
77

C H A P T E R 6

Conclusion
Upcoming PMs aim to combine the byte-addressability and performance of DRAM, and the
durability of traditional storage devices such as hard disks and SSDs. PMs may be accessed over
a byte-addressable interface that is significantly faster than the block interface required to access
traditional storage media. Unfortunately, the existing hardware, compiler, and software systems
are not fully equipped to fully avail the full performance that the PMs offer.

This book surveyed a large class of works that have emerged both in the industry and the
academic literature to integrate the PMs in hardware systems, compiler frameworks, and soft-
ware applications. Correct recovery requires that PM operations are ordered to PM; this book
detailed memory persistency models that prescribe the ordering constraints on PM operations.
We defined strict and relaxed models formally, and also discussed the mechanisms proposed in
the literature to implement these models in hardware. Further, this book described the logging
mechanisms required to enable failure atomicity for operations that are larger than an individ-
ual persist. We detailed undo-, redo-, and shadow-logging mechanisms built in hardware that
ensure that either all or none of the updates are visible to recovery in case of a failure. Finally,
this book detailed several programming and software libraries that enable easier PM program-
ming. It described software transactions, file systems, language persistency models, and testing
frameworks designed for PM programming.

V. Gogte et al., A Primer on Memory Persistency 
© Springer Nature Switzerland AG 2022


	Conclusion



