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The pollution effect is a well-known and well-investigated phenomenon of the finite element method
for wave problems in general and for acoustic problems in particular. It is understood as the prob-
lem that a local mesh refinement cannot compensate the numerical error which is generated and
accumulated in other regions of the model. This is the case for the phase error of the finite ele-
ment method which leads to dispersion resulting in very large numerical errors for domains with
many waves in them and is of particular importance for low order elements. Former investigations
have shown that a pollution effect resulting from dispersion is unlikely for the boundary element
method. However, numerical damping in the boundary element method can account for a pollution
effect. A further investigation of numerical damping reveals that it has similar consequences as the
phase error of the finite element method. One of these consequences is that the number of waves
within the domain may be controlling the discretization error in addition to the size and the order
of the boundary elements. This will be demonstrated in computational examples discussing travel-
ing waves in rectangular ducts. Different lengths, element types and mesh sizes are tested for the
boundary element collocation method. In addition to the amplitude error which is due to numerical
damping, a rather small phase error is observed. This may indicate numerical dispersion.

Keywords: Helmholtz equation; Kirchhoff–Helmholtz integral equation; boundary element method;
pollution effect; numerical damping.

1. Introduction

It is common practice to use a certain fixed number of boundary elements per wavelength in
engineering simulations. The author himself has run many test cases on this and published a
number of papers19,22,28 discussing this topic. In one of them,28 there has been the statement
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that in a duct example, the authors “could not find any indication of a pollution effect in
the frequency range of 0 < kl ≤ 160π” which has been equivalent to 80 waves in the duct.
Actually, there was no indication that convergence had been influenced by frequency. Large
wavenumbers kl did neither influence convergence rates nor the linearity of the (logarithmic)
error as a function of the (logarithmic) frequency. A similar statement is found in the
recent mathematical literature.8 However, in these papers investigating the influence of
the normalized wavenumber kl, the emphasis was usually put on the dependence on k. In
particular, the author’s papers have not investigated a dependence on the duct length l

while keeping k (and the element size) constant.
The dependence of the numerical error on the length of the computational domain

was first reported in a paper by Bayliss et al.4 Investigation of this problem became very
popular during the decade of the 1990ies, when many papers on the pollution effect as
an accumulated phase error were published, see for example.2,3,5,7,15,16,35 Reviews of this,
further findings and conclusions were discussed thereafter.1,9,10,14 However, the most com-
prehensive and detailed review of this topic was published in the very interesting book by
Ihlenburg.13 Many methods have been proposed to overcome the unwanted dispersion error.
In recent years, the smoothed finite element method11,37 has received much attention in lit-
erature. In a recent study on the accuracy of eigenfrequencies for structural components
using commercial software (Abaqus), this effect could not be found.17

The phase error as a result of a dispersive solution is also an important problem in the
finite difference method. A very recent publication on this topic is by Wang and Wong36

who directly correspond to the finite element community by choosing the title of their work
very similar to the paper by Babuška and Sauter.3

As mentioned above, there has not been any indication for a significantly dispersive
solution in the boundary element method (BEM). Apparently, this is the reason why the
author was unable to find any indication of a pollution effect in the boundary element
literature. Rather recently, the author published a brief paper on the problem of numerical
damping in the conventional boundary element method.24 This paper describes numerical
damping observations of both, findings in literature39 and the author’s own simulations.18

Furthermore, it concludes that a real fundamental solution (Green’s function) may solve
the problem of numerical damping. Unfortunately, the real fundamental solution method
is subject to numerical instabilities,30 see also the discussion in.24 Independently of the
author’s activities, Fahnline published a paper on the effect of numerical damping in the
boundary element method some years before.6 While the effect of numerical damping has
been described several times before, the conclusion that it may be understood as a pollution
effect has not been drawn so far. The computational test cases in this paper, i.e. problems
of traveling waves in a duct, are well suited to demonstrate the effect and have not been
presented and discussed in a similar way in the references mentioned above.

In the undamped case of a duct with excitation at one end,24 infinite resonance peaks
are expected at the eigenfrequencies. In reality, these peaks are finite and loose height with
frequency, i.e. numerical damping is increasing with frequency. It was shown in a recent
paper by Zheng et al.39 that the eigenvalues of the boundary element formulation are not
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purely real but exhibit a small imaginary part. This small imaginary part is not physical
but results in a numerical damping causing the amplitude peaks to be limited in height.
Therefore, it is obvious that the numerical error very close to the resonance peaks will always
be quite high and thus, controlling this error by a fixed number of elements will be rather
difficult. However, it was further shown in the author’s paper24 that even a traveling wave in
a duct is damped. This effect is the starting point for the current paper which approaches the
numerical damping and, with it, the pollution effect from the numerical example of traveling
waves in a long duct. The author has extensively studied this problem before18,19,22,24–26,28,33

and it was even proposed as a suitable benchmark problem12 for the benchmark platform of
the European Acoustics Association. The main motivation of studying this problem in the
context of a pollution effect results from the thought that, according to the damping, the
numerical error in the duct should become greater the longer the duct is. Consequently,
the numerical error would depend not alone on the element size but also on the length of
the domain or the number of waves within the domain. This is exactly what happens in the
finite element method and what was described in many papers, see for example9,10,14 and
references therein.

This paper is organized as follows: It starts with a formulation of the boundary value
problem and the boundary element formulation with discretization by collocation and a
selection of boundary elements. The main part reviews and investigates the problem of
traveling waves in a long duct and behaviour of different types of elements again. Finally,
it roughly estimates the phase error compared to the finite element method. The paper will
be completed by a brief conclusion.

2. Boundary Element Formulation

The derivation of the boundary element formulation will be presented in an abridged way
and is reduced to a few points which are relevant for understanding of this paper. A more
detailed presentation of the author’s approach to BEM for acoustic problems is found in
the concept chapter27 and in the lecture notes.25

2.1. Helmholtz equation, boundary conditions and integral equation

The time–harmonic wave equation, i.e. the Helmholtz equation, for the sound pressure p in
a domain Ω

∆p(�x) + k2p(�x) = 0 with �x ∈ Ω ⊂ R
3 (1)

with wavenumber k = ω/c is considered. The angular frequency and the speed of sound
are denoted as ω and c, respectively. A harmonic time dependence of e−iωt is assumed.
Admittance boundary conditions are applied on the boundary Γ. They are equivalent to
Robin boundary conditions which may degenerate to Neumann boundary conditions if the
admittance is zero. This condition is written as

vf (�x) − vs(�x) = Y (�x)p(�x) with �x ∈ Γ ⊂ R
2. (2)

1850018-3

J.
 T

he
or

. C
om

p.
 A

co
ut

. 2
01

8.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 3
.8

2.
19

2.
49

 o
n 

11
/0

8/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



June 14, 2018 16:30 WSPC/S2591-7285 130-JTCA 1850018

S. Marburg

Y represents the boundary admittance which relates the sound pressure to the difference
between the normal components of the fluid particle velocity vf and the underlying struc-
tural particle velocity vs. The normal component of the fluid particle velocity is related to
the normal derivative of the sound pressure p by means of the linearized Euler equation in
frequency domain as

vf (�x) =
1

iω�0

∂p(�x)
∂n(�x)

, (3)

where �0 represents the ambient density of the fluid. A residual or weak formulation, partial
integration and substituting the Green’s function for the test function leads to the Kirchhoff–
Helmholtz integral equation with admittance boundary conditions as

c(�y)p(�y) +
∫

Γ

[
∂G(�x, �y)
∂n(�x)

− iωρ0G(�x, �y)Y (�x)
]

p(�x)dΓ(�x) = iωρ0

∫
Γ

G(�x, �y)vs(�x)dΓ(�x).

(4)

The Green’s function (or fundamental solution) is given as

G(�x, �y) =
1
4π

eikr(�x,�y)

r(�x, �y)
(5)

with r being the Euclidean distance between field point �x and source point �y as r(�x, �y) =
|�x− �y|. The coefficient c in Eq. (4) is c = 1 for �y ∈ Ω and 0 < c < 1 for �y ∈ Γ. It is c = 0.5
for a point �y on a smooth part of the surface Γ. Since G is a particular solution of the
inhomogeneous Helmholtz equation, it is not unique. For example, the real part of G can
be used as a stand–alone Green’s function too, see the examples and the discussion in.24,30

2.2. Discretization by collocation and choice of elements

For discretization, Eq. (4) is tested with delta functions. Furthermore, all physical quantities
are approximated by using Lagrangian interpolation polynomials. As a result, the system
of linear algebraic equations is yielded as25,27

(H − GY )p = Gvs. (6)

The system matrices G and H are complex, fully populated and non–hermitian. Y , p

and vs are the (close to) diagonal matrix of the nodal admittance values and the column
matrices of the nodal values of sound pressure and structural particle velocity, respectively.

For this study, continuous and discontinuous Lagrangian boundary elements are used.
Among the continuous elements, linear and quadratic elements are denoted as P1c and
P2c, respectively. Furthermore, discontinuous elements will be applied as constant elements,
i.e. P0, and linear elements with nodes at the zeros of the Legendre polynomials, i.e.
P1d. These elements have been described and discussed extensively in former work of the
author.22,25,28

The system of equations in (6) is solved iteratively using a GMRes algorithm without
preconditioning, cf. Saad and Schultz34 and also the author’s contribution.29 A very low
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residual of Rn ≤ 10−10, see Eq. (4) of Marburg and Schneider,29 is demanded to avoid any
influence of the iterative solver on the accuracy of the numerical solution.

3. Computational Example: Traveling Waves in Long Ducts

3.1. Description of boundary element models

Air–filled ducts of lengths l = n · lRef with lRef = 3.4 m and a square cross section of
w2 = 0.2 × 0.2 m2 account for the examples in this section. They are well suited test cases
since the three-dimensional numerical solution can be compared to the one-dimensional
analytical solution, at least up to a frequency where no modes perpendicular to the length
of the duct occur. Assuming a speed of sound of 340 m/s, an ambient density of 1.3 kg/m3

and the width of w = 0.2 m, the lowest perpendicular modes are observed at a frequency
of 1700 Hz.a A solution with traveling plane waves is found if a particle velocity is applied
to one end, e.g. at x = 0 it is vs(x = 0) = v0, and a fully absorbing boundary condition is
applied to the other end, e.g. at x = n · lRef . Full absorption is achieved by an admittance
of �0cY (x = n · lRef) = 1. All other walls are considered acoustically rigid and at rest, i.e.
Y = 0 and vs = 0. A vivid description of this example is given in Fig. 1. This configuration
leads to a solution of constant sound pressure magnitude everywhere in the duct and at all
frequencies. Only the phase angle varies. The solution of the one-dimensional problem p̃ is
given as

p̃(x) = −v0�0ceikx. (7)

Independence of the sound pressure magnitude from position and frequency makes this
example an ideally suited one to compare different configurations. This has been the moti-
vation to propose this example as a benchmark case for computational acoustics.12 Setting
the particle velocity v0 = 1 m/s over the entire frequency range is not a realistic assumption
but just, for convenience, used for the computational test case of this section.

y
x

z

n · lRef

w

w

v0

Y = 1
ρ0c

Travelling wave (plane wave) in duct

Fig. 1. Schematic description of the first computational example. The duct of length nl̇ is excited by a
vibrating piston at the left end and the waves are fully absorbed at the right end.

aTheoretically, a half wave perpendicular mode occurs at 850 Hz. However, in all these and former studies
of this duct problem, this mode has hardly ever been observed. The author assumes that the invisibility of
this mode is due to symmetry conditions in this example because the entire configuration shows a double
symmetry over the cross section and the half wave is asymmetric.
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The boundary element mesh consists of square elements only. For a specific model, all of
them have the same size which is controlled by the parameter ms. This parameter defines
the number of elements over the width of the duct. This results in element edge lengths of
0.2 m, 0.1 m and 0.0667 m for ms = 1, ms = 2 and ms = 3, respectively. Because of the
square shape of the elements, it is easy to evaluate the number of elements over the length.
It is 17 for ms = 1 and n = 1 and goes up to 816 for ms = 3 and n = 16, see Table 1.
Figure 2 shows a selection of different meshes for different configurations.

As mentioned above, the ducts may be of different length while the cross section is
always the same. The basic configuration is the same duct which has been investigated
in many papers of the author18,19,22,24–26,28,33 with n = 1, i.e. with a length of lRef =
3.4 m. In addition, the cases of n = 2, 4, 8 and 16 are considered. For preparation of this
manuscript, the author investigated other (integer) values of n < 16 without qualitatively
new findings. The example has been created such that at 100 Hz and n = 1, one full wave
is found along the duct. This is equivalent to the normalized wave number of kl = 2π.
Increasing the frequency increases the number of waves with the same rate as by increasing
the length. Consequently, in both cases, for 200 Hz with n = 1 and for 100 Hz with n = 2,
two waves are found along the length, which is equivalent to kl = 4π. One case will be
presented for 1500 Hz and n = 16. This results in 15 · 16 = 240 waves over the length of the
duct, meaning that kl = 480π.

A selection of numerical solutions is shown in Fig. 3. For n = 1 (see top two subfigures),
the duct is filled with 1.5 and with 15 waves at 150 Hz and 1500 Hz, respectively. 60 waves

Table 1. Number of elements Ne and number of nodes Nn for different
meshes and different types of boundary elements. Ne/l shows the number of
boundary elements over the length.

Length Number of elements Ne Number of nodes Nn

in m n = ms Ne Ne/l P0 P1c P1d P2c

1 70 17 70 72 280 282
3.4 1 2 280 34 280 282 1120 1122

3 630 51 630 632 2520 2522

1 138 34 138 140 552 554
6.8 2 2 552 68 552 554 2208 2210

3 1242 102 1242 1244 4968 4970

1 274 68 274 276 1096 1098
13.6 4 2 1096 136 1096 1098 4384 4386

3 2466 204 2466 2468 9864 9866

1 546 136 546 548 2184 2186
27.2 8 2 2184 272 2184 2186 8736 8738

3 4914 408 4914 4916 19656 19658

1 1088 272 1088 1090 4352 4354
54.4 16 2 4352 544 4352 4354 17408 17410

3 9792 816 9792 9794 39168 39170
6 39168 1632 39168 39170 — —
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X

Y

Z
X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

l = lRef, ms = 1 l = lRef, ms = 2

l = 2 lRef, ms = 1

l = 2 lRef, ms = 2

l = lRef, ms = 6 l = 5 lRef, ms = 1

l = 16 lRef, ms = 1

Fig. 2. Different meshes for different configurations. Note that all ducts have the same cross section but
different length. All elements are squares.

-441.998 0 441.997

-443.597 0 442.047

-443.472 0 441.916

-441.997 0 441.996

l = lRef, f = 150Hz, Nwaves = 1.5

l = lRef, f = 1500Hz, Nwaves = 15

l = 4 lRef, f = 1500Hz, Nwaves = 60

l = 16 lRef, f = 150Hz, Nwaves = 24

Fig. 3. Real part of the sound pressure for different configurations at different frequencies. Nwaves is the
number of waves along the length. Numerical solution with ms = 3 and P2c elements. Note that all ducts
have the same cross section.
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are found for the four times longer duct at 1500 Hz, while the longest duct, i.e. n = 16,
shows 24 waves at the low frequency of 150 Hz already. The results stem from computations
with a mesh of P2d elements and ms = 3. The color bars indicate minimum and maximum
values of the real part of the sound pressure. Analytically, these values would be given as
±442 Pa.

3.2. Local numerical error over the duct length

In this subsection, the sound pressure and its numerical error at field points inside the
duct are investigated. Recently published results on numerical damping in BEM indicated
that numerical damping is not just visible in the undamped case but is also observed as
a decaying sound pressure of a traveling wave,24 see also Fig. 7 in Marburg.19 This is the
motivation of closer looking at the wave’s amplitude in the duct and how it behaves with
respect to the length of the duct.

Figure 4 shows the sound pressure magnitude in terms of the location in the duct for
different types of elements and different lengths. The frequencies are chosen such that in
all four cases the number of degrees of freedom over the wavelength (number of nodes)
remains the same. Note that P1d and P2c elements have twice as many nodal supports in
x-direction as P0 and P1c elements. Furthermore, according to Table 1, the overall degree
of freedom is twice as large for P1d and P2c elements. Thus, 4.25 and 8.5 elements per
wavelength are counted. The normalized wave numbers are between kl = 6π and 96π for P0

and P1c elements and between kl = 12π and 192π for P1d and P2c elements. With respect to
the element size, it is kh = 0.74π for P0 and P1c elements and kh = 1.48π for P1d and P2c

elements, where h the element size. It is clearly visible that the sound pressure magnitude

p/Pa

x

ρcv0
400

300

200

0 l/4 l/2 3l/4 l

P0, ms = 3, 600Hz p/Pa

x

ρcv0
400

300

200

0 l/4 l/2 3l/4 l

P1c, ms = 3, 600Hz

p/mPa

x

ρcv0

435

425

0 l/4 l/2 3l/4 l

P1d, ms = 3, 1200Hz p/mPa

x

ρcv0

435

425

0 l/4 l/2 3l/4 l

P2c, ms = 3, 1200Hz

l = lRef, l = 2 lRef, l = 4 lRef, l = 8 lRef, l = 16 lRef

Fig. 4. Sound pressure magnitude over the length of the duct for different types of elements at different
frequencies. Number of elements per wavelength: 8.5 for P0 and P1c, 4.25 for P1d and P2c.
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diminishes with increasing distance from the excitation, i.e. with increasing x. This effect
is the stronger the longer the duct is.

It is quite obvious that the decay of the magnitude is much stronger for the P0 and the
P1c elements. While for the latter, the solution at the left end seems to be close to the actual
value of �0cv0, it exhibits an initial offset for the P0 elements. At the right end of the duct,
the amplitude has decayed for the longest duct by almost 50% for P0 elements and clearly
even more for the P1c elements. The decay is much smaller for the other two element types.
It is even such that the linear discontinuous elements show a smaller numerical damping
than the continuous quadratic elements. In general, the qualitative behaviour of the decay
is very similar for the P1c and the P2c elements, also for the constant, i.e. P0 elements and
somewhat different for the P1d elements. This will be discussed again at the end of this
subsection.

Figures 5 and 6 present the numerical error of the (complex) sound pressure solution in
terms of the location in the duct for different types of elements and different lengths. This
error function e(x) is evaluated as

e(x) =
|p(�x) − p̃(x)|

|p̃(x)| (8)

where p̃(x) denotes the analytical solution according to Eq. (7) and p(�x) represents the
numerical solution at a field point �x = (x,w/2, w/2) with w being half the width of the
square cross section of the duct, cf. Fig. 1. The values of p are determined by a field point
evaluation using the representation formula which is Eq. (4) for �y ∈ Ω and, hence, c(�y) = 1.
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Fig. 5. Numerical error of sound pressure over the length of the duct for different types of elements at
different frequencies. Number of elements per wavelength: 34 for P0 and P1c, 17 for P1d and P2c.
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For investigating the numerical error, again, the frequencies are chosen such that, in
all four cases, the number of degrees of freedom over the wavelength (number of nodes)
remains the same. Two cases are investigated: Fig. 5 shows the local numerical error for the
case that 34 and 17 elements P0, P1c and P1d, P2c per wavelength are used, respectively.
These numbers are much larger than the usual recommendations. Figure 6 shows the local
numerical error for the case that 6.8 and 3.4 elements P0, P1c and P1d, P2c per wavelength
are used, respectively. This accounts for the common recommendations of discretization
using boundary elements.

Analyzing the results shown in Fig. 5 reveals a surprise. While the numerical error of a
few percent for the P0 and P1c elements and the n = 1 case could of acceptable order, when
34 elements per wavelength are used, numerical errors of up to 30% for P0 elements and
45% for P1c elements are really unexpected. According to what is known from the literature,
that many elements per wavelength should be save to remain within an accuracy which is
acceptable for technical problems, i.e. mostly between 1% and 10%. Such an accuracy is
achieved when using P1d and P2c elements which are clearly providing accuracies of less
than 1% even for the longest duct.

Figure 6 presents the results of the case where 6.8 and 3.4 elements P0, P1c and P1d, P2c

per wavelength are used, respectively. This is what is usually done in practice. The common
rule demands six boundary elements per wavelength. However, the author has successfully
tested even fewer low order elements per wavelength in the past.19,22,28 But staying with this
number, it becomes clear that P0 and P1c elements may provide solutions with acceptable
error for the shorter version of the duct. However, in case of the longest duct, P0 elements
end up with 100% error after traveling 80% of the length of the duct. P1c elements even
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Fig. 6. Numerical error of sound pressure over the length of the duct for different types of elements at
different frequencies. Number of elements per wavelength: 6.8 for P0 and P1c, 3.4 for P1d and P2c.
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manage to provide a numerical error of less than 100% up to only 40% of the length of the
duct. The other two element types, i.e. P1d and P2c, show a qualitatively similar behaviour
but at a somehow acceptable level. However, the local numerical error of the sound pressure
at the right end is of orders of magnitude higher than at the left end. It is also substantially
larger at the right end for the longer ducts and again, the local numerical error at the right
end is most likely not acceptable for technical applications.

It has been indicated above that P1d elements are not always behaving exactly the same
as the other three element types which are investigated. To further investigate this anomaly,
the sound pressure and the local error are plotted for three different frequencies in Fig. 7.
It is obvious that at 600 Hz, numerical damping cannot be observed. Actually, the sound
pressure amplitude is increasing from the left to the right and this effect is even emphasized
for the longer ducts at this frequency. At the frequency of 750 Hz, the sound pressure and its
numerical error remain almost constant over the length of the duct and even for the ducts
of different size. The behaviour at 900 Hz is very similar to what was observed for the other
element types. A diminishing magnitude of the traveling wave and an increasing error are
found in particular for the longest duct. This anomaly can be explained with the variation
of the optimal location of the collocation points. The zeros of the Legendre polynomials
account for the optimal location of the collocation points only for the Neumann problem,
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Fig. 7. Sound pressure and its numerical error over the length of the duct for P1d elements at different
frequencies and for different lengths.
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i.e. for the case of the entire surface being acoustically rigid and, hence, Y = 0. The current
example is a mixed problem since most of the surface is rigid but the right end is not.
Therefore, the zeros of the Legendre polynomials are not necessarily to optimal location
for the collocation points but they are close to the optimum. It was shown in former work
of the author22,28 that the optimum is moving with frequency. Apparently, the optimal
location of the collocation points coincides with the zeros of the Legendre polynomials in
the vicinity of the frequency of 750 Hz. Since this additional effect superposes the numerical
damping effect, the otherwise very popular P1d elements21,23,29,31,32 will not be applied in
what follows in this paper.

When comparing the performance of the different element types, it becomes quite obvi-
ous that quadratic elements P2c and linear discontinuous elements P1d perform much better
than the low order constant P0 and continuous linear elements P1d. This is due to the expo-
nential convergence when increasing the polynomial degree. This means that doubling the
number of degrees of freedom per wavelength is not just balancing the numerical error. The
numerical error is much smaller when using higher order elements, at least up to order two.
This has been described in former papers of the author19,22,25,28 and it is obvious here.

So far, it can be concluded that there is no doubt that the length of the duct is a
substantial parameter controlling the numerical error of the example. This is a contradiction
to the widely accepted discretization rule of using a fixed number of boundary elements to
control the discretization error and shows similarities to the pollution effect known from
the finite element method.

3.3. Effect of local mesh refinement

In the previous subsection, only uniform meshes were investigated. However, when recalling
the so–called pollution effect, it is necessary to check whether a local mesh refinement is able
to compensate for the numerical error accumulated in another region of the model. For this,
the model is divided into two regions of different mesh sizes. The model of l = 8lRef = 27.2 m
is chosen. One half of it is meshed rather coarsely with ms = 1 and the other half rather
fine with ms = 6. Doing this, the entire mesh consists of 10101 boundary elements where in
the coarse half, only 273 are found. The use of quadratic elements P2c leads to 40426 nodes.
Two configurations are investigated: In the first configuration, the coarse mesh is on the left
side of the duct and the fine mesh on the right side whereas in the other configuration, it
is the other way around. The highest frequency of 500 Hz is equivalent to 3.4 elements per
wavelength for ms = 1 and 20.4 for ms = 6. This is equivalent to kh = 1.85 in the region of
the coarse mesh and kh = 0.31 for the fine mesh. The overall wave number is kl = 80π.

The results are shown in Fig. 8. It can be clearly recognized that the wave is rather
strongly damped in the region of the coarse mesh. In the case, where the wave is first
traveling through the coarse mesh, it looks as if part of the error which is generated by the
coarse grid is compensated by the finer mesh. However, the compensation seems to converge
at a certain level, i.e. in the upper right subfigure, the error at 500 Hz in the middle of the
duct is approximately 21% and it goes down to 15% at the outlet of the wave. At the same
time the amplitude (upper left subfigure) increases from approximately 408 Pa to 419 Pa.
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Fig. 8. Sound pressure and its numerical error over the length of the duct. Two different configurations
sketched above the graphs: Upper subfigures with coarse grid in interval [0, l/2] and fine grid in [l/2, l], lower
subfigures with fine mesh in interval [0, l/2] and coarse grid in [l/2, l].

In the case of the wave traveling through the fine mesh region first and then entering the
region of the coarse mesh, the error in the middle of the duct is quite low and then increases
with the same rate as shown in the left part of the upper subfigure. Even the sound pressure
magnitude at 500 Hz at the right end is approximately 408 Pa and hence, almost the same as
in the middle of the duct for the other case. Similarly, the numerical error is approximately
21% which is almost the same as in the other case.

The conclusion for this example confirms the findings of the last subsection. It adds that a
mesh refinement in the downstream region can somewhat compensate the accumulated error
but, apparently, only to a certain level. Although being very similar meshes, a discretization
error determined in the L2 norm (as it is common for BEM) will be much higher if the wave
travels through the coarse grid region first.

3.4. Phase error

It has been mentioned in the introduction that the phase error is the main reason for
the pollution effect in the finite element method. In the previous subsections, the suspect
candidate for the pollution effect in the boundary element method was numerical damping.
Therefore, it will be examined in what follows how much influence on this results from
dispersion. For this the longest duct is investigated at 1500 Hz, i.e. the highest frequency
considered in this paper. This is equivalent to a normalized wavenumber of kl = 480π.
As mentioned before, 240 waves are counted in the duct in the analytical solution at this
particular frequency. The meshes considered are different for the three different element
types. The low order polynomials, P0 and P1c are applied with the mesh parameter ms = 6.
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Fig. 9. Real part of traveling wave in duct. Solutions for P0 (top), P1c (middle) and P2c (bottom) elements
compared with analytical solution at left and right ends of the duct. (Parameters: f = 1500 Hz, l = 16Ref ,
ms = 6 for P0 and P1c and ms = 3 for P2c).

Quadratic elements P2c use the mesh with ms = 3. This gives 6.8 elements per wavelength
(kh ≈ 0.92) for the former and 3.4 for the latter case (kh ≈ 1.85). All of the models have
approximately 39170 degrees of freedom. Coming back to the normalized wavenumbers, it
is kl = 480π.

Figure 9 gives an impression how the numerical solutions behave in comparison to the
analytical solutions. All these subfigures show the real part of the traveling wave solutions for
the left end and for the right end. Similar to the previous results, the solutions coincide very
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well at the left end and they deviate at the right end. It can be noted that both, numerical
damping and phase errors are observed. Taking the results of the constant elements P0,
the amplitude reaches 272 Pa (where 442 Pa are expected from the analytical solution)
which is 61.5% of the original wave amplitude. The wave is shifted at the right end by
about 16% of the wavelength. The results are somewhat worse for the linear continuous
elements P1c, for which the amplitude has already diminished to 175 Pa, which is only
39.6% of the original one. The wave is shifted by approximately 25% of the wavelength.
Both, numerical damping and phase error are significantly higher for the linear continuous
elements. Quadratic elements P2c are much more accurate than the other two. While the
amplitude of 395 Pa is still more than 89% of the original one, the wave is shifted by
approximately 4.7% with respect to the analytical solution.

While the numerical damping, as it occurs for BEM, is not known for the finite element
method applied to time–harmonic problems in acoustics, the phase error may be easily com-
pared. For this, the one-dimensional problem is discretized by a simple and straightforward
Galerkin method. The matrices can be found in the author’s paper.20 The meshes assume
the same resolution as for the three-dimensional BEM mesh, i.e. 6.8 linear elements and 3.4
quadratic elements per wavelength. In these cases, the solution is much more dispersive. In
the case of linear finite elements, 232.2 waves are counted instead of 240 and in the case of
quadratic finite elements, 238.4 waves are counted. This results in a mismatch of approxi-
mately 7.8 and 1.6 waves, respectively. In comparison with these finite element results, the
BEM phase error seems to be rather low and, at least, one order of magnitude lower than
for similar cases in the finite element method.

Although small, the phase error in the boundary element solution exists and can be
measured. It can be assumed that this error is due to a numerical dispersion. However, this
assumption cannot be proved without an analytical investigation of the dispersion effect for
boundary element solutions.

4. Conclusion

This paper has discussed the problem of the pollution effect for the boundary element
method applied to acoustic problems. Other than known for the finite element method,
the pollution effect for BEM is not primarily caused by a phase error but by numerical
damping. The problem is very clearly exhibited for the long and slender duct problem. The
author has observed indications that the pollution effect is less evident if the dimensions of
the model are of the same order. However, this effect requires further investigation. A local
mesh refinement for the long duct problem can only partly compensate the error which has
been accumulated by numerical damping in another region of the boundary element model.

In addition to the amplitude error which is due to numerical damping, a small phase
error has been observed. This may be caused by numerical dispersion. However, further
investigations are required to confirm this.

It must remain unsolved at this point how relevant the pollution effect is for the practical
use of the boundary element method. However, since it could be clearly shown that for the
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duct problems, the numerical error depends on the length and/or the number of waves
within the problem, at least, for a long and slender computational domain. Therefore, users
of the boundary element method should be very careful with the rule of thumb in which
they are using a fixed number of elements per wavelength.

Finally, it was shown again that continuous linear boundary elements should not be
applied for collocation. Whenever tested in this study, their performance was always worse
than the performance of constant elements which were also not reaching the efficiency
of discontinuous linear and continuous quadratic elements. This confirms earlier results
of the author.19,22,28 Although not tested, it is likely that, similar to the finite ele-
ment method,35 higher order elements perform even better than the elements tested
here.
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