters the picture. LRP reflects long-term memory and the 
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long-term memory of the ocean far exceeds that of most 
other components in the climate system.

In the study of LRP, different methods have been used 
to estimate this quantity. Witt and Malamud (2013) com-
pare four analysis techniques that have been commonly 
used to estimate LRP. Of the four methods, they recom-
mend that power spectrum analysis (PSA) and detrended 
fluctuation analysis (DFA) be used to estimate LRP. 
Although PSA is highly recommended, not all agree that it 
should be the method of choice. According to Tsonis et al. 
(1999), DFA is superior to PSA because the basis function 
that is obtained for estimating the scaling exponent is gen-
erally more representative of the entire time series than 
one obtained using PSA, and, furthermore, that fluctua-
tions that typically arise in PSA result in scaling regions 
that are often masked. According to Talkner and Weber 
(2000), DFA is a more systematic procedure than PSA, 
which is something of an art. We have also chosen DFA 
because the majority of previous studies that we reference 
have employed this method, making our results easier to 
compare with past work.

In DFA, a single scaling exponent is derived that relates 
the magnitudes of the fluctuations in the data to the scales 
involved, be they temporal or spatial. The calculation, 
although similar to that of the standard deviation, differs in 
one important way. The reference in this case is not the 
mean value but is the residual that is produced when the 
various sources of non-stationarity have been removed from 
the original data. When this relationship, expressed in log-
log coordinates, yields a straight line (or at least a reasona-
bly close approximation), the data are said to be self-similar 
or scale invariant (e.g. Malamud and Turcotte, 1999). For 
self-similarity to apply, the points on the log–log plot must 
be sufficiently collinear across a relatively wide range of 
scales. This scaling exponent represents the slope of the 
straight line so obtained. If the scaling exponent, Єs, lies 
between 0.0 and 0.5, the data are classified as anti-corre-
lated or anti-persistent. If Єs is close to 0.5, then the data are 
randomly distributed and thus resemble white noise. If Єs is 
greater than 0.5, then the data are positively correlated and 
they exhibit persistence. When Єs exceeds 1.0, the data are 
considered to be strongly persistent and/or non-stationary 
(Malamud and Turcotte, 1999). Finally, although Єs is often 
referred to as the Hurst exponent (Hurst, 1951), we simply 
refer to Єs as the DFA scaling exponent.

Why is LRP important? On the negative side, LRP can 
have disastrous effects on statistical inference (e.g. Beran, 
1994). As an example, consider the variance of the sample 
mean given by σ2/N, where σ is the standard deviation and 
N is the sample size. When serial correlation is present 
whether it is due to short-range or long-range correlation, 
or both, the effective degrees of freedom can be signifi-
cantly reduced. The result is that higher estimates of the 
variance in the sample mean are obtained. Thus, this prob-
lem arises whenever we try to estimate confidence limits 
and confidence intervals using correlated data. Finally, it is 

often difficult to distinguish between the effects of LRP 
and non-stationarity. Without making this distinction, non-
stationarity could contribute to LRP leading to values that 
are unrealistically high.

There are major benefits to LRP as well. First, by exam-
ining LRP, we gain insight into the memory of the ocean 
including not only the information regarding longevity but 
also with regard to its contents. Because LRP is often asso-
ciated with processes that are deterministic in nature, they 
may leave an imprint in the data that provides the basis for 
a greater understanding of the processes involved. Along 
similar lines, the information obtained from LRP for vari-
ables such as sea surface temperature (SST) should lead to 
better forecasts from the appropriate models, and, accord-
ing to Chatfield (1995), this premise can be theoretically 
verified. As a case in point, the results of Zhu et al. (2010) 
using SST demonstrate that in high latitude regions where 
the values of LRP tend to be relatively high (~0.9 or 
greater), a simple autoregressive model produced forecast 
skills in many cases that exceeded those expected from red 
noise correlations alone.

At a deeper level, LRP provides information on the 
relationship between the scales employed in the scaling 
analysis. This relationship is often assumed to be linear 
(i.e. scale invariant), and when the relationship is scale 
invariant, it implies that the dynamics at smaller scales are 
connected to the dynamics at larger scales by a simple 
power law, and, as a result, the memory of the system is 
not confined only to the largest scales but extends to 
smaller scales as well (Tsonis et al., 1999). When scale 
invariance does not hold such as is the case when changes 
in the scaling or cross-over points occur, then other pro-
cesses (and/or non-stationarities) are at work which inter-
fere with this relationship.

Historically, there has been a significant effort to demon-
strate the universal nature of the scaling exponents that have 
been obtained for air temperature through power law scaling 
(e.g. Fraedrich and Blender, 2003; Koscielny-Bunde et al., 
1998; Pelletier, 1997; Peng et al., 1994). On a global basis, 
it has been shown that scaling exponents for the inner conti-
nents tend to cluster around 0.5, over the oceans they often 
approach 1.0, and in the transition zones that separate them, 
values in the neighborhood of 0.65 are frequently reported 
(e.g. Fraedrich and Blender, 2003). Within the past decade 
or so, there has also been interest in the variability of scaling 
behavior both for the atmosphere (e.g. Tsonis et al., 2000) 
and the ocean (e.g. Luo et al., 2015). This interest belies the 
possibility that changes in scaling behavior, both temporal 
and spatial, may provide additional insight into the physical 
and dynamical processes that govern these changes. The 
present study falls into this category.

In the present study, the data we employ are daily obser-
vations of SST acquired at three locations off the central 
California coast. These locations provide slightly different 
oceanographic settings with somewhat different exposures 
to the coastal ocean and yet they have much in common. 
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These sites are Granite Canyon, Pacific Grove, and 
Southeast Farallon Island (SEFI), and are shown in Figure 
1. Daily observations of SST have been acquired at these 
three locations for many years, and we have chosen a base 
period of 20 years for this study that extends from 1 
January 1972 through 31 December 1991. We say “base 
period” because although we employ the full 20 years of 
data at each site in the early stages of the calculations, 
when estimating the scaling exponents themselves, we use 
only the first 19.64 years. This was done strictly for con-
venience in setting up the range and size of the scales we 
use in estimating these exponents. In any case, the differ-
ence between 19.64 and 20 years is small and so the effect 
on our results should be negligible.

The steps we take in conducting the subsequent analy-
ses are as follows. First, we employ a well-known method 
of decomposing the data into independent modes called 
singular spectrum analysis (SSA) to remove the influence 
of the annual cycle (Elsner and Tsonis, 1996; Golyandina 
et al., 2001). Although DFA contains a detrending compo-
nent, we felt that because of the relative magnitude of the 
annual cycle we would remove it separately before con-
ducting DFA, consistent with the results of Hu et al. (2001). 
Second, we calculate the DFA scaling exponent (Єs) from 
the data in each case in order to estimate the magnitude of 
LRP and to examine the relationship between the scales. 
The detrending component in DFA is based on polynomial 
regression and most reports on its performance have been 

Figure 1. This map shows the coast of central California. Daily observations of sea surface temperature have been acquired at 
Granite Canyon located approximately half-way between the Monterey Peninsula and Pt. Sur, at the Hopkins Marine Station in 
Pacific Grove at the southern end of Monterey Bay, and at Southeast Farallon Island at the southern extremity of the Farallon Island 
chain. Each location is highlighted by a small red circle.



4 Journal of Ocean and Climate 

favorable, but its effectiveness has been challenged on 
several occasions (e.g. Bardet and Kammoun, 2008; Bryce 
and Sprague, 2012).

Our goals in this study are to acquire information on LRP 
in a coastal region, where similar observations, to the best of 
our knowledge, have not been made. We are also interested 
in determining how well these results agree with observa-
tions of LRP made elsewhere in the North Pacific basin and 
in other coastal regions. We are particularly interested to see 
how well our estimates of LRP along the coast agree with 
the data we analyze at the SEFI since previous results sug-
gest that our scaling estimate obtained at SEFI may signifi-
cantly exceed the values we obtain along the coast. 
Furthermore, we briefly address the question of whether or 
not our results support the assumption that the coastal data 
we employ are representative of waters further offshore. In 
addition, we ask if our results suggest the importance of one 
or more ocean processes at work in the region. Finally, we 
provide an illustrated introduction to DFA that might benefit 
those who are unfamiliar with the methodology.

The observations

Daily observations of SST have been acquired at Granite 
Canyon on the central California coast by the Marine 

Culture Laboratory of the California Fish and Game 
Commission since March 1971. Granite Canyon is located 
about 15 km south of Monterey Bay and almost the same 
distance north of Pt. Sur (Figure 1). The nominal period of 
the data we employ from Granite Canyon is from 1 January 
1972 to 31 December 1991 yielding a record length of 
20 years (but only the first 19.64 years are used to calculate 
Єs). The data are collected at approximately at 08:00 am 
local time. Granite Canyon, because of its location, has 
direct exposure to the coastal ocean. Waters at this site 
reflect the strong influence of coastal upwelling during the 
spring and summer. The data from Granite Canyon are 
shown in Figure 2(a). The vertical red line located near the 
end of the record delineates the data that are actually used 
to calculate the scaling exponents.

At the Hopkins Marine Station in Pacific Grove located 
at the southern end of Monterey Bay (Figure 1), daily obser-
vations of SST have been acquired since January 1919. (In 
the text, we refer to both Hopkins Marine Station and Pacific 
Grove—they are one in the same.) The waters that circulate 
inside Monterey Bay originate almost entirely from outside 
the bay. Due to local heating inside the bay, however, SSTs 
tend to be slightly higher than they are further offshore 
except during the winter when SSTs inside and outside the 
bay are about the same. The data are collected at 08:00 am 

Figure 2. (a) Shows the daily observations of SST from Granite Canyon for the period from 1 January 1972 through 31 December 
1991. (b) Shows the daily observations of SST from Pacific Grove for the same period. (c) Shows the daily observations of SST from 
the Southeast Farallon Island for the same period. The vertical red line near the end of each record shows the 19.64 years of data 
that are included in calculating the scaling exponents.



Breaker 5

local time each day. For this study, we employ the same 
nominal 20-year period between 1 January 1972 and 31 
December 1991, again, using only the first 19.64 years of 
data to calculate the scaling exponents. The data from 
Pacific Grove are shown in Figure 2(b).

Finally, daily SSTs have been acquired at the SEFI since 
about 1925. Members of the Point Reyes Bird Observatory 
have been instrumental in maintaining this data collection 
program for many years. Data collection is difficult during 
the winter, when storms frequent the area, and so usually 
fewer observations are acquired during the winter months. It 
has also made it more difficult to maintain a fixed time-of-
day for collecting the data. Because the Farallon Islands are 
located approximately 40 km offshore they experience 
greater influence from the California Current per se than 
either of the other two locations. Thus, SEFI has greater 
exposure to subarctic waters from the north that are lower in 
temperature and salinity than waters along the central coast 
that often originate in the California Undercurrent which 
tend to be warmer and of higher salinity.

At SEFI, 7.9% of the observations were missing, with 
most of the missing values occurring between November 
and February. The majority of gaps were single days with 
some gaps that lasted for several days and one gap that 
lasted for 9 days. A shape-preserving piecewise cubic 
spline interpolation procedure was used to fill the gaps. 
Although any interpolation procedure tends to reduce nat-
ural variability in the data, most of the missing values 
occurred during the winter when the gradients in SST 
across the region are at a minimum. As in the two previous 
cases, the period we have employed is from 1 January 
1972 to 31 December 1991, and the scaling exponents 
were calculated for only the first 19.64 years. The daily 
observations for this location with the gaps filled are 
shown in Figure 2(c).

Before moving on, we point out that the data often used 
in estimating scaling exponents come from climate models 
and raises the question of whether such models can faith-
fully reproduce empirical findings (e.g. Govindan et al., 
2002). We also note more specifically that most of the SST 
data used in estimating LRP to date have been acquired 
from global analyses where spatial interpolation of the 
gridded data is performed. Interpolation, by definition, 
implies some degree of smoothing, which reduces natural 
variability in the data. Thus, a bias, however small, is 
introduced into calculations that attempt to estimate the 
magnitude of variability in the data. In the present work, it 
should be clear that since we use point observations of SST 
that no such problem exists.

Background

The formal background that justifies the study of LRP is 
well documented in the literature on the subject of long-
range power law correlation (e.g. Beran, 1994).

Accordingly, we begin with the autocorrelation func-
tion, which provides a quantitative measure of the correla-
tion between observations that are separated in time by a 
lag that can vary from zero to a significant fraction of the 
record length. This relationship can be expressed as

C n x x x xs i t
i

n s

i s t= −( ) −( )
=

−

+∑1
1

/  (1)

where xt represents the time series (i.e. daily observations 
of SST), xi is the ith value of the times series, xi + s is a 
lagged version of xi at lag s, xt  is the mean value of the 
record, and n is the record length.

When long-range correlation is present and s exceeds 
the time scale we usually associate with short range cor-
relation, these correlations take on the following form

C ss ∝
−α  (2)

if the data follow a power law where α ranges from 0 to 1. 
To obtain α we simply regress log Cs with log s over a 
selected range of time scales or values for s. Although, in 
principle, the autocorrelation function itself could be used 
to estimate α, in practice, noise in the data and trend-like 
variations often make the interpretation of Cs difficult. 
However, there are several other methods that can be used 
to estimate α and we have chosen DFA for this purpose.

Methods

SSA

In conducting DFA, it is important to first remove all major 
sources of non-stationarity in the data. These include, but 
are not necessarily limited to, long-term trends and the 
annual cycle. Regarding the annual cycle, the concept of 
LRP refers only to non-periodic processes, according to 
Maraun et al. (2004). In this regard, Markovic and Koch 
(2005) removed the annual cycle from their precipitation 
data in order to estimate the Hurst exponent. They state that 
by removing the annual cycle, their estimate of the Hurst 
exponent better reflected long-term correlation in the data.

In order to remove the annual cycle using the detrending 
capability in DFA a relatively high-order polynomial would 
be required. This in turn could lead to overfitting of other 
non-stationarities in the data, such as the long-term trend. 
Thus, we remove this component separately before conduct-
ing DFA. As stated above, to remove the annual cycle, we 
have applied SSA (Elsner and Tsonis, 1996; Golyandina 
et al., 2001). In our experience, we have found that SSA 
performs well in removing the influence of the annual cycle 
whether or not it departs from a pure sinusoid.

This method decomposes a time series into a set of 
independent modes. These modes are reconstructed 



6 Journal of Ocean and Climate 

from the eigenvectors and principal components that 
result directly from the decomposition. Thus, it is simi-
lar to principle component analysis in its formulation. 
In SSA, the number of modes is determined by the user 
and provides the needed flexibility to adjust the filtering 
properties of the method to remove the annual cycle. A 
window length, L, must be specified that determines the 
spectral resolution of the technique and thus the number 
of modes that are produced. Typical values of L range 
between 15% and 25% of the record length. Finally, dis-
tortion in the annual cycle, which is common in records 
of air temperature (e.g. Capparelli et al., 2011) and SST 
(e.g. Breaker, 2006) often produces higher harmonics 
that are easily identified in the SSA decompositions. 
These harmonics are then removed together with the 
fundamental oscillation to effectively remove the annual 
cycle.

DFA

DFA is a well-established method for estimating the scaling 
behavior of noisy data in the presence of trends without 
knowing their or shape (e.g. Kantelhardt et al., 2001, 2002). 
DFA is composed of five steps, following Kantelhardt et al. 
(2001). The first step can be expressed as

y x xn i t
i

n

= −( )
=
∑

1

 (3)

where the notation is as before and yn  is the cumulative 
sum. This step is often referred to as creating the profile. 
According to Ihlen (2012), this step is necessary if the time 
series possesses significant noise-like structure, which is 
true for most geophysical time series.

In the second step, yn  is divided into ns non-overlap-
ping segments (n/s) of equal length, s. If n is not a multiple 
of s, there will be a small portion of the record that will not 
be included in the calculation. In our case, n = 7300 (i.e. 
20 years) and ns·s = 7168, where 7168 days corresponds to 
19.64 years, consistent with our comments earlier concern-
ing the nominal record length.

In the third step, the local trend, v, is calculated for each 
segment based on a least-squares fit to the data. The basis 
function that is chosen to provide the fit can be linear, 
quadratic, and cubic, a higher polynomial, or an independ-
ent basis such as could be obtained from Empirical Mode 
Decomposition (e.g. Qian et al., 2009). To simplify the 
notation, Kantelhardt et al. (2001), and others, refer to lin-
ear detrending as DFA1, quadratic detrending, DFA2, and 
so forth. We follow this notation from hereon. In any case, 
selection of the detrending polynomial may affect the 
results and thus should be considered a variable in the sub-
sequent analyses.

In the fourth step, the variance, F2(s), for each of the ns 
segments is calculated as

F v s y v s j p js v
j

s
2 2

1
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for each segment v, where v = 1, …, ns, and pv(j) is the fit-
ting polynomial for segment v.

The fifth step is to average over all of the segments and 
then take the square root of the mean squared values to 
obtain the overall fluctuation function, as it is called, for 
each value of s, according to
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If the data follow a power law resulting from long-
range correlation, the fluctuation function, F(s), increases 
according to

F(s)∞ sЄs (6)

To obtain the final scaling exponent, Єs, we plot F(s) 
versus s in log–log coordinates and then determine the 
slope of the line from a least-squares linear fit to the data. 
(Non-linear regression, of course, could also be used to 
obtain the scaling exponent.)

To help evaluate the results, it is recommended that 
white (Gaussian) noise be included in these calculations as 
we have done. If the value of Єs obtained for white noise is 
not close to 0.5 in all cases, then the calculations should be 
examined.

Results

The results from SSA

First, SSA was applied to the data for the purpose of 
removing the annual cycle. Window lengths of 1000, 1100 
and 1000 days were used for Granite Canyon, Pacific 
Grove, and SEFI, respectively. The results from SSA for 
the first 12 reconstructed modes for SEFI are shown in 
Figure 3. The first two modes (Ro1 and Ro2) correspond 
to the fundamental oscillation associated with the annual 
cycle. Modes 5 and 6 (Ro5 and Ro6) correspond to the 
first harmonic of the annual cycle. The presence of modes 
5 and 6 indicate that the annual cycle is not a pure sinu-
soid but is to some degree, distorted. Modes 1, 2, 5, and 6 
were then subtracted from the detrended data to remove 
the influence of the annual cycle. Similar steps were taken 
to remove the annual cycles from data for Granite Canyon 
and Pacific Grove.

Figure 4 shows power spectra of the data from Hopkins 
Marine Station using the Maximum Taper Method of 
spectral estimation (Thompson, 1982) with a time-band-
width product of 2, for (1) the original data (black), (2) the 



Breaker 7

detrended data after the annual cycle was removed that 
created spectral gaps at 1 and 2 cycles per year (cpy; red), 
and finally (3) the detrended data with the gaps filled 
using a simple interpolation procedure (green). The inter-
polation was performed in the frequency domain from 
spectral estimates obtained between the gaps at 1 and 2 
cpy using the discrete cosine transform (DCT) (Rao and 
Yip, 1990). The inverse DCT was then applied to obtain 
the desired gapped-corrected time series for each location. 
It is these data with the annual cycles removed and the 

resulting gaps filled using an objective procedure that are 
used in the following analyses.

DFA

In the previous section under “DFA,” we indicated that 
calculating the cumulative sum is the first step in conduct-
ing DFA. Thus, we have calculated the cumulative sum 
(CUSUM) or profile as the first step in the DFA analysis at 
each location. As is common practice, the mean value of 

Figure 3. Singular spectrum analysis of SST from SE Farallon Island. A window length, L, of 1000 modes was employed. The first 
12 modes are shown above. Of particular interest are modes 1 and 2, and modes 5 and 6. Together, these modes comprise the 
annual cycle. Modes 1 and 2 correspond to the fundamental oscillation and modes 5 and 6, the first harmonic of the fundamental. By 
removing all 4 modes, the annual cycle has been removed.
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each record was removed prior to calculating the CUSUMs. 
From this point on, we use only the first 19.64 years of data 
from each location.

The next step in DFA is to divide the record, which is 
now a CUSUM, into ns non-overlapping segments (n/s) of 
equal length, s. We have divided the record into non-over-
lapping segments for seven different scales: 16, 32, 64, 
128, 256, 512, and 1024 days where the scale length 
increases by a power of 2 over the range of scales 
employed. This scaling arrangement is often used in DFA, 
although the range of scales varies depending on the record 
length that is available.

The step that follows is to calculate the local trend for 
each segment based on a least-squares fit to the data. We 
have fitted linear, quadratic, cubic, and 4th order and 5th 
order polynomials to the profiles in each case. This proce-
dure is illustrated for the data from Granite Canyon in 
Figure 5 for linear, quadratic, and cubic trends for a scale 
or segment length of 1024 days. The local trends were 
then subtracted to produce detrended residuals for each 
segment and then for each scale. The local root-mean-
square (RMS) fluctuations of the residuals are shown by 
dashed red lines about the trends for each segment. In 
each case, we have applied first (DFA1) through 5th-order 
(DFA5) polynomials to the data. As we might expect, 
higher order polynomials are increasingly effective in 
eliminating trends in the data, consistent with Kantelhardt 
et al. (2001). In our calculations, we found that as the 
order of the polynomial increased, the value of the final 

scaling exponent also increased slightly up to and includ-
ing 4th-order, after which the value of the scaling expo-
nent decreased significantly. Ihlen (2012) found that 
overfitting of the data by higher order polynomials can be 
a problem, and so the question arises, how do we decide at 
what point to stop the fitting process. We have chosen to 
stop at DFA4 since the values of the scaling exponent, 
while consistently increasing up to DFA4, rapidly 
decreased at higher values in each case. Thus, the expo-
nent we estimate is a relative value, that is, relative to the 
order of the detrending polynomial we employ.

In the next step, we calculated the RMS amplitude fluc-
tuations of the detrended residuals for each segment length 
(scale) and each location. In Figure 6, we show the local 
(dark vertical bars) and the global (red horizontal lines) 
RMS fluctuations for each of the seven scales for Granite 
Canyon. These results are based on DFA3. Note that the 
amplitudes of the RMS fluctuations increase rapidly as the 
scale or segment length increases from 16 to 1024 days, as 
they did for Pacific Grove and SEFI as well.

Plots of Log2 F(s) versus Log2 (s) for the SST data from 
each location are shown in Figure 7. The individual values 
of F(s) are plotted as large dots for Granite Canyon, small 
circles for Pacific Grove, and stars for SEFI. These plots 
include least squares fits to the data using the linear 
approximation. Granite Canyon is plotted with a solid blue 
line, Pacific Grove with a dashed blue line, and SEFI with 
a dotted blue line. Finally, the Gaussian white noise data, 
processed and plotted in similar fashion to the SST data, is 
shown in red.

As discussed earlier the data were initially processed by 
removing the annual cycles because of their relatively high 
amplitudes. After segmenting the profiles, DFA4 was used 
to locally detrend each segment for each scale. The corre-
sponding scaling exponent for the Gaussian white noise 
was in most cases close to 0.5, as it should be if the calcu-
lations were performed correctly. This is an important 
check on the calculations and should be included in per-
forming DFA.

As we examine Figure 7, a closer look at the plots of 
RMS fluctuation magnitude F(s), versus scale s, show that 
departures from the straight lines that have been assumed 
are relatively small and do not indicate cross-over points, 
which, if present, would cause the slopes to change. Thus, 
these results appear to be generally consistent with the 
concept of scale invariance over the range of scales 
employed. One possible exception may occur for the 
length scale of 1024 days. Although the departures from 
linearity are relatively small, in each case the fitted esti-
mate at s = 1024 is slightly higher than the calculated value 
of F(s) at that scale. This length scale corresponds to a 
period of about 2.8 years and could indicate that a change 
in slope or cross-over point is about to occur and might be 
resolved if a longer length scale were employed. Luo et al. 
(2015) found a cross-over point at 2.0 years in their SST 

Figure 4. Power spectra for the data from the Hopkins 
Marine Station are shown. The spectrum for the original data 
is shown in black. Note the peaks in the spectrum at 1 and 
2 cycles per year. They correspond to the annual cycle. The 
spectrum of the detrended data after the annual cycle has been 
removed is shown in red. The spectrum of the detrended data 
after the gaps created by removing the annual cycle have been 
filled using a simple interpolation procedure is shown in green. 
The same procedures were used for the data from Granite 
Canyon and SEFI. See text for further details.
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data from the North Pacific and attributed it to El Niño-
Southern Oscillation (ENSO) modulation.

Finally, from these plots it is also apparent that although 
the values of 1.04 for Granite Canyon and 1.05 for Hopkins 
are similar the value of 1.16 at SEFI is somewhat higher. It 
is important to emphasize that the values we have obtained 
depend strongly on the framework or context upon which 
the calculations are based. In order to reproduce these results 
or compare them with those from other studies the same 
methodology must be employed. The significance of these 
differences and how our results compare with similar, results 
obtained elsewhere are discussed in the following section.

Discussion and conclusions

Based on the foregoing analyses, we obtained values for 
the scaling exponent, Єs, which ranged from about 1.04 at 
Granite Canyon, to 1.05 at Pacific Grove, and to 1.16 at 
SEFI. These values clearly fall into the range where long-
range correlation is observed and may even reflect to some 
degree the effects of non-stationary behavior that has not 
been removed since the values in each case exceed unity. 
Although we cannot eliminate this possibility, between 
removing the annual cycles initially and then applying 4th-
order detrending in the application of DFA, this issue was 
addressed in some detail. In removing the annual cycles 

initially, we have followed the recommendations of Hu 
et al. (2001), who suggest removing unwanted trends first 
prior to conducting DFA (if there is reason to believe that 
DFA alone cannot accomplish the task). Finally, this infor-
mation is new to the region and although it is always pos-
sible to question the absolute values because they are to 
some degree method-dependent, we think that the differ-
ences between the coastal values and the offshore value 
are significant.

There are a number of factors that influence the uncer-
tainty involved in calculating the scaling exponent, Єs. 
These factors include the method used, the type of scaling 
employed, how the detrending is performed, how the scal-
ing exponent is extracted using either a log transformation 
followed by linear regression or simply nonlinear regres-
sion, and finally, how, and to what extent have non-station-
arities in the data been removed?

For further guidance in this matter, we turn once again 
to the work of Fraedrich and Blender. Fraedrich and 
Blender (2003) (FB) who used a 1000 year simulation 
based on global climate data including atmospheric and 
ocean temperature to estimate the variability of the scaling 
exponent. Using ten 100-year samples taken from their 
simulated data set, they obtained standard deviations of 
0.025–0.05 for most regions over land and water. Blender 
and Fraedrich (2003) indicate that differences of 0.1 or 

Figure 5. The figure shows the cumulative sum from the previous step (blue) together with (a) linear (m = 1), (b) quadratic (m = 2) 
and (c) cubic (m = 3) polynomials fitted to the data (solid red lines) from Granite Canyon for each segment with the segment length 
or scale equal to 1024 days. The dashed red lines show a measure of the local fluctuations about the trends. The same procedure is 
applied for each scale.
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greater in the scaling exponent generally exceed the uncer-
tainty and so reflect significant changes. We find these 
estimates of uncertainty well within reason and consistent 
with our own experience in using SST. As a result, these 
values might serve as a useful starting point for construct-
ing more refined confidence limits in specific situations.

How do our results compare with those of others in 
this field? Monetti et al. (2002) applied DFA to both 
weekly and monthly SST data from several locations in 
the Atlantic and Pacific oceans to estimate LRP. They 
estimated values of the scaling exponent to be in the 
neighborhood of 0.8 for time scales that exceeded 

Figure 6. Local (dark bars) and global (red horizontal lines) RMS fluctuations plotted versus segment length or scale in each panel, 
starting with the shortest segment length (16 days) at the top and ending with the longest segment length (1024 days) at the bottom. 
The polynomial order (m) was equal to 3.
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10 months. For shorter time scales, the scaling exponents 
were significantly higher in the range of 1.2 to 1.4, 
depending on location. Fraedrich and Blender (2003) 
used both observations of air temperature and SST 
together with model simulations to estimate the scaling 
exponents on a global basis. For the inner continents, the 
oceans, and the transition zones between the continents 
and oceans, they obtained values of ~0.5, ~1.0, and ~0.65, 
respectively. Their results should serve as a basis for 
comparison in future studies of a similar nature. Gan 
et al. (2007) used DFA and other analysis methods to esti-
mate the scaling exponent from weekly SST in the South 
China Sea where they obtained mean values for Єs close 
to 0.95. They also found that Єs depended on location 
with lower values observed near the coast, consistent 
with our results. Luo et al. (2015) estimated the scaling 
exponent from monthly SST anomalies for globally aver-
aged SST and for a number of ocean basins using PSA 
and DFA. The scaling exponents fell into two distinct 
regimes separated by a cross-over point at 4.3 years for 
data from tropical basins and for globally averaged data 
and suggested that this cross-over is related to ENSO. In 
the North Pacific, a cross-over point was found at about 
2 years, again attributed to ENSO. These crossovers were 
attributed to modulation from the ENSO phenomenon 
where this behavior was found to be more pronounced in 
the tropics. In addition, the scaling exponents tended to 

increase with decreasing latitude, a pattern that was again 
linked to ENSO. Our results, as described earlier, suggest 
a possible cross-over point at the longest time scale, in 
other words, 1024 days or 2.8 years, but further work will 
be required to confirm this possibility. In summary, based 
on the available literature, there is a rather wide range of 
values for Єs obtained from SST data. This range is con-
sistent with a review by Bunde and Lennartz (2012) on 
LRP who report that long-term correlations for SST range 
from about 0.8 to at least 1.4, although the results for SST 
came from only six sources.

Returning to the scaling exponents per se, the slightly 
higher value for the scaling exponent at SEFI is most likely 
due at least in part to its location further offshore away 
from the coastal boundary. In this regard, Fraedrich and 
Blender (2003) state that there is a general tendency for 
scaling exponents to increase going from land to sea due to 
the decreasing influence of the adjacent land where the 
scaling exponents tend to be far smaller. Gan et al. (2007) 
also found slightly lower values of the scaling exponents 
near the coast and higher values offshore, in this case, in the 
South China Sea.

At SEFI, which is approximately 40 km offshore, 
influence from the adjacent coast should be reduced sig-
nificantly. Although the explanation given by Fraedrich 
and Blender is consistent with our results, we find it is 
less than satisfying from an oceanographic perspective. 

Figure 7. Overall RMS values for each segment length versus segment length are plotted in log–log coordinates. Linear least squares 
fits to the Log2 F(s) versus Log2s plots are shown for Granite Canyon (solid—blue), Pacific Grove (dashed—blue), and for SE Farallon 
Island (dotted—blue). The results for Gaussian white noise are shown in red. See text for further details.
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Consider the following, because the Farallons are located 
further offshore (and ~150 km further north) they are 
exposed to somewhat different water masses with, most 
likely, different water mass histories. Within the 
California Current itself where SEFI is located, we expect 
the influence of subarctic waters with lower temperatures 
and lower salinities to be important (e.g. Hickey, 1979). 
Along the coast, and in Monterey Bay, however, we 
expect less influence from subarctic waters and more 
influence from upwelled waters that originate at lower 
latitudes in the California Undercurrent. Thus, exposure 
to water masses with different properties and evolution 
histories could contribute to the differences in the scaling 
exponents at these locations. In conclusion, we once 
again refer to the work of Tsonis et al. (2000) regarding 
changes in the scaling exponents, who state that spatial 
variations in the scaling properties of the variables that 
define our climate system are not only expected but 
required, based on theoretical considerations, and finally, 
that the spatial distribution of these scaling exponents 
may provide important information on the underlying 
dynamics that govern this system.

Although the scaling exponents obtained at Pacific 
Grove and Granite Canyon are of order unity and consist-
ent with the vast number of offshore values obtained by 
Fraedrich and Blender in the North Pacific, they might 
appear to be a bit high due to their locations along the 
coast. However, the prevailing onshore winds and steep 
topography that characterize the California coast (and 
eastern boundaries in general) tend to favor the onshore 
flow of waters that originate further offshore. Thus, based 
on our scaling results together with the presence of an east-
ern boundary, we conclude that the observations from 
Pacific Grove and Scripps Pier are representative of the 
waters further offshore.

In closing, we play the devil’s advocate by asking if the 
offshore values obtained by Fraedrich and Blender tend 
toward unity how do we explain obtaining a value as high 
as 1.16 off the same coast? There are several possibilities. 
First, our data correspond to point observations acquired 
at single locations and not obtained from global analyses, 
where various forms of interpolation are involved. 
Second, they removed the annual cycle by calculating the 
anomaly, a much simpler procedure than we have used. 
We have followed the recommendations of Capparelli 
et al. (2011) in this regard, who discuss the problems asso-
ciated with the anomaly method of removal. Third, in 
applying DFA, Fraedrich and Blender used DFA1 and 
DFA2 in their detrending, whereas we have used DFA4 
which in our experience usually produces higher values of 
the scaling exponent. Finally, although Fraedrich and 
Blender were apparently searching for uniformity in their 
results, we, on the other hand, have searched for non-uni-
formity in ours. And, perhaps it is not surprising how 
often we tend to find what we are looking for.
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