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ABSTRACT

Electric power companies are storing massive records such as results of inspection and main-
tenance through their daily operations. Although the massive records have been expecting to
utilize for efficiency improvement of the power grid operations and planning, applications of the
massive records have been limited in a small portion until now. The authors analyse 3.0 million
sets of inspection scores and 0.9 million cases of their measures (need follow-up observation, or
need repair or replacement) that have been actually stored in an electric power company.
Moreover, based on the analysis results, a decision support model is constructed for judging
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maintenance necessity (need repair or replacement) in response to the inspection scores.
A decision tree analysis, which represents its decisions and decision-making process visually
and explicitly, is applied in the process. Usefulness of the authors’ proposal is verified through

numerical simulations and discussions on their results.

1. Introduction

Owing to the rapid growth in technologies of measure-
ment, monitoring and communication, quantities of
information, which have been gathered by several mea-
surement systems, are increasing dramatically in var-
ious fields. If the massive data is utilized effectively, we
can expect several benefits by the resulting improve-
ment of our social efficiency [1,2]. It also can be
applied to the electric power field [3-5]. For example,
power grid operators have been making inspection and
maintenance for electrical components to sustain the
stable operations of power grids. The sets of inspection
scores have been stored in databases as the inspection
record, and also utilized during the decision-making
process whether the electrical components require to
be taken measures or not to keep their functions
appropriately. Meanwhile, the judgement results (mea-
sures for the inspection), such as Need follow-up
observation or Need repair or replacement, described
and stored as the maintenance record. These records
are not only referred in expansion planning of the
power grid equipment but also expected to apply for
improving operational efficiency and saving operators’
labour. However, since quantities of the inspection and
the maintenance records are indeed large, it has been
extremely difficult to apply them for the power grid

operations and planning effectively relying on knowl-
edge and experience of the operators only. Actually,
applications of the massive records are limited in
a small portion of the electric power fields yet [6,7].
That is, there is still plenty room for discussion on how
to utilize the massive records, and what kinds of tech-
niques are suitable for analysing and/or utilizing them.

The authors focus on a decision tree analysis, and
propose a support method of maintenance decision for
electrical components in response to their inspection
scores. The decision tree analysis, which is well known
as one of machine learning techniques, represents its
decisions and decision-making process visually and
explicitly [8], and this is the strongest reason why the
authors apply it to the maintenance decision support.
By using the decision tree analysis, historical datasets of
the inspection scores and their measures are analysed
in the learning process. Subsequently, a tree-like deci-
sion model is constructed as result of the learning
process. In accordance with description of the main-
tenance record, the constructed tree model automati-
cally judges maintenance necessity of the target
component (need follow-up observation, or need repair
or replacement) when a set of inspection scores are
newly input. Moreover, with referring to the con-
structed decision tree, we can comprehend factors
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that have influence on the judgement. Numerical simu-
lation results for 3.0 million sets of the inspection
scores and 0.9 million cases of their measures, which
were actually stored in the database of an electric
power company, are introduced. Here, the target elec-
trical components are specified into electric poles, pole
transformers and switchgears in power distribution
networks. This is because these components have larger
shares in the electrical components of Japanese power
grids than those of the others.

2. Maintenance decision support

2.1 Overview of proposed decision support
method

In a machine learning community, prediction methods
are normally referred to supervised learning techniques
[9,10]. The supervised learning technique attempts to
discover the relationship between input and output
datasets, and the discovered relationship is represented
in a structure. Representative techniques include artifi-
cial neural networks (ANNs), support vector machines
(SVMs) and decision trees [11,12]. The NN and the
SVM are often regarded as complicated techniques
since the constructed models are difficult to understand
without knowledge of their algorithm. On the other
hand, the decision tree has distinctive feature that
represents its learning result visually, and therefore
their judgement criteria are easily understandable. For
these reasons, the authors apply the decision tree to
treat the target massive records in this paper.

There are several decision tree analysis. Iterative
Dichotomiser 3 (ID3), C4.5, and Classification and
Regression Tree (CART) are their typical examples
[13]. In this paper, the CART algorithm, which is one
of the most popular tools for non-parametric decision
tree learning, is selected in the learning process. The
CART algorithm makes decision trees to minimize
entropy, which expresses randomness in the informa-
tion, or Gini coefficient. Now, the Gini coefficients is
emphasized as the criterion in the CART algorithm.
The Gini coefficient evaluates the inequality among
values of a frequency distribution. If the Gini coeffi-
cient becomes zero, all values are perfectly equal. In
contrast, a Gini coefficient of 1 (or 100%) expresses
maximal inequality among the values. General defini-
tion of the Gini coeflicient is defined as

Gini =1 — Z],Cp(ﬂt)z (1)

where t is the node number;C is the number of classes;
and p(j/t) is the probability density function.

By using the Gini coeflicients, the CART algorithm
constructs a decision tree to split one node into two
child nodes repeatedly. Its constructing process can be
classified into the following two steps: one is the tree
growth and another is the branch pruning. In the
former, a creating tree model involves selected input
data and split points on each score (growth) until
satisfying the convergence criteria. In contrast, the
latter integrates verbose paths (pruning) until the
Gini coefficient becomes sufficiently small.

2.2 Decision tree-based method

The proposed decision support method judges main-
tenance necessity of the target electrical component
(need repair or replacement, or not) automatically in
response to the inspection scores. The following shows
its procedure.

Step 1 Correlate the inspection and the maintenance
records in each component.

Step 2 Learn relationship between the historical
inspection scores and its maintenance
necessity.

Step 3 Construct a decision tree in accordance with
the tree growth and the branch pruning
steps.

Step 4 Judge the maintenance necessity in response
to input data (a set of unknown inspection
scores).

Step 1 is pre-processing for the learning process of
the decision tree analysis. By using the ID codes for
target electrical component, the sets of inspection
scores are correlated with the measures for the inspec-
tion as input datasets for the learning process. In Step 2
and 3, the CART algorithm analyses the relationship
between the input datasets. Specifically, useful informa-
tion such as rules, knowledge or judgement criteria on
the maintenance decision are extracted from the rela-
tionship of input datasets, and the CART algorithm
constructs the decision tree in Step 3 relying on the
extracted information. Finally, the maintenance neces-
sity is judged by the constructed decision tree when the
set of inspection score of target component are newly
input. Figure 1 shows a conceptual illustration of deci-
sion tree construction.

3. Numerical conditions
3.1 Targeted inspection and maintenance records

The power grid operators have been checking and
scoring conditions of the electrical components, and
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EP26<0.5
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Figure 1. An example of a part of decision tree model.

deciding measures for the components with referring
to the inspection scores. These results have been stored
in the database as inspection record and the mainte-
nance one, respectively. The target inspection record of
this paper has the following information: (1) Inspection
date, (2) ID code of the target component, (3)
Specifications, and (4) Set of inspection scores (each
component has 40 inspection indexes, however how
many indexes are available is depending on type of
the target component). In the inspection scores, the
lower value means the better condition. If all scores
are zero, the target component does not have any
trouble on its condition. On the other hand, the mea-
sures for inspection described in the maintenance
record can be roughly classified into three types:
‘Need follow-up observation’, ‘Need repair’ and ‘Need
replacement’. Here, the authors aggregate the types of
‘Need repair’ and ‘Need replacement’ as the type of
‘Need maintenance’.

Table 1 summarizes the inspection and the main-
tenance records. The inspection data is the result of
2 years inspection, and the maintenance data is the
result of 10 years operations. In Table 1, a portion of

No

: Node

: Leaf

: Branch

EP: Inspection item (electric pole)

X : Attribute of node and leaf
(O:unnessesary, 1:necessary)

Y : Contentratio (how many sets of input
datasets reach the question)

Z : Rate of results to all datasets

the records including any missing or overlapping
were already removed. As the result of data proces-
sing, 1,835,485 sets of the inspection scores (electric
pole: 1,374,587; pole transformer: 386,533; switch-
gear: 74,365) and 8,079 samples of the maintenance
requirement (electric pole: 3,209; pole transformer:
2,464; switchgear: 2,406) are available in the numer-
ical simulations.

3.2 Outline of numerical simulations

The authors use the records of inspection and main-
tenance summarized in Table 1, which were actually
stored in an electric power company. In Table 1, 95%
datasets are used as the learning data, and the remain-
ing 5% datasets are used for evaluating performance of
the decision tree. In this paper, the authors construct
two types of decision tree: one is individual decision
tree using the learning datasets in each area, and
another is the decision tree for whole area. Under
these conditions, the authors examine the following
three prediction accuracy.

Table 1. Available inspection and maintenance records in each area.

Electric pole Pole transformer Switchgear

Area No need Need No need Need No need Need

code maintenance maintenance Total maintenance maintenance Total maintenance maintenance Total

1 164,886 342 165,228 55,720 131 55,851 13,242 679 13,921
2 189,427 753 190,180 76,335 256 76,591 13,581 200 13,781
3 205,263 817 206,080 54,435 1079 55,514 9,477 431 9,908
4 185,491 482 185,973 44,285 675 44,960 10,309 155 10,464
5 110,320 226 110,546 34,348 121 34,469 4,472 159 4,631

6 150,931 52 150,983 33,393 46 33,439 5,991 73 6,064
7 144,747 82 144,829 32,831 57 32,898 5,833 407 6,240
8 220,313 455 220,768 52,712 929 52,811 9,054 302 9,356
Total 1,371,378 3,209 1,374,587 384,069 2,464 386,533 71,959 2,406 74,365
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Case 1: Inspection scores for the learning process,

which were used to construct the decision

tree.

Individual inspection scores for evaluating

performance of the decision tree in each

area (Area 1-8).

Whole inspection scores for evaluating the

performance of the decision tree.
Parameters for the CART algorithm are set by trial

and error.

Case 2:

Case 3:

4. Results and discussions
4.1 Results of electric pole

In case of the electric poles, 33 inspection indexes
(defined as EP 1-33) are available. Table 2 summarizes
the learning and the evaluation datasets. In Table 2,
1,302,801 sets of inspection scores and 3,057 samples of
the maintenance requirement were used for the learn-
ing datasets. On the other hand, 68,577 sets of inspec-
tion scores and 152 samples of the maintenance
requirement were regarded as unknown data, and

Table 2. Learning data and evaluation data for electric pole.
Learning data

Evaluation data

Area No need Need main- No need Need main-
code maintenance tenance maintenance tenance
1 156,640 327 8,246 15

2 179,953 718 9,474 35

3 194,999 777 10,264 40

4 176,213 461 9,278 21

5 104,804 215 5,516 1

6 143,387 47 7,544 5
7 137,507 81 7,240 1

8 209,298 431 11,015 24
Total 1,302,801 3,057 68,577 152

used for evaluating performance of the decision tree.
The decision tree for electric pole using the whole
datasets (Areas 1-8) is illustrated in Figure 2, and
Table 3 shows its numerical results.

As shown in Figure 2, the decision tree selected
conditions, ‘EP 2 < 0.5’, ‘EP 8 < 0.5, ‘EP 18 < 0.5,
‘EP 14 < 0.5 and ‘EP 24 < 0.5, as the judgment
criteria. If the inspection results satisfied these con-
ditions, the proposed method judged that the target
electrical component was requiring its repair or
replacement. This trend was almost same in every
cases. In Table 3, we can confirm differences in the
accuracy of each area, however all values of overall
accuracy exceeded 80% (minimum accuracy: 80.9%
in Area 2 of Case 1; Maximum accuracy: 99.2% in
Area 7 of Cases 1 and 2), and therefore the authors
concluded that the proposed method functioned very
well.

4.2 Results of pole transformer

In case of the pole transformer, 9 inspection indexes
(defined as PT 1-9) are available. Table 4 summarizes
the learning and the evaluation datasets. In Table 4,
364,843 sets of inspection scores and 2,345 samples of
the maintenance requirement were used for the learn-
ing datasets. Meanwhile hand, 19,206 sets of inspection
scores and 119 samples of the maintenance require-
ment were regarded as unknown data, and used for
evaluating performance of the decision tree. The deci-
sion tree for pole transformer using the whole datasets
(Areas 1-8) is illustrated in Figure 3, and Table 4 shows
its numerical results.

As shown in Figure 3, the decision tree selected con-
ditions, PT 4 < 0.5, PT3 < 1.5, PT9<0.5, PT2<0.5,

0
0.50

0 00%
EP2 < 0.5-n0}—
96%

0

EP8 <0.5
) 959%

0.28 P18 < 0.5
95%

0.24

EP14<0.5

0 5
0.18 EP25<0.5
0

0
0.16
PS <0.5
81% 0
P1<0.5/0. 39

EP1 >‘1 5

"/

Figure 2. Decision tree (electric pole, all area).

EP26 < 0.5 0.39

o %

033 P28 <1.5
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0%

1
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Table 3. Results of electric pole.

Accuracy for Case 1

Accuracy for Case 2

Accuracy for Case 3

Area No need Need No need Need No need Need

code maintenance maintenance  Overall maintenance maintenance  Overall maintenance maintenance  Overall
1 89.7 79.8 89.7 89.2 733 89.1 92.5 57.2 92.4
2 80.9 80.1 80.9 81.5 7.4 81.5 88.5 52.0 88.4
3 95.8 82.2 95.8 95.8 85.0 95.7 88.2 81.0 88.2
4 94.7 83.5 94.7 94.5 85.7 94.5 94.0 73.0 93.9
5 96.5 91.6 96.5 96.5 81.8 96.4 95.9 526 95.8
6 99.1 80.9 99.0 98.9 80.0 98.8 97.5 441 97.4
7 99.2 75.3 99.2 99.2 0.0 99.2 97.5 52.0 97.4
8 95.8 85.6 95.8 95.8 70.8 95.7 94.4 57.9 94.3
Whole 87.8 83.0 87.8 87.7 81.6 87.7

Table 4. Learning data and evaluation data for pole
transformer.

Learning data Evaluation data

Area No need Need main- No need Need main-
code maintenance tenance maintenance tenance
1 52,936 123 2,784 8
2 72,518 243 3,817 13
3 51,710 1,029 2,725 50
4 42,081 631 2,204 44
5 32,626 120 1,722 1

6 31,721 46 1,672 0
7 31,197 56 1,644 1

8 50,074 97 2,638 2
Total 364,863 2,345 19,206 119

‘PT 5 < 0.5 and ‘PT 8 < 0.5, as the judgment criteria. If
the inspection results satisfied these conditions, the pro-
posed method judged that the target electrical component
was requiring its repair or replacement. In addition, it was
confirmed that every cases had similar tendency. From
Table 5, there are differences in the accuracy of each area,
however all values of overall accuracy were 85% or higher
(Minimum accuracy: 86.5% in Area 3 of Case 3;
Maximum accuracy: 98.2% in Area 5 of Case 2) like the
results of electric pole.

4.3 Result of switchgear

In case of the switchgear, 9 inspection indexes
(defined as SW 1-SW 9) are available. Table 6
summarizes the learning and the evaluation data-
sets. In Table 6, 68,357 sets of inspection scores and
2,290 samples of the maintenance requirement were
used for the learning datasets. On the other hand,
3,602 sets of inspection scores and 116 samples of
the maintenance requirement were regarded as
unknown data, and used for evaluating performance
of the decision tree. The decision tree for switchgear
using the whole datasets (Areas 1-8) is illustrated in
Figure 4, and Table 7 shows its numerical results.
As shown in Figure 4, the decision tree is a little
more complicated as compared to those of the elec-
tric pole and the pole transformer. Actually, in
Table 7, accuracy of the maintenance necessity
totally became lower. There are several possibilities
in the result, such as insufficiency of inspection
indexes. However, these will be discussed in future
works since accuracy in the unnecessary cases and
values of overall accuracy were sufficiently high

1

0.50
0 00%
PT4 < 0.5{no}——
0 91%
0.25 PT3 <1.5——
0 88%
0.22 PT9 < 0.5—
88%
@ PT2<0.5
0 87%
0.20 PT5<0.5
86%
PT8 < 0.5
il 1 1 1 1 1
0.87 0.75 0.80 0.87 0.84 0.87
0% 1% 1% 1% 3% %

Figure 3. Decision tree (pole transformer, all area).
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Table 5. Results for pole transformer.

Accuracy for Case 1

Accuracy for Case 2

Accuracy for Case 3

Area No need Need No need Need No need Need

code maintenance maintenance  Overall maintenance maintenance  Overall maintenance maintenance  Overall
1 89.7 79.8 89.7 89.2 733 89.1 92.5 57.2 92.4
2 80.9 80.1 80.9 81.5 7.4 81.5 88.5 52.0 88.4
3 95.8 82.2 95.8 95.8 85.0 95.7 88.2 81.0 88.2
4 94.7 83.5 94.7 94.5 85.7 94.5 94.0 73.0 93.9
5 96.5 91.6 96.5 96.5 81.8 96.4 95.9 526 95.8
6 99.1 80.9 99.0 98.9 80.0 98.8 97.5 441 97.4
7 99.2 75.3 99.2 99.2 0.0 99.2 97.5 52.0 97.4
8 95.8 85.6 95.8 95.8 70.8 95.7 94.4 57.9 94.3
Whole 87.8 83.0 87.8 RS 87.7 81.6 87.7

Table 6. Learning data and evaluation data for switchgear.
Learning data

Evaluation data

Area No need Need main- No need Need main-
code maintenance tenance maintenance tenance
1 12,578 647 664 32
2 12,900 192 681 8
3 9,000 413 477 18
4 9,795 146 514 9
5 4,251 148 221 11

6 5,691 70 300 3
7 5,538 390 295 17
8 8,604 284 450 18
Total 68,357 2,290 3,602 116

(minimum accuracy: 77.1% in Area 8 of Case 2;
Maximum accuracy: 96.2% in Areas 2 and 6 of
Case 1).

5. Conclusions

This paper presented a decision support method for
judging maintenance necessity of power grid com-
ponents in response to the inspection scores, as an
application of the massive records for the electric

power fields. Since decision tree analysis, which is
well known as one of the machine learning techni-
ques, can be used to visually and explicitly represent
decisions and decision-making, the author selected
this learning methods.

The proposed method was evaluated using
1,835,485 sets of the inspection scores (electric
pole: 1,374,587; pole transformer: 386,533; switch-
gear: 74,365) and 8,079 samples of the maintenance
requirement (electric pole: 3,209; pole transformer:
2,464; switchgear: 2,406). In the learning process,
95% datasets are used as the learning data, and the
remaining 5% datasets are used for evaluating per-
formance of the decision tree. As the results of
numerical simulations, the proposed method has
approximately 80% or higher accuracy in the elec-
tric poles and the pole transformers. However, in
the case of switchgear, accuracy in the necessary
cases became lower than those of the electric poles
and the pole transformers. In future works, the
authors will analyse its causes in more detail.

0
0.50
0 00%
0.43 (yes}-SW4 < 1.5-{no}———
0 89% 1
0.42 SW3<0.5 0.70
0 6% 0 3%
0.41 SW7<1.5 0.34 SW4 >= 0.5—
0 85% 0%
0.41 SW5<1.5 SW1<0.5
0 85%
0.40 SW6 < 0.5
85% 0
SW9 >= 0 5 0.41
4°/
0 40 SW2 < 0.5
84%

W8<2
040
84%

Figure 4. Decision tree (switchgear, all area).

1 1
0.75 0.80
Y %

1 1 1
0.87 0.72 0.75
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Table 7. Results for switchgear.

Accuracy for Case 1

Accuracy for Case 2

Accuracy for Case 3

Area No need Need No need Need No need Need

code maintenance maintenance  Overall maintenance maintenance  Overall maintenance maintenance  Overall
1 93.9 16.8 90.1 94.7 9.4 90.8 924 216 90.2
2 94.1 59.4 96.2 93.2 37.5 92.6 96.2 216 93.9
3 89.7 544 88.2 90.8 27.8 88.5 85.0 39.7 83.6
4 88.0 67.1 87.6 89.3 444 88.5 86.6 345 84.9
5 953 264 93.0 95.0 273 91.8 923 17.2 89.9
6 97.1 20.0 96.2 96.0 333 95.4 90.7 241 88.6
7 85.5 374 82.4 85.4 41.2 83.0 89.0 31.9 87.2
8 77.7 70.8 77.5 771 77.8 771 85.6 40.5 84.2
Whole 85.3 42.4 83.9 85.5 40.5 84.0
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