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Abstract
In this paper, we study the calculus of variations of the nabla notion on time scales
including ∇-derivative, ∇-integral, and ∇-derivatives of exponential function. The Euler-
Lagrange equations of the first-order both single-variable problem and multivariable prob-
lem with nabla derivatives of exponential function on time scales are obtained. In par-
ticular, we show that the calculus of variations with multiple variables could solve the
problem of conditional extreme value. Moreover, we verify the solution to the multivari-
able problem is exactly the extremum pair. As applications of these results, an example
of conditional extremum is provided.
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1. Introduction
Regarded as a model of time, the time scale has turned into a newly independent

theory combining difference and differential equations [11], which has been applied into
several fields, such as, the calculus of variations [2–4, 7, 10, 14, 15, 17, 19–21], control fields
[5, 6, 8, 9, 12, 18, 22–24], and other fields involving economics [16], finance, engineering,
biology and physics [1, 11].

In [4], the authors obtained an Euler-Lagrange equation for a first-order single-variable
problem involving nabla derivatives, and set up a simple consumption and saving model
of the household. More precisely, they gave a following theorem:

Theorem 1.1. (see [4], Theorem 3.1) If a function y(t) provides a local extremum to the
functional

J [y] =
∫ ρ(b)

ρ2(a)
L(t, y(ρ(t)), y∇(t))∇t (1.1)
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where y ∈ C2[ρ2(a), ρ(b)] and y(ρ2(a)) = A, y(ρ(b)) = B, then y must satisfy the Euler-
Lagrange equation

Lyρ(t, yρ, y∇) − L∇
y∇(t, yρ, y∇) = 0

for t ∈ [ρ(a), b].

Furthermore, the authors stated the theorem for the functional with several variables,
and set up dynamic optimization problem in economics to maximize its lifetime utility:

U =
∫ σ(T )

0
u(C(ρ(s)))ê−δ(ρ(s), 0)∇s,

subject to constraint

A∇(s) = rA(ρ(s)) + Y (ρ(s)) − C(ρ(s)), s ∈ [σ(0), T ].
In order to enrich and improve the calculus of variations on time scales, a nabla ex-

ponential function is introduced into (1.1) and a fundamental problem of the calculus of
variations on time scales is actually concentrated on the Euler-Lagrange equation of the
functional:

F [y] =
∫ ρ(b)

ρ2(a)
L(t, y(ρ(t)), (eα(t, 0)y(t))∇)∇t.

This is in fact our main motivation for the present study. To be more precise, we will
pay particular attention to the Euler-Lagrange equations for the calculus of variations
on time scales involving the nabla notion (i.e. ∇-derivative, ∇-integral, ∇-derivatives of
exponential function).

Throughout this paper, a knowledge of time scales and time scale notation is assumed.
For an excellent introduction to the calculus on time scales, we refer the readers to mono-
graphs [10, 11]. In what follows, R denotes the set of real numbers, and Z denotes the
set of integers. A time scale T is an arbitrary nonempty closed subset of R. Note that
[a, b]K = [a, b] if a is right-dense and [a, b]K = [σ(a), b] if a is right-scattered. The admis-
sible functions y are of class

Cs([a, b],R) , {y : [a, b] ∩ T → R|y∇s is continuous on [a, b]Ks},

where [a, b] ∩ T has at least s + 1 points.
Our main results of the paper are as follows.

Theorem 1.2. For the problem

F [y] =
∫ ρ(b)

ρ2(a)
L(t, y(ρ(t)), (eα(t, 0)y(t))∇)∇t → extr, y(ρ2(a)) = A, y(ρ(b)) = B.

If y(t) ∈ C1([ρ2(a), b],R) is a weak local extremum point, then the following Euler-Lagrange
equation
Lyρ(t, yρ, (eα(t, 0)y(t))∇)−L∇

(eα(t,0)y(t))∇(t, yρ, (eα(t, 0)y(t))∇)eα(ρ(t), 0) = 0, t ∈ [ρ2(a), b]K,

holds.

For the first-order multivariable problem, the corresponding result stated as follows.

Theorem 1.3. For the multivariable problem

F [y1, ..., yn, u1, ..., um] =
∫ ρ(b)

ρ2(a)
L(t, yρ

1 , ..., yρ
n, (eα(t, 0)y1(t))∇, ..., (eα(t, 0)yn(t))∇,

uρ
1, ..., uρ

m, (u1(t))∇, ..., (um(t))∇)∇t → extr,
yi(ρ2(a)) = uj(ρ2(a)) = A, yi(ρ(b)) = uj(ρ(b)) = B,

i = 1, 2, ..., n, j = 1, ..., m.

(1.2)
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If yi(t), uj(t) ∈ C1([ρ2(a), b],R) are weak local extremum points, then the Euler-Lagrange
equations

Lyρ
i

− L∇
(eα(t,0)yi)∇ · eα(ρ(t), 0) = 0,

Luρ
j

− L∇
u∇

j
= 0,

(1.3)

hold.

Remark 1.4. Theorem 1.3 can also be applied to solve conditional extremum problems.
We refer the reader to the details of Corollary 2.2 in Section 2. In this paper, optimal con-
sumption path (see the example in Section 3) is obtained through a conditional extremum
for which Theorem 1.3 is applicable.

Theorem 1.5. The solution to the multivariable problem (1.2) is the optimal solution,
for linearity of f and concavity of L in (yρ(t), uρ(t)), t ∈ [ρ2(a), b]K. If (y(t), u(t)) ∈
C1([ρ2(a), b],R) × C1([ρ2(a), b],R) is the solution pair of the multi-variable problem (1.2),
for linearity of f and concavity of L in (yρ(t), uρ(t)), t ∈ [ρ2(a), b]K, then (y(t), u(t)) must
be precisely the extremum pair and satisfy the Euler-Lagrange system (1.3).

As an example, we consider an economical model on time scale. The purpose is to find
a consumption path that would maximize utility U of a family:

U =
∫ T

0
u(C(ρ(s)))e−β(ρ(s), 0) · L(ρ(s))

H
∇s,

subject to constraint

[k(s)en
⊕

g(s, 0)]∇ = 1
ν(s)

· k(ρ(s)) · en
⊕

g(ρ(s), 0) · (er(s, ρ(s)) − 1)

+ 1
ν(s)

· en
⊕

g(ρ(s), 0) · er(s, ρ(s)) · ω(ρ(s))

− 1
ν(s)

· 1
A0

en(ρ(s), 0) · er(s, ρ(s)) · C(ρ(s)),

for s ∈ [0, σ(T )].
By Theorem 1.3 and the chain rule, we have{

2 − [s − ρ(t)]
[1 − ν(t) · (−β ⊕ r)] · [s − ρ(t)] − 1

(1 + ν(t)β) · (1 − ν(t)r) · er(t, s) · [s − ρ(t)]

}
· 1

C∇(t) < 0. (1.4)

In the above example, the economic implications of expression and symbol are explained
in Section 3. Consumption and saving decisions can be established by discussing (1.4).
We refer the reader to Section 3 for details.

This paper is organized as follows. In Section 2, we study calculus of variations for
the time scale case by using the nabla notion (i.e. ∇-derivative, ∇-integral, ∇-derivatives
of exponential function). The Euler-Lagrange equation of the calculus of variations of
the first-order single-variable problem on time scales will be proved. Furthermore, we
obtain the Euler-Lagrange system of the first-order multivariable problem, and show that
calculus of variations with multiple variables could be applied into conditional extremum
problems. In addition, we verify that the solution to the multivariable problem is quite
right the extremal solution. Theorems 1.2-1.5 will be proved in this section. In Section 3,
we demonstrate applications of our main results by considering an example of maximizing
utility in which an optimal consumption path is observed.

2. The proofs of main results
Here, we first recall from [4] an equality which is derived based on the integral property.



Calculus of variations on time scales with nabla derivatives of exponential function 71

Lemma 2.1. (see [4], Lemma2.1) If f(t) is continuous on [ρ(a), b], where ρ(a) < b, and
if ∫ b

ρ(a)
f(t)g(t)∇t = 0

for every function g(t) ∈ C([ρ(a), b],R) with g(ρ(a)) = g(b) = 0, then f(t) = 0 for
t ∈ [ρ(a), b].

Now, we give the proofs of our main results.

The proof of Theorem 1.2. Let h : [ρ2(a), b] → R be any admissible variation, i.e.,
h ∈ C1([ρ2(a), b],R) with h(ρ2(a)) = h(ρ(b)) = 0. Assume that this variational problem
has a local extremum at y.

Define
Φ(ε) = F [y(t) + εh(t)],

where ε ∈ (−∞, +∞).
Due to Φ has a local extremum at ε = 0, it follows that

Φ′(0) = 0, Φ′′(0) ≥ 0(≤ 0)

in the local minimum (maximum) case.
Next we consider

Φ(ε) = F [y(t) + εh(t)]

=
∫ ρ(b)

ρ2(a)
L(t, y(ρ(t)) + εh(ρ(t)), (eα(t, 0)y(t))∇ + ε(eα(t, 0)h(t))∇)∇t.

For simplicity, we denote L(t, y(ρ(t))+εh(ρ(t)), (eα(t, 0)y(t))∇+ε(eα(t, 0)h(t))∇) by L(t, u, v).
Differentiating with respect to ε, we acquire

Φ′(ε) =
∫ ρ(b)

ρ2(a)

d
dε

L(t, y(ρ(t)) + εh(ρ(t)), (eα(t, 0)y(t))∇ + ε(eα(t, 0)h(t))∇)∇t

=
∫ ρ(b)

ρ2(a)
{Lu(t, y(ρ(t)) + εh(ρ(t)), (eα(t, 0)y(t))∇ + ε(eα(t, 0)h(t))∇)h(ρ(t))

+ Lv(t, y(ρ(t)) + εh(ρ(t)), (eα(t, 0)y(t))∇ + ε(eα(t, 0)h(t))∇)(eα(t, 0)h(t))∇}∇t.

It is obvious that

Φ′(0) =
∫ ρ(b)

ρ2(a)
{Lu(t, y(ρ(t)), (eα(t, 0)y(t))∇)h(ρ(t))

+ Lv(t, y(ρ(t)), (eα(t, 0)y(t))∇)(eα(t, 0)h(t))∇}∇t,

and we denote the first variation of F (y) by F1(h).
So a necessary condition for y(t) to be a local minimum is

F1(h) =
∫ ρ(b)

ρ2(a)
{Lu(t, y(ρ(t)), (eα(t, 0)y(t))∇)h(ρ(t))

+ Lv(t, y(ρ(t)), (eα(t, 0)y(t))∇)(eα(t, 0)h(t))∇}∇t

= 0

for all h ∈ C1([ρ2(a), b],R) with h(ρ2(a)) = h(ρ(b)) = 0.
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According to properties of ∇-integral, it follows that

F1(h) =
∫ ρ(a)

ρ2(a)
{Lu(t, y(ρ(t)), (eα(t, 0)y(t))∇)h(ρ(t))

+ Lv(t, y(ρ(t)), (eα(t, 0)y(t))∇)(eα(t, 0)h(t))∇}∇t

+
∫ ρ(b)

ρ(a)
{Lu(t, y(ρ(t)), (eα(t, 0)y(t))∇)h(ρ(t))

+ Lv(t, y(ρ(t)), (eα(t, 0)y(t))∇)(eα(t, 0)h(t))∇}∇t

= (ρ(a) − ρ2(a)){Lu(ρ(a), y(ρ2(a)), (eα(ρ(a), 0)y(ρ(a)))∇)h(ρ2(a))
+ Lv(ρ(a), y(ρ2(a)), (eα(ρ(a), 0)y(ρ(a)))∇)(eα(ρ(a), 0)h(ρ(a)))∇}

+
∫ ρ(b)

ρ(a)
{Lu(t, y(ρ(t)), (eα(t, 0)y(t))∇)h(ρ(t))

+ Lv(t, y(ρ(t)), (eα(t, 0)y(t))∇)(eα(t, 0)h(t))∇}∇t

= (ρ(a) − ρ2(a))Lv(ρ(a), y(ρ2(a)), (eα(ρ(a), 0)y(ρ(a)))∇)(eα(ρ(a), 0)h(ρ(a)))∇

+
∫ ρ(b)

ρ(a)
{Lu(t, y(ρ(t)), (eα(t, 0)y(t))∇)h(ρ(t))

+ Lv(t, y(ρ(t)), (eα(t, 0)y(t))∇)(eα(t, 0)h(t))∇}∇t.

Thanks to the equality

(ρ(a) − ρ2(a))(eα(ρ(a), 0)h(ρ(a)))∇ = eα(ρ(a), 0)h(ρ(a)) − eα(ρ2(a), 0)h(ρ2(a)),

we obtain

F1(h) = Lv(ρ(a), y(ρ2(a)), (eα(ρ(a), 0)y(ρ(a)))∇)eα(ρ(a), 0)h(ρ(a))

+
∫ ρ(b)

ρ(a)
{Lu(t, y(ρ(t)), (eα(t, 0)y(t))∇)h(ρ(t))

+ Lv(t, y(ρ(t)), (eα(t, 0)y(t))∇)(eα(t, 0)h(t))∇}∇t.

By virtue of the formula (see [11], Theorem 8.47), it follows that

F1(h) = Lv(ρ(a), y(ρ2(a)), (eα(ρ(a), 0)y(ρ(a)))∇)eα(ρ(a), 0)h(ρ(a))

+
∫ ρ(b)

ρ(a)
Lu(t, y(ρ(t)), (eα(t, 0)y(t))∇)h(ρ(t))∇t

+ Lv(ρ(b), y(ρ2(b)), (eα(ρ(b), 0)y(ρ(b)))∇)(eα(ρ(b), 0)h(ρ(b)))
− Lv(ρ(a), y(ρ2(a)), (eα(ρ(a), 0)y(ρ(a)))∇)eα(ρ(a), 0)h(ρ(a))

−
∫ ρ(b)

ρ(a)
L∇

v (t, y(ρ(t)), (eα(t, 0)y(t))∇)(eα(ρ(t), 0)h(ρ(t)))∇t

=
∫ ρ(b)

ρ(a)
{Lu(t, y(ρ(t)), (eα(t, 0)y(t))∇)h(ρ(t))

− L∇
v (t, y(ρ(t)), (eα(t, 0)y(t))∇)eα(ρ(t), 0)h(ρ(t))}∇t.

Again, using the property of ∇-integral, we have∫ b

ρ(b)
{Lu(t, y(ρ(t)), (eα(t, 0)y(t))∇) − L∇

v (t, y(ρ(t)), (eα(t, 0)y(t))∇)eα(ρ(t), 0)}h(ρ(t))∇t

= (b − ρ(b)){Lu(b, y(ρ(b)), (eα(b, 0)y(b))∇) − L∇
v (b, y(ρ(b)), (eα(b, 0)y(b))∇)eα(ρ(b), 0)}h(ρ(b))

= 0
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and∫ b

ρ(a)
{Lu(t, y(ρ(t)), (eα(t, 0)y(t))∇)−L∇

v (t, y(ρ(t)), (eα(t, 0)y(t))∇)eα(ρ(t), 0)}h(ρ(t))∇t = 0,

for all h ∈ C1([ρ2(a), b],R) with h(ρ2(a)) = h(ρ(b)) = 0. According to Lemma 2.1, we
conclude that

Lyρ(t, yρ, (eα(t, 0)y(t))∇) − L∇
(eα(t,0)y(t))∇(t, yρ, (eα(t, 0)y(t))∇)eα(ρ(t), 0) = 0,

for t ∈ [ρ(a), b], exactly speaking for t ∈ [ρ2(a), b]K. This completes the proof. �

The proof of Theorem 1.3 follows from the same argument as that of Theorem 1.2 and
we omit it.

Corollary 2.2. If a pair (y(t), u(t)) provide an extremum to the functional

F [y, u] =
∫ ρ(b)

ρ2(a)
L(t, yρ(t), uρ(t))∇t,

among all pairs (y, u) such that

(eα(t, 0)y(t))∇ = f(t, yρ(t), uρ(t)),

then, (y(t), u(t)) must satisfy the Euler-Lagrange system

Lyρ(t, yρ(t), uρ(t)) + λρ[fyρ(t, yρ(t), uρ(t)) = −(λρ)∇ · eα(ρ(t), 0),
Luρ(t, yρ(t), uρ(t)) + λρ[fuρ(t, yρ(t), uρ(t)) = 0,

f(t, yρ(t), uρ(t)) − (eα(t, 0)y(t))∇ = 0.

Proof. Firstly, we introduce a multiplier λ(t), such that λρ(t) ∈ C1([ρ2(a), b],R). Sec-
ondly, we consider the functional

F ∗[y, u, λ, (eα(t, 0)y(t))∇] =
∫ ρ(b)

ρ2(a)
[L(t, yρ(t), uρ(t))+λρ(t)(f(t, yρ(t), uρ(t))−(eα(t, 0)y(t))∇)]∇t.

Finally, we set

G(t, uρ, yρ, λρ, u∇, (eα(t, 0)y(t))∇) = L(t, yρ(t), uρ(t))+λρ(t)[f(t, yρ(t), uρ(t))−(eα(t, 0)y(t))∇].

By Theorem 1.3, it is obvious that the Euler-Lagrange system can be written as

Gyρ = G∇
(eα(t,0)y(t))∇ · eα(ρ(t), 0),

Guρ = G∇
u∇ ,

Gλρ = G∇
λ∇ .

More concretely,

Lyρ(t, yρ(t), uρ(t)) + λρ[fyρ(t, yρ(t), uρ(t)) = −(λρ)∇ · eα(ρ(t), 0),
Luρ(t, yρ(t), uρ(t)) + λρ[fuρ(t, yρ(t), uρ(t)) = 0,

f(t, yρ(t), uρ(t)) − (eα(t, 0)y(t))∇ = 0,

hold. �

The proof of Theorem 1.5. Assume that the pair (y, u) satisfies all the optimality con-
ditions, and let (ȳ, ū) be another admissible pair. Owing to the hypotheses of linearity
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and concavity, we measure the difference

|F [ȳ, ū] − F [y, u]| =
∫ ρ(b)

ρ2(a)
|L(t, ȳρ, ūρ) − L(t, yρ, uρ)|∇t

≤
∫ ρ(b)

ρ2(a)
{Lu(t, yρ, uρ)(ȳρ − yρ) + Lv(t, yρ, uρ)(ūρ − uρ)}∇t

=
∫ ρ(b)

ρ2(a)
|λρ[fyρ(t, yρ, uρ)(ȳρ − yρ) + fuρ(t, yρ, uρ)(ūρ − uρ)]

+ (λρ)∇eα(ρ(t), 0)(ȳρ − yρ)|∇t

=
∫ ρ(b)

ρ2(a)
|λρ[fyρ(t, yρ, uρ)(ȳρ − yρ) + fuρ(t, yρ, uρ)(ūρ − uρ)]

+ [(λρeα(t, 0)ȳ)]∇ − λρ(eα(t, 0)ȳ)∇ − [(λρeα(t, 0)y)]∇ + λρ(eα(t, 0)y)∇|∇t

=
∫ ρ(b)

ρ2(a)
|λρ[fyρ(t, yρ, uρ)(ȳρ − yρ) + fuρ(t, yρ, uρ)(ūρ − uρ)]

+ λρ(eα(t, 0)y)∇ − λρ(eα(t, 0)ȳ)∇ + [λρeα(t, 0)ȳ]∇ − [λρeα(t, 0)y]∇|∇t

≤
∫ ρ(b)

ρ2(a)
|λρ[fyρ(t, yρ, uρ)(ȳρ − yρ) + fuρ(t, yρ, uρ)(ūρ − uρ)

+ f(t, yρ, uρ) − f(t, ȳρ, ūρ)]| + |[λρeα(t, 0)ȳ]∇ − [λρeα(t, 0)y]∇|∇t

=
∫ ρ(b)

ρ2(a)
0∇t +

∫ ρ(b)

ρ2(a)
[(λρeα(t, 0))(ȳ − y)]∇∇t

= (λρeα(t, 0))(ȳ − y)|ρ(b)
ρ2(a)

= 0,

for ȳ, y ∈ C1([ρ2(a), b],R), and y(ρ2(a)) = A, y(ρ(b)) = B. This concludes that (y, u) is
indeed unique and completes the proof. �

3. An economic application of conditional extremum
In this section, we will provide a conditional extremum in economics to illustrate an

important role played by Theorem 1.3.
The income of a household usually comes from the labor and capital, beside of these,

some from the profits of the firms. We suppose that the utility U of a family is

U =
∫ T

0
u(C(ρ(s)))e−β(ρ(s), 0) · L(ρ(s))

H
∇s,

where C(ρ(s)) is the consumption of each member of the household at time ρ(s), u(·) is
each member’s utility, L(ρ(s)) is the total population of the economy, H is the number
of households, L(ρ(s))

H is the number of members of the household, β is the discount rate,
the greater is β, the less the household values future consumption relative to current
consumption (see [13]).

Our position is to maximize U under the household’s capital holdings:
K(s)

H
= K(ρ(s))

H
· er(s, ρ(s)) + W (ρ(s))L(ρ(s))

H
· er(s, ρ(s)) − C(ρ(s))L(ρ(s))

H
· er(s, ρ(s)),

where K(t) is the amount of capital at t in the economy, and K(t) = k(t)A(t)L(t), A(t)
is the knowledge at t in the economy, r is the real interest rate, er(t, s) shows the effects
of continuously compounding interest over the period [s, t], and ω(t) is the wage of each
member of the household at time ρ(s). Labor and knowledge functions satisfy: L∇(t) =
nL(t), A∇(t) = gA(t), where n and g are parameters.
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After calculation on time scales, the constraint reduces to

[k(s)en
⊕

g(s, 0)]∇ = 1
ν(s)

· k(ρ(s)) · en
⊕

g(ρ(s), 0) · (er(s, ρ(s)) − 1)

+ 1
ν(s)

· en
⊕

g(ρ(s), 0) · er(s, ρ(s)) · ω(ρ(s))

− 1
ν(s)

· 1
A0

en(ρ(s), 0) · er(s, ρ(s)) · C(ρ(s)),

s ∈ [0, σ(T )], where A0 is the initial levels of knowledge.
In this model:

G(s, C, k, [k(s)en
⊕

g(s, 0)]∇) = u(C(ρ(s)))e−β(ρ(s), 0) · L(ρ(s))
H

+ λ(ρ(s)){ 1
ν(s)

· k(ρ(s)) · en
⊕

g(ρ(s), 0) · (er(s, ρ(s)) − 1)

+ 1
ν(s)

· en
⊕

g(ρ(s), 0) · er(s, ρ(s)) · ω(ρ(s))

− 1
ν(s)

· 1
A0

en(ρ(s), 0) · er(s, ρ(s)) · C(ρ(s)) − [k(s)en
⊕

g(s, 0)]∇}.

By Corollary 2.2, Euler-Lagrange equations are

u′(C(ρ(s))) · e−β(ρ(s), 0)L0A0
H

− λ(ρ(s)) · 1
ν(s)

· er(s, ρ(s)) = 0,

λ(ρ(s)) · 1
ν(s)

· (er(s, ρ(s)) − 1) = −[λ(ρ(s))]∇.

Without loss of generality, we can replace ρ(s) by t and obtain the following dynamic
equation:
(u′(C(t)))∇

u′(C(t))
= 2 − [s − ρ(t)]

[1 − ν(t) · (−β ⊕ r)] · [s − ρ(t)]
− 1

(1 + ν(t)β) · (1 − ν(t)r) · er(t, s) · [s − ρ(t)]
.

Using the chain rule (see [4], Theorem 2.6), we obtain

(u′(C(t)))∇

u′(C(t))
= [

∫ 1
0 u′′(C(t) + hν(t)C∇(t))dh] · C∇(t)

u′(C(t))

= 2 − [s − ρ(t)]
[1 − ν(t) · (−β ⊕ r)] · [s − ρ(t)]

− 1
(1 + ν(t)β) · (1 − ν(t)r) · er(t, s) · [s − ρ(t)]

:= H(s, t).

We can treat (u′(C(t)))∇

u′(C(t))
as the growth rate of marginal utility. Next we have

H(s, t) · 1
C∇(t)

< 0,

if the utility function is concave (u′ > 0, u′′ < 0). The last inequality shows the growth
rate of consumption C∇(t) falls into two aspects:

(1) If H(s, t) < 0, then C∇(t) > 0, which indicates the consumer will consume less
currently and more in the future. Especially, when s − ρ(t) > 2, it is clear that
C∇(t) > 0. That is to say the consumer is not eager to consume at present but
make some saving to pass the savings on to the consumption of more than two
periods in the future.
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(2) If H(s, t) > 0, then C∇(t) < 0, which implies the consumer is impatient and will
consume more in the earlier periods and less in the future periods. Especially,
when 2 − [s − ρ(t)] is close to 2, it is obvious that C∇(t) < 0. That is to say
the consumer will consume more at ρ(t). In fact, the time interval is very short
(s − ρ(t) is close to 0), and the consumer can also get wages or income in the next
moment t and s to determine future savings and consumption.

Remark 3.1. 1 is one period. β and r are the discount rate and the interest rate re-
spectively of one period and fixed in one period. ν(t) = t − ρ(t) may not be in one
period.

Remark 3.2. Because of ep(ρ(t), s) = (1−ν(t)p(t))ep(t, s), ep(ρ(t), s) > 0, and ep(t, s) > 0
(see [11]), 1−ν(t)p(t) > 0 can be easily obtained. Hence, it is clear that 1−ν(t)(−β⊕r) > 0,
1 + ν(t)β > 0, and 1 − ν(t)r > 0.

Therefore, given utility function u(C), specific parameter values for β, r, a backward
jump operator ν(t), and a forward jump operator µ(t) (µ(t) = σ(t) − t), we can establish
a dynamic system of consumption on time scales.

In special, if T = R, the model degenerates into continuous model:

U =
∫ T

0
u(C(s))e−βs L(s)

H
ds,

subject to the constraint:

[e(n+g)sk(s)]′ = k(t)e(n+g)t(er(s−t) − 1) + e(n+g)tω(t)er(s−t) − ent

A0
er(s−t)C(t);

if T = Z, the model degenerates into discrete model:

U =
T∑

s=0
( 1
1 + β

)su(C(s))L(s)
H

,

subject to the constraint:

K(s + 1)
H

= 1
H

· K(s) · 1
1 − r

+ 1
H

· W (s)L(s) · 1
1 − r

− 1
H

· C(s)L(s) · 1
1 − r

,

that is,

K(s + 1) = K(s) · 1
1 − r

+ W (s)L(s) · 1
1 − r

− C(s)L(s) · 1
1 − r

.

4. Conclusions
The first conclusion is that we obtain necessary conditions for exponential function with

∇-derivative, ∇-integral. In the special case α=0, Theorem 1.2 and Theorem 1.3 cover
the results [see [4], Theorem 3.1] and [see [4], Theorem 3.2], respectively. Secondly, nabla
exponential function is more efficient for application of economic optimization problems,
and finding the consumption path.

In the future, we will discuss the calculus of variations for the high-order and mul-
tivariable problem with ∇-derivatives of exponential function, and their applications in
scientific fields.
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