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We evaluate the fairness of a rule allocating among agents with equal rights by computing their utility for
a hypothetical worst-case share, which only depends on their own valuation and the number of agents. For
indivisible goods, Budish proposed the maximin share: the least utility of a bundle in the best partition of
the objects; unfortunately maximin share is not always satisfiable. Earlier, Hill proposed the worst maximin
share over all utilities with the same largest possible single-object value. More conservative than maximin
share, it is guaranteed to be satisfiable for any possible profile of utilities and its computation is elementary,
whereas it is NP-hard to compute maximin share. We apply Hill’s approach to the allocation of indivisible
bads (objects with disutilities) and compute in closed form the worst-case minimax share for a given value
of the worst single bad. We show that the worst-case minimax share is close to the original minimax share
and that its monotonic closure is the best guaranteed share for all allocation instances with a common upper
bound on the value of the worst single bad.
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1 Introduction

The task is to fairly allocate a given pile of indivisible objects among agents with equal rights but
different preferences. Since the very beginning of the fair division literature [25], allocation rules
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have been evaluated in part by the worst-case utility they guarantee to each participant over all
possible utility profiles of the other agents. The higher the guaranteed utility, the safer it is for an
agent clueless about the others’ utilities and actions to participate in the allocation process defined
by the rule. To evaluate the guaranteed utility, the literature normally introduces a well-designed
share that is a function depending solely on each agent herself and the number of other agents (but
not on the particulars of the agents), and checks if there are allocation rules that can guarantee
every agent her share for any possible profile of utilities.

For example, when the objects are divisible and desirable (i.e., goods) and utilities are additive, the
proportional share 1

n
·vi (M), whereM is the set of goods,n is the number of agents, and i is a generic

agent with utility functionvi , can be guaranteed [12]. In other words, for any profile of utilitiesvi ’s,
there always exists an allocation such that every agent’s utility is at least her proportional share.
Moreover, proportional share is indeed the best guaranteed utility, considering the case when all
agents have identical preferences. But in all the important practical contexts where the objects are
indivisible while utilities remain additive, the search for maximal guarantees (those that cannot be
improved over the entire domain of utilities) cannot be that simple. The difficulty is obvious when
we consider the “one diamond and several worthless rocks” example: unless we throw away the
diamond, all agents but one end up with a negligible fraction of vi (M).

To capture exactly the diamond effect when indivisible goods are distributed, the concept
of maximin share [10] has been intensely studied over the past decade [3, 18, 19]. An agent’s
maximin share is motivated by an imaginary divide-and-choose experiment: the agent gets the
chance to partition the objects into n bundles but is the last one to choose one bundle. Then,
the agent’s maximin share is the utility of her worst bundle in the best n-partition of the objects.
Maximin share bears some disadvantages. On one hand, the definition is not trivial and computing
its value involves solving an NP-hard problem [26]. On the other hand, in some rare cases, the
maximin share cannot be guaranteed [24]—that is, there exist profiles of utilities that no matter
how the objects are allocated to the agents, at least one agent’s utility is smaller that her maximin
share. So far, the best-known approximation is that a ( 34 +

3
3836 ) fraction of maximin share can be

guaranteed [1] and the allocation guaranteeing 3
4 -maximin share can be computed in polynomial

time [14].
Back in the 1980s, Hill [17] also investigated how the indivisibility of the objects affects the

worst-case utility of agents by restricting attention to additive utility functionsv such thatv(M) =
1 (without loss of generality) and the most valuable object of v is worth α , 0 < α < 1; we write
V(α) for this subdomain of additive valuations. Hill proposed to study the worst-case maximin
share among all valuations inV(α), which is referred to as the Hill’s share throughout this article.
Hill [17] computed for every n ≥ 2 a functionVn : [0, 1] → [0, 1

n
], which lower-bounds Hill’s share.

By the definition, for any α ∈ [0, 1], Vn(α) is also a lower bound on the maximin share of every
utility inV(α). Depending on α ,Vn(α) may or may not improve upon the ( 34 +

3
3836 )-approximate

maximin share, but its great advantage is that whether a given allocation meets Hill’s share for a
given utility profile is immediately verifiable. Furthermore, Hill proved that if every agent’s utility
is inV(α), it is always possible to simultaneously give each agent a utility of at least Vn(α)—that
is, Vn(·) can always be guaranteed.Markakis and Psomas [22] proved a stronger result: the share
Vn(αi ) where maxe ∈M vi (e) = αi is a bona fide guarantee over the full domain of additive and non-
negative utilities. Moreover, an allocation ensuring the Hill’s share for all agents can be computed
in polynomial time. Gourvès et al. [16] found that Vn(α) is not the tight characterisation of Hill’s
share and proved a tighter function. An interesting fact is that the tight function is not monotone
in α , and its exact computation is still open.

All the aforementioned work, as well as the majority of fair division literature, focuses on the
allocation of goods, and the mirror problem of bads (undesirable objects like chores, liabilities
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Fig. 1. Hill’s share Δ⊕n (α) when n = 2 and 3 and m
is not restricted. The parameter k categorises the

interval to which α belongs.

Fig. 2. The ratio between the upper and lower bounds

of the minimax share of valuations in V(α). Note that

13/11 is the state-of-the-art approximation guarantee

known to be achievable for minimax share.

when a partnership is dissolved, etc.; see [6, 18, 20]) is not as well understood as that of goods,
which motivates the current work.

1.1 Our Problem and Results

We apply Hill’s approach to the allocation of indivisible bads and prove a set of results parallel
to those just mentioned. The diamond effect now becomes the “chore from hell” effect where the
disutility is concentrated in a single bad, and nowV(α) collects all disutility functions where the
disutility/cost of the worst bad equals α , maintaining the normalisation v(M) = 1.

Our first result for bads resembles those just mentioned for goods and, in addition, the
connection between Hill’s share and minimax share (the largest disutility of a bundle in the

best partition of the bads). To be more precise, we compute first the tight characterisation of
Hill’s share, refined to problems with a given number m of bads—that is, the exact upper bound
Δ⊕n (α ;m) of the minimax share in the domain V(α ;m), where V(α ;m) contains the valuations
overm objects with the largest disutility of an object being α . This result is stated in Theorem 3.1.
If m is not restricted (i.e., V(α) =

⋃
mV(α ;m) and Δ⊕n (α) = maxm Δ⊕n (α ;m)), we illustrate the

function Δ⊕n (α) for n = 2, 3 in Figure 1 where k categorises the interval to which α belongs. Just
like Gourvès et al. [16] observed for the problem of goods, this function is not monotone in α . In
passing, we tighten the bounds proposed by Hill [17] and Gourvès et al. [16] for the worst-case
maximin share in the two-agent problem of goods; see Remark 1.

Compared to the minimax share, Hill’s share Δ⊕n (α ;m) is immediately verifiable, whereas decid-
ing whether (a multiple of) the minimax share is met at a given allocation involves solving an NP-
hard problem. Moreover, the function α → Δ⊕n (α ;m) relating the guaranteed share to the disutility
of the worst bad (relative to total disutility) is a transparent hard design constraint of which all par-
ticipants should be aware. Although Δ⊕n (α ;m) seems more conservative than the minimax share of
a specific disutility function, we argue that Δ⊕n (α ;m) is approximately as effective as minimax share.
First, Δ⊕n (α ;m) is at most twice the minimax share of every disutility inV(α ;m). We plot the exact
ratio of Δ⊕n (α) and the best minimax share of disutilities inV(α) for every α in Figure 2 when n =
2, 10 and 100. As we can see, although the largest ratio may reach 2 (only happens when n is large),
for most values ofα , the ratio is not far from 1. Besides the preceding worst-case comparison, in Sec-
tion 5 we conduct numerical experiments with synthetic and real-world data to illustrate the real
distances between Hill’s share and minimax share. The experiments show that Hill’s share is actu-
ally very close to (e.g., within 1.1 fraction of) the minimax share for the majority of the instances.
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Finally, we obtain the second main result of this work—a counterpart for bads of the worst-
case guaranteed utility for goods improved by Markakis and Psomas [22]. LettingVn(α ;m) denote
the monotonic closure of Δ⊕n (α ;m) with respect to α , Theorem 4.1 shows that Vn(αi ;m) can be
guaranteed over the full domain of additive disutilities withm bads. We also provide an algorithm
to implement this guarantee in polynomial time. To the best of our knowledge, no other similarly
simple guarantee for allocating bads has been identified.

1.2 More Relevant Literature

The properties known as proportionality up to one object (Prop1) and up to any object (PropX) offer
different relaxations of the equal share 1

n
vi (M) when the objects (goods or bads) are indivisible

[5, 23]. These relaxations require the equal share to be satisfiable if at most one object is added or
removed. Like the Hill’s share for goods or bads we discuss here, they are immediately verifiable,
but unlike these, they are not always preserved by Pareto improvements, a serious limitation of
their implementation. They also do not provide agents with any guaranteed utility or disutility.
The same remark applies to the popular ex-post notions/criteria envy-free up to one item/object,
or up to any item/object [10, 11, 21]. Another easily verifiable test is the truncated proportional
share bound of Babaioff et al. [7], but unlike Hill’s share, it improves upon the maximin share for
goods, so it cannot be guaranteed either.

Intuitively, the allocation of undesirable bads is the mirror image of that of goods. However,
adapting the results is not a simple matter of switching signs. For instance, when objects are
indivisible, the approximations Prop1 and PropX behave quite differently for goods and bads
[5, 23].1 Our results confirm this general observation: in our case, the general allure of the
critical functions Δ⊕n is the same for goods and for bads, but the details and the proofs are
quite different. We refer the readers to recent surveys by Moulin [23] and Amanatidis et al. [2]
for a more detailed discussion on the fair division of indivisible goods and bads. In particular,
Amanatidis et al. [2] and Aziz et al. [4] explicitly listed computing Hill’s share for bads as an open
problem.

2 Preliminaries

For any positive integer k , let [k] = {1, . . . ,k}. We consider allocating m indivisible objects,
denoted by M = [m], among n agents, and letAdd(m) be the domain containing the non-negative
additive disutility functions v on object set [m], normalised without loss of generality, as
follows:

v(S) =
∑
e ∈S

v({e}) for all S ⊆ M and v(M) = 1.

Following the convention of the literature, disutility functions are also called valuations. For
simplicity, we write v(e) to represent v({e}) for each e ∈ M . For any α ∈ [0, 1], the subdomain
V(α ;m) ⊆ Add(m) is defined by the property maxe ∈M v(e) = α and U(α ;m) ⊆ Add(m) by
v(e) ≤ α for all e ∈ M . According to the definitions, V(α ;m) ⊆ U(α ;m) for any valid pair of α
and m. Note that since functions are all normalised, V(α ;m) is only well defined if α ×m ≥ 1,
equivalently form ≥ m∗ = 	

1
α

 (the upper integer part of 1

α
).

An allocation, denoted by A = (A1, . . . ,An), is a partition of M into n disjoint subsets of objects;
note that some of these subsets can be empty. The set of all allocations is denoted byXn(M). When
there are n agents, MMS (minimax share) with respect to the disutility v ∈ Add(m) is defined as

MMSn(v) = min
A∈Xn (M )

max
1≤�≤n

v(A�).

1See also the work of Bogomolnaia et al. [8] for the competitive equilibrium from equal incomes when objects are divisible.
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Hereafter, we use minimax share and MMS interchangeably. We next define the upper and lower
bounds of MMS among all disutilities inV(α ;m):

Δ⊕n (α ;m) = max
v ∈V(α ;m)

MMSn(v) and

Δ�n (α ;m) = min
v ∈V(α ;m)

MMSn(v).

The upper bound Δ⊕n (α ;m) (i.e., the worst-case MMS) is indeed Hill’s share, and we use these terms
interchangeably in this article. We remark thatV(α ;m) is a compact set and all valuation functions
are continuous, so Δ⊕n (α ;m) can be achieved by some v∗ ∈ V(α ;m).

It is not difficult to obtain the following formula of Δ�n (α ;m).

Lemma 2.1. Given 0 < α < 1, n ≥ 2, andm ≥ 	 1
α

, Δ�n (α ;m) is as follows:

Δ�n (α ;m) =

⎧⎪⎪⎨⎪⎪⎩
α , if α > 1

n
,

1
n
, if α = 1

kn
, or 1

(k+1)n < α < 1
kn

andm ≥ kn + n

kα + 1−knα
m−kn

, if 1
(k+1)n < α < 1

kn
andm ≤ kn + n − 1

for some integer k ≥ 1.

Proof. For each case, we show that MMSn(v) ≥ Δ�n (α ;m) for any v ∈ V(α ;m), and design a
disutility function such that the MMS is exactly Δ�n (α ;m). By the definition ofV(α ;m), there exists
an object with disutilityα , thus MMSn(v) ≥ α for anyv ∈ V(α ;m). Moreover, whenα > 1/n, there
exists a disutility function such that the MMS is exactly α . Specifically, among them objects, there
are � 1

α
� objects with disutility α and one object with disutility (1 − � 1

α
� · α) < α (if 1 is indivisible

by α ). Each of the remaining objects (if any) has a disutility zero. MMSn(v1) = α follows from the
fact that there are at most n objects with positive disutility.

By the definition of minimax share, MMSn(v) ≥
1
n

, where the equality is achieved when the
total disutility of M can be evenly distributed among the n-partition. When 1/n is divisible by α
(i.e., α = 1

kn
for some positive integer k), or 1/n is not divisible by α (i.e., 1

(k+1)n < α < 1
kn

) and the
number of objectsm is at least kn+n, there exists a disutility function such that the MMS is exactly
1/n. For the former, the disutility function v2 contains 1/α = kn objects with disutility α . Clearly,
each bundle in the best n-partition contains k objects with disutility α and MMSn(v2) = 1/n. For
the latter, intuitively, the total disutility of M can also be evenly distributed by letting each bundle
contain � 1

nα
� = k objects with disutility α and one object with disutility 1

n
− kα < α . In total,

kn+n ≤ m objects are needed. Hence, the disutility functionv3 contains kn objects with disutility
α , n objects with disutility 1

n
− kα andm − kn − n objects with disutility 0, and MMSn(v3) = 1/n.

However, when 1/n is indivisible by α but the number of objectsm is limited to kn + n − 1, 1/n
cannot be achieved since some bundles in any n-partition contain no more than k objects, and
the disutilities of these bundles are at most kα < 1/n. For this case, we show that MMSn(v) ≥
kα + 1−knα

m−kn
for any v ∈ V(α ;m). Let x be the number of bundles in the n-partition that contain

no more than k objects, and it follows that x ≥ kn + n −m. Since the disutility of each of these
bundles is at most kα , the average disutility of the other bundles is at least

1 − kαx

n − x
≥

1 − (kn + n −m) · kα

m − kn
= kα +

1 − knα

m − kn
> kα

where the leftmost side is an increasing function of x since kα < 1/n, and the last inequality is
because m ≥ 	 1

α

 > kn. Therefore, the largest disutility of any n-partition is at least kα + 1−knα

m−kn
—

that is, MMSn(v) ≥ kα+ 1−knα
m−kn

for anyv ∈ V(α ;m). Letv4 contain kn objects with disutility α and

m−kn objects with disutility 1−knα
m−kn

< α . Clearly, the worst bundle of the best n-partition contains

k objects with disutility α and one object with disutility 1−knα
m−kn

, thus MMSn(v4) = kα +
1−knα
m−kn

. �
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Computing Δ⊕n (α ;m) is non-trivial, as shown in Section 3, but the following lemma presents
two simple properties.

Lemma 2.2. (1) Δ⊕n (α ;m) is weakly decreasing in n; (2) Δ⊕n (α ;m) is weakly increasing in m from

	 1
α

 to 	 2

α

 − 1 and constant thereafter.

Proof. That Δ⊕n (α ;m) decreases in n is clear by comparing the minimax share of an arbitrary
n-partition and the (n + 1)-partition obtained by adding one empty share. The monotonicity in m
(i.e., Δ⊕n (α ;m) ≤ Δ⊕n (α ;m+1)) is due to the fact that every disutility inV(α ;m) can be transformed
to one inV(α ;m + 1) by adding an object with disutility 0, without changing the minimax share.

We then show when m ≥ 	 2
α

 − 1, Δ⊕n (α ;m) ≥ Δ⊕n (α ;m + 1), thus Δ⊕n (α ;m) remains constant.

First, note that if Δ⊕n (α ;m+1) = α , then Δ⊕n (α ;m) = α as the largest disutility of a single object is α .
Then, we further assume Δ⊕n (α ;m+ 1) > α . Letv ∈ V(α ;m+ 1) be a disutility with MMSn(v) > α .
Note that the existence of such a v is guaranteed as Δ⊕n (α ;m + 1) > α . Let (A1, . . . ,An) be the
n-partition that gives MMS of v , and moreover, (A1, . . . ,An) minimises the number of bundles
achieving MMSn(v) among all n-partition yielding MMSn(v). Without loss of generality, assume
v(A1) ≥ v(A2) ≥ · · · ≥ v(An).

We next claim that, among bundles Ai ’s, there exists one bundle such that the total disutility
of two of its objects is no more than α . Denote by J = {j ∈ [n] | |Aj | ≥ 2}, and as v(A1) =

MMSn(v) > α and the largest disutility of a single object is α , we have J � ∅. For a contradiction,
assume that for any At with t ∈ J , the total disutility of any two objects is larger than α , which

means that v(At ) >
|At |

2 α . If every bundle contains at least two objects (i.e., J = [n]), then by
summing up the lower bounds over all bundles, 1 =

∑
j ∈[n]v(Aj ) >

α
2 · 	

2
α

 ≥ 1, a contradiction.

However, for the case of J � [n], we claim that for any j ∈ [n] \ J , it holds that v(Aj ) >
α
2 ; otherwise, reallocating the object with the least disutility from A1 to bundle Aj∗ where j∗ ∈
arg minj ∈[n]\J v(Aj ) violates the construction of (A1, . . . ,An). Then, again, upon summing up the
lower bounds over all bundles, 1 =

∑
j ∈[n]v(Aj ) >

α
2 · 	

2
α

 ≥ 1, a contradiction.

By the claim in the previous paragraph, there exists a bundleAi such that two objects e1, e2 ∈ Ai

satisfy v(e1) +v(e2) ≤ α . We derive a disutility v ′ ∈ V(α ;m) by merging e1 and e2 into one object
e , and show that MMSn(v) = MMSn(v

′). On one hand, let A′i = Ai \ {e1, e2} ∪ {e}, and since
(A1, . . . ,Ai−1,A

′
i ,Ai+1, . . . ,An) is an n-partition regardingv ′ with the largest disutility of a bundle

being MMSn(v), it follows that MMSn(v) ≥ MMSn(v
′). On the other hand, by decomposing e

into e1 and e2, we can convert any allocation regarding v ′ to an allocation regarding v without
changing the largest disutility, thus MMSn(v) ≤ MMSn(v

′).
Therefore, when m ≥ 	 2

α

 − 1, every disutility v with MMSn(v) > α can be transformed to a

disutilityv ′ with MMSn(v) = MMSn(v
′), which gives Δ⊕n (α ;m) ≥ Δ⊕n (α ;m+1). By combining the

monotonicity in m, Δ⊕n (α ;m) remains constant whenm ≥ 	 2
α

 − 1. �

By the second property in Lemma 2.2, and also following other works [16, 17, 22], we also
consider the case when m is not restricted. Let V(α) =

⋃
mV(α ,m) and U(α) =

⋃
mU(α ;m).

Accordingly, we have

Δ⊕n (α) = max
v ∈V(α )

MMSn(v) and

Δ�n (α) = min
v ∈V(α )

MMSn(v).

By Lemma 2.1, Δ�n (α) = max{α , 1/n}.
Hill’s share Δ⊕n (α ;m) (and Δ⊕n (α)) behave much like the MMS in the following senses. First,

for any v ∈ V(α ;m), there is an allocation (A1, . . . ,An) such that v(Ai ) ≤ Δ⊕n (α ;m) for all i . This
follows from the definition of MMS plus that Δ⊕n (α ;m) is an upper bound of MMS. Second, the max
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in the definition of Δ⊕n (α ;m) is achieved by some v∗ ∈ V(α ;m)—that is, Δ⊕n (α ;m) = MMSn(v
∗).

This is becauseV(α ;m) is a compact set and all the functions are continuous. Then we know that
for any allocation (B1, . . . ,Bn), there is some i such that v∗(Bi ) ≥ Δ⊕n (α ;m). Note that these two
facts have nothing to do with what the function Δ⊕n (α ;m) actually looks like, and they can be easily
adapted to Δ⊕n (α).

3 Characterising Hill’s Share

3.1 Main Result

We now characterise Hill’s share—that is, the exact upper bound of the minimax share values,
Δ⊕n (α ;m) and Δ⊕n (α). For any integers n ≥ 2 and k ≥ 0, define the following real intervals:

D(n,k) =

(
1

kn + n + 1
,

k + 2

n(k + 1)2 + k + 2

]
(1)

I (n,k) =

(
k + 2

n(k + 1)2 + k + 2
,

1

kn + 1

]
. (2)

It is not hard to check that all the intervals are well defined, non-overlapping, and
⋃

k≥0(D(n,k) ∪
I (n,k)) = (0, 1].

Our first main theorem gives the tight characterisation of Hill’s share with the parameterm.

Theorem 3.1. (i) General case: For any 0 < α < 1, n ≥ 2, andm ≥ 	 1
α

,

Δ⊕n (α ;m) =

⎧⎪⎪⎨⎪⎪⎩
k+2
k+1 ·

1−α
n
, if α ∈ D(n,k) andm ≥ kn + n + 1,

(k + 1)α , if α ∈ D(n,k) andm ≤ kn + n,
(k + 1)α , if α ∈ I (n,k)

(3)

for any integers n ≥ 2 and k ≥ 0 except n = 2 and simultaneously k = 1.

(ii) Special case: If n = 2 and k = 1, Δ⊕2 (
1
3 ; 3) = 2

3 , Δ⊕2 (α ; 4) = 2α for α ∈ [ 14 ,
1
3 ], and Δ⊕2 (α ; 5) is as

follows:

Δ⊕2 (α ; 5) =

{
3−3α

4 , if α ∈ ( 15 ,
3
11 ],

2α , if α ∈ ( 3
11 ,

1
3 ],

(4)

and form ≥ 6,

Δ⊕2 (α ;m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3−3α

4 , if α ∈ ( 15 ,
7
27 ]

α + 2−2α
5 , if α ∈ ( 7

27 ,
2
7 ]

2α , if α ∈ ( 27 ,
1
3 ].

(5)

Theorem 3.1 also implies the expression of Hill’s share when the number of objects is not re-
stricted, as shown in the following corollary.

Corollary 3.2. For any 0 < α < 1, n ≥ 2, Δ⊕n (α) = max
m≥	 1

α


Δ⊕n (α ;m). In other words,

Δ⊕n (α) =

{
k+2
k+1 ·

1−α
n
, if α ∈ D(n,k),

(k + 1)α , if α ∈ I (n,k)
(6)

for any integers n ≥ 2 and k ≥ 0 except n = 2 and simultaneously k = 1. If n = 2 and k = 1,

Δ⊕2 (α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3−3α

4 , if α ∈ ( 15 ,
7
27 ]

α + 2−2α
5 , if α ∈ ( 7

27 ,
2
7 ]

2α , if α ∈ ( 27 ,
1
3 ].

(7)
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Actually, Corollary 3.2 is a special case of Theorem 3.1 when m is sufficiently large (e.g., m ≥
	 2

α

 − 1 by Lemma 2.2). Recall that we illustrated Δ⊕2 (α) and Δ⊕3 (α) in Figure 1. We observe two

interesting and somewhat unintuitive facts about Theorem 3.1. First, Δ⊕n (·) is not monotone in
α , just like Gourvès et al. [16] observed for the problem with goods. To characterise Δ⊕n (α ;m),
we want to understand the worst-case disutility in V(α ;m), for which the objects can be hardly
partitioned into bundles with similar disutilities. Intuitively, when the single-object disutility gets
larger, it becomes harder to find such a balanced partition. However, this turns out to be imprecise.
Second, the case of n = 2 makes a difference from n ≥ 3. When n = 2 and k = 1, there are three
steps in Δ⊕n (·): the worst-case MMS has two increasing intervals with different slops following a
decreasing interval. For all the other values of n and k , there are two intervals with one decreasing
and the other increasing.

Remark 1. When n = 2 the problem of bads and that of goods are the same, since maximising
the minimum bundle by partitioning the objects into two bundles is equivalent to minimising the
maximum bundle. For n = 2, Gourvès et al. [16] provided a lower bound of the maximin share for
goods which is not tight. It can be verified that 1 − Δ⊕2 (α) is strictly larger than their bound when
α ∈ ( 15 ,

3
10 ) (Definition 2 in the work of Gourvès et al. [16]). Thus, as a byproduct, Corollary 3.2

improves the result in the work of Gourvès et al. [16] for goods with n = 2 by giving the tight
worst-case bound—that is,

min
v ∈V(α )

max
A∈X2(M )

min
1≤�≤2

v(A�) = 1 − Δ⊕2 (α).

In Remark 2, we show how to extend this result to two non-identical disutilities.

Before diving deep into proofs, we remark that the characterisation of Hill’s share for goods can
not be directly or trivially converted into the characterisation of Hill’s share for chores. In particu-
lar, the worst-case scenario of chores differs from that of goods and precisely identifying the exact
worst-case scenario for chores is quite challenging. Additionally, the up-to-date characterisation of
goods by Gourvès et al. [16] is not tight, whereas we here aim to establish a tight characterisation
for chores.

Roadmap for the Proof of Theorem 3.1. As we have discussed, after m reaches a certain
value (e.g., m ≥ 	 2

α

 − 1 by Lemma 2.2), Hill’s share does not increase anymore, and thus

Corollary 3.2 is a special case of Theorem 3.1 when m is sufficiently large. Therefore, we will
first prove Corollary 3.2. The proof is by contradiction arguments, and we begin with assuming
that there exists a disutility v ∈ V(α) with MMS larger than the expression in Corollary 3.2.
Then we consider the lexicographical MinMax allocation of v—that is, an allocation such that
the largest disutility of bundles is minimised over all allocations, and among these allocations the
second largest disutility is minimised, and so on. The lexicographical MinMax allocation ensures
that starting from this allocation, swapping a subset of one bundle with a subset of another
bundle should not improve the allocation. We then utilise such a property to derive the desired
contradiction. After proving Corollary 3.2, we use similar proof ideas and carefully discuss Hill’s
share whenm is not sufficiently large, which then completes the proof of Theorem 3.1. Our proofs
involve careful and detailed case distinctions and are deferred to the appendix.

4 Hill’s Share for Indivisible Bads

4.1 Main Result

In this section, we prove the counterpart result of the worst-case guaranteed disutility for
indivisible bads. We know from the work of Aziz et al. [6] and Feige et al. [13] that the minimax
share MMSn(vi ) cannot be guaranteed because at some profiles no allocation ensures every
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Fig. 3. The characterisation for heterogeneous agents.

agent’s disutility to be MMSn(vi ) or below. Thus, the guaranteed disutility is lower bounded by
the minimax share. In the following, we show that the monotonic closure of Δ⊕n serves as the best
guarantee in Hill’s model. Recall thatU(α ;m) contains all the disutility functions v(·) on objects
M such that maxe ∈M v(e) ≤ α , and U(α) =

⋃
mU(α ;m). For simplicity in the presentation and

analysis, we ignore the restriction of the number of objects m in this section, and the result can
be extended to the setting with parameterm using the same approach in Section 3. The definition
of U(α) is the same as in other works [16, 17, 22]. Note that U(α ′) ⊆ U(α) if α ′ ≤ α , and the
difference betweenV(α) andU(α) is that the disutilities inU(α) do not require that there must
be one object with disutility α . It is straightforward that the tight guaranteed disutility regarding
U(·) must be monotonically non-decreasing since any worst-case disutility in U(β) is also a
disutility inU(α) for β ≤ α . We write Vn the monotonic closure of Δ⊕n

Vn(α) = max
0≤β ≤α

Δ⊕n (β),

as illustrated in Figure 3 when n = 2, 3. In more detail, we have the following formula of Vn :

Vn(α) =

{
k+2

(k+1)n+1 , if α ∈ NI (n,k)

(k + 1)α , if α ∈ I (n,k)

where for any integer k ≥ 0,

NI (n,k) =

(
1

(k + 1)n + 1
,

k + 2

(k + 1)((k + 1)n + 1)

)
and

I (n,k) =

[
k + 2

(k + 1)((k + 1)n + 1)
,

1

kn + 1

]
.

By Theorem 3.1 and the construction of Vn(·), Vn(·) provides the tight bound of the worst-case
MMS regarding U(·). We further prove that Vn(·) is a guaranteed disutility, and moreover, an
allocation satisfying Vn(·) can be found in polynomial time.

Theorem 4.1. Given any 0 ≤ αi ≤ 1 and vi ∈ U(αi ) for i = 1, . . . ,n, there exists an allocation

(A1, . . . ,An) with

vi (Ai ) ≤ Vn(αi ) for all i = 1, . . . ,n

and such an allocation can be computed in polynomial time. Moreover, for any 0 ≤ α ≤ 1, there exists

{v ′i }
n
i=1 withv ′i ∈ U(α) for any i ∈ [n] such thatVn(α) is the best possible guarantee—that is, for any

allocation (B1, . . . ,Bn),

there exists i ∈ N such that v ′i (Bi ) ≥ Vn(α).
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The two key features of this guarantee are as follows: its computation is elementary, and it
does not depend on the number of bads to allocate. As far as we know, no other similarly simple
guarantee for the allocation of bads has been identified.

Remark 2. By Theorem 4.1, Vn(α) is the best guaranteed disutility for preferences inU(α), and
thus we get the tight counterpart result of Hill [17] for bads. However, it may not be the best in the
model of Gourvès et al. [16]—that is, for preferences in V(α). For example, when n = 2, we can
show that Δ⊕2 (maxe ∈M vi (e)) is a better guaranteed disutility in the later model. Given two disutility
functions v1 and v2, without loss of generality, suppose Δ⊕2 (maxe v1(e)) ≤ Δ⊕2 (maxe v2(e)). Then
we find the MinMax partition of v1 so that the disutilities of both bundles are no greater than
Δ⊕2 (maxe v1(e)) to agent 1. We ask agent 2 to choose a better bundle whose disutility must be
no greater than 1

2 and thus no greater than Δ⊕2 (maxe v2(e)) to agent 2. It is still open whether
Δ⊕n (maxe ∈M vi (e)) can be guaranteed or not when n ≥ 3 in the model of Gourvès et al. [16], which
is an interesting future research direction.

4.2 Proof of Theorem 4.1

To show that one can compute an allocation satisfying the required bound in Theorem 4.1, we
derive a variation of the moving-knife algorithm. When the objects are goods and divisible, Du-
bins and Spanier [12] proved that such an algorithm (also known as the Dubins-Spanier moving
knife algorithm) gives the optimal worst-case bound—that is, every agent gets value for at least
1
n

. Markakis and Psomas [22] further proved that a variation of this algorithm also guarantees
the optimal worst-case bound for indivisible goods. In a nutshell, towards proving Theorem 4.1,
we first use the reduction proved in other works [9, 18] to restrict our attention to the ordered
instances when agents have the same ranking over all objects, which significantly simplifies our
analysis. Then we show that using Vn(·) to set the parameters in the moving-knife algorithm al-
ways returns an allocation ensuring the bound in Theorem 4.1.

The following lemma says that it suffices to only focus on the ordered instances.

Lemma 4.2 ([9, 18]). Suppose there is an algorithm that takes any ordered instance as input, runs

in T (n,m) time and returns an allocation where each agent i’s disutility is at most Vn(αi ). Then, we

have an algorithm that takes any instance as input, runs in T (n,m) +O(nm logm) time and returns

an allocation with the same disutility guarantee.

Our approach is similar to that in the work of Markakis and Psomas [22], but the detailed proof
differs. Our algorithm runs in recursions. In each recursion, the algorithm allocates a bundle of
objects to one agent in a moving-knife fashion. Each time, each of the remaining agents moves
her “knife” one object towards the objects with smaller disutilities, until for every agent i the total
disutility of the objects before her “knife” is larger than Vn(αi ). After that, one of the last agents
(denoted by agent k) for whom the total utility of the objects before her knife is larger thanVn(αk )

receives the objects except the one right before her knife. If there remains only one agent who
has not received a bundle, she will get all the remaining objects. Otherwise, all the remaining
agents enter the next recursion with their disutility functions being normalised such that for each
of them the total disutility of the remaining objects is 1. The formal description of our algorithm
is presented in Algorithm 1.

Now, we are going to prove Theorem 4.1. Without loss of generality, let 1, . . . ,n be the order in
which agents receive bundles in Algorithm 1. Denote Ci = vi (A1) for every i ∈ N \ {1}, and the
following lemma gives a lower bound of Ci .

Lemma 4.3. For any agent i ∈ N \ {1} with αi ∈ NI (n,k) ∪ I (n,k) for some k ≥ 0, we have

Ci ≥
1 −Vn(αi )

n − 1
.
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ALGORITHM 1: Algorithm for heterogeneous disutilities

Require: An ordered instance with agents N , objects M and disutility functions {vi }i ∈N .
Ensure: An allocation A = {A1, . . . ,An } with vi (Ai ) ≤ Vn (αi ) for every i ∈ N .

1: Initialise Si = ∅ for every i ∈ N .
2: while there exists an agent j with vj (Sj ) ≤ Vn (α j ) do

3: for every i ∈ N do

4: Si ← Si ∪ {the object in M \ Si with the largest disutility for agent i (tie breaks arbitrarily)}.
5: end for

6: end while

7: Pick the agent t ∈ N with vt (St \ {ẽ}) ≤ Vn(αt ) where ẽ is the last object that t added into St (tie breaks
arbitrarily).

8: At ← St \ {ẽ}.
9: if |N | = 2 then

10: Allocate M \At to the remaining agent.
11: else

12: Construct a new disutility function v ′i for every i ∈ N \ {t} by setting v ′i (e) =
vi (e)

1−vi (At )
for every

e ∈ M \At .
13: Run Algorithm 1(N \ {t}, M \At , {v ′i }i ∈N \{t }).
14: end if

Proof. Denote by q the index such that
∑q

e=1vi (e) ≤ Vn(αi ) and
∑q+1

e=1 vi (e) > Vn(αi ), whose
existence is guaranteed since vi (M) > Vn(αi ). Since Vn(αi ) ≥ (k + 1)αi (this can be easily verified
from the definition of Vn(α) and can also be seen from Figure 3) and vi (e) ≤ αi for every e ∈

M , q ≥ k + 1. Otherwise,
∑q+1

e=1 vi (e) ≤ (k + 1)αi ≤ Vn(αi ), which contradicts the definition
of q. According to Algorithm 1, Ci ≥

∑q
e=1vi (e). Since only ordered instances are considered,

vi ({q + 1}) ≤ vi ({q}) ≤
Ci

k+1 , which gives

Ci +
Ci

k + 1
≥

q+1∑
e=1

vi (e) > Vn(αi ).

Therefore, Ci >
k+1
k+2 ·Vn(αi ). We consider the following two cases regarding the ranges of αi .

Case 1: αi ∈ I (n,k). In this case, k+2
(k+1)((k+1)n+1) ≤ αi ≤

1
kn+1 and Vn(αi ) = (k + 1)αi . Then,

Ci >
k + 1

k + 2
·Vn(α) ≥

1 −Vn(α)

n − 1
,

where the last inequality holds since αi ≥
k+2

(k+1)((k+1)n+1) .

Case 2: αi ∈ NI (n,k). In this case, Vn(αi ) =
k+2

(k+1)n+1 , which gives

Ci >
k + 1

k + 2
·Vn(α) =

1 −Vn(α)

n − 1
,

which completes the proof. �

Interestingly, the following lemma shows the connection between the ranges of αi and αi

1−
1−Vn (αi )

n−1

.

Lemma 4.4. For any αi ∈ NI (n,k) ∪ I (n,k) for some k ≥ 0, we have

αi

1 − 1−Vn (αi )
n−1

∈

{
I (n − 1,k), if αi ∈ I (n,k)
NI (n − 1,k), if αi ∈ NI (n,k).
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Proof. We consider the following two cases regarding the ranges of αi .

Case 1: αi ∈ I (n,k). In this case, k+2
(k+1)((k+1)n+1) ≤ αi ≤

1
kn+1 and Vn(αi ) = (k + 1)αi . Then, we

have
αi

1 − 1−Vn (αi )
n−1

=
(n − 1)αi

n − 2 + (k + 1)αi
≤

n − 1

(n − 2)(kn + 1) + k + 1
=

1

k(n − 1) + 1
,

where the inequality is because αi ≤
1

kn+1 . Besides,

αi

1 − 1−Vn (αi )
n−1

=
(n − 1)αi

n − 2 + (k + 1)αi
≥

(k + 2)(n − 1)

(k + 1)((n − 2)(kn + n + 1) + k + 2)

=
k + 2

(k + 1)((k + 1)(n − 1) + 1)
,

where the inequality is because αi ≥
k+2

(k+1)((k+1)n+1) .

Case 2: αi ∈ NI (n,k). In this case, 1
(k+1)n+1 < αi <

k+2
(k+1)((k+1)n+1) and Vn(αi ) =

k+2
(k+1)n+1 . Then,

we have
αi

1 − 1−Vn (αi )
n−1

=
((k + 1)n + 1)αi

(k + 1)(n − 1) + 1
<

k + 2

(k + 1)((k + 1)(n − 1) + 1)
,

where the inequality is because αi <
k+2

(k+1)((k+1)n+1) . Besides,

αi

1 − 1−Vn (αi )
n−1

=
((k + 1)n + 1)αi

(k + 1)(n − 1) + 1
>

1

(k + 1)(n − 1) + 1
,

where the inequality is because αi >
1

(k+1)n+1 . �

Proof of Theorem 4.1. We prove Theorem 4.1 by mathematical induction. When n = 2, it is
easy to see the correctness of Theorem 4.1 from Lemma 4.3 since v1(A1) ≤ V2(α1) and v2(A2) =

1 − v2(A1) ≤ 1 − (1 −V2(α2)) = V2(α2), We assume as our induction hypothesis that Theorem 4.1
holds for n − 1. Then we aim to prove the correctness for n.

From Algorithm 1, v1(A1) ≤ Vn(α1) clearly holds for agent 1. For any other agent i ∈ N \ {1},
denote α̃i = maxe ∈M\A1 v

′
i (e). We know from Algorithm 1 that α̃i ≤

αi

1−Ci
and from the induction

hypothesis that v ′i (Ai ) ≤ Vn−1(α̃i ), which together give

vi (Ai ) = (1 −Ci )v
′
i (Ai ) ≤ (1 −Ci )Vn−1(α̃i ) ≤ (1 −Ci )Vn−1

(
αi

1 −Ci

)
,

where the last inequality holds by recalling thatVn−1(α̃i ) is an non-decreasing function of α̃i . There-
fore, it remains to show

(1 −Ci )Vn−1

(
αi

1 −Ci

)
≤ Vn(αi ).

Note that (1 − Ci )Vn−1(
αi

1−Ci
) is a non-increasing function of Ci . This is because when αi

1−Ci
∈

I (n − 1,k) for some k , (1 − Ci )Vn−1(
αi

1−Ci
) = (1 − Ci )(k + 1) αi

1−Ci
= (k + 1)αi , which is a constant

with respect to Ci ; when αi

1−Ci
∈ NI (n − 1,k) for some k , (1 −Ci )Vn−1(

αi

1−Ci
) = (1 −Ci )

k+2
(k+1)(n−1)+1 ,

a decreasing function of Ci . It follows that

(1 −Ci )Vn−1

(
αi

1 −Ci

)
≤

(
1 −

1 −Vn(αi )

n − 1

)
Vn−1

(
αi

1 − 1−Vn (αi )
n−1

)
= Vn(αi ),

where the inequality is due to Ci ≥
1−Vn (αi )

n−1 (according to Lemma 4.3), and the equality can be
verified by considering the following two cases regarding the ranges of αi .
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Case 1: αi ∈ I (n,k). In this case, Lemma 4.4 gives αi

1−
1−Vn (αi )

n−1

∈ I (n − 1,k). Thus, we have

(
1 −

1 −Vn(αi )

n − 1

)
Vn−1

(
αi

1 − 1−Vn (αi )
n−1

)
=

(
1 −

1 −Vn(αi )

n − 1

)
· (k + 1)

αi

1 − 1−Vn (αi )
n−1

= (k + 1)αi = Vn(αi ).

Case 2: αi ∈ NI (n,k). In this case, αi

1−
1−Vn (αi )

n−1

∈ NI (n − 1,k). Thus, we have

(
1 −

1 −Vn(αi )

n − 1

)
Vn−1

(
αi

1 − 1−Vn (αi )
n−1

)
=

(
1 −

1 − k+2
(k+1)n+1

n − 1

)
·

k + 2

(k + 1)(n − 1) + 1

=
k + 2

(k + 1)n + 1
= Vn(αi ).

Therefore, we complete the proof of Theorem 4.1. �

The instances provided in proofs (in the appendix) of Corollary 3.2 and Theorem 3.1 show the
tightness of Theorem 4.1.

5 Numerical Experiments

To demonstrate that Δ⊕n (α ;m) can serve as a good alternative of the minimax share, in this section
we empirically estimate the difference between the two shares. We first evaluate the worst-case
ratio of Δ⊕n (α ;m) and Δ�n (α ;m) (recall that Δ�n (α ;m) is the best-case MMS over all disutilities in

V(α ;m)). Denote by rn(α ;m) = Δ⊕n (α ;m)
Δ�n (α ;m)

. It is clear that rn(α ;m) is no smaller than the ratio between

Δ⊕n (α ;m) and the real MMS, and we have illustrated rn(α ;∞) in Figure 2 for n = 2, 10, 100. As we
can see, although the worst-case ratio can be close to 2, it only happens for sufficiently large n and
a small range of values of α . Actually, it is not hard to verify that rn(α ;m) ≤ 2n

n+1 < 2 for all α , and
rn(α ;m) ≤ 4

3 for all α outside of ( 4
9n
, 3

2n+3 ). Note that 3
2n+3 −

4
9n
< 7

6n
.

Claim 1. For any n ≥ 2, α ∈ (0, 1] and m ≥ 	 1
α

, rn(α ;m) ≤ 2n

n+1 .

Proof. Notice that by Lemmas 2.1 and 2.2, rn(α ;m) is weakly increasing in m. Therefore, it
suffices to prove the claim for the setting when m is unrestricted—that is, rn(α) ≤

2n
n+1 . We first

consider the case where n = 2 and k = 1. In this case, α ∈ ( 15 ,
1
3 ]. Since α < 1

n
= 1

2 , Δ�2 (α) =
1
2 .

When α ∈ ( 15 ,
7
27 ], Δ⊕2 (α) =

3−3α
4 , thus r2(α) =

3−3α
2 < 6

5 <
4
3 ; when α ∈ ( 7

27 ,
2
7 ], Δ⊕2 (α) =

2+3α
5 ,

thus r2(α) =
4+6α

5 ≤ 8
7 <

4
3 ; when α ∈ ( 27 ,

1
3 ], Δ⊕2 (α) = 2α , thus r2(α) = 4α ≤ 4

3 .
We next consider the cases when n ≥ 3 or k � 1. When α > 1

n
, which means α ∈ I (n, 0) or

α ∈ ( 1
n
, 2

n+2 ] ∈ D(n, 0), Δ�n (α) = α . Thus, when α ∈ I (n, 0), Δ⊕n (α) = α and rn(α) = 1 < 4
3 ≤

2n
n+1

since n ≥ 2; when α ∈ ( 1
n
, 2

n+2 ], Δ⊕n (α) =
2·(1−α )

n
and rn(α) =

2
n
· 1−α

α
< 2 · (1 − 1

n
) < 2n

n+1 .
When α ≤ 1

n
, it follows that α ∈ ( 1

n+1 ,
1
n
] ∈ D(n, 0) or α ∈ I (n,k) with k ≥ 1 or

α ∈ D(n,k) with k ≥ 1. In these cases, Δ�n (α) =
1
n

. When α ∈ ( 1
n+1 ,

1
n
], Δ⊕n (α) =

2·(1−α )
n

and rn(α) = 2 · (1 − α) < 2n
n+1 ; when α ∈ I (n,k) = ( k+2

n(k+1)2+k+2 ,
1

kn+1 ] with k ≥ 1, Δ⊕n (α) = (k + 1)α

and rn(α) = n(k + 1) · α ≤ kn+n
kn+1 ≤

2n
n+1 ; when α ∈ D(n,k) = ( 1

kn+n+1 ,
k+2

n(k+1)2+k+2 ] with k ≥ 1,

Δ⊕n (α) =
k+2
k+1 ·

1−α
n

and rn(α) =
k+2
k+1 · (1 − α) <

kn+2n
kn+n+1 ≤

3n
2n+1 <

2n
n+1 . �

Claim 2. rn(α ;m) > 4
3 only whenα ∈ ( 29 ,

1
3 ) ifn = 3, orα ∈ ( 16 ,

3
11 ) ifn = 4, orα ∈ ( 4

45 ,
1
9 )∪(

2
15 ,

3
13 )

if n = 5, or α ∈ ( 4
9n
, 3

2n+3 ) if n ≥ 6.
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Proof. Note that we actually derive the ranges of α that satisfy rn(α ;+∞) > 4
3 , which are

necessary conditions for rn(α ;m) > 4
3 but may not be sufficient ones. We use the formulas of rn(α)

derived in the proof of Claim 1 and only consider the following cases when rn(α) may be larger
than 4

3 :

— When α ∈ ( 1
n
, 2

n+2 ], rn(α) =
2
n
· 1−α

α
, which is larger than 4

3 when α < 3
2n+3 . Since 3

2n+3 >
1
n

only when n ≥ 4 and 3
2n+3 <

2
n+2 , the range is α ∈ ( 1

n
, 3

2n+3 ) with n ≥ 4.
— When α ∈ ( 1

n+1 ,
1
n
], rn(α) = 2 · (1 − α), which is larger than 4

3 when α < 1
3 . Since 1

n+1 <
1
3

only when n ≥ 3 and 1
n
≤ 1

3 when n ≥ 3, the range is α ∈ ( 1
n+1 ,

1
n
) with n ≥ 3.

— When α ∈ I (n,k) = ( k+2
n(k+1)2+k+2 ,

1
kn+1 ] with k ≥ 1, rn(α) = n(k + 1) · α , which is larger than

4
3 when α > 4

3n(k+1) . Note that 4
3n(k+1) <

1
kn+1 is equivalent to (3 − k)n > 4, which can be

satisfied only when k = 1 or k = 2. When k = 1, (3 − k)n > 4 gives n ≥ 3, α > 4
3n(k+1) is

equivalent to α > 2
3n

, and k+2
n(k+2)2+k+2 =

3
4n+3 . Since 3

4n+3 ≥
2

3n
when n ≥ 6, the ranges are

α ∈ ( 2
3n
, 1

n+1 ) with 3 ≤ n ≤ 5, and α ∈ ( 3
4n+3 ,

1
n+1 ) with n ≥ 6. When k = 2, (3 − k)n > 4

gives n ≥ 5, α > 4
3n(k+1) is equivalent to α > 4

9n
, and k+2

n(k+2)2+k+2 =
1

4n+1 . Since 4
9n
> 1

4n+1 ,

the range is α ∈ ( 4
9n
, 1

2n+1 ) with n ≥ 5.

— When α ∈ D(n,k) = ( 1
kn+n+1 ,

k+2
n(k+1)2+k+2 ] with k ≥ 1, rn(α) =

k+2
k+1 · (1 − α), which is larger

than 4
3 when α < 2−k

3k+6 . Note that 2−k
3k+6 > 0 only when k = 1. Then, α ≤ 2−k

3k+6 is equivalent

to α < 1
9 , 1

kn+n+1 =
1

2n+1 and k+2
n(k+1)2+k+2 =

3
4n+3 . Since 3

4n+3 ≤
1
9 when n ≥ 6 and 1

9 >
1

2n+1

when n ≥ 5, the ranges are ( 1
2n+1 ,

3
4n+3 ) with n ≥ 6, and ( 1

2n+1 ,
1
9 ) with n = 5.

By summarising the preceding ranges, we complete the proof. �

From the formula of rn(α ;m), as well as Figure 2, we have the following observations:

Observation 1: As n increases, the worst-case ratio of rn(α ;m) (i.e., maxα rn(α ;m)) increases.
Observation 2: As n increases, large values of rn(α ;m) happen increasingly more rarely if α
is randomly generated from [0, 1].

Next, we conduct numerical experiments with synthetic and real-world data to illustrate the
real distances between Δ⊕n (α ;m) and the MMS of specific disutility functions, which also validate
the preceding two observations.

5.1 Experiments with Synthetic Data

In this section, we randomly generate a number of disutility functions, and for each of them, we
compute the ratio between the corresponding Hill’s share and the minimax share. In particular, for
each given n andm, we randomly generate 100 instances; for each instance, we randomly generate
m−1 numbers in [0, 1]. Thesem−1 numbers separate the interval [0, 1] intom contiguous segments,
and the lengths of these segments are used as the disutilities of them objects. Then we compute α
as the maximum of these value and compute Δ⊕n (α ;m) by substituting α and m to the expression
in Theorem 3.1. The MMS is calculated by enumerating all possible allocations of them items. For
each instance, we record the ratio of these two quantities.

The results are summarised in Figure 4. We slice the ratios into small intervals, each of which
has a length of 0.1, and count the number of instances falling into each interval for each setting.
The figure validates the previous two observations: when n = 2 and 3, the largest ratio can only
reach interval [1.3, 1.4) and [1.4, 1.5), but when n ≥ 4, it reaches [1.5, 1.6); however, looking at the
number of instances, for larger n, fewer and fewer instances fall into these large intervals, and in-
stead, the number of instances in [1.0, 1.1) significantly dominates the other intervals. Specifically,
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Fig. 4. Ratios in random data.

when n = 6 and 7, [1.0, 1.1) contains more than 80% of all random instances, and none of them
reaches a ratio beyond 1.6, whereas the worst-case ratio can be greater than 1.7.

5.2 Experiments with Real-World Data

The real-world dataset is collected from the Spliddit platform (Spliddit.org)—a well-known plat-
form that provides implementations of fair allocation algorithms for various practical problems
[15]. The dataset contains 8,409 instances created between October 2014 and May 2020, involving
22,530 agents and 42,469 objects. We randomly select 10,000 disutility functions from the data,
where the largest value of n is 14. After normalising all the disutility functions, for each of them,
we record the ratio of the corresponding Hill’s share and MMS. The results are shown in Figure 5.
As we can see, very few instances have ratios higher than 1.4, and more than 65% of the instances
have ratios within [1.0, 1.1). Actually, there are only 173 (= 1.73%) and 26 (= 0.26%) instances
falling into [1.6, 1.7) and [1.7, 1.8), respectively, and none is beyond 1.8. Note that in the 10,000
disutility functions, there are only 14 instances with n ≥ 9, which further amplifies the rare
happening of large ratios.
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Fig. 5. Ratios in Spliddit data.

6 Conclusion

In this work, we gave the tight characterisation of Hill’s share for allocating indivisible bads—that
is, the exact upper bound of the minimax share of disutility functions with the same largest single-
object value. Hill’s share exhibits several advantages including elementary computation, being
close to the minimax share, and displaying the effect of an agent’s disutility in her share of all
objects. More importantly, the monotonic closure of Hill’s share is guaranteed to be satisfiable; as
far as we know, no other similarly simple guarantee for the allocation of bads has been identified.
There are some open problems. Hill’s share is tight for the domain of disutility functions whose
largest single-object disutility is no greater than a given parameter, but we do not know whether it is
tight when the domain only contains the disutility functions whose largest single-object disutility
equals this parameter. The same problem is also open for the mirror problem of allocating goods,
for which the tight characterisation of Hill’s share is also unknown (when n ≥ 3). Our work
also uncovers some other related research problems, such as the algorithmic problem of finding
a Pareto optimal allocation satisfying Hill’s share and the game-theoretic problem of designing
truthful mechanisms to incentivise the agents to report their disutility functions honestly while
achieving (approximations of) Hill’s share.

Appendix

A Missing Proofs in Section 3

A.1 Proof of Corollary 3.2

We prove Corollary 3.2 by contradiction, and assume that there exists a disutilityv ∈ V(α)whose
MMS is larger than the expressions in Corollary 3.2. With a slight abuse of notations, in the follow-
ing we also use Δ⊕n (α) to denote those expressions in Corollary 3.2. Let A = (A1, . . . ,An) be a lexi-
cographical MinMax allocation ofv—that is, the largest disutility of bundles in A is minimised over
all allocations, and among these allocations the second largest disutility is minimised, and so on.
Without loss of generality, assumev(A1) ≥ · · · ≥ v(An) andv(A1) = MMSn(v) > Δ⊕n (α). Let Eα de-
note the subset of objects whose disutilities are exactly α—that is, Eα = {e ∈ M | v(e) = α }. It can
be verified that Δ⊕n (α) ≥ (k + 1)α (this is also illustrated in Figure 1), which gives v(A1) > (k + 1)α .
Moreover, since v(e) ≤ α for any e ∈ M , |A1 | ≥ k + 2. We have the following property.

Claim 3. Letting j be an agent in N \ {1}, for any S1 ⊆ A1 and S j ⊆ Aj such that v(S1) > v(S j ),

v(S1) −v(S j ) ≥ v(A1) −v(Aj ).

Proof of Claim 3. For the sake of contradiction, we assume that there exists S ′1 ⊆ A1 and
S ′j′ ⊆ Aj′ such that v(S ′1) > v(S ′j′ ) and v(S ′1) − v(S

′
j′ ) < v(A1) − v(Aj′ ). Then we construct another

allocation B = (B1, . . . ,Bn) by exchanging S ′1 and S ′j′—that is, B1 = A1 \ S
′
1 ∪ S

′
j′ , Bj′ = Aj′ \ S

′
j′ ∪ S

′
1

and Bj = Aj for any j ∈ N \ {1, j ′}. It follows that v(B1) < v(A1), v(Bj′ ) < v(A1) and v(Bj ) = v(Aj )

ACM Trans. Econ. Comput., Vol. 12, No. 4, Article 14. Publication date: December 2024.



On Hill’s Worst-Case Guarantee for Indivisible Bads 14:17

Table 1. Disutility Function for

Subcases 1.1 and 1.2

Object Disutility Quantity
α 1

1−α
n

n

for any j ∈ N \ {1, j ′}, which contradicts the assumption that A is a lexicographical MinMax
allocation of v . �

The contraposition of Claim 3 gives the following.

Claim 4. Letting j be an agent in N \ {1}, for any S1 ⊆ A1 and S j ⊆ Aj such thatv(Aj \S j ∪S1) <
v(A1), v(S j ) ≥ v(S1).

As a warm-up, we start from the case with large α , where k = 0, and distinguish two subcases
depending on the domain of α .
Case 1: n ≥ 2 and k = 0

Subcase 1.1: α ∈ D(n, 0)

When α ∈ D(n, 0), 1
n+1 < α ≤ 2

n+2 andv(A1) > Δ⊕n (α) =
2−2α

n
. If Eα∩A1 � ∅, there exists e∗ ∈ A1

such that v(e∗) = α < v(A1). Then Claim 4 gives a lower bound of v(Aj ) for any j ∈ N \ {1}—that
is, v(Aj ) ≥ v(e

∗) = α . Summing up these lower bounds leads to the following contradiction:

1 =
∑
j ∈N

v(Aj ) >
2 − 2α

n
+ (n − 1) · α =

(n + 1)(n − 2)α + 2

n
≥ 1,

where the last inequality is because α > 1
n+1 and n ≥ 2.

Therefore, Eα ∩A1 = ∅. Then by the definition ofV(α), there must exist j ′ ∈ N \ {1} such that
Eα ∩ Aj′ � ∅, and thus v(Aj′ ) ≥ α . Recall that |A1 | ≥ k + 2 = 2, which implies that there exists
S ⊆ A1 such that v(A1) > v(S) ≥ 1

2v(A1) >
1−α

n
. According to Claim 4, v(Aj ) ≥ v(S) > 1−α

n
holds

for any j ∈ N \ {1, j ′}. As a result,

1 =
∑
j ∈N

v(Aj ) >
2 − 2α

n
+ α + (n − 2) ·

1 − α

n
= 1,

which is also a contradiction. Therefore, v(A1) > Δ⊕n (α) never holds when α ∈ D(n, 0).
For the other direction, the disutility function for this subcase (Table 1) contains one object with

disutility α andn objects with disutility 1−α
n

. Since 1
n+1 < α ≤ 2

n+2 , it follows that 1−α
n
< α ≤ 2· 1−α

n
.

Clearly, the MMS of this disutility function is 2 · 1−α
n
= Δ⊕n (α).

Subcase 1.2: α ∈ I (n, 0)

When α ∈ I (n, 0), by similar reasonings, we can show that v(A1) > Δ⊕n (α) does not hold either.
In this subcase, 2

n+2 < α ≤ 1 and Δ⊕n (α) = α . If Eα ∩ A1 � ∅, then there exists e∗ ∈ A1 such
that v(e∗) = α < v(A1) and Claim 4 gives a lower bound of v(Aj ) for any j ∈ N \ {1}—that is,
v(Aj ) ≥ v(e

∗) = α . Summing up these lower bounds leads to the following contradiction:

1 =
∑
j ∈N

v(Aj ) > nα >
2n

n + 2
≥ 1,

where the last inequality is because n ≥ 2.
Therefore, it must hold that Eα∩A1 = ∅, and moreover, there exists j ′ ∈ N \{1}with Eα∩Aj′ � ∅.

Thus,v(Aj′ ) ≥ α . Since |A1 | ≥ k + 2 = 2, there exists S ⊆ A1 such thatv(A1) > v(S) ≥
1
2v(A1) >

α
2 .
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According to Claim 4, v(Aj ) ≥ v(S) >
α
2 holds for any j ∈ N \ {1, j ′}. As a result,

1 =
∑
j ∈N

v(Aj ) > α + α + (n − 2) ·
α

2
=
n + 2

2
α > 1,

which is also a contradiction.
For the other direction, the disutility function for this subcase also contains one object with

disutility α and n objects with disutility 1−α
n

(see Table 1). Since 2
n+2 < α ≤ 1, it follows that

2 · 1−α
n
< α ≤ 1. Clearly, the MMS of this disutility function is α = Δ⊕n (α).

Up to here, the proof regarding the case of k = 0 is completed.

Next, we consider the general case of k ≥ 1 excluding n = 2 and k = 1.

Case 2: n ≥ 3 and k ≥ 1 or n ≥ 2 and k ≥ 2

For this case, we again start with the subcases when α ∈ D(n,k). Recall that when α ∈ D(n,k),
α ∈ ( 1

(k+1)n+1 ,
k+2

n(k+1)2+k+2 ] and v(A1) > Δ⊕n (α) =
k+2
k+1 ·

1−α
n

.

Subcase 2.1: α ∈ D(n,k) and Eα ∩Aj = ∅ for any j ∈ N \ {1}

In this subcase, all the objects with disutility α are in A1, and thus v(e) < α for any e ∈ Aj and

j ∈ N \{1}. Due to the normalization, there exists an agent j0 who receives disutility at most 1−v(A1)
n−1 ,

which gives the following lower bound of the difference between the disutilities that agents 1 and
j0 receive:

v(A1) −v(Aj0) ≥
n

n − 1
v(A1) −

1

n − 1
>

1 − (k + 2)α

(n − 1)(k + 1)
.

It can be shown that the rightmost side of the preceding inequality is no less than α
2 , which is

equivalent to α ≤ 2
(k+1)n+k+3 . Since α ≤ k+2

n(k+1)2+k+2 , it suffices to show 2
(k+1)n+k+3 ≥

k+2
n(k+1)2+k+2 ,

which holds since
2

(k + 1)n + k + 3
−

k + 2

n(k + 1)2 + k + 2
=

(k + 1)(nk − k − 2)

((k + 1)n + k + 3)(n(k + 1)2 + k + 2)
≥ 0,

where the last inequality is because n ≥ 3 and k ≥ 1, or n ≥ 2 and k ≥ 2.
Therefore,v(A1)−v(Aj0) >

α
2 . Let e∗ be an object inA1 with disutility α . Sincev(A1) > (k+1)α >

α , for any S ⊆ Aj0 with disutility smaller than α , Claim 3 actually gives a tighter bound of its
disutility—that is, v(S) ≤ v(e∗) − (v(A1) − v(Aj0)) <

α
2 . Thus, v(e) < α

2 for any e ∈ Aj0 . Besides,
according to Claim 4,v(Aj0) ≥ v(e

∗) = α . These two facts together imply that there exists S ′ ⊆ Aj0

such that v(S ′) ∈ [α2 ,α), which is a contradiction to Claim 3.

Subcase 2.2: α ∈ D(n,k) and Eα ∩Aj′ � ∅ for some j ′ ∈ N \ {1}

In this subcase, some objects with disutility α are inAj′ . Before diving into the proof for this sub-
case, we present the following claim, which shows the existence of a subset of A1 whose disutility
is within a specific range.

Claim 5. There exists a subset S ⊆ A1 such that k
k+2v(A1) ≤ v(S) < v(A1) − α .

Proof of Claim 5. When k = 1, if there exists e ∈ A1 such that v(e) ≥ 1
3v(A1), recall that

v(A1) > (k + 1)α = 2α , Claim 5 holds since v(e) ≤ α < v(A1) − α . If v(e) < 1
3v(A1) for any

e ∈ A1, denote by (A1
1,A

2
1) one 2-partition of A1 that minimises the disutility difference between

the two bundles among all the 2-partitions. Without loss of generality, we assume v(A1
1) ≤ v(A2

1),
then v(A1

1) ≤
1
2v(A1) < v(A1) − α . Besides, v(A1

1) ≥
1
3v(A1) holds. Otherwise, v(A2

1) − v(A
1
1) =

v(A1)−2v(A1
1) >

1
3v(A1), implying that moving an object fromA2

1 toA1
1 returns another 2-partition

of A1 that has a smaller disutility difference, which contradicts the definition of (A1
1,A

2
1).
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When k ≥ 2, we first show that v(e) > 1
k+2α for any e ∈ A1. If not, v(A1) > v(A1 \ {e}) ≥

v(A1) −
1

k+2α . Then Claim 4 gives v(Aj ) ≥ v(A1) −
1

k+2α for any j ∈ N \ {1}. Summing up these
lower bounds gives the following inequality:

1 =
∑
j ∈N

v(Aj ) ≥ v(A1) + (n − 1)v(A1) −
n − 1

k + 2
α >

k + 2

k + 1
−
(k + 2)2 + (k + 1)(n − 1)

(k + 1)(k + 2)
α .

It can be shown that the rightmost side is at least 1, which constitutes a contradiction. This is
equivalent to show that α ≤ k+2

(k+2)2+(k+1)(n−1) . Since α ≤ k+2
n(k+1)2+k+2 , it suffices to show that

k+2
(k+1)2+(k+1)(n−1) ≥

k+2
n(k+1)2+k+2 , which holds since

n(k + 1)2 + k + 2 − ((k + 2)2 + (k + 1)(n − 1)) = (k + 1)(nk − k − 1) ≥ 0,

where the last inequality is because n ≥ 2 and k ≥ 1.
We then let S∗ = arg minS ⊆A1,v(S )>α v(S), which is guaranteed to exist since v(A1) > (k + 1)α >

α , and show by contradiction thatv(S∗) ≤ 2
k+2v(A1). This gives k

k+2v(A1) ≤ v(A1 \S
∗) < v(A1)−α .

We assume for the sake of contradiction thatv(S∗) > 2
k+2v(A1). Then the definition of S∗ gives the

following lower bound of v(e) for any e ∈ S∗ :

v(e) > v(S∗) − α >
2

k + 2
v(A1) − α >

k

k + 2
α ≥

1

2
α ,

where the second last inequality is because v(A1) > (k + 1)α and the last inequality is because
k ≥ 2. This lower bound implies that S∗ contains exactly two objects. Otherwise (i.e., |S∗ | ≥ 3), for
any subset S ′ ⊆ S∗ that contains exactly two objects, α < v(S ′) < v(S∗) holds, which contradicts
the definition of S∗.

Therefore, we can denote S∗ = {el , es } and assume without loss of generality that v(el ) ≥ v(es ).
Accordingly, v(el ) ≥ 1

2v(S
∗) > 1

k+2v(A1) >
k+1
k+2α . Recall that v(e) > 1

k+2α holds for any e ∈ A1.

These two facts together imply that the total disutility of el and any other object inA1 is larger than
α . From the definition of S∗, we know that es ∈ arg mine ∈A1 v(e), which givesv(e) ≥ v(es ) > k

k+2α
for any e ∈ A1. Let S ′ be the subset ofA1 that contains the two objects with the smallest disutilities,
and the following inequality leads to a contradiction to the definition of S∗ :

α ≤
2k

k + 2
α < v(S ′) ≤

2

k + 2
v(A1) < v(S

∗),

where the first inequality is because k ≥ 2 and the second last inequality is due to |A1 | ≥ k +2. �

We are now ready to reveal the contradiction in the subcase. Denote by e∗ one object in Aj′ that
has disutility α and by S a subset of A1 that satisfies Claim 5, and Claim 4 gives v(Aj′ \ {e

∗}) ≥

v(S) ≥ k
k+2v(A1)—that is, v(Aj′ ) ≥

k
k+2v(A1) + α . For any j ∈ N \ {1, j ′}, recall that |A1 | ≥ k + 2,

which implies that there exists S ′ ⊆ A1 such that v(A1) > v(S ′) ≥ k+1
k+2v(A1), and Claim 4 gives

v(Aj ) ≥ v(S
′) ≥ k+1

k+2v(A1). Summing up these lower bounds leads to the following contradiction:

1 =
∑
j ∈N

v(Aj ) ≥ v(A1) +
k

k + 2
v(A1) + α + (n − 2) ·

k + 1

k + 2
v(A1) =

n(k + 1)

k + 2
v(A1) + α > 1 − α + α = 1.

For the other direction, the disutility function for the subcases when α ∈ D(n,k) (Table 2) con-
taining one object with disutility α and n(k + 1) objects with disutility 1−α

n(k+1) . Since α > 1
kn+n+1 ,

it follows that α > 1−α
n(k+1) . Besides, it can be verified that α < 2−2α

n(k+1) , which is equivalent to
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Table 2. Disutility Function for

Subcases α ∈ D(n,k) with n ≥ 3
and k ≥ 1, or n ≥ 2 and k ≥ 2

Object Disutility Quantity
α 1

1−α
n(k+1) n(k + 1)

α < 2
nk+n+2 . Since α ≤ k+2

n(k+1)2+k+2 , it suffices to show k+2
n(k+1)2+k+2 <

2
n(k+1)+2 , which holds since

2

n(k + 1) + 2
−

k + 2

n(k + 1)2 + k + 2
=

nk(k + 1)

(n(k + 1) + 2)(n(k + 1)2 + k + 2)
> 0.

By the pigeonhole principle, there exists a bundle that contains at least k + 2 objects in any allo-
cation. This implies that MMS of this disutility function is (k + 2) · 1−α

n(k+1) , which happens in the

allocation where one bundle contains k +2 objects with disutility 1−α
n(k+1) , one bundle contains k ob-

jects with disutility 1−α
n(k+1) and one object with disutility α , and each of the other bundles contains

k + 1 objects with disutility 1−α
n(k+1) .

Next we consider the subcases when α ∈ I (n,k). Recall that when α ∈ I (n,k), α ∈

( k+2
n(k+1)2+k+2 ,

1
kn+1 ] and v(A1) > Δ⊕n (α) = (k + 1)α .

Subcase 2.3: α ∈ I (n,k) and Eα ∩Aj = ∅ for any j ∈ N \ {1}

For this subcase, we first derive a lower bound of v(Aj ) for any j ∈ N \ {1}—that is, v(Aj ) ≥

(
(k+1)2

k+2 +
1

(n−1)(k+2) )α . Letting D = (k+1)2

k+2 +
1

(n−1)(k+2) , we assume for the sake of contradiction that
v(Aj′ ) < Dα for some j ′ ∈ N \ {1}. It can be verified that k < D < k + 1, where the first inequality
is equivalent to n > 0, and the second inequality is equivalent to (n − 1)(k + 1) > 1. Denote by e∗

one object in A1 with disutility α and by e ′ any object in Aj , and we have

v(Aj′ \ (Aj′ \ {e
′}) ∪ (A1 \ {e

∗})) = v(A1 \ {e
∗} ∪ {e ′}) < v(A1).

Then from Claim 4, v(Aj′ \ {e
′}) ≥ v(A1 \ {e

∗}), which gives

v(e ′) ≤ v(Aj′ ) −v(A1) +v(e
∗) < Dα − (k + 1)α + α = (D − k)α .

However, we next show that the disutility of some object inAj′ must be larger than (D−k)α , which
leads to a contradiction. To achieve this, we denote S∗ ∈ arg minS ⊆Aj′,v(S )>(D−1)α v(S), whose
existence is guaranteed since Claim 4 gives v(Aj′ ) ≥ v(A1 \ {e

∗}) > kα > (D − 1)α . Notice that

v(Aj′ \ S
∗ ∪ (A1 \ {e

∗})) < Dα − (D − 1)α +v(A1) − α = v(A1),

and from Claim 4, v(S∗) ≥ v(A1 \ {e
∗}) > kα . Then the definition of S∗ implies that the disutility

of any object in S∗ is at least

v(S∗) − (D − 1)α > (k − D + 1)α ≥ (D − k)α ,

where the last inequality is equivalent to D −k − 1
2 =

k+2−kn
2(n−1)(k+2) ≤ 0, which holds when n ≥ 3 and

k ≥ 1, or n ≥ 2 and k ≥ 2.
Therefore, v(Aj ) ≥ (

(k+1)2

k+2 +
1

(n−1)(k+2) )α holds for any j ∈ N \ {1}. Summing up these lower
bounds leads to the following contradiction:

1 =
∑
j ∈N

v(Aj ) > (k + 1)α + (n − 1) ·

(
(k + 1)2

k + 2
+

1

(n − 1)(k + 2)

)
α =

n(k + 1)2 + k + 2

k + 2
α > 1.

Subcase 2.4: α ∈ I (n,k) and Eα ∩Aj′ � ∅ for some j ′ ∈ N \ {1}
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Table 3. Disutility Function for

Subcases α ∈ I (n,k) with n ≥ 3
and k ≥ 1, or n ≥ 2 and k ≥ 2

Object Disutility Quantity
α kn + 1

1−(nk+1)α
n−1 n − n1

The proof is similar to that of Subcase 2.2. First, it can be verified that Claim 5 still holds here.

Proof of Claim 5 for α ∈ I (n,k). Notice that Claim 5 holds as long as k = 1, thus we can focus
on k ≥ 2. We first show that v(e) > 1

k+2α for any e ∈ A1. If not, v(A1 \ {e}) ≥ v(A1) −
1

k+2α . Then
Claim 4 gives v(Aj ) ≥ v(A1) −

1
k+2α for any j ∈ N \ {1}. Summing up these lower bounds gives

the following formula:

1 =
∑
j ∈N

v(Aj ) ≥ v(A1) + (n − 1)v(A1) −
n − 1

k + 2
α >

n(k + 1)(k + 2) − n + 1

k + 2
α .

It can be shown that the rightmost side of the preceding inequality is at least 1, which is a contra-
diction. This is equivalent to show that α ≥ k+2

n(k+1)(k+2)−n+1 . Since α ≥ k+2
n(k+1)2+k+2 , it suffices to

show that k+2
n(k+1)(k+2)−n+1 ≤

k+2
n(k+1)2+k+2 , which holds since

n(k + 1)(k + 2) − n + 1 − (n(k + 1)2 + k + 2) = nk − k − 1 ≥ 0

where the last inequality is because n ≥ 2 and k ≥ 1.
We then let S∗ = arg minS ⊆A1,v(S )>α v(S), which is guaranteed to exist sincev(A1) > (k+1)α > α .

By the same proof as the counterpart in the proof of Claim 5 for α ∈ D(n,k), we can show that
v(S∗) ≤ 2

k+2v(A1), which gives k
k+2v(A1) ≤ v(A1 \ S

∗) < v(A1) − α . �

We are now ready to reveal the contradiction in this subcase. Denote by e∗ one object inAj′ that
has disutility α and by S a subset of A1 that satisfies Claim 5, and Claim 4 gives v(Aj′ \ {e

∗}) ≥

v(S) ≥ k
k+2v(A1)—that is, v(Aj′ ) ≥

k
k+2v(A1) + α . For any j ∈ N \ {1, j ′}, recall that |A1 | ≥ k + 2,

which implies that there exists S ′ ⊆ A1 such that v(A1) > v(S ′) ≥ k+1
k+2v(A1), Claim 4 gives

v(Aj ) ≥ v(S
′) ≥ k+1

k+2v(A1). Summing up these lower bounds leads to the following contradiction:

1 =
∑
j∈N

v(Aj ) ≥ v(A1) +
k

k + 2
v(A1) + α + (n − 2) ·

k + 1

k + 2
v(A1) =

n(k + 1)

k + 2
v(A1) + α >

n(k + 1)2 + k + 2

k + 2
α > 1.

For the other direction, the disutility function for the subcases when α ∈ I (n,k) (Table 3) con-

taining kn + 1 objects with disutility α and n − 1 objects with disutility 1−(nk+1)α
n−1 . It can be verified

that α > 1−(kn+1)α
n−1 , which is equivalent to α > 1

(k+1)n . Since α > k+2
n(k+1)2+k+2 , it suffices to show

k+2
n(k+1)2+k+2 ≥

1
(k+1)n , which holds since

k + 2

n(k + 1)2 + k + 2
−

1

(k + 1)n
=

(k + 1)n − k − 2

(n(k + 1)2 + k + 2)(k + 1)n
≥ 0,

where the inequality is because n ≥ 3 and k ≥ 1, or n ≥ 2 and k ≥ 2. By the pigeonhole principle,
there exists a bundle that contains at least k+1 objects with disutility α . This implies that the MMS
of this disutility function is (k + 1)α , which happens in the allocation where one bundle contains
k + 1 objects with disutility α , and each of the other bundles contains k objects with disutility α

and one object with disutility 1−(nk+1)α
n−1 .

We now prove Corollary 3.2 for the case of n = 2 and k = 1—that is, α ∈ D(2, 1) ∪ I (2, 1).
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Case 3: n = 2 and k = 1

Subcase 3.1: α ∈ ( 15 ,
7
27 ]

When α ∈ ( 15 ,
7
27 ], v(A1) > Δ⊕2 (α) =

3−3α
4 . If Eα ∩ A2 � ∅, then A2 contains some objects

with disutility α . Recall that Claim 5 holds as long as k = 1, thus there exists S ⊆ A1 such that
1
3v(A1) ≤ v(S) < v(A1) − α . Denote by e∗ one object in A2 with disutility α , and Claim 4 gives
v(A2 \ {e

∗}) ≥ v(S) ≥ 1
3v(A1). As a result,

1 = v(A1) +v(A2) ≥ v(A1) +
1

3
v(A1) + α ,

which gives v(A1) ≤
3−3α

4 , thus contradicting the assumption that v(A1) > Δ⊕2 (α).
Therefore, Eα ∩A2 = ∅, which means that all the objects with disutility α are in A1 and for any

e ∈ A2, v(e) < α . We first derive an upper bound and a lower bound of the maximum disutility of
the objects in A2. Denote by e∗ one object in A1 withv(e∗) = α < v(A1), and sincev(A1) −v(A2) =

2v(A1) − 1 > 1−3α
2 , Claim 3 gives

max
e ∈A2

v(e) ≤ v(e∗) − (v(A1) −v(A2)) <
5α − 1

2
.

Notice that 1−3α
2 > α

3 since α ≤ 7
27 <

3
11 , v(A1) −v(A2) >

α
3 . Then for every S ⊆ A2 with v(S) < α ,

Claim 3 actually gives a tighter bound of v(S)—that is, v(S) ≤ v(e∗) − (v(A1) − v(A2)) <
2
3α .

This also implies that for every S ′ ⊆ A2 with v(S ′) ≥ 2
3α , v(S ′) ≥ α actually holds. Let S∗ =

arg minS ⊆A2,v(S )≥
2
3 α v(S) whose existence is guaranteed since Claim 4 gives v(A2) ≥ v(e∗) = α ,

thus v(S∗) ≥ α . Then from the definition of S∗, v(e) ≥ v(S∗) − 2
3α ≥

1
3α holds for any e ∈ A2,

which implies

max
e ∈A2

v(e) ≥
α

2
.

Otherwise (i.e., maxe ∈A2 v(e) <
α
2 ), the total disutility of any two objects in A2 is at least 2

3α and
smaller than α , which is a contradiction to Claim 3.

We then show that |A1 | is exactly 3. Otherwise (i.e., |A1 | ≥ 4), there exists S ⊆ A1 such that
v(A1) > v(S) ≥ α + 2

3 (v(A1) − α). Then Claim 4 gives v(A2) ≥ v(S) ≥ α + 2
3 (v(A1) − α). Summing

up the lower bounds of v(A1) and v(A2) leads to a contradiction as follows:

1 = v(A1) +v(A2) ≥
5

3
v(A1) +

1

3
α >

15 − 11α

12
> 1,

where the last inequality is because α ≤ 7
27 <

3
11 . Therefore, we can denote A1 = {e

1
1, e

1
2 , e

1
3} and

assume without loss of generality that v(e1
1) = α ≥ v(e1

2) = x ≥ v(e1
3) = y. We then derive the

lower bounds of x and y, and reveal the contradiction in this subcase. Since x ≥ y, the following
formula holds:

x ≥
x + y

2
=
v(A1) − α

2
>

3 − 7α

8
≥

5α − 1

2
> max

e ∈A2

v(e),

where the second last inequality is because α ≤ 7
27 . Then Claim 3 gives the following lower bound

of x :

x ≥ max
e ∈A2

v(e) + (v(A1) −v(A2)) >
α

2
+

1 − 3α

2
=

1 − 2α

2
.

Claim 3 also gives y ≥ v(A1) −v(A2). Notice that

2 · (v(A1) −v(A2)) >
2 − 6α

2
> α −

1 − 3α

2
> x − (v(A1) −v(A2)),

ACM Trans. Econ. Comput., Vol. 12, No. 4, Article 14. Publication date: December 2024.



On Hill’s Worst-Case Guarantee for Indivisible Bads 14:23

where the second inequality is because α ≤ 7
27 <

3
11 , and we have the following lower bound of y :

y >
1

2
· (x − (v(A1) −v(A2))) ≥

1

2
·max

e ∈A2

v(e) ≥
α

4
.

Therefore, v(A1) = α + x + y > α + 1−2α
2 + α

4 =
2+α

4 , which gives v(A1) − v(A2) = 2v(A1) − 1 >
α
2 . However, according to Claim 3, v(A1) − v(A2) ≤ α − maxe ∈A2 v(e) ≤

α
2 , thus constituting a

contradiction.
For the other direction, the disutility function for this subcase contains one object with disutility

α and four objects with disutility 1−α
4 . Since 1

5 < α ≤ 7
27 , it follows that 1−α

4 < α < 2 · 1−α
4 , where

the last inequality is because α ≤ 7
27 <

1
3 . Clearly, the MMS of this disutility function is 3 · 1−α

4 .

Subcase 3.2: α ∈ ( 7
27 ,

2
7 ]

When α ∈ ( 7
27 ,

2
7 ], v(A1) > Δ⊕2 (α) =

2+3α
5 . If Eα ∩ A2 � ∅, the proof is similar to that for

the counterpart of Subcase 3.1. In other words, we also have v(A1) ≤
3−3α

4 , which contradicts
v(A1) > Δ⊕n (α) since 3−3α

4 < 2+3α
5 when α > 7

27 .
Therefore, we can focus on Eα ∩ A2 = ∅. We first derive an upper bound and a lower bound

of the maximum disutility of the objects in A2, which is similar to the counterpart of Subcase 3.1.
Denote by e∗ one object inA1 withv(e∗) = α < v(A1), and sincev(A1)−v(A2) = 2v(A1)−1 > 6α−1

5 ,
Claim 3 gives

max
e ∈A2

v(e) ≤ v(e∗) − (v(A1) −v(A2)) <
1 − α

5
.

Notice that 6α−1
5 > α

3 since α > 7
27 >

3
13 , v(A1) − v(A2) >

α
3 . Then for every S ⊆ A2 with

v(S) < α , Claim 3 actually gives a tighter bound ofv(S)—that is,v(S) ≤ v(e∗)−v(A1)−v(A2) <
2
3α .

This also implies that for every S ′ ⊆ A2 with v(S ′) ≥ 2
3α , v(S ′) ≥ α actually holds. Let S∗ =

arg minS ⊆A2,v(S )≥
2
3 α v(S) whose existence is guaranteed since Claim 4 gives v(A2) ≥ v(e∗) = α ,

thus v(S∗) ≥ α . Then from the definition of S∗, v(e) ≥ v(S∗) − 2
3α ≥

1
3α holds for any e ∈ A2,

which implies

max
e ∈A2

v(e) ≥
α

2
.

Otherwise (i.e., maxe ∈A2 v(e) <
α
2 ), the total disutility of any two objects in A2 is at least 2

3α and
smaller than α , which is a contradiction to Claim 3.

Observe thatA1 contains exactly one object with disutility α . Otherwise (i.e.,A1 contains at least
two objects with disutility α ), Claim 4 givesv(A2) ≥ 2α , which leads to the following contradiction:

1 = v(A1) +v(A2) >
2 + 3α

5
+ 2α > 1,

where the last inequality is because α > 7
27 >

3
13 . Recall that |A1 | ≥ 3, A1 contains at least two

objects with disutility smaller than α . For each of such objects, we call it a medium object if its
disutility is larger than maxe ∈A2 v(e). Otherwise, we call it a small object. Then Claim 3 gives the
following lower bound of the disutility of any medium object e :

v(e) ≥ max
e ∈A2

v(e) + (v(A1) −v(A2)) = max
e ∈A2

v(e) + (2v(A1) − 1) >
α

2
+

6α − 1

5
=

17α − 2

10
,

as well as the following lower bound of the disutility of any small object e ′ :

v(e ′) ≥ v(A1) −v(A2) = 2v(A1) − 1 >
6α − 1

5
.

We then reveal the contradiction by considering possible combinations of objects in A1 and
showing that no possible combination exists.

ACM Trans. Econ. Comput., Vol. 12, No. 4, Article 14. Publication date: December 2024.



14:24 B. Li et al.

Combination 1: Besides the object with disutility α , A1 also contains at least three small objects.
Thus,v(A1) > α + 3 · 6α−1

5 = 23α−3
5 . Then a lower bound of the difference betweenv(A1) andv(A2)

is

v(A1) −v(A2) = 2v(A1) − 1 >
46α − 11

5
>

α

2
,

where the last inequality is because α > 7
27 >

22
87 . However, according to Claim 3, v(A1) −v(A2) ≤

α −maxe ∈A2 v(e) ≤
α
2 , which is a contradiction. Note that this also implies that except the object

with disutility α , the total disutility of the other objects must be smaller than 3 · 6α−1
5 . Since the

total disutility of one medium object and one small object is larger than

17α − 2

10
+

6α − 1

5
=

29α − 4

10
≥

18α − 3

5
= 3 ·

6α − 1

5
,

where the inequality is because α ≤ 2
7 , the only combination that remains to consider is that A1

contains two small objects besides the object with disutility α .

Combination 2: Besides the object with disutility α , A1 contains two small objects. From the
definition of small object, v(e ′) ≤ maxe ∈A2 v(e) <

1−α
5 holds for any small object e ′ ∈ A1. Thus,

v(A1) < α + 2 · 1−α
5 =

2+3α
5 , which is a contradiction to the assumption that v(A1) > Δ⊕2 (α).

For the other direction, the disutility function for this subcase contains one object with disutility
α and five objects with disutility 1−α

5 . Since 1
6 <

7
27 < α ≤ 2

7 , it follows that 1−α
5 < α ≤ 2 · 1−α

5 .
Clearly, the MMS of this disutility function is α + 2 · 1−α

5 .

Subcase 3.3: α ∈ ( 27 ,
1
3 ]

When α ∈ ( 27 ,
1
3 ], v(A1) > Δ⊕2 (α) = 2α . If Eα ∩A2 � ∅, then the proof is similar to those for the

counterparts of Subcases 3.1 and 3.2. In other words, we also havev(A1) ≤
3−3α

4 , which contradicts
v(A1) > Δ⊕2 (α) since 3−3α

4 < 2α when α > 2
7 >

3
11 .

Then we focus on Eα ∩A2 = ∅. Since |A1 | ≥ 3, there exists S ⊆ A1 such that α + 1
2 (v(A1) − α) ≤

v(S) < v(A1). From Claim 4, we have a lower bound of v(A2)—that is, v(A2) ≥ α + 1
2 (v(A1) − α).

Summing up the lower bounds of v(A1) and v(A2) leads to a contradiction:

1 = v(A1) +v(A2) ≥
3

2
v(A1) +

α

2
>

7α

2
> 1,

where the last inequality is because α > 2
7 .

For the other direction, the disutility function for this subcase contains three objects with disu-
tility α and one object with disutility 1− 3α (if α < 1

3 ). Since α > 2
7 >

1
4 , it follows that 1− 3α < α .

Clearly, the MMS is 2α .
Up to here, we computed Hill’s share for unrestricted m. Moving to the setting of restricted m,

Hill’s share can be computed by similar approaches with a more involved discussion.

A.2 Proof of Theorem 3.1

Moving to the setting when m is not sufficiently large, Hill’s share can be computed by similar
approaches with a more involved discussion. For the sake of contradiction, we assume that there
exists a disutility v ∈ V(α ;m) such that MMSn(v) is larger than whose MMS is larger than the
expressions in Theorem 3.1. With a slight abuse of notations, in the following we use Δ⊕n (α ;m)
to denote those expressions in Theorem 3.1. Let A = (A1, . . . ,An) be a lexicographical MinMax
allocation of v , and without loss of generality, assume v(A1) ≥ · · · ≥ v(An). We now split the
proof into several cases based on the values of n and k , and it suffices to compute the share for
the case wherem is smaller than the number of objects in the worst-case disutility function in the
unrestricted setting.
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Table 4. Disutility Function for

Subcase α ∈ D(n,k) with n � 2 or

k � 1, and m ≤ kn + n

Object Disutility Quantity
α 	 1

α

 − 1

1 − (	 1
α

 − 1)α 1

0 m − 	 1
α



Case 1: n � 2 or k � 1

We consider the subcases α ∈ D(n,k) and α ∈ I (n,k), separately.

Subcase 1.1: α ∈ D(n,k)

Recall that when α ∈ D(n,k) with n � 2 or k � 1, the disutility function constructed in the
setting when m is not restricted contains kn + n + 1 objects (see Tables 1 and 2). Therefore, if
m ≥ kn + n + 1, the tight bound remains unchanged.

Thus, we can focus on m ≤ kn + n. Since v(A1) > Δ⊕n (α ;m) = (k + 1)α , by Claim 4, v(Aj ) ≥

v(A1) − α > kα for any j ∈ N \ {1}. Moreover, since the disutility of any object is at most α , A1

contains at leastk+2 objects andAj contains at leastk+1 ones—that is, |A1 | ≥ k+2 and |Aj | ≥ k+1.
Accordingly, the total number of objects is at least k + 2 + (n − 1)(k + 1) = kn + n + 1 > m, a
contradiction. The disutility function that shows tightness (Table 4) contains 	 1

α

 − 1 objects with

disutility α , one object with disutility 1 − (	 1
α

 − 1)α , and m − 	 1

α

 objects with disutility 0. This

disutility function is valid since m ≥ 	 1
α

. Since α ∈ D(n,k), 1

α
≥

n(k+1)2+k+2
k+2 ≥ kn + 1, where the

last inequality is because n ≥ 0. Therefore, the disutility function contains at least kn + 1 objects
with disutility α . By the pigeonhole principle, the MMS is at least (k + 1)α .

Subcase 1.2: α ∈ I (n,k)

The bound for α ∈ I (n,k) remains unchanged regardless of the value of m, since there always
exists a disutility function whose MMS is at least Δ⊕n (α ;m) = (k + 1)α . Specifically, the disutility
function (see Table 4) also contains 	 1

α

 − 1 objects with disutility α , one object with disutility

1 − (	 1
α

 − 1)α , and m − 	 1

α

 objects with disutility 0. Since α ∈ I (n,k), 1

α
≥ kn + 1, which means

that there are at least kn + 1 objects with disutility α . By the pigeonhole principle, the MMS is at
least (k + 1)α .

Case 2: n = 2 and k = 1

Recall that when n = 2 and k = 1, α ∈ ( 15 ,
1
3 ], thus m ≥ 	 1

α

 ≥ 3. When m = 3, α can only

be 1
3 . The tight bound remains unchanged (i.e., Δ⊕2 (

1
3 ; 3) = Δ⊕2 (

1
3 )), since the disutility function

constructed in the unrestricted setting (i.e., Subcase 3.3 in Section A.1) contains three objects when
α = 1

3 .
When m = 4, α ∈ [ 14 ,

1
3 ). Since v(A1) > Δ⊕2 (α ; 4) = 2α , by Claim 4, v(A2) > α . Therefore, A1

contains at least three objects and A2 contains at least two objects, a contradiction to m = 4. For
the tightness, the disutility function contains 	 1

α

 −1 objects with disutility α , and one object with

disutility 1 − (	 1
α

 − 1)α . Sine 1

α
> 3, and by the pigeonhole principle, the MMS is at least 2α .

When m = 5, α ∈ ( 15 ,
1
3 ]. If α ∈ ( 15 ,

7
27 ] or ( 27 ,

1
3 ], the disutility functions constructed in the unre-

stricted setting (i.e., Subcases 3.1 and 3.3 in Section A.1) contain five and four objects, respectively,
thus the tight bounds do not change. If α ∈ ( 7

27 ,
2
7 ], since v(A1) > Δ⊕2 (α ; 5) ≥ 2α , by Claim 4,

v(A2) > α , thus A1 contains at least three objects and A2 contains at least two objects. More accu-
rately, sincem = 5, |A1 | is exactly 3 and |A2 | is exactly 2. Moreover, it can be verified that the largest
disutility in A1 is at most the smallest disutility in A2. Since otherwise, by exchanging one object
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in A1 with a strictly larger disutility and one object in A2 with a strictly smaller disutility, one can
get another allocation A

′ = (A′1,A
′
2) such that v(A′1) < v(A1) and v(A′2) ≤ 2α < v(A1), which

contradicts the assumption that A is a lexicographical MinMax allocation of v . Let A2 = {e1, e2}

with v(e1) ≥ v(e2), and it follows that v(e1) = α and v(e2) ≥
1
3 · v(A1). Therefore,

v(A1 ∪A2) ≥ v(A1) + α +
1

3
v(A1) =

4

3
· v(A1) + α .

If α ∈ ( 7
27 ,

3
11 ], v(A1) > Δ⊕2 (α ; 5) = 3−3α

4 , thus

v(A1 ∪A2) >
4

3
·

3 − 3α

4
+ α = 1,

a contradiction. If α ∈ ( 3
11 ,

2
7 ], v(A1) > Δ⊕2 (α ; 5) = 2α , also a contradiction since

v(A1 ∪A2) >
11

3
α > 1.

The disutility function that shows tightness for α ∈ ( 7
27 ,

3
11 ] is the same as that in Subcase 3.1 in

Section A.1—that is, one object with disutility α and four objects with disutility 1−α
4 . Again, since

1
5 <

7
27 < α ≤ 3

11 <
1
3 , 1−α

4 < α < 2 · 1−α
4 , which gives that the MMS is 3−3α

4 . For α ∈ ( 3
11 ,

2
7 ],

the disutility function is the same as that in Subcase 3.3 in Section A.1—that is, three objects with
disutility α and one object with disutility 1−3α . Since α > 3

11 >
1
4 , 1−3α < α , thus the MMS is 2α .

When m ≥ 6, α ∈ ( 15 ,
1
3 ]. Since the disutility functions constructed in the subcases of the unre-

stricted setting contain no more than six objects, the tight bounds remain unchanged.
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