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Abstract

We present a new and complete algorithm for computing the topology of an algebraic surface
S given by a squarefree polynomial in ◗[X, Y, Z]. Our algorithm involves only subresultant
computations and entirely relies on rational manipulation, which makes it direct to implement.
We extend the work in [15], on the topology of non-reduced algebraic space curves, and apply
it to the polar curve or apparent contour of the surface S. We exploit simple algebraic criterion
to certify the pseudo-genericity and genericity position of the surface. This gives us rational
parametrizations of the components of the polar curve, which are used to lift the topology of
the projection of the polar curve. We deduce the connection of the two-dimensional components
above the cell defined by the projection of the polar curve. A complexity analysis of the al-
gorithm is provided leading to a bound in eOB(d15τ) for the complexity of the computation of
the topology of an implicit algebraic surface defined by integer coefficients polynomial of degree
d and coefficients size τ . Examples illustrate the implementation in Mathemagix of this first
complete code for certified topology of algebraic surfaces.

1. Introduction

The problem of computing a triangulation of a real (semi)-algebraic variety S is an old
but fundamental problem in real algebraic geometry. It has been studied in the literature
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[23], [24], mainly from a theoretical point of view. From a more computational point
of view, in works such as [11], [13], [9], the triangulation problem is tackled effectively
via Cylindrical Algebraic Decomposition. It consists in decomposing a semi-algebraic set
S into cells, defined by sign conditions on polynomial sequences. Such polynomial se-
quences are obtained by (sub)-resultant computations, corresponding to successive pro-
jections from ❘k+1 to ❘k. The degree of the polynomials in these sequences is bounded
by O(d2n−1

) and their number by O((m d)3
n−1

), where m is the number of polynomials
defining the semi-algebraic set S, d is a bound on the degree of these polynomials and
n the number of different variables appearing in these polynomials [9]. This Cylindrical
Algebraic Decomposition does not directly yield a triangulation, nor any global topo-
logical information on the set S, because the representation lacks information about the
adjacency of the cells. Additional work is required to obtain a triangulation of S, using
for instance, Thom encoding of algebraic numbers or numerical approximations (see e.g.,
[13], [11], [28]). But this requires the evaluation of signs of many polynomials at many
real algebraic numbers. It also explains why practical efficient implementations of these
algorithms are not available.

For semi-algebraic sets in small dimension (n 6 3), the problem has been investigated
in more details. A wide literature exists on the computation of the topology of curves
in ❘2. See e.g. [20], [16], [25], [6], [7], [14], [32], [4] and applications in Computer Aided
Geometric Design [33], [8], [27].

In ❘3, the problem of computing the topology of space curves has been less investi-
gated. In [22], the case of intersections curves of parametric surfaces is considered, based
on the analysis of planar curves in the parameter domains. In [5], Alcázar and Sendra
give a symbolic-numeric algorithm for reduced space curves using subresultant and gcd
computations of approximated polynomials. In [29], Owen, Rockwood and Alyn give a
numerical algorithm for reduced space curve using subdivision method. In [17], Elkaoui
gives a certified symbolic-numeric algorithm for space curve defined as the intersection
of the vanishing sets of n trivariate polynomials, which requires the computation of gen-
erators of the radical of the ideal, that involves Gröbner basis computation.

The special case of surfaces in ❘3 has also received a lot of attention (see e.g. [19], [18],
[1], and references in [12]), but these works deal only with smooth surfaces. See also [26],
where Cylindrical Algebraic Decomposition approach has been further investigated to
analyze the topology of critical sections of an implicit surface, by exploiting the properties
of delineability.

The contribution of this paper is a new and complete algorithm for computing the
topology of an algebraic surface S given by a squarefree polynomial in ◗[X, Y, Z]. Our
algorithm involves only subresultant computations and entirely relies on simple rational
operations, which makes it direct to implement. In particular, compared to [3], we avoid
to compute the topolgy of plane sections of the surface at critical values.

The approach extend the work in [15], which provides a certified algorithm for the
topology of non-reduced algebraic space curves. It is essential to be able to treat non
reduced spaces, since we apply it to the polar curve or apparent contour of the surface
S. We exploit simple algebraic criterion to certify the pseudo-genericity and genericity
position of the surface. This gives us rational parametrizations of the components of the
polar curve, used to lift the topology computed after projection, without any supplemen-
tary effort. The topology of the polar curve is then used to deduce the connection of the
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two-dimensional components above the cell defined, in the plane, by the projection of
the polar curve.

Furthermore, this algorithm allows a complete complexity analysis. An upper bound
on the bit complexity of the computation of the topology of implicit space curves and
surfaces is given. Our algorithm realizes this task with complexity in ÕB(d15τ).

At last, we describe the results of the implementation of this algorithm in Math-

emagix. To our knowledge, it is the first complete code for certified topology of algebraic
surfaces. Examples of experimentations for surfaces with isolated or one-dimensional sin-
gularities are given.

2. Topology of a plane algebraic curve

To be able to describe the topology of space curves, we need to do so with planar curves.
In this section, we recall definitions and describe an algorithm allowing to compute with
certainty the topology of plane algebraic curves.

2.1. Description of the problem

Let f ∈ ◗[X, Y ] be a square free polynomial and C(f) := {(α, β) ∈ ❘2, f(α, β) = 0}
be the real algebraic curve associated to f . We want to compute the topology of C(f).
For curves in generic position, computing its critical fibers and one regular fiber between
two critical ones is sufficient to obtain the topology using a sweeping algorithm (see [20]).
But for a good computational behaviour, it is essential to certify the genericity of the
position of the curve.
We propose an effective test allowing to certify the computation and connection, in a
deterministic way. This is an important tool in order to address the case of space curves
and surfaces.
Now, let us introduce the definitions of generic position, critical, singular and regular
points.

2.2. Genericity conditions for plane algebraic curves

Definition 2.1. Let f ∈ ◗[X, Y ] be a square free polynomial and C(f) = {(α, β) ∈ ❘2 :
f(α, β) = 0} be the curve defined by f. A point (α, β) ∈ C(f) is called:
• a x-critical point if ∂Y f(α, β) = 0,
• a singular point if ∂Xf(α, β) = ∂Y f(α, β) = 0,
• a regular point if ∂Xf(α, β) 6= 0 or ∂Y f(α, β) 6= 0.

Definition 2.2. Let f ∈ ◗[X, Y ] be a square free polynomial and C(f) = {(α, β) ∈ ❘2 :
f(α, β) = 0} be the curve defined by f. Let Nx(α) := #{β ∈ ❘, such that (α, β) is a
x-critical point of C(f) } . C(f) is in generic position for the x-direction, if:

(1) ∀α ∈ ❈,Nx(α) 6 1,
(2) There is no asymptotic direction of C(f) parallel to the y-axis.

This notion of genericity also appears in [20] or [16]. In [20], the algorithm succeed
if genericity conditions are satisfied. The authors give a numerical test that do not

guarantee to reject the curve if it is not in generic position. So for some input curves
the computed topology might not be exact.
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A change of coordinates such that lcoefY (f) ∈ ◗∗ is sufficient to place C(f) in a
position such that any asymptotic direction is not parallel to the y-axis. It remains to
find an efficient way to verify the first condition. Using the next propositions, we give an
algorithm to do so. We refer to [20], for proofs.

Proposition 2.3. Let f ∈ ◗ [X, Y ] be a square free polynomial with lcoefY (f) ∈
◗∗, ResY (f, ∂Y f) be the resultant with respect to Y of the polynomials f , ∂Y f and
{α1, . . . , αl} be the set of the roots of ResY (f, ∂Y f) in ❈. Then C(f) is in generic
position if and only if ∀i ∈ {1, . . . , l}, gcd (f(αi, Y ), ∂Y f(αi, Y )) has at most one root.

Let f ∈ ◗ [X,Y ] be a square free polynomial with lcoefY (f) ∈ ◗∗ and d := degY (f).
We denote by Sri(X, Y ) the ith subresultant polynomial of f and ∂Y f and sri,j(X) the
coefficient of Y j in Sri(X, Y ) (see appendix for definitions). We define inductively the
following polynomials:

Φ0(X) =
sr0,0(X)

gcd(sr0,0(X), sr′0,0(X))
;

∀i ∈ {1, . . . , d− 1},Φi(X) = gcd(Φi−1(X), sri,i(X)) andΓi(X) =
Φi−1(X)

Φi(X)
.

Proposition 2.4.

(1) Φ0(X) =
d−1∏
i=1

Γi(X) and ∀i, j ∈ {1, . . . , d− 1}, i 6= j =⇒ gcd(Γi(X),Γj(X)) = 1;

(2) Let k ∈ {1, . . . , d−1}, α ∈ ❈. Γk(α) = 0⇐⇒ gcd(f(α, Y ), ∂Y f(α, Y )) = Srk(α, Y );

(3) {(α, β) ∈ ❘2 : f(α, β) = ∂Y f(α, β) = 0} =
⋃d−1

k=1{(α, β) ∈ ❘2 : Γk(α) =
Srk(α, β) = 0}.

In the following theorem, we give an effective and efficient algebraic test to certify the
genericity of the position of a curve with respect to a given direction.

Theorem 2.5. Let f ∈ ◗ [X,Y ] be a square free polynomial with lcoefY (f) ∈ ◗∗

and d := degY (f). Then C(f) is in generic position for the projection on the x axis if
and only if ∀k ∈ {1, . . . , d − 1}, ∀i ∈ {0, . . . , k − 1}, k(k − i) srk,i(X) srk,k(X) − (i +
1) srk,k−1(X) srk,i+1(X) = 0 modΓk(X).

Proof. Assume that C(f) is in generic position and let α ∈ ❈ be a root of Γk(X). Accord-

ing to Proposition 7.3 (2) gcd(f(α, Y ), ∂Y f(α, Y )) = Srk(α, Y ) =
∑k

j=0 srk,j(α)Y j . Ac-

cording to Proposition 2.3, Srk(α, Y ) has only one root β(α) = −
srk,k−1(α)
k srk,k(α) , so Srk(α, Y ) =

srk,k(α)(Y − β)k. Binomial Newton formula gives Srk(α, Y ) = srk,k(α)(Y − β)k =

srk,k(α)
∑k

i=0

(
k
i

)
(−β)k−iY i. So by identification ∀k ∈ {1, . . . , d− 1},∀i ∈ {0, . . . , k − 1}

and ∀α ∈ ❈ such that Γk(α) = 0,

k(k − i) srk,i(α) srk,k(α)− (i + 1) srk,k−1(α) srk,i+1(α) = 0.

It is to say that ∀k ∈ {1, . . . , d− 1},∀i ∈ {0, . . . , k − 1}, k(k − i) srk,i(X) srk,k(X)− (i +
1) srk,k−1(X) srk,i+1(X) = 0mod Γk(X).

Conversely, let α be a root of Γk(X) such that

4



k(k − i) srk,i(α) srk,k(α)− (i + 1) srk,k−1(α) srk,i+1(α) = 0.

With the same argument used in the first part of this proof we obtain

gcd (f(α, Y ), ∂Y f(α, Y )) = Srk(α, Y ) =

k∑

j=0

srk,j(α)Y j = srk,k(α)(Y − β)k,

with β := −
srk,k−1(α)
k srk,k(α) .

Then we conclude that gcd(f(α, Y ), ∂Y f(α, Y )) has only one distinct root and, according

to Proposition 2.3, C(f) is in generic position. ✷

Remark 2.6. Theorem 2.5 shows that it is possible to check with certainty if a plane

algebraic curve is in generic position or not. If not, we can put it in generic position by

a basis change. In fact, it is well known that there is only a finit number of bad changes

of coordinates of the form X := X + λY , Y := Y , such that if C(f) is not in generic

position then the transformed curve remains in a non-generic position.

Let us remind the connection algorithm, before talking about space curve.

2.3. Connection algorithm

Let c := (α, β) be a x-critical point of the curve and Crit the x-critical fiber containing

c. Let Up := {(α, b) ∈ Crit : b > β} and Down := {(α, b) ∈ Crit : b < β}. So Crit :=

{Up, c,Down}.
Let r be the smalest regular value such that r > α and Reg := {(r, y) ∈ ❘2 : f(r, y) = 0}
the regular fiber define on r. Up, Down and Reg are ordered sets. Here below we remind

Grandine’s sweeping algorithm which connect a x-critical fiber to a regular one.

Algorithm 2.1: Plane Curve Connection

Input: Crit := {Up, c,Down} and Reg.
Output: The set of segments linking Crit to Reg.

For i from 1 to #Up, link Reg[i] to Up[i];
For i from 1 to #Down, link Reg[# Reg−i + 1] to Down[# Down−i + 1];
For i in #Up +1 to #Reg−(# Down), link Reg[i] to c;

Remark 2.7. Let p be a point of Reg and q be the point of the x-critical fiber Crit

connected to p. The map ϕc : Reg −→ {−1, 0, 1} defined by:

• ϕc(p) = −1 if q ∈ Up

• ϕc(p) = 0 if q = c

• ϕc(p) = 1 if q ∈ Down

will be very helpfull for the description of the connection algorithm in section 4.

3. Topology of an implicit space algebraic curve

This section is devoted to the description of an algorithm allowing to compute the

topology of algebraic space curves with certainty.
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3.1. Description of the problem

Let P1, P2 ∈ ◗[X, Y, Z] and C❘ := {(x, y, z) ∈ ❘3 : P1(x, y, z) = P2(x, y, z) = 0}
be the intersection of the surfaces defined by P1 = 0 and P2 = 0. We assume that
gcd(P1, P2) = 1 so that C❘ is a space curve. The ideal (P1, P2) is not necessary radical.

Definition 3.1 (Reduced space curve). The space curve C❘ is reduced if the ideal
genereated by P1 and P2 is radical, else it is non-reduced.

Our goal is to analyze the geometry of C❘ in the following sense: We want to compute
a piecewise linear structure of ❘3 isotopic to our original space curve. The algorithm
computes the topology of the space curve by lifting the topology of one of its projection
on a plane. To make the lifting possible using only one projection, a new definition of
generic position for space curves and an algebraic characterization of it are given. We will
also need to distinguish between to kind of singularities of the projected curve, namely
the ”apparent singularities” and the ”real singularities”. A certified algorithm is given to
distinguish these two kinds of singularities. For the lifting phase, using the new notion
of curve in pseudo-generic position, we give an algorithm that computes rational
parametrizations of the space curve. The use of these rationals parametrizations allows
us to lift the topology of the projected curve without any supplementary computation.

3.2. Genericity conditions for space curves

Let Πz : (x, y, z) ∈ ❘3 7→ (x, y) ∈ ❘2. Let D = Πz(C❘) ⊂ ❘2 be the curve obtained
by projection of C❘. We assume that degZ (P1) = deg(P1) and degZ(P2) = deg(P2) (by
a basis change, these conditions are always satisfied). Let h(X, Y ) be the squarefree

part of ResZ(P1, P2) ∈ ◗[X, Y ] and C❈ :=
{
(x, y, z) ∈ ❈3|P1(x, y, z) = P2(x, y, z) = 0}.

Definition 3.2 (Pseudo-generic position). The curve C❘ is in pseudo-generic position
with respect to the (x, y)-plane if and only if almost every point of Πz(C❈) has only one
geometric inverse-image, i.e. generically, if (α, β) ∈ Πz(C❈), then Π−1

z (α, β) consists in
one point possibly multiple.

Let m be the minimum of degZ (P1) and degZ(P2). The following theorems give us an
effective way to test if a curve is in pseudo-generic position or not.

Theorem 3.3. Let (Srj(X, Y, Z))
j∈{0,...,m}

be the subresultant sequence and
(srj(X,Y ))j∈{0,...,m} be the principal subresultant coefficient sequence. Let
(∆i(X, Y ))i∈{1,...,m} be the sequence of ◗[X, Y ] defined by the following relations:
• ∆0(X, Y ) = 1;Θ0(X, Y ) = h(X, Y );
• For i ∈ {1, ...,m},

Θi(X, Y ) = gcd(Θi−1(X, Y ), sri(X, Y )),∆i(X, Y ) = Θi−1(X,Y )
Θi(X,Y ) .

For i ∈ {1, . . . ,m}, let C(∆i) :=
{
(x, y) ∈ ❘2|∆i(x, y) = 0 } and

C(h) := {(x, y) ∈ ❘2|h(x, y) = 0} then

(1) h(X, Y ) =
m∏

i=1

∆i(X, Y ),

(2) C(h) =
m⋃

i=1

C(∆i),
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(3) C❘ is in pseudo-generic position with respect to the (x, y)-plane if and only if
∀i ∈ {1, . . . ,m},∀(x, y) ∈ ❈2 such that sri,i(x, y) 6= 0 and ∆i(x, y) = 0 we have

Sri(x, y, Z) = sri,i(x, y)
(
Z +

sri,i−1(x,y)
isri,i(x,y)

)i

.

Proof. (1) By definition, ∀i ∈ {1, . . . ,m},∆i(X, Y ) = Θi−1(X,Y )
Θi(X,Y ) . So by a trivial in-

duction

m∏

i=1

∆i(X, Y ) =
Θ0(X, Y )

Θm(X, Y )
.

degZ(P1) = deg(P1) and degZ(P2) = deg(P2) imply srm(X, Y ) ∈ ◗∗ (Remark 7.2).

So Θm(X, Y ) = gcd(Θm−1(X, Y ), srm(X, Y ) )= 1, then
m∏

i=1

∆i(X,Y ) = Θ0(X,Y ) =

h(X, Y ).

(2) Knowing that h(X, Y ) =
m∏

i=1

∆i(X,Y ), it is clear that C(h) =
m⋃

i=1

C(∆i).

(3) Assume that C❘ is in pseudo-generic position with respect to the (x, y)-plane.
Let i ∈ {1, . . . ,m} and (α, β) ∈ ❈2 such that sri(α, β) 6= 0 and ∆i(α, β) = 0.

Then ∆i(X, Y )= Θi−1(X,Y )
Θi(X,Y ) =⇒ Θi−1(α, β) = 0. Knowing that Θi−1(X, Y ) =

gcd(Θi−2(X, Y ), sri−1(X, Y )), so it exists d1, d2 ∈ ◗[X, Y ] such that Θi−2(X, Y ) =
d1(X, Y )Θi−1(X, Y ) andsri−1(X, Y ) = d2(X, Y )Θi−1(X, Y ). In this way,Θi−1(α, β)
implies Θi−2(α, β) = 0 and sri−1(α, β) = 0. By the same arguments, Θi−2(α, β) = 0
implies Θi−3(α, β) = 0 and sri−2(α, β) = 0. By repeating the same argument, we
show sri−1(α, β) = . . . = sr0(α, β) = 0. Because sri(α, β) 6= 0, the fundamental
theorem of subresultant gives:
gcd((P1(α, β, Z), P2(α, β, Z)) = Sri(α, β, Z) =

∑i

j=0 sri,i−j(α, β)Zi−j .
Knowing that C❘ is in pseudo-generic position with respect to the (x, y)-plane and
∆i(α, β) = 0 then the polynomial Sri(α, β, Z) has only one distinct root which can

be written − sri,i−1(α,β)
i sri,i−1(α,β) depending on the relation between coefficients and roots of

a polynomial. So Sri(α, β, Z) =
m∑

j=0

sr,i,i−j(α, β)Zi−j = sri,i(α, β)
(
Z +

sri,i−1(α,β)
i sri,i−1(α,β)

)i

.

Conversely, assume that ∀i ∈ {1, . . . ,m}, ∀(x, y) ∈ ❈2 such that sri(x, y) 6= 0 and

∆i(x, y) = 0, we have Sri(x, y, Z) =
m∑

j=0

sr,i,i−j(x, y)Zi−j = sri,i(x, y)
(
Z +

sri,i−1(x,y)
i sri,i(x,y)

)i

.

Let (α, β) be a point such that ∆i(α, β) = 0 and sri(α, β) 6= 0. Now if we define

γ := − sri,i−1(α,β)
i sri,i(α,β) , then we obtain that Sri(α, β, γ) = 0, and (α, β, γ) is the only

point of C❈ with (α, β) as projection. Furthermore there are only finitely many
points such that ∆i(x, y) = 0 and sri(x, y) = 0. So C❘ is in pseudo-generic position
with respect to the (x, y)-plane.
✷

The following proposition is a corollary of the third point of the previous theorem.
If C❘ is in pseudo-generic position with respect to the (x, y)-plane, it gives a rational
parametrization for each regular points of a connected component of a given multiplicity
of C❘.
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Proposition 3.4. Assume that C❘ is in pseudo-generic with respect to the (x, y)-plane

and let (α, β, γ) ∈ C❘ such that sri(α, β) 6= 0 and ∆i(α, β) = 0. Then,

γ := −
sri,i−1(α, β)

i sri,i(α, β).
(1)

Remark 3.5. By construction, the parametrization given in Proposition 3.4 is valid

when sri,i(α, β) 6= 0. In pseudo-generic postion, if sri,i(α, β) = 0 then either ∆j(α, β) = 0

for some j > i or (α, β) is a x-critical point of C(∆i) (see section 3.3).

The following theorem gives an algebraic certificate for the pseudo-genericity of the

position of a space curve with respect to a given plane.

Theorem 3.6. Let (Srj(X, Y, Z))
j∈{0,...,m} be the subresultant sequence associated to

P1(X, Y, Z) and P2(X, Y, Z) and (∆i(X, Y ))i∈{0,...,m} be the sequence of ◗[X,Y ] as

defined in Theorem 3.3. The curve C❘ is in pseudo-generic position with respect to the

(x, y)-plane if and only if ∀i ∈ {1, . . . ,m− 1}, ∀j ∈ {1, . . . , i− 1},

i(i− j) sri,j(X, Y ) sri,i(X, Y )− (j + 1) sri,i−1(X, Y ) sri,j+1(X, Y ) = 0 mod ∆i(X, Y ).

Proof. Assume C❘ be in pseudo-generic position. Let i ∈ {1, . . . ,m−1}, j ∈ {0, . . . , i−1},

(α, β) ∈ ❘2 such that ∆i(α, β) = 0. If sri,i(α, β) = 0, then, by Proposition 7.3,

sri,i−1(α, β) = 0, so i(j + 1) sri,j+1(α, β) sri,i(α, β) − (i − j) sri,i−1(α, β) sri,j(α, β) = 0.

If sri,i(α, β) 6= 0, then according to the third point of the Theorem 3.3, Sri(α, β, Z) =

sri,i(α, β) (Z − γ)
i

where γ := − sri,i−1(α,β)
i sri,i−1(α,β) , then Sri(α, β, Z) =

i∑
j=0

sr,i,i−j(α, β)Zi−j =

sri,i(α, β) (Z − γ)
i
. Using the binomial Newton formula we obtain:

Sri(α, β, Z) = sri,i(α, β)
i∑

j=0

(
i
j

)
(−γ)i−jZj .

So by identification, it comes that ∀i ∈ {1, . . . ,m − 1},∀j ∈ {0, . . . , i − 1}, ∀(α, β),

st .∆i(α, β) = 0,

i(i− j) sri,j(α, β) sri,i(α, β)− (i + j) sri,i−1(α, β) sri,j+1(α, β) = 0.

The reciprocal uses the same arguments. ✷

The following algorithm tests the pseudo-genericity of position of the curve :
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Algorithm 3.1: PseudoGenerTest

Input: P1, P2 ∈ ◗[X, Y, Z] two squarefree polynomials such that gcd(P1, P2) = 1
Output: true if the curve defined by P1 = 0, P2 = 0 is in generic position and false

otherwise.
Step 1: Making P1 and P2 monic with respect to z by a change of coordinates.

If degZ(P2) 6= deg(P2) or degZ(P1) 6= deg(P1) do
(X, Y, Z)← (X + λZ, Y + µZ, Z) in P1 and P2, with λ, µ ∈ ◗∗.

Step 2: Computing the ∆k polynomials.
Using a subresultant algorithm, compute Srm(X, Y, Z), . . . ,Sr0(X, Y, Z) the
subresultants sequence associated to P1 and P2 and denote
Sri(X, Y, Z) =

∑i

j=0 sri,j(X, Y )Zj .
h(X, Y ) := squarefree(sr0,0(X, Y )),

Θ1(X, Y ) = gcd
(
h(X, Y ), sr1(X, Y )),∆1(X, Y ) = h(X,Y )

Θ1(X,Y ) ,

for i from 1 to m do
Θi(X, Y ) = gcd(Θi−1(X, Y ), sri(X, Y ))

∆i(X, Y ) = Θi−1(X,Y )
Θi(X,Y )

end do
Step 3: The Test.

for i from 1 to m do
if ∆i(X, Y ) 6= 0 then

for j from 0 to i do
(i ∗ (i− j) ∗ sri,j(X, Y ) ∗ sri,i(X, Y )− (j + 1) ∗ sri,i−1(X, Y ) ∗
sri,j+1(X, Y )) mod ∆i(X, Y ).
If the result is zero then continue else break and return false;

end do
end if

end do;
return true;

Remark 3.7. Theorem 3.6 shows that it is possible to check with certainty if a space
algebraic curve is in pseudo-generic position or not. If it is not, we can put it in pseudo-
generic position by a change of coordinates.

Let us introduce the definitions of generic position, critical, singular, regular points,
apparent singularity and real singularity for a space algebraic curve.

Definition 3.8. Let (g1, . . . , gs) be the radical ideal of the ideal (P1, P2). Let M(X, Y, Z)
be the s×3 Jacobian matrix with (∂Xgi, ∂Y gi, ∂Zgi) as its i th row.

(1) A point p∈ C❘ is regular (or smooth) if the rank of M(p) is 2.
(2) A point p∈ C❘ which is not regular is called singular.
(3) A point p = (α, β, γ) ∈ C❘ is x-critical (or critical for the projection on the x-axis)

if the curve C❘ is tangent at this point to a plane parallel to the (y,z)-plane. The
corresponding α is called a x-critical value.

Definition 3.9 (Apparent singularity, Real singularity). Let D =
∏

z(C❘) and let P be
a singular point of D. We define:

9
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Fig. 1. Apparent and real singularities.

(1) The point P is called an apparent singularity if the fiber
∏−1

z (P ) ∩ C❘ above P
contains strictly more than one point.

(2) The point P is called a real singularity if the fiber
∏−1

z (P )∩C❘ above P contains

exactly one point. In this case, the point of
∏−1

z (P ) ∩ C❘ is a singularity of C❘.
A geometric illustration of those definitions can be found in figure 1.

Definition 3.10 (Node). We call a node an ordinary double point (both arcs have
different tangential directions).

Definition 3.11 (Generic position). The curve C❘ is in generic position with respect to
the (x, y)-plane if

(1) C❘ is in pseudo-generic position with respect to the (x, y)-plane,
(2) D = Πz(C❘) is in generic position (as a plane algebraic curve) with respect to the

x-direction,
(3) any apparent singularity of D = Πz(C❘) is a node.

This notion of genericity also appears in a slightly more restrictive form in [5] and
[17].
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The aim of the next section is to give an algorithm to certify the third point of the
previous definition of generic position. We also give an effective way to distinguish the
real singularities from the apparent ones.

3.3. Distinguish real singularities and apparent singularities

In this section, we suppose that C❘ is in pseudo-generic position and D = Πz(C❘)
is in generic position as a plane algebraic curve.
Let (Γj(X))j∈{1,...,n} be the sequence of Γ polynomials associated to the plane curve D
and (βj(X))j∈{1,...,n} be the sequence of associated rational parametrization (βj(X) :=

− srj,j−1(X)
j srj,j(X) ).

Let (Srj(X,Y, Z))
j∈{0,...,m} be the subresultant sequence associated to P1, P2 ∈ ◗[X, Y, Z].

For any (k, i) ∈ {1, . . . ,m} × {0, . . . , k − 1 } let Rk,i(X, Y ) be defined by Rk,i(X, Y ) =
k(k − i) srk,i(X, Y ) srk,k(X, Y )− (i + 1) srk,k−1(X, Y ) srk,i+1(X, Y ).

The following lemma allows us to characterize fibers containing only one point.

Lemma 3.12. Let (a, b) ∈ ❘2 such that srk,k(a, b) 6= 0, so Srk(a, b, Z) =
∑k

i=0 srk,i(a, b)Zi ∈
❘[Z] has one and only one root if and only if ∀i ∈ {0, . . . , k − 1 } Rk,i(a, b) = 0.

By construction, for any j ∈ {1, . . . , n } , gcd(Γj(X), srj,j(X)) = 1. So modulo Γj(X),

βj(X) can be written as a polynomial β̃j . We will use the polynomial expression β̃j of
βj(X) in the following constructions.

For any j ∈ {1, . . . , n } let us define the sequence (uk,j(X))k∈{1,...,j} and (vk,j(X))k∈{2,...,j}

by
• u1,j(X) := gcd(Γj(X), sr1,1(X, β̃j(X))),

• uk,j(X) := gcd(srk,k(X, β̃j(X)), uk−1,j(X))
• vk,j(X) := quo(uk−1,j(X), uk,j(X)).
For k ∈ {2, . . . , j}, i ∈ {0, k − 1}, we define (wk,i,j(X)) by
• wk,0,j(X) := vk,j(X),

• wk,i+1,j(X) := gcd(Rk,i(X, β̃j(X)), wk,i,j(X)).
More intuitively, for some j, the polynomials vk,j are exactly those with roots α such
that the gcd of the projected plane curve and its derivative, localized at α, has degree j,
and the gcd of the two surfaces, localized at (α, βj(α)), has degree k.

Remark 3.13. By construction, for any j ∈ {1, . . . , n } , gcd(Γj(X), srj,j(X)) = 1

Theorem 3.14. For any j ∈ {1, . . . , n } , let (Γj,k(X) ) k∈{1,...,j} and (χj,k(X)) be

the sequence defined by the relations: Γj,1(X) = quo(Γj(X), u1,j(X)) and Γj,k(X) :=
wk,k,j(X). χj,k(X) := quo(wk,0,j(X),Γj,k(X)).

(1) For any root α of Γj,k(X), the x-critical fiber (α, βj(α)) contains only the point

(α, βj(α), γj(α)) with γj(α) := −
srk,k−1(α,βj(α))
k srk,k(α,βj(α)) so (α, βj(α)) is a real singularity.

(2) For any root α of χj,k(X), (α, βj(α)) is an apparent singularity.

Proof. (1) Let α be a root of Γj,k(X) := wk,k,j(X) = gcd(Rk,k−1(X, β̃j(X)), wk,k−1,j(X)).
Then wk,k−1,j(α) = Rk,k−1(α, βj(α)) = 0.

wk,k−1,j(X) := gcd(Rk,k−2(X, β̃j(X)), wk,k−2,j(X)), so wk,k−2,j(α) =
Rk,k−2(α, βj(α)) = 0. By induction, using the same argument, it comes that for
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i from 0 to (k − 1), wk,i,j(α) = Rk,i(α, βj(α)) = 0. wk,0,j(X) := vk,j(X), so
vk,j(α) = 0. Knowing that vk,j(X) := quo(uk−1,j(X), uk,j(X)); uk,j and uk−1,j are
square free, then uk−1,j(α) = 0 and uk,j(α) 6= 0. Knowing that

uk,j(X) = gcd(srk,k(X, β̃j(X)), uk−1,j(X)), then srk,k(α, βj(α)) 6= 0.

uk−1,j(X) = gcd(srk−1,k−1(X, β̃j(X)), uk−2,j(X)) and uk−1,j(α) = 0,
so srk−1,k−1(α, βj(α)) = uk−2,j(α) = 0. By induction, using the same argument,
it comes that for i from 0 to k − 1, sri,i(α, βj(α)) = 0. For i from 0 to k − 1
sri,i(α, βj(α)) = 0 and srk,k(α, βj(α)) 6= 0, so by the fundamental theorem of sub-

resultants, gcd(P1(α, βj(α), Z), P2(α, βj(α), Z)) =
∑k

i=0 srk,i(α, βj(α))Zi.
Knowing that gcd(P1(α, βj(α), Z), P2(α, βj(α), Z)) = Srk(α, βj(α), Z) =∑k

i=0 srk,i(α, βj(α))Zi and for i from 0 to (k − 1), Rk,i(α, βj(α)) = 0 then by the
previous lemma the polynomial gcd(P1(α, βj(α), Z), P2(α, βj(α), Z) have only one

root γj(α) := −
srk,k−1(α,βj(α))
k srk,k(α,βj(α)) .

(2) Let α be a root of the polynomial χj,k(X) := quo(wk,0,j(X),Γj,k(X)). Then wk,0,j(α) =
0 and Γj,k(α) = wk,k,j(α) 6= 0 because wk,0,j(X) and Γj,k(X) are square free. For

i from 0 to k − 1, knowing that wk,i+1,j(X) := gcd(Rk,i(X, β̃j(X)), wk,i,j(X)),
wk,0,j(α) = 0 and wk,k,j(α) 6= 0, then there exists i ∈ {0, . . . , k − 1 } such that
Rk,i(α, βj(α)) 6= 0. So by Lemma 1, the polynomial Srk(α, βj(α), Z)=∑k

i=0 srk,i(α, βj(α))Zi has at least two distinct roots. It is clear that

gcd(P1(α, βj(α), Z), P2(α, βj(α), Z)) = Srk(α, βj(α), Z) =
∑k

i=0 srk,i(α, βj(α))Zi.
gcd(P1(α, βj(α), Z), P2(α, βj(α), Z)) = Srk(α, βj(α), Z) and Srk(α, βj(α), Z) has
at least two distinct roots imply that (α, βj(α)) is an apparent singularity.
✷

Proposition 3.15. For (j, k) ∈ {1, . . . , n} × {2, . . . j}, let α be a root of χj,k(X).
The apparent singularity (α, βj(α)) is a node if and only if

(∂2
XY h(α, βj(α)))2 − ∂2

X2h(α, βj(α))∂2
Y 2h(α, βj(α)) 6= 0.

Proof. Let us write h(X + α, Y + βj(α)) = F1 + F2 + . . . + Fn, where Fi is a form in
◗[α][X, Y ] of degree i. The apparent singularity (α, βj(α)) is a double point if and only
if F2 6= 0. It is well known that F2 = 1/2(∂2

Y 2h(α, βj(α))Y 2 + 2∂2
XY h(α, βj(α))XY +

∂2
X2h(α, βj(α))X2) and its factorization gives the tangent lines of C(h(X, Y ) = 0) at

(α, βj(α)). So the apparent singularity (α, βj(α)) is a node if and only the discriminant
in Y of the polynomial F2(1, Y ) is different to 0. ✷

Theorem 3.16. C❘ is in generic position if and only if for any (j, k) ∈ {1, . . . , n} ×
{2, . . . , j} the polynomials ∂2

XY h(X, βj(X)))2 − ∂2
X2h(X, βj(X))∂2

Y 2h(X, βj(X)) and
χj,k(X) are coprime.

Proof. C❘ is in generic position if and only if any apparent singularity is a node. So the
result comes clearly from the previous proposition. ✷

3.4. Lifting and connection phase

In this section, we suppose that C❘ is in generic position that means that C❘ is in
pseudo-generic position, D = Πz(C❘) is in generic position as a plane algebraic
curve and any apparent singularity of D = Πz(C❘) is a node. To compute the topology
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Fig. 2. Connection between real singularities and regular points.

of C❘, we first compute the topology of its projection on the (x, y)-plane and in second
we lift the computed topology.

As mentioned in section 2, to compute the topology of a plane algebraic curve in
generic position, we need to compute its critical fibers and one regular fiber between two
critical ones. So to obtain the topology of C❘, we just need to lift the critical and regular
fibers of D = Πz(C❘).

Here after we explain how this lifting can be done without any supplementary com-
putation for the regular fibers and the real critical fibers. And for the special case of the
apparent singular fibers, we present a new approach for the lifting and the connections.

3.4.1. Lifting of the regular points of D = Πz(C❘)

The lifting of the regular fibers ofD = Πz(C❘) is done by using the rational parametriza-
tions given in Proposition 3.4.

3.4.2. Lifting of the real singularities of D = Πz(C❘)

The lifting of the real singularities of D = Πz(C❘) is done by using the rational
parametrizations given by 1. of Theorem 3.14.

3.4.3. Connection between real singularities and regular points

For a space curve in pseudo-generic position, the connections between real singularities
and regular points are exactly those obtained on the projected curve using Grandine’s
sweeping algorithm [20] (see figure 3.4.3).

3.4.4. Lifting of the apparent singularities

Lifting of the topology around an apparent singularity is a little more complex. Above
an apparent singularity of D = Πz(C❘), we first have to compute the z-coordinates and
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secondly to decide which of the two branches passes over the other (see figure 3). We
solve these problems by analyzing the situation at an apparent singularity.

According to Theorem 3.3 (2), D = Πz(C❘) =
m⋃

i=1

C(∆i), so in generic position, an

apparent singularity is a cross point of a branch of C(∆i) and a branch of C(∆j) with
i, j ∈ {1, . . . ,m}. So we have the following proposition.

Proposition 3.17. In generic position, if (α, β) is an apparent singularity of D such that
∆i(α, β) = ∆j(α, β) = 0, then the degree of the polynomial gcd(P1(α, β, Z), P2(α, β, Z) ∈
❘[Z] will be (i + j).

Proof. Let (α, β) be an apparent singularity of D such that ∆i(α, β) = ∆j(α, β) = 0. It
comes that degZ(gcd(P1(α, β, Z), P2(α, β, Z)) > (i + j). Assume that
degZ(gcd(P1(α, β, Z), P2(α, β, Z)) > (i + j). So it exist k ∈ {1, . . . ,m}\{i, j} such that
∆k(α, β) = 0 then (α, β) is a cross point of a branch of C(∆i), a branch of C(∆j) and a
branch of C(∆k) and is not a node. This is not possible because C❘ is in generic position
and any apparent singularty is a node, so degZ(gcd(P1(α, β, Z), P2(α, β, Z)) = (i+j). ✷

Let (α, β) be an apparent singularity of D such that ∆i(α, β) = ∆j(α, β) = 0 and
let γ1, γ2 be the corresponding z-coordinates. So by Proposition 3.17 and Proposition
7.3 sr0,0(α, β) = . . . = sri,i(α, β) = . . . = srj,j(α, β) = . . . . = sri+j−1,i+j−1(α, β) = 0.
By Proposition 3.4, for any (a, b, c) ∈ C❘ such that ∆i(a, b) = 0 and sri,i(a, b) 6= 0,

we have c = − sri,i−1(a,b)
i sri,i(a,b) . So the function (x, y) 7−→ Zi(x, y) := − sri,i−1(x,y)

i sri,i(x,y) gives the

z-coordinate of any (a, b, c) ∈ C❘ such that ∆i(a, b) = 0 and sri,i(a, b) 6= 0. ∆i(α, β) = 0
but sri,i(α, β) = 0, so the function Zi is not defined on (α, β). However, the function
Zi is continuously extensible on (α, β). Let u1 be the slope of the tangent line of C(∆i)

at (α, β) and t ∈ ❘∗. Let γi(t) := Zi(α, β + tu1) = − sri,i−1(α,β+tu1)
i sri,i(α,β+tu1)

. Knowing that the

algebraic curve C❘ hasn’t any discontinuity, it comes limt→0+ γi(t) = limt→0− γi(t) = γ1.
By the same arguments, if we denote u2 the slope of the tangent line of C(∆j) at (α, β)

and γj(t) := Zj(α, β + tu2) = − srj,j−1(α,β+tu2)
j srj,j(α,β+tu2)

, then limt→0+ γj(t) = limt→0− γj(t) = γ2.

The values u1, u2, γ1 and γ2 are computed using Taylor formulas and certified numerical
approximations.
Now it remains to decide which of the two branches pass over the other. This problem
is equivalent to the problem of deciding the connection around an apparent singularity.
Let (a, b1, c1) and (a, b2, c2) the regular points that we have to connect to (α, β, γ1) and
(α, β, γ2). The question is which of the points (a, b1, c1) and (a, b2, c2) will be connected
to (α, β, γ1) and the other to (α, β, γ2) (see figure 3)? In [5] Alcázar and Sendra give
a solution using a second projection of the space curve but it costs a computation of
a Sturm Habicht sequence of P1 and P2. Our solution does not use any supplementary
computation. It comes from the fact that γ1 is associated to u1 and γ2 to u2. Knowing
that u1 is the slope of the tangent line of C(∆i) at (α, β) and u2 the slope of the tangent
line of C(∆j) at (α, β), so (α, β, γ1) will be connected to (a, b1, c1) if (a, b1) is on the
branch associated to u1. If (a, b1) is not on the branch associated to u1, then (a, b1) is on
the branch associated to u2, so (α, β, γ2) will be connected to (a, b1, c1) (see figure 4).

Remark 3.18. For a curve in generic position any apparent singularity is a node, so the
slopes at an apparent singularity are always distinct that is to say u1 6= u2.
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Fig. 3. Lifting of an apparent singularity.
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Fig. 4. Connection above an apparent singularity.

4. Isotopic meshing of an algebraic implicit surface

In this section, we describe an algorithm producing a piecewize linear structure isotopic
to an algebraic surface. This algorithm strongly relies on the computation of the topology
of a polar curve of the surface which is an implicit non-reduced space curve.
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4.1. Description of the problem

Let P ∈ ◗[X, Y, Z] be a square free polynomial and S := {(α, β, γ) ∈ ❘3 : P (α, β, γ) =

0} be the real algebraic surface defined by P . Our goal is to compute a “correct” meshing

of the surface S.

Meshing is the process of computing, for a given surface, a representation consisting of

pieces of simple surfaces patches. “Correct” means that the result should be topologically

correct and geometrically close. It is not sufficient to require that a surface S and its mesh

S ′ are homeomorphic. A torus and a knotted torus are homeomorphic when viewed as

surfaces in isolation, but one would certainly not accept one as a topologically correct

representation of the other. The following definition combines the strongest notion of

having the correct topology with the requirement of geometric closeness.

Definition 4.1. An isotopy between two surfaces S,S ′ ⊂ ❘3 is a continuous mapping

γ : S × [0, 1]→ ❘3 which, for any fixed t ∈ [0, 1], γ(., t) is a homeomorphism from S onto

its image, and wich continuously deforms S into S ′: γ(S, 1) = S ′.

We give a meshing algorithm for algebraic implicit surfaces that is based on sweeping

a vertical plane over the surface. To guide the sweep, we use the topology of the polar

variety of the surface. In contrast to previous methods our algorithm makes no smooth-

ness or regularity assumptions about the input surface. The algorithm works for surfaces

with self-intersections, fold lines, or other singularities.

In [2] the authors give an algorithm that needs the cuts of the surface on the singularies

of its polar variety to be able to reconstruct the topology. This operation is quite difficult

to certify because it requires the computation of the topology of plane algebraic curve of

equation P (α, Y, Z) = 0 where α is an algebraic real number.

With our new connection algorithm, we do not need to cut the surface on the x-critical

points of its polar variety to be able to construct its topology. The connection is com-

pletly guided by the topology of the polar variety and the structure of its x-critical fibers,

avoiding at the same time the difficulty of the computation of the cuts of the surface on

the singularities of its polar variety and its cost.

Let us give a rough overview, concentrating geometric ideas before discussing the primi-

tive geometric operations that are necessary for the algorithm.

4.2. Geometric ideas

Our goal is to find uniform regions in the (x, y)-plane where the surface can be regarded

as a family of a constant number of function graphs of the form z = h(x, y). We therefore

analyze the surface outside the singular points and outside the points that have vertical

tangents (the apparent contour). These points form the polar variety P of the surface S.

Definition 4.2 (Polar Variety). Let P ∈ ◗[X, Y, Z] be a square free polynomial and

S := {(α, β, γ) ∈ ❘3 : P (α, β, γ) = 0} be the real algebraic surface defined by P . We call

polar variety of S the following set:

P :=
{
(α, β, γ) ∈ ❘3 : P (α, β, γ) = ∂zP (α, β, γ) = 0}
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When we cut away our surface at its polar variety, we obtain (x, y)-monotone surface
patches that can be parameterized in x and y. After the computation of the polar variety
of the surface, we subdivide the surface into vertical slabs by planes perpendicular to the
x-axis. In contrast to previous approaches, these points do not include any x-critical point
and any apparent singularity of the polar variety. Finally we mesh the resulting patches
of the surfaces by computing a set of points, open segments and open triangles, wich are
not self-intersecting, defining a simplicial complex isotopic to the original surface.

We summarize the geometric primitives that we need to provide in oder to make the
algorithm work:

(1) We must be able to compute the topology of the polar variety of our surface.
(2) We must be able to compute the topology of the sections of our surface in slab

points
(3) We must be able to connect two consecutives sections by exploiting the topology

of the polar variety of the surface.
(4) We must be able to triangulate surface patches, avoiding self-intersection of seg-

ments and triangles.
Because the polynomial P (X,Y, Z) is supposed to be square free, the dimension of its
polar variety P :=

{
(α, β, γ) ∈ ❘3 : P (α, β, γ) = ∂zP (α, β, γ) = 0} is at most equal to

one. So the computation of the topology of P will be done using the algorithm described
in section 3. The computation of the topology of the plane sections of the surface will be
done using the algorithm described in section 2. In the following section we describe the
genericity conditions required and the connection algorithm of two consecutives section
of the surface.

4.3. Genericity conditions, arcs ordering and connection algorithm

4.3.1. Genericity conditions
Definition 4.3. Let P ∈ ◗[X, Y, Z] be a square free polynomial and S := {(α, β, γ) ∈
❘3 : P (α, β, γ) = 0} be the real algebraic surface defined by P . We say that S is in
generic position if and only if its polar variety is in generic position (as an implicit space
curve).

This condition excludes, for instance, a surface which consists of two equal spheres
vertically above each other. The two silhouettes (equators) would coincide in the projec-
tion. It also excludes for example vertical cylinder (for wich the polar variety would be
two dimentional).

The genericity of the position of a given surface will be certified during the step of
the computation of the topology of its polar variety. If the genericity conditions are not
fulfilled by the surface, we perform a change of coordinates and a restart of the algorithm.

We assume hereafter that our surface S is in generic position. Let us outline briefly
the algorithm for algebraic surfaces before going into the details.

The first step consists in computing the topology of the polar variety. We apply the
algorithm section 3 with P1 := P, P2 := ∂zP , which computes a polygonal approximation
of the polar variety which is isotopic to it. In this way, the algorithm computes x-critical
values corresponding to x-critical points of the polar variety and singular points of its
projection on the (x, y)-plane, adds intermediate “regular” x-values between them and
computes the points of the polar variety corresponding to the regular x-values.
Next, we cut the surface by planes perpendicular to the x-axis on the “regular” x-values
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of the polar variety, using the algorithm described in section 2. Note that the intersection
of the polar variety with the vertical planes become critical points for the plane curves
problem (see next proposition).
Then, we compute all the fibers of the surface containing the x-critical points of the polar
variety.
Finally, we connect all the plane cuts of the surface using the topology of the polar variety
and the structure of the computed fibers.

Before talking about connection algorithm let us give two simples but important prop-
erties of surfaces in generic position.

Let (ci := (αi, βi, γi))i∈J1,nK be the ordered sequence, according to the first coordinate,
of the x-critical points of the projection of P on the (x, y)-plane. Let (ri) i∈J1,n+1K be a
sequence of rational values such that: r1 < α1 < r2 < α2 < . . . < αn < rn+1.
For i ∈ J1, n + 1K, let Rri

:=
{
(ri, y, z) ∈ ❘3 : P (ri, y, z) = ∂zP (ri, y, z) = 0 } be the

section of the polar variety by the plane of equation x = ri and ni := #Rri
. Let us

denote (pri

1 , . . . , pri
ni

) the grading sequence, with respect to their y-coordinate, of the
elements of Rri

.
For any i ∈ J1, n + 1K, let Cri

:=
{
(ri, y, z) ∈ ❘2 : P (ri, y, z) = 0} be the section of the

surface S by the plane of equation x = ri.

Proposition 4.4. For i ∈ J1, n + 1 K , the y-critical points of the (y, z)-plane curve Cri

are exactely the intersection points, (pri

1 , . . . , pri
ni

), of the polar variety with the vertical
plane of equation x = ri.

Proof. let i ∈ J1, n + 1K, by definition, the y-critical points of the (y, z)-plane curve Cri
:={

(ri, y, z) ∈ ❘2 : P (ri, y, z) = 0} are the solutions of P (ri, y, z) = ∂zP (ri, y, z) = 0. The
solutions of this system are exactely the intersection points, (pri

1 , . . . , pri
ni

), of the polar
variety with the vertical plane of equation x = ri. ✷

From the previous proposition it comes:

Proposition 4.5. For any i ∈ J1, n + 1K, the plane curve Cri
is in generic position.

For any i ∈ J1, n + 1K, the topology of the plane curve Cri
will be described by giving

the arcs linking its y-critical points (pri

1 , . . . , pri
ni

). For the connection algorithm, it will be
necessary to be able to order the computed arcs. That’s the aim of the next sub-section.

4.3.2. Arcs ordering

Definition 4.6. Let i ∈ [1, n + 1] and Cri
:=

{
(ri, y, z) ∈ ❘2 : P (ri, y, z) = 0} . We mean

by arc of the plane curve Cri
, a connected smooth open subset of the curve which closure

contains two distinct points of the sequence (pri

1 , . . . , pri
ni

) of its y-critical points. It is
represented hereafter by a segment.

Definition 4.7. Let q and g be two distinct points of the sequence (pri

1 , . . . , pri
ni

) and
A be the class of the arcs of Cri

linking q and g. We will call support of A the bipoint
(q,g).

The arcs of Cri
linking two given points q and g of the sequence (pri

1 , . . . , pri
ni

) are
naturally ordered. The order relation is the following one:
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Fig. 5. An example of a class of arcs

Definition 4.8. We define the arc ordering as follows: Let qQ1g and qQ2g two different
arcs linking two distinct points, q and g of the sequence (pri

1 , . . . , pri
ni

). The coordinates
of the two points Q1 and Q2 verify: xQ1

= xQ2
, yQ1

= yQ2
and zQ1

6= zQ2
. So we define

the following order relation: qQ1g ≻ qQ2g if and only if zQ1
> zQ2

(see figure5)

Remark 4.9. We will use the previous order relation to arrange a given class of arcs
with the same support.

Hereafter we extend the previous order relation to the case of arcs with support veri-
fying a particular relation.

Definition 4.10. Let q1Q1g1 and q2Q2g2 be two arcs of Cri
such that [yq1

, yg1
] ⊆ [yq2

, yg2
]

and xQ1
= xQ2

, yQ1
= yQ2

∈ [yq1
, yg1

] and zQ1
6= zQ2

. So we define the following order
relation: q1Q1g1 ≻ q2Q2g2 if and only if zQ1

> zQ2
(see figure 6)

The next step of the computation of an isotopic meshing of the surface S consists
in connecting consecutively the computed regular sections (Cri

) i∈J1,n+1K of the surface.
Hereafter, we will describe the algorithm to connect Cr1

to Cr2
. For the other connections,

we will apply recursively the same algorithm.

4.3.3. Connection algorithm of two consecutive sections, Cr1
and Cr2

We remind thatRr1
:=

{
(r1, y, z) ∈ ❘3 : P (r1, y, z) = ∂zP (r1, y, z) = 0 } (resp.Rr2

:={
(r2, y, z) ∈ ❘3 : P (r2, y, z) = ∂zP (r2, y, z) = 0 } ) is the section of the polar variety by

the plane of equation x = r1 (resp. x = r2) and n1 := #Rr1
(resp. n2 := #Rr2

),
(pr1

1 , . . . , pr1
n1

) (resp. (pr2

1 , . . . , pr2
n2

)) is the grading sequence, with respect to their y-
coordinate, of the elements of Rr1

(resp.Rr2
).

We denote c := (α, β, γ) the only x-critical point of the projection of the polar variety P

19



Fig. 6.

on the (x, y)-plane such that r1 < α < r2.
Let UpPoints := {(α, β, z) ∈ ❘3 : P (α, β, z) = 0 and z > γ} be the grading se-
quence, with respect to their z-coordinate, of the points of the x-critical fiber of S
located on top of the critical point c := (α, β, γ) and DownPoints := {(α, β, z) ∈ ❘3 :
P (α, β, z) = 0 and z < γ} be the one of the points located under the x-critical point
c := (α, β, γ). The x-critical fiber containing c is completely described by the give of the
set {UpPoints, c,DownPoints}.

We also remind that the topology of the section Cr1
(resp. Cr2

) is completly described
by the arcs linking together the points of the sequence (pr1

1 , . . . , pr1
n1

) (resp. (pr2

1 , . . . , pr2
n2

)).
Let us denote (A1, . . . ,Am1

) (resp. (B1, . . . ,Bm2
) the list of the classes of arcs of Cr1

(resp.
Cr2

).
The aim of the connection algorithm is to link the sequences (A1, . . . ,Am1

) to the se-
quences (B1, . . . ,Bm2

) using the structure of the fiber {UpPoints, c, DownPoints} and
the connections between (pr1

1 , . . . , pr1
n1

) and (pr2

1 , . . . , pr2
n2

) given .
During the connection algorithm, we will only need the following subroutines to connect:

(1) an arc to an arc,
(2) an arc to a point,
(3) an arc to an arc by passing at a given point.

Hereafter we describe three small algorithms to do that.
Algorithm 1: ConnectArcToArc

The aim of this algorithm is to connect two given arcs. Let pr1

i Q1p
r1

j and pr2

k Q2p
r2

l be
two given arcs. We describe in figure 7 how the connections are done on an example.

Algorithm 2: ConnectArcToPoint

The aim of this algorithm is to connect a given arc to a given point. Let pr1

i Q1p
r1

j

be a given arc and R be a given point. We describe in figure 8 how the connections are
done on an example.
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Fig. 7. Connecting an arc to an arc.

Fig. 8. Connecting an arc to a point.

Algorithm 3: ConnectArcToPointToArc

The aim of this algorithm is to connect two given arcs to given a point. We show in
figure 9 how the connections are done.

Now we are going to describe the complete connection algorithm of two consecutive
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Fig. 9. Connecting two arcs to a point.

sections, Cr1
and Cr2

, of our implicit surface. Let us remind that for any j ∈J 1, m1K, Aj

is the ordered collection of arcs linking two given points of the sequence (pr1

1 , . . . , pr1
n1

).
For j ∈J 1, m1K, let (µ1, µ2) be the support of the arcs in Aj and let (θ1, θ2) be the

points of (pr2

1 , . . . , pr2
n2

) connected to (µ1, µ2) via the polar variety of S. The connection
algorithm will be guided by the value of the integer ϕc(Πz(µ1)) ∗ϕc(Πz(µ2)) where ϕc is
the function defined in Remark 2.7. The integer ϕc(Πz(µ1)) ∗ϕc(Πz(µ2)) may only takes
three value, {−1, 0, 1}, corresponding to three distinct geometrics configurations.

(1) ϕc(Πz(µ1)) ∗ ϕc(Πz(µ2)) = −1:
So ϕc(Πz(µ1)) = −1 and ϕc(Πz(µ2)) = 1 or ϕc(Πz(µ1)) = 1 and
ϕc(Πz(µ2)) = −1. Whithout any loss of generality we can consider
ϕc(Πz(µ1)) = −1 and ϕc(Πz(µ2)) = 1. By the Remark 2.7, this case corresponds
to the geometric configuration described in figure 10.
In the connection algorithm, we will at first collect in K (resp. L) the arcs of
Cr1

(resp. Cr2
) verifiying this constraint. Then, using the order relation given in

Definition 4.10, we reorder the arcs in K and in L. The connection of the arcs
will be guided by the situation on the x-critical fiber {UpPoints, c,DownPoints}.
We connect the first #UpPoints’s arcs of K to the first #UpPoints arcs of L, we
connect the last # DownPoints arcs of K to the last #DownPoints arcs of L, then
we connect the reminded non connected arcs in K and in L to the x-critical point
c.

(2) ϕc(Πz(µ1)) ∗ ϕc(Πz(µ2)) = 1:
So ϕc(Πz(µ1)) = −1 and ϕc(Πz(µ2)) = −1 or ϕc(Πz(µ1)) = 1 and
ϕc(Πz(µ2)) = 1. Whithout any loss of generality we can consider
ϕc(Πz(µ1)) = 1 and ϕc(Πz(µ2)) = 1. By Remark 2.7, this corresponds to the
geometric configuration described in figure 11.
When ϕc(Πz(µ1))∗ϕc(Πz(µ2)) = 1, the number of arcs of support (µ1, µ2) is equal
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Fig. 10. ϕc(Πz(µ1)) ∗ ϕc(Πz(µ2)) = −1

Fig. 11. ϕc(Πz(µ1)) ∗ ϕc(Πz(µ2)) = 1

to the number of arcs of support (θ1, θ2) because if it wasn’t this will mean that
µ1 or µ2 is connected to c.
So we will just have to connect them one to one by respecting their ordering.

(3) ϕc(Πz(µ1)) ∗ ϕc(Πz(µ2)) = 0:
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Fig. 12. ϕc(Πz(µ1)) = 0 and ϕc(Πz(µ2)) = 0

So ϕc(Πz(µ1)) = −1 and ϕc(Πz(µ2)) = 0 or ϕc(Πz(µ1)) = 1 and
ϕc(Πz(µ2)) = 0 or ϕc(Πz(µ1)) = 0 and ϕc(Πz(µ2)) = 1 or ϕc(Πz(µ1)) = 0
and ϕc(Πz(µ2)) = −1 or ϕc(Πz(µ1)) = 0 and ϕc(Πz(µ2)) = 0. Whithout any
lost of generality we can consider the cases ϕc(Πz(µ1)) = 1, ϕc(Πz(µ2)) = 0 and
ϕc(Πz(µ1)) = 0 and ϕc(Πz(µ2)) = 0. By Remark 2.7, these cases correspond to the
geometric configurations described in figure 12 and 13:

When ϕc(Πz(µ1))∗ϕc(Πz(µ2)) = 0, we will just have to connect all the arcs of support
(µ1, µ2) to the x-critical point c.

The proof of the correctness of the algorithm is a direct adaptation of the proof given
in [2]. For the sake of completness we give the main ideas and results of the proof and
we refer to [2] for more details.

4.3.4. Why we get the topology

The general idea of the algorithm is to detect where some topological changes in
the surface S happen. We recall why in-between the events that we have computed in
the previous sub-sections, the topology is locally trivial. This result is used to describe
explicitly the isotopy between the mesh and the surface.

The fundamental notion is the Whitney stratification. It is a decomposition of the
variety into smooth parts that fit together “regularly”. Here are some definitions:

Definition 4.11. A stratification of a (semi-algebraic) variety A ⊂ ❘n is a locally finite
partition of A into smooth submanifolds called strata.

Definition 4.12. Let (X,Y ) be two strata and p ∈ X ∩ Y ⊂ ❘n. X is Whitney-regular
at p along Y if for any sequences xn ∈ X, yn ∈ Y converging to p, l = limn→+∞ xnyn ⊂
T = limn→+∞ Txn

X, where TxX is the tangent space of X at the point x.
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Algorithm 4.1: Surface Connection

h
Input:

• (A1, . . . ,Am1
) and (B1, . . . ,Bm2

) the classes of arcs describing the topology of Cr1
and Cr2

• the x-critical fiber {UpPoints, c, DownPoints},

• the function ϕc, defined in the Remark 2.7, associated to the projection of P .

Output:
E := (B1, . . . ,Bm2

); j := 1; K := {}; L := {};
While j < m1 do

• Ω := Aj ; (µ1, µ2) :=the support of the arcs in Aj ,
• In this step we collect the arcs that will be connected by passing probably over the

critical point c.

if ϕc(Πz(µ1)) ∗ ϕc(Πz(µ2)) = −1 then do {
K := K

S

Ω;
(θ1, θ2) :=the points of (pr2

1
, . . . , pr2

n2
) connected to (µ1, µ2),

Λ :=the element of E := (B1, . . . ,Bm2
) of support (θ1, θ2),

L := L
S

Λ; E := E\Λ,
}

• In this step, we collect and connect the arcs living in the same cylinder

if ϕc(Πz(µ1)) ∗ ϕc(Πz(µ2)) = 1 then do {
(θ1, θ2) := the points of (pr2

1
, . . . , pr2

n2
) connected to (µ1, µ2),

Λ := the element of E := (B1, . . . ,Bm2
) of support (θ1, θ2),

For k from 1 to #Ω do { ConnectArcToArc(Ω[k], Λ[k]); }
E := E\Λ,

}
• In this step, we collect and connect to c the arcs which support points are linked to

c via the polar variety curve.

if ϕc(Πz(µ1)) ∗ ϕc(Πz(µ2)) = 0 then do
For k from 1 to #Ω do { ConnectArcToPoint(Ω[k], c); }

end while.
if #E 6= 0 then for i in 1 to #E do {

Λ := E [i];
For k from 1 to #Λ do { ConnectArcToPoint(Λ[k], c); }

}
Reorder the arcs in K and in L using the order relation given in Definition 4.10, then do

Σ1 :=the ordered sequence of the points in UpPoints;
Σ2 :=the ordered sequence of the points in DownPoints;
For k from 1 to #Σ1 do { ConnectArcToPointToArc(K[k], Σ1[k],L[k]); };
For k from 1 to #Σ2 do {
ConnectArcToPointToArc(K[(#K) − k], Σ2[#(Σ2) − k],L[#(L) − k]); };
For k from #Σ1 + 1 to #K − #Σ2 do { ConnectArcToPoint(K[k], c); };
For k from #Σ1 + 1 to #L − #Σ2 do { ConnectArcToPoint(L[k], c); };
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Fig. 13. ϕc(Πz(µ1)) = 0 and ϕc(Πz(µ2)) = 1

A Whitney stratification of a variety S is a stratification of S so that all pairs of strata

are Whitney-regular.

We recall that any semi-algebraic variety A ⊂ ❘n admits a Whitney stratification

[21].

Definition 4.13. For Z and W two stratified sets, a differential map f : Z → W is a

stratified submersion at a point p of Z if the differential map at p of f , Df : Tp(Zσ) →

Tf(p)(Wτ ) is surjective. Where Zσ and Wτ are the strata of Z and W containing p and

f(p).

Definition 4.14. If Z and W are two stratified sets, a continuous map f : Z → W is

proper if the inverse image of any compact set of W is a compact of Z.

The main used theorem is Thom’s lemma [21].

Theorem 4.15 (Thom’s first isotopy lemma). Let Z be a Whitney stratified subset of

R
m and π : Z → R

n be a proper stratified submersion. Then there is a stratum preserving

homeomorphism

h : Z → (π−1(0) ∩ Z)× R
n

which is smooth on each stratum and such that π factorizes via the projection to the
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second component ❘n.

Z R
n

(π−1(0) ∩ Z)× R
n

❄

h

✲π

✑
✑

✑
✑✑✸ν

This means that Z is homeomorphic to the cylinder with base π−1(0) ∩ Z. In our case,
we will apply the theorem with Z = SB , m = 3, n = 1 and π the projection on the x-axis
which is automatically proper as we work in a ball B which is compact.

Remind that P ∈ ◗[X, Y, Z] is a square free polynomial, S := {(α, β, γ) ∈ ❘3 :
P (α, β, γ) = 0} is the real algebraic surface defined by P and
P :=

{
(α, β, γ) ∈ ❘3 : P (α, β, γ) = ∂zP (α, β, γ) = 0} is the polar variety of S.

We suppose that S is in generic position with respect to the (x, y)-plane. So we have the
following theorem:

Theorem 4.16. Let
• S0 be the inverse image of the set of the singular points of Πz(P), each point is

considered as a stratum,
• S1 the set of the connected components of P − S0, (each connected component is a

stratum),
• S2 the set of the connected components of S − P (each connected component is a

stratum).
• S3 the set of connected components of❘3−S (each connected component is a stratum).
Then (S0, S1, S2, S3) is a Whitney stratification of ❘3 compatible with S.

By Theorem 4.16 and using Thom’s lemma (Theorem 4.15), we deduce that in be-
tween two consecutive critical sections, the topology of the sections is constant. We have
computed the topology of regular sections, in between two successive critical ones. So
now, in order to prove the isotopy of the surface and the mesh, we have two things to
verify:

a) From a topological point of view, we define the good connections between the
sections.
b) The mesh is isotopic to the surface.

It is clear that the triangulation we compute does not create holes, because it refines
the topological complex of P and we do not create intersection of open triangles because
the arcs are connected by respecting their ordering. For the construction of the isotopy
between the surface and its mesh we, refer to [2].

5. Complexity analysis

This section is devoted to the complexity analysis of our approach. Two main points
are considered:

(1) the intrinsec complexity of the approach, i.e. the number of points computed in the
algorithm and their bit size in the worst case which is a measure of the size of the
output independently of the algorithm to compute those points;

(2) the binary complexity of our algorithm.
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We consider that the input polynomial P (X, Y, Z) defining the surface S lies in ❩[X, Y, Z].
We show that the complexity of our algorithm is ÕB(d15τ). To our knowledge, this is
the first time that a bound on the binary complexity of the computation of the topology
of implicit surfaces is given.

5.1. Notations and basic results

Let a ∈ ❩ \ {0}, we denote L(a) = ⌈log2 |a|⌉. The notation OB means the binary
complexity and ÕB means the binary complexity where logarithmic factors are ignored.
We denote M(τ) binary cost of the multiplication of two interger of size τ and M(d, τ)
the binary complexity of the multiplication of two polynomials of degree d with size of
coefficients bounded by τ . Using fast Fourier transform we have M(τ) ∈ OB(τ loga

2(τ))
and M(d, τ) ∈ OB(dτ loga

2(dτ)) for a constant a.
If A is a polynomial of with integer coefficients (with one or several variables), we

denote L(A) the maximal size of its coefficients. The following result can be found in
[34]:

Proposition 5.1. Let A and B ∈ ❩[X] with degree at most d and τ = max(L(A),L(B)).
There is an algorithm computing the Sturm-Habicht sequence of A(X) and B(X) with
complexity lying in OB(d2M(dτ)).

The roots isolation can be given using an algorithm computing root approximations
with a choosen precision that do not depend on root isolation. Using an algorithm describe
by Pan in [30], computing approximation of roots with relative precision ε in ÕB(d3τ +
dε), with ε ∈ Õ(dτ) which is the separation bound for a polynomial of degree with integer
coefficients of size τ , isolation is achieved according to the following proposition:

Proposition 5.2. Let A ∈ ❩[X] with degree d and with L(A) = τ and τ ∈ O(d). The
cost of root isolation is bounded by ÕB(d3τ) and the endpoints bit-size of the isolating
intervals is Õ(dτ).

Now let F and G be two polynomials lying in ❩[Y1, . . . , Yk][X] with degX(F ) = p >

q = degY (G), degYi
(F ) and degYi

(G) 6 di. We denote d =
k∏

i=1

di and we assume that

the coefficients of both F and G are bounded by τ . The four next results can be easily
deduced from [31]:

Proposition 5.3. There is an algorithm computing Sri,X(F,G) with cost in ÕB(q(p +
q)k+2dτ).

Proposition 5.4. We have L(SrX,i(F,G)) = O(max{p, q}τ).

Corollary 5.5. If F and G are polynomials in ❩[X,Y ] of degree d and e respectively
and with coefficients bounded by τ , then SrY (F,G) can be computed in ÕB(ed(d+e)3τ),
and so, if d = e+1, this can be done in ÕB(d5τ) and the size of L(SrY,i(F,G)) = O(dτ).

Corollary 5.6. If F and G are polynomials in ❩[X,Y, Z] of degree d and e respectively
and with coefficients bounded by τ , then SrZ(F,G) can be computed in ÕB(ed(d+e)4τ),
and so, if d = e+1, this can be done in ÕB(d6τ) and the size of L(SrZ,i(F,G)) = O(dτ).
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5.2. Bound on the size of the output

The following theorem gives an asymptotic bound on the number of points to be
computed in our approach. Even if our approach improve several pratical aspects of the
algorithm proposed in [2], the worst case gives the same asymptotic bound.

Theorem 5.7. If the degree of the implicit equation defining the surface is d the number
of points needed is at most O(d7).

Proof. We recall that our approach consists in a sweeping along a line, so we compute
slices and make conection between slices. Denote P (X, Y, Z) the implicit equation of
S. The first resultant ResZ(P (X,Y, Z), ∂ZP (X,Y, Z)) = ∆(X, Y ) as at most degree d2

and we denote h(X, Y ) its squarefree part which has the same degree in the worst case.
Now, we have to compute the topology of the planar curve defined by h(X,Y ) and to
do so, we have to compute its x-critical values. Those values are given by the roots
of Θ(X) = Resy(∆(X, Y ), ∂Y ∆(X, Y )) and it degree is bounded by d4. We compute
the topology of the curve defined by ∆(X, Y ) by computing the critical fibers and one
regular fiber in each intervals defined by those critical values. The fibers contain at most
d2 points, so we have computed O(d6) points. Now, we have to compute the topology
of the regular slice corresponding to regular fibers of the planar curve. The number of
points needed to do that is proportional the number of points on the fibers of the points
already computed on the planar curve and there is at most d such point on the fibers.
This leads us to the given bound. ✷

5.3. Complexity of our algorithm

The two more complex types of computations done in our algorithm are the elemi-
nation steps (computation of Sturm-Habicht sequences) and roots isolation. We will see
that the complexity is dominated by the root isolation of the last computed resultant.
Remark that, from the computational point of view, the worst case is reach when the
computed resultants during the algorithm (∆(X,Y ) and Θ(X)) are squarefree. We will
need to bound the complexity of the computation together with the size of the computed
objects. Let P ∈ ❩[X,Y, Z] denotes the implicit equation of the surface supposed to be
of degree d and with L(P ) = τ .

Theorem 5.8. The computation of the topology of a polar curve of the surface defined
by P can be given in ÕB(d15τ).

Proof. The first step is the computation of the Sturm-Habicht sequence associated to
P (X, Y, Z) and ∂ZP (X, Y, Z) with respect to the variable Z. This is done with complexity
in ÕB(d6τ) and the resultant ∆(X, Y ) has degree O(d2) and L(∆(X, Y )) ∈ O(dτ) (using
Corollary 5.6). We take the squarefree part of ∆(X, Y ) but since we still have O(dτ) ∈
O(d2) because τ ∈ O(d), it does not change the complexity of the algorithm (we have
already compute the Sturm-Habicht sequence and we can use it to compute the squarefree
part of ∆). The next step is the computation of the Sturm-Habicht sequence associated
to ∆(X, Y ) and ∂Y ∆(X, Y ) with respect to the variable Y . This step is done in Õ(d11τ)
and the resultant computed has coefficients of size at most O(d3τ) and degree O(d4)
(using Corollary 5.5). Finally, we have to isolate the roots of the last resultant and this is
done using at most ÕB(d15τ) and the bit-size of the end-points of the isolating interval
is ÕB(d7τ) (using Proposition 5.2). ✷
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Remark 5.9. In general, the knowledge of a factorization of the last resultant Θ(X) :=

ResY (∆(X, Y ), ∂Y ∆(X, Y )) is a great improvement for practical computation together

with the knowledge of the Sturm-Habicht sequence.

For the lifting phases, it is not difficult to see that we use parametrization using

subresultant sequences, so that computed values are bounded by evaluation of coefficients

of subresultants at rational points of size bounded by O(d7τ) and that finally, all other

algebraic computation costs are dominated by the one of root isolation of Θ(X). The

connection algorithm use only basic comparisons and very few algebraic computation

using objects already computed. This shows that the cost of the computation of the

surface topology is dominated by the computation of the topology of one of it polar

variety. We finally have the following theorem:

Theorem 5.10. Let S an implicit surface defined by a degree d polynomial with integer

coefficients of size at most τ . The topology of S can be computed with complexity in

ÕB(d15τ).

6. Implementation and experiments

A complete implementation of our algorithm has been written using the Computer

Algebra System Mathemagix
1 . Results are visualized using the algebraic geometric

modeler Axel 2 , which allows the manipulation of geometric objects with algebraic rep-

resentation such as implicit or parametric curves or surfaces.

Since existing methods have no publicly available implementations, the following table

only reports our experiments, performed on an Intel(R) Core machine clocked at 2GHz

with 1GB RAM.

Surface P (X, Y, Z) Time (s)

1 x4 − y4 − z2 0.33

2 x5 − y2 − z2 0.36

3 x4 + y2 − z2 0.31

4 −xz2 − z3 + y2 0.40

5 x5 + y2 − z2 0.32

6 z(x2 + y2 + z2 − 1)(x2 + 4x + y2 + z2 + 3) 0.82

7
−x2z − 2xyz + 2yz2 + z3 + x2+

2xy + 2y2 + 2yz + 2z2 − 1
0.90

1 www.mathemagix.org
2 axel.inria.fr
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Fig. 14. Surface 3

Fig. 15. Surface 4
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7. Appendix : Subresultants

In this section, we describe the main algebraic ingredient of our algorithm based on
subresultant.

Let P1, P2 ∈ ◗[X, Y, Z] and C❘ := {(x, y, z) ∈ ❘3|P1(x, y, z) = P2(x, y, z) = 0} be
the intersection of the vanishing sets of P1 and P2. Our curve analysis needs to compute
a plane projection of C❘. Subresultant sequences are a suitable tool to do it. For the
reader’s convenience, we recall their definition and relevant properties. For all the results
of this section, we refer to [10], for proofs.

Let ❆ be a integral domain. Let P =
∑p

i=0 aiX
i and Q =

∑q

i=0 biX
i be two polyno-

mials with coefficients in ❆. We shall always assume ap 6= 0, bq 6= 0 and p > q.
Let ❆[X]r be the set of polynomials in ❆[X] of degree not exceeding r, with the basis
(as an ❆-module) 1, X, . . . , Xr. If r < 0, we set ❆r = {0} by convention. We will identify
an element S = s0 + . . . + srX

r of ❆[X]r with the row vector (s0, . . . , sr).
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Let k be an integer such that 0 6 k 6 q, and let Ψk: ❆[X]q−k−q × ❆[X]p−k−1 →
❆[X]q+p−k−1 be the ❆-linear map defined by Ψk(U, V ) = P U + Q V , with Mk(P,Q)
the (p + q − k)× (p + q − k) matrix of Ψk. As we write vectors as row vectors, we have:

Mk(P,Q) =




a0 b0

...
. . .

...
. . .

ap a0 bq b0

. . .
...

. . .
...

ap bq




That is M0(P,Q) is the classical Sylvester matrix associated to P,Q. To be coherent with
the degree of polynomials, we will attach index i − 1 to the ith column of Mk(P,Q), so
the indices of the columns go from 0 to p + q − k − 1.

Definition 7.1. For j 6 p + q− k− 1 and 0 6 k 6 q, let srk,j be the determinant of the
submatrix of Mk(P,Q) formed by the last p + q− 2k− 1 columns, the column of index j
and all the (p+ q−2k) rows. The polynomial Srk(P,Q) = srk,0 + . . .+srk,k Xk is the kth

sub-gcd of P and Q, and its leading term srk,k (also denoted srk) is the kth subresultant
of P and Q. So, it follows that Sr0(P,Q) = sr0 is the usual resultant of P and Q.

Remark 7.2. (1) For k < j 6 p + q − k − 1, we have srk,j = 0, because it is the
determinant of a matrix with two equal columns.

(2) If q < p, we have Srq = (bq)
p−q−1Q and srq = (bq)

p−q.

The following proposition justify the name of sub-gcd given to the polynomial Srk.

Proposition 7.3. Let d be the degree of the gcd of P an Q (d is defined because ❆ is
an integral domain, so we may compute the gcd over the quotient field of ❆). Let k be
an integer such that k 6 d.

(1) The following assertions are equivalent:
(a) k < d;
(b) Srk = 0;
(c) srk = 0.

(2) srd 6= 0 and Srd is the gcd of P and Q.

Theorem 7.4. Fundamental property of subresultants

The first polynomial Srk associated to P and Q with srk 6= 0 is the greatest common
divisor of P and Q.

Theorem 7.5. Specialization property of subresultants

Let P1, P2 ∈ ❆[Y, Z] and (Sri(Y,Z))i be their subresultant sequence with respect to Z.
Then for any α ∈ ❆ with: degZ(P (Y, Z)) = degZ(P (α,Z)); degZ(Q(Y, Z)) = degZ(Q(α,Z)),
(Sri(α,Z))i is the subresultant sequence of the polynomials P (α,Z) and Q(α,Z).
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