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Stability analysis of delayed neural networks with 
slope-bounded activation functions
Xiang Xie1 and Rong Zhang2*

Abstract: This paper deals with the global asymptotic stability problem of delayed 
neural networks with unbounded activation functions and network parameter 
uncertainties. New stability criteria for global asymptotic stability of the delayed 
neural networks are derived by employing suitable Lyapunov functionals. These 
results reported in this paper can be regarded as generalizations of some existing 
stability results. The effectiveness and usefulness of the obtained results can be 
verified by comparing our results with the previously published results.
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1. Introduction
In the past decades, there has been a steady increase in the interest on the applications of dynami-
cal neural networks in solving various classes of engineering problems such as image and signal 
processing, associative memory design, combinatorial optimization, and pattern recognition. In fact, 
most of these practical applications need the process information to be in the form of stable states. 
Hence, in order to apply neural networks to solve these practical problems, the stability property of 
the equilibrium point for the designed neural networks will be crucially essential.

For a biological neural network or artificial neural network, time delays are sometimes unavoida-
ble to be taken into account. For instance, in electronic circuits of neural networks, time delays will 
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always occur during the signal procession and transmission, which may lead to oscillation and dete-
riorate the stability performance. In addition, due to the existence of external disturbances and pa-
rameter fluctuations, uncertainties are other critical issues that may destabilize the neural networks. 
Therefore, robust stability analysis of neural networks in the presence of time delays and uncertain-
ties will be of theoretical and practical importance.

Traditionally, the activation functions of neural networks being considered are continuous, differ-
entiable, monotonically increasing and bounded (see in Cai & Xiong, 2007; Oh-Min et al., 2013; Zeng 
& Wang, 2006; Zhang & Li, 2007), which limits their practical applications. Hence, in order to solve 
practical engineering problems such as those in electronic circuits (the input-output functions of 
amplifiers are always not monotonically increasing or continuously differentiable), non-monotonic 
or non-differentiable functions are more suitable to describe the neuron activations and have been 
extensively studied (see in Huang & Cao, 2011; Huang et al., 2013; Mathiyalagan, Sakthivel, & 
Anthoni, 2012; Qin, Fan, Yan, & Liu, 2014; Qin, Xue, & Wang, 2013; Zheng, Shan, & Wang, 2012). 
Moreover, in Balasubramaniam, Vembarasan, and Rakkiyappan (2011), Jian and Wang (2015), Qin 
and Xue (2009), sufficient conditions for robust stability of delayed neural network are established, 
in which the neuron activations belong to a set of discontinuous monotone increasing and unbound-
ed functions. In Huang and Cao (2011), Qin et al. (2014), Vadivel, Sakthivel, Mathiyalagan, and 
Arunkumar (2013), without assuming the boundedness and global Lipschitz continuity of activa-
tions, sufficient conditions for global asymptotic stability of delayed neural networks are construct-
ed. Many results about stability of neural networks and complex systems can be found in the 
literature, for example, see (Cao & Chen, 2004; Cao, Li, & Han, 2006; Chen & Xu, 2012; Faydasicok & 
Arik, 2012; Li, Chen, & Huang, 2007; Luo, Xu, Wang, Sun, & Xu, 2016; Xie, Xu, & Zhang, 2014; Xu & Teo, 
2009; Xu, Xie, & Shi, 2016; Zhang, Yang, Xu, & Teo, 2013).

Motivated by the above discussions, in this paper, we will focus on investigating better sufficient 
conditions ensuring the existence, uniqueness and global asymptotic stability for delayed neural 
networks. The obtained results can be regarded as generalizations of the previously published cor-
responding results by the following improvements. (1) A more general class of activation functions 
is presented and they are not required to be bounded, differentiable, and monotonically increasing. 
Different from existing results in (Arik, 2014a, 2014b; Faydasicok & Arik, 2013), the slope of this class 
of activation functions exist both upper and lower bounds, and they may be positive, negative, or 
zero. (2) More information of the states, activation functions, and upper bounds of the delay deriva-
tive of the time varying delays are taken into consideration. A new Lyapunov functional is construct-
ed and utilized to derive sufficient conditions to guarantee the global asymptotic stability of the 
neural network.

2. Problem description and preliminaries
In this paper, we will study the robust stability of the following delayed neural network model: 

where n the number of the neurons, xi(t) denotes the state of the neuron i and ci is the charging rate 
for the neuron i. aij and bij denote the strengths of connectivity between neurons j and i at time t and 
t − �ij(t), respectively. ui is the constant input to the i-th neuron. fj

(
xj(t)

)
 denotes the j-th neuron 

activation function. The delay parameters are time-varying and denoted by τij(t).

The uncertainties in the network parameters A = (aij), B = (bij) and C = diag (ci > 0) can be formu-
lated as follows:

(1)ẋi(t) = −cixi(t) +

n∑

j=1

aijfj

(
xj(t)

)
+

n∑

j=1

bijfj

(
xj

(
t − 𝜏ij(t)

))
+ ui

C
I
: =

{
C = diag

(
c
i

)
: 0 < C ≤ C ≤ C̄, i.e., 0 < c

i
≤ c

i
≤ c̄

i
,∀i

}
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The activation functions are assumed to be slope-bounded and satisfy the following condition:

with ki = max
{
|||
k
i

|||
,
|||
k̄i
|||

}
, i = i,… ,n,∀x, y,∈ R, x ≠ y.

This class of functions will be denoted by f ∊ κ. As described above, this class of activation functions 
do not require to be bounded, differentiable and monotonically increasing, and k

i
 and k̄i may be posi-

tive, negative, or zero. Unlike the previously corresponding activation functions in Arik (2014a), Cao 
and Chen (2004), Cao et al. (2006), Faydasicok and Arik (2012), Li et al. (2007), whose activation 
functions are assumed to be monotonic or bounded. Thus, the condition proposed on the activation 
functions in this paper are weaker than those in Arik (2014a), Cao and Chen (2004), Cao et al. (2006), 
Faydasicok and Arik (2012), Li et al. (2007).

Lemma 1  (Arik, 2014c). Let A be any real matrix defined by 
A ∈ A

I
: =

{
A =

(
a
ij

)
: A ≤ A ≤ Ā, i.e., a

ij
≤ a

ij
≤ ā

ij
, i, j = 1, 2,… ,n

}
. Then, for any two vectors 

x =
(
x1, x2,… , xn

)T
∈ Rn and y =

(
y1, y2,… , yn

)T
∈ Rn, the following inequality holds:

where ρ is any positive constant, and 𝛼i =
n∑

k=1

(âki

n∑

j=1

âkj), âij = max
{
|||
a
ij

|||
,
|||
āij
|||

}
, i, j = 1, 2,… ,n.

Lemma 2  (Ozcan & Arik, 2014). Let A be any real matrix defined by 
A ∈ AI: =

{
A =

(
aij

)
:A ≤ A ≤ Ā, i.e., a

ij
≤ aij ≤ āij , i, j = 1, 2,… ,n

}
. Then, for any positive diagonal 

matrix P = diag(pi > 0) and for any vector x =
(
x1, x2,… , xn

)T
∈ Rn, the following inequality holds:

where �i =
n∑

j=1

sij, i = 1, 2, …, n with sii = −2piāii and sij = −max
(
|||
piāij + pjāji

|||
,
|||
piaij + pjaji

|||

)
 for i ≠ j.

3. Robust stability results
In this section, we will present sufficient conditions for robust asymptotic stability of equilibrium 
point of delayed neural network (1). We first shift the equilibrium point x* of system (1) to the 
origin.

The transformation zi(.) = xi(.) − x∗i  is used to put system (1) in the following form:

 

where gi
(
zi(.)

)
= fi

(
zi(.) + x

∗

i

)
− fi(x

∗

i ), i = 1, 2, …, n. Note that it can easily be verified that the func-
tion gi satisfies the assumptions on fi, that is,

A
I
: =

{
A =

(
a
ij

)
: A ≤ A ≤ Ā, i.e., a

ij
≤ a

ij
≤ ā

ij
, i, j = 1, 2,… ,n

}

(2)BI: =
{
B =

(
bij

)
: B ≤ B ≤ B̄, i.e., b

ij
≤ bij ≤ b̄ij , i, j = 1, 2,… ,n

}
.

k
i
≤
fi(x) − fi(y)

x − y
≤ k̄i .

2xTAy ≤ �

n∑

i=1

x2i +
1

�

n∑

i=1

�iy
2
i .

xT
(
PA + ATP

)
x ≤ −

n∑

i=1

�ix
2
i

(3)

dzi(t)

dt
= −cizi(t) +

n∑

j=1

aijgj

(
zj(t)

)
+

n∑

j=1

bijgj

(
zj

(
t − �ij(t)

))

k
i
≤
gi
(
zi(t)

)

zi(t)
≤ k̄i
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Since z(t) → 0 implies x → x*, it is thus necessary and sufficient to prove the stability of the trans-
formed model (3) instead of considering stability of the original one (1).

Theorem 1  For the delayed neural network (18), if the network parameters satisfy (2) and g κ, the 
time-varying delays satisfy that 0 ≤ 𝜏̇ij(t) ≤ 𝜂 < 1, i, j = 1, 2,… ,n. Then, the neural network (3) is 
globally asymptotically stable, if there exist a positive diagonal matrix P = diag(pi > 0) and some posi-
tive constants �, � such that
 

where 𝛼i =
n∑

k=1

(âki

n∑

j=1

âkj), âij = max
�
��
�
a
ij

��
�
,
��
�
āij
��
�

�
 and �i =

n∑

j=1

sij with 

sii = −2piāii and sij = −max
(
|||
piāij + pjāji

|||
,
|||
piaij + pjaji

|||

)
for i ≠ j, i, j = 1, 2,… ,n.

Proof  We employ the following positive definite Lyapunov functional:

 

where �, � are some constants to be determined later.

Taking the time derivative of the functional (5) along the trajectories of (3), noting 
1−𝜏̇ij (t)

1−𝜂
≥ 1, i, j = 1, 2,… ,n, we obtain

 

According to Lemma 1, for any positive constant ρ, we have

 

We note the following inequalities

 

For g ∊ κ, since k
i
≤

gi(zi (t))
zi (t)

≤ k̄i, with ki = max
{
|||
k
i

|
||
,
|||
k̄i
||
|

}
 we have

 

In light of Lemma 2, we know that

∀zi(t) ∈ R, zi(t) ≠ 0and gi
(
0
)
= 0, i = 1, 2,… ,n.

(4)Φi = 2ci − 𝜌 −
1

𝜌
𝛼ik

2
i − pM −

n𝜇

1 − 𝜂
+ 2piciki + 𝛽ik

2
i − 𝛿pMk

2
i > 0, i = 1, 2,… ,n,

(5)V(t) =

n∑

i=1

z2i (t) +

n∑

i=1

n∑

j=1

(
�

1 − �

) t

∫
t−�ij (t)

z2i (s)ds + 2

n∑

i=1

zi (t)

∫

0

pigi(s)ds +

n∑

i=1

n∑

j=1

�

t

∫
t−�ij (t)

g2i
(
zi(s)

)
ds

(6)

V̇(t) = − 2

n∑

i=1

ciz
2

i (t) + 2

n∑

i=1

n∑

j=1

aijzi(t)gj

(
zj(t)

)
+ 2

n∑

i=1

n∑

j=1

aijzi(t)gj

(
zj(t)

)
+ 2

n∑

i=1

n∑

j=1

bijzi(t)gj

(
zj

(
t − 𝜏ij(t)

))

+

n∑

i=1

n∑

j=1

𝜇

1 − 𝜂
z2i (t) −

n∑

i=1

n∑

j=1

𝜇z2i

(
t − 𝜏ij(t)

)
− 2

n∑

i=1

cipizi(t)gi
(
zi(t)

)
+ 2

n∑

i=1

n∑

j=1

piaijgi
(
zi(t)

)
gj

(
zj(t)

)

+ 2

n∑

i=1

n∑

j=1

pibijgi
(
zi(t)

)
gj

(
zj

(
t − 𝜏ij(t)

))
−

n∑

i=1

n∑

j=1

𝜀g2i

(
zi

(
t − 𝜏ij(t)

))
⋅ (1 − 𝜏̇ij(t)) +

n∑

i=1

n∑

j=1

𝜀g2i
(
zi(t)

)
.

(7)
2

n∑

i=1

n∑

j=1

aijzi(t)gj

(
zj(t)

)
≤ �

n∑

i=1

z2i (t) +
1

�

n∑

i=1

�ik
2
i z
2
i (t).

(8)

2

n�

i=1

n�

j=1

bijzi(t)gj

�
zj

�
t − 𝜏ij(t)

��
≤

n�

i=1

piz
2

i (t) +

n�

i=1

n�

j=1

n

pi
b̂2ij g

2

j

�
zj

�
t − 𝜏ij(t)

��

≤ pM

n�

i=1

z2i (t) +
1

pm
‖B‖2

1

n�

i=1

Σ
n
j=1g

2

i

�
zi

�
t − 𝜏ij(t)

��
.

(9)
−2

n∑

i=1

cipizi(t)gi
(
zi(t)

)
≤ −2

n∑

i=1

c
i
pikiz

2
i (t)
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Similar to (8), we also notice the following inequalities

 

Substituting (7)–(11) to (6) yields

 

By choosing 𝜇 =
1

pm
‖B̂‖21‖L‖

2
2 +

pM

𝛿
‖B̂‖21‖L‖

2
2, L = diag

(
ki > 0

)
, then the above inequality (12) can be 

written as

 

where Φi = 2ci − � −
1

�
�ik

2
i − pM −

n�

1−�
+ 2piciki + �ik

2
i − �pMk

2
i  and Φm = min

{
Φi

}
. Let 𝜀 <

Φm

n‖L‖22
 in (13). 

Since Φi > 0, so V̇(z(t) is negative definite for all z(t) ≠ 0. Now consider the case when z(t) = 0, noted 
that z(t) = 0 implies that g(z(t)) = 0. Then, substituting it into (6), V̇(z(t)) is of the form

 

From the above inequality, we conclude that V̇(z(t)) < 0 if there exists at least one nonzero gi(zi(t − �ij(t)), 
implying that V̇(t) = 0 if and only if zi(t) = zi

(
t − �ij(t)

)
= g

(
zi(t)

)
= g

(
zi(t − �ij(t)

)
= 0 for all i, j, and 

V̇(z(t)) < 0, otherwise. In addition, V(z(t)) is radially unbounded since V(t) → ∞ as ‖z(t)‖ → ∞. Hence, 
the origin of system (3), equivalently the equilibrium point, is globally asymptotically stable under 
the conditions given in Theorem 2. This completes the proof.

4. Comparisons and examples
We now consider the following example to compare our results with those previous results given 
above:

Example 1  Assume that the networks parameters of the delayed neural network (1) are given as 
follows:

(10)
2

n∑

i=1

n∑

j=1

piaijgi
(
zi(t)

)
gj

(
zj(t)

)
≤ −

n∑

i=1

�ig
2
i

(
zi(t)

)
≤ −

n∑

i=1

�ik
2
i z
2
i (t).

(11)

2

n�

i=1

n�

j=1

pibijgi
�
zi(t)

�
gj

�
zj

�
t − 𝜏ij(t)

��
≤

𝛿

n

n�

i=1

n�

j=1

pig
2

i

�
zi(t)

�
+

n�

i=1

n�

j=1

npi
𝛿
b2ij g

2

j

�
zj

�
t − 𝜏ij(t)

��

≤

n�

i=1

𝛿pMk
2

i z
2

i (t) +
pM
𝛿
‖B̂‖2

1

n�

i=1

Σ
n
j=1g

2

i

�
zi

�
t − 𝜏ij(t)

��
.

(12)

V̇(t) ≤

n�

i=1

(−2ci + 𝜌 +
1

𝜌
𝛼ik

2

i + pM)z
2

i (t) +
1

pm
‖B‖2

1

n�

i=1

Σ
n
j=1g

2

i

�
zi

�
t − 𝜏ij(t)

��

+

n�

i=1

n�

j=1

𝜇

1 − 𝜂
z2i (t) − 𝜇

n�

i=1

n�

j=1

z2i

�
t − 𝜏ij(t)

�
− 2

n�

i=1

picikiz
2

i (t) −

n�

i=1

𝛽ik
2

i z
2

i (t)

+

n�

i=1

𝛿pMk
2

i z
2

i (t) +
pM
𝛿
‖B̂‖2

1
Σ
n
i=1Σ

n
j=1g

2

i

�
zi

�
t − 𝜏ij(t)

��
+

n�

i=1

n�

j=1

𝜀 ⋅ k2i z
2

i (t)

(13)

V̇(t) ≤

n�

i=1

(−2ci + 𝜌 +
1

𝜌
𝛼ik

2

i + pM +
n𝜇

1 − 𝜂
− 2piciki − 𝛽ik

2

i + 𝛿pMk
2

i )z
2

i (t) +

n�

i=1

n�

j=1

𝜀 ⋅ k2i z
2

i (t) ≤

−

n�

i=1

Φiz
2

i (t) +

n�

i=1

n𝜀 ⋅ k2i z
2

i (t) ≤ −(Φm − n𝜀‖L‖2
2
)z(t)2

2

(14)V̇(t) ≤ −

n∑

i=1

n∑

j=1

𝜇z2i

(
t − 𝜏ij(t)

)
−

n∑

i=1

n∑

j=1

𝜀g2i

(
zi(t − 𝜏ij(t)

)(
1 − 𝜏̇ij(t)

)

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 −1

−1 −1 0 0

0 −1 −1 0

0 0 −1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Ā =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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The matrices A∗,A
∗
,B∗,B

∗
, Â, B̂ are obtained as follows:

and we can calculate

It implies that �m(A) = 2, �m(B) = 1.41.

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1

2
−
1

2
−
1

2
−
1

2

−
1

2
−
1

2
−
1

2
−
1

2

0 0 0 0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, B̄ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

2

1

2

1

2

1

2
1

2

1

2

1

2

1

2

0 0 0 0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cm 0 0 0

0 cm 0 0

0 0 cm 0

0 0 0 cm

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

� = 0and k1 = k2 = k3 = k4 = 1.

A∗
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, A
∗
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

B∗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, B
∗
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

2

1

2

1

2

1

2
1

2

1

2

1

2

1

2

0 0 0 0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

Â =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, B̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

2

1

2

1

2

1

2
1

2

1

2

1

2

1

2

0 0 0 0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

�1(A) =

�
‖�A∗TA∗� + 2�A∗T�A

∗
+ AT

∗
A
∗
‖2 = 2

�2(A) = ‖A∗‖2 + ‖A
∗
‖2 = 2

�3(A) =

�
‖A∗‖22 + ‖A

∗
‖22 + 2‖A

T
∗
�A∗�‖2 = 2

𝜎4(A) = ‖Â‖2 = 2

�1(B) = �1(B) = �1(B) = �1(B) = 1.41

‖B̂‖1 = max1≤i≤4

4�

j=1

���
�b̂ji�

���
= 1, ‖B̂‖

∞
= max

1≤i≤4

4�

j=1

�
��
b̂ij
���
= 2
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Now let us apply the result of Theorem 1 to this example. In this case, we first note that 

P =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0 0

0 2 0 0

0 0 1 0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

 and we can calculate 

�1 = �2 = �3 = �4 = 4, PM = 2, Pm = 1, �1 = −8, �2 = −7, �3 = −4, �4 = −5,� = 3.

Let � = 2, � = 1, the parameters of this example Φi in Theorem 1 can be calculated as

in which the robust stability conditions of Theorem 1 are satisfied if cm > 3.5.

In the case of applying the result of Theorem 11 in Xie et al. (2014) for this example, we obtain

from which it can be calculated that Ψ > 0 if and only if cm > 6.16, meaning that the sufficient condi-
tion for robust stability is obtained when cm > 6.16. In order to compare the result of Theorem 12 in 
Xie et al. (2014) for this example, we first get

S =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−4 −2 0 −2

−2 −4 −1 0

0 −1 −2 −1

−2 0 −1 −2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, the matrix Θ is obtained in the form of

The choice cm > 4.52 implies that Θ > 0 which guarantees the global robust stability of system (1). 
When checking the constraint condition of Theorem 2 in Ozcan and Arik (2014) for the network pa-
rameters of this example, we obtain ζi = 4cm – 14, ζi = 4cm – 13, ζi = 2cm – 10, ζi = 2cm – 11. Hence, for 
the network parameter of this example, we note that the conditions of Theorem 2 in Ozcan and Arik 
(2014) are satisfied if cm > 5.5. In the case of applying the result of Theorem 2 in (Faydasicok and Arik 
(2013), we obtain ∈ = c

m
− 4in which the robust stability conditions are satisfied if cm > 4.

5. Conclusion
This paper has studied the robust stability problem of neural networks with time-varying delays. An 
appropriate Lyapunov functional is constructed to derive sufficient conditions to ensure their glob-
ally asymptotic stability. The obtained results cannot only be used to testify the dynamic behaviors 
of the equilibrium point, but also generalize the existing results.

Φ1 = 6cm − 19,Φ2 = 6cm − 18,

Φ3 = 4cm − 13,Φ4 = 4cm − 14,

Ψ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

4cm − 12.32 0 0 0

0 4cm − 12.32 0 0

0 0 2cm − 12.32 0

0 0 0 2cm − 12.32

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Θ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

4cm − 9.64 −2 0 −2

−2 4cm − 9.64 −1 0

0 −1 2cm − 7.64 −1

−2 0 −1 2cm − 7.64

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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