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Abstract

The principle of causality leads to linear Kramers–Kronig relations (KKR) that relate the real and imaginary parts of the complex modulus
G* through integral transforms. Using the multiple integral generalization of the Boltzmann superposition principle for nonlinear rheology,
and the principle of causality, we derived nonlinear KKR, which relate the real and imaginary parts of the nth order complex modulus G*

n.
For n ¼ 3, we obtained nonlinear KKR for medium amplitude parallel superposition (MAPS) rheology. A special case of MAPS is medium
amplitude oscillatory shear (MAOS); we obtained MAOS KKR for the third-harmonic MAOS modulus G*

33; however, no such KKR exists
for the first harmonic MAOS modulus G*

31. We verified MAPS and MAOS KKR for the single mode Giesekus model. We also probed the
sensitivity of MAOS KKR when the domain of integration is truncated to a finite frequency window. We found that (i) inferring G00

33 from
G0

33 is more reliable than vice versa, (ii) predictions over a particular frequency range require approximately an excess of one decade of data
beyond the frequency range of prediction, and (iii) G0

33 is particularly susceptible to errors at large frequencies. © 2022 The Society of
Rheology. https://doi.org/10.1122/8.0000480

I. INTRODUCTION

In the linear viscoelastic (LVE) regime, soft materials are
subjected to infinitesimal deformations so that the mechani-
cal response may be probed without perturbing the equilib-
rium microstructure. Linear viscoelasticity is commonly
examined using three types of experiments: (i) step strain,
(ii) creep or step stress, and (iii) oscillatory strain. These
experiments lead, respectively, to the linear response func-
tions: (i) stress relaxation modulus G(t), (ii) creep compliance
J(t), and (iii) complex modulus G*(ω). Here, t and ω repre-
sent time and frequency, respectively. These LVE response
functions provide insights into the material microstructure
and are part of standard rheological characterization [1–4].
These response functions are interrelated. If complete knowl-
edge of any one property is available, the remaining two can
be inferred. The relaxation modulus G(t) and creep compli-
ance J(t) are related to each other by the convolution relation.
The complex modulus G*(ω), on the other hand, is related to
the Fourier transform of G(t). The complex modulus has real
and imaginary parts, G*(ω) ¼ G0(ω)þ iG00(ω), called the
storage (or elastic) and loss (or viscous) modulus, respec-
tively. These moduli are related to each other via Kramers–
Kronig relations (KKR) [5,6]. They can be experimentally
measured by performing oscillatory shear (OS) experiments.

A. Linear Kramers–Kronig relations

Suppose a material is subjected to an arbitrary time-
dependent shear strain γ(t). In the LVE regime, the induced
shear stress σ(t) is related to the deformation history by the
Boltzmann superposition principle [2–4],

σ(t) ¼
ðt
�1

G(t � t0)
dγ(t0)
dt0

dt0, (1)

where t is the current time and t0 is the time associated with
application of deformation field. The principle of causality
stipulates that the relaxation modulus G(t � t0) ¼ 0 for
t � t0 , 0. Using this principle, the complex modulus can be
related to the relaxation modulus via a modified Fourier
transform

G*(ω) ¼ iω

ð1
�1

G(t) e�iωt dt ¼ iω

ð1
0
G(t) e�iωt dt: (2)

Note that the complex viscosity η*(ω) ¼ η0(ω) � iη00(ω)
¼ G*(ω)=(iω) and the relaxation modulus G(t) form a stan-
dard Fourier transform pair.

Using the principle of causality again to write G(t) as a
sum of an even and odd function, it can be shown that [3,4]

G(t) ¼ 2
π

ð1
0

G0(ω)
ω

sinωt dω ¼ 2
π

ð1
0

G00(ω)
ω

cosωt dω: (3)

This constrains the functional forms of G0(ω) and G00(ω) to be
even and odd functions of ω, respectively. By manipulating
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Eqs. (2) and (3), we obtain the linear KKR [7]

G0(ω) ¼ � 2ω2

π

ð1
0

G00(u)=u
u2 � ω2

du,

G00(ω) ¼ 2ω
π

ð1
0

G0(u)
u2 � ω2

du:

(4)

Since the integrals have a singularity at u ¼ ω, the Cauchy
principal value of the integrals is implied. Originally, KKR
were proposed for specific atomic systems using physical
arguments [6,8,9], but subsequently generalized using
complex analysis and assumptions of linearity, causality, and
analyticity [10,11]. Indeed, KKR can be derived in a succinct
form from the residue theorem in complex analysis with
deceptive simplicity as [12]

η*(ω) ¼ i

π

ð1
�1

η*(u)
u� ω

du: (5)

This equation is equivalent to the two relations in Eq. (4).
Table I summarizes different forms in which linear KKR can
be expressed [13].

It is useful to emphasize that the relationship between the
real and imaginary parts of G*(ω) implied by KKR is under-
pinned by the principle of causality. It is merely a mathemati-
cal reflection of the physical constraint G(t , 0) ¼ 0,
mediated through the Fourier transform of a real causal func-
tion. Nevertheless, it can be practically useful. For example,
in small amplitude oscillatory shear (SAOS) experiments a
sinusoidal strain γ(t) ¼ γ0 sinωt with amplitude γ0 and
angular frequency ω is applied [3,14]. In the LVE limit, the
stress response is given by

σ(t) ¼ σSAOS(t) ¼ γ0 G0(ω) sinωt þ G00(ω) cosωtð Þ: (6)

Modern rheometers can measure this response and infer
G0(ω) and G00(ω) over a range of frequencies in a typical fre-
quency sweep experiment. For thermorheologically simple
materials, this frequency range can be widened to several
decades using the time-temperature superposition principle
[3]. Manual shifting of individual datasets to produce master-
curves of G*(ω) can result in violation of KKR. Thus, KKR
can be used for data validation of experimentally measured
G*(ω) [15,16].

B. MAOS and MAPS rheology

In the LVE limit of γ0 ! 0, stresses induced in a material
are small and harmonic. As the magnitude of the deformation
is gradually increased, nonlinear viscoelastic features start to
manifest, and the stress response becomes nonharmonic. In
conventional large amplitude oscillatory shear (LAOS) exper-
iments, an oscillatory strain field γ(t) ¼ γ0 sinωt similar to
SAOS experiments, is applied [17–19]. For large values of
amplitude γ0, higher nonlinear modes are activated, and the
stress response is often represented by a power series [20]

σ(t) ¼
X1
n[odd

σn(t)

¼
X1
n[odd

Xn
m[odd

γn0 G0
nm(ω)sin(mωt)þ G00

nm(ω)cos(mωt)
� �

,

(7)

where the nonlinear complex moduli G*
nm(ω) ¼ G0

nm(ω)
þiG00

nm(ω) are functions of only frequency. The summa-
tions include only odd values of m and n due to the odd
symmetry of shear stress with shear strain. In the medium
amplitude oscillatory shear (MAOS) regime, only the
weakest nonlinear modes are activated, and the stress
response σ(t) ¼ σ1(t)þ σ3(t)þO(γ50) can be truncated
after the leading nonlinear term n ¼ 3 in Eq. (7) as

σ(t) ¼ γ0 G0
11 sinωt þ G00

11 cosωt
� �

þ γ30 G0
31 sinωt þ G00

31 cosωt þ G0
33 sin 3ωt þ G00

33 cos 3ωt
� �

,

(8)

where σ1 ¼ σSAOS and the LVE complex modulus is given
by G* ¼ G0

11 þ iG00
11. The stress term σ3(t) associated with

cubic power of strain is the MAOS contribution; the
MAOS moduli associated with the first and third harmonic
are G*

31 ¼ G0
31 þ iG00

31 and G*
33 ¼ G0

33 þ iG00
33, respectively.

MAOS measurements have been used to discriminate
between linear and branched polymers [21–23], evaluate
nanoparticle dispersion quality [24,25], droplet size dispersion
in polymer blends [26,27], quantify filler-matrix interactions
in filled rubbers [28,29], etc. An attractive feature of MAOS
is that strain amplitudes are generally not large enough to
cause permanent structural change in the probed material.

Experimentally, extraction of the MAOS moduli is indirect
and involves careful extrapolation. The effort and care required
is significantly greater than that required in the measurement
of LVE moduli G0(ω) and G00(ω), in part, due to the narrow
window of suitable strain amplitudes [30]. If γ0 is too small,
MAOS signals are too weak and difficult to measure. If γ0 is
too large, the stress response is contaminated by the contribu-
tion of modes higher than the third harmonic. Furthermore,
the optimal range of γ0 is frequency-dependent; at low fre-
quencies, higher strain amplitudes are necessary to ferret out
MAOS signatures. In practice, the stress response is measured
at multiple strain-amplitudes in the target zone, and the “true”
MAOS moduli are extracted by extrapolation. Due to the com-
plicated process involved, validating experimental data before

TABLE I. Different forms of linear Kramers–Kronig relations.

Complex form Pair form

Modulus G*(ω)
ω

¼ i

π

ð1
�1

G*(u)=u
u� ω

du: G0(ω) ¼ � 2ω2

π

ð1
0

G00(u)=u
u2 � ω2

du

G00(ω) ¼ 2ω
π

ð1
0

G0(u)
u2 � ω2

du

Viscosity η*(ω) ¼ i

π

ð1
�1

η*(u)
u� ω

du: η0(ω) ¼ 2
π

ð1
0

uη00(u)
u2 � ω2

du

η00(ω) ¼ 2ω
π

ð1
0

η0(u)
ω2 � u2

du
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interpretation is paramount. The companion paper provides a
practical method for efficiently accomplishing this task [31].

Medium amplitude parallel superposition (MAPS) can be
seen as a generalization of the MAOS protocol [32]. Instead
of the single-tone sinusoidal strain in MAOS, the strain wave-
form in MAPS consists of a superposition of three sine
waves with frequencies ω1, ω2, and ω3,

γMAPS(t) ¼ γ0 sin(ω1t)þ sin(ω2t)þ sin(ω3t)ð Þ: (9)

This perturbation elicits a much richer asymptotic nonlinear
response than MAOS. Indeed, as introduced formally in Sec. II,
it leads to a strain-independent third-order complex modulus
G*

3(ω1, ω2, ω3), which offers a complete characterization of
the material’s asymptotic nonlinear behavior. By complete,
we mean that using G*

3(ω1, ω2, ω3), the nonlinear response to
any arbitrary medium amplitude deformation history can be
predicted via a generalization of the Boltzmann superposi-
tion principle.

Therefore, MAOS can be thought of as a special, low-
dimensional projection of MAPS. It can be shown that the
MAOS moduli, G*

31 and G*
33, are special cases of the third

order or MAPS modulus G*
3(ω1, ω2, ω3) [32],

G*
31(ω) ¼

3
4
G*

3(ω, �ω, ω),

G*
33(ω) ¼ � 1

4
G*

3(ω, ω, ω):

(10)

Due to experimental challenges, characterization of materials
using MAPS has barely started [33–35]. Regardless, for the pur-
poses of this work, MAPS provides a convenient general theo-
retical lens for interpreting MAOS measurements and KKR.

C. Motivation and scope

This paper is organized as follows: we begin with a gener-
alization of the Boltzmann superposition principle to nonlin-
ear rheology using a multiple integral expansion in Sec. II.
We highlight similarities and connections between higher-
order terms and their LVE counterparts. We then mathemati-
cally derive a general nonlinear KKR [Eq. (24)].

Nonlinear KKR have been proposed in various disciplines
[36,37], notably optics [38–40]. Nevertheless, it is worthwhile
to clearly articulate nonlinear KKR for rheology for the follow-
ing reasons: (i) Timeliness: Experimental protocols for nonlinear
oscillatory rheology are at an inflection point. Techniques like
MAOS have begun to mature, while methods like MAPS have
only recently been introduced [32]. Nonlinear KKR are impor-
tant to ensure that the experimentally reported data using non-
linear oscillatory rheology are consistent; (ii) Standardization:
Conventions in rheology differ from those in other fields. For
example, η*(ω), and not G*(ω), is the true Fourier transform of
G(t). Furthermore, the convention for Fourier transform used in
rheology differs in sign from that in other fields like optics.
These issues can cause confusion when importing nonlinear
KKR developed for other fields into rheology.

In Sec. III, we narrow our focus by specializing these
general KKR to MAPS and MAOS rheology. It turns out that

for the MAOS modulus G*
33 we can formulate a KKR

[Eq. (29)]; unfortunately, no such KKR exists for G*
31. Finally,

in Sec. IV, we test KKR on the single mode Giesekus model
for which the third-order complex modulus G*

3(ω1, ω2, ω3) is
analytically known. In particular, we verify that the MAPS
moduli are consistent with the appropriate KKR. Finally, we
explore the sensitivity of the MAOS KKR when the domain of
integration is limited to a finite frequency window.

The treatment in this work is theoretical. A concrete
illustration of applying nonlinear KKR for efficiently vali-
dating experimental MAOS data is provided in the compan-
ion paper [31]. A numerical test is proposed, which is
robust to noise and finite frequency window of observation.
It accomplishes this feat by avoiding direct numerical inte-
gration; instead, it selects a set of basis functions that
satisfy nonlinear KKR by design and poses data validation
as an optimization problem in which these basis functions
are used to fit experimental data.

II. DERIVATION OF KRAMERS–KRONIG
RELATIONS FOR NONLINEAR RHEOLOGY

The Boltzmann superposition principle can be general-
ized to nonlinear rheology using a multiple integral expan-
sion [32,41–44]. The general framework for stress induced
due to imposed strain can be represented using an infinite
Volterra series,

σ(t) ¼
X1
n[odd

σn(t), (11)

where the summation includes only odd values of n due to
the odd symmetry between shear stress and strain, i.e.,
σ(�γ) ¼ �σ(γ). The contribution of the nth mode is given by

σn(t) ¼
ðt
�1

� � �
ðt
�1

Gn(t � t1, t � t2, . . . , t � tn)
Yn
m¼1

_γ(tm) dtm,

(12)

where _γ(t) is the shear rate and Gn(t � t1, t � t2, . . . , t � tn)
is the nth order relaxation modulus that generalizes the linear
relaxation modulus. The principle of causality stipulates that
Gn(t � t1, t � t2, . . . , t � tn) ¼ 0 if t � ti , 0 for any
i ¼ 1, 2, . . . , n. The first term in this series,

σ1 ¼
ðt
�1

G1(t � t1) _γ(t1) dt1, (13)

is identical to the Boltzmann superposition principle given
by Eq. (1) with G1(t) ; G(t). Subsequent terms (n � 3) in
Eq. (12) take into account stress induced due to the interac-
tion of strains applied at different times ti and tj. In LVE,
such cross-effects are negligible.

Nonlinear effects in oscillatory shear flow can evaluated by
taking a Fourier transform (denoted by “hat”) of Eq. (11) [32],

σ̂(ω) ¼
X1
n[odd

σ̂n(ω) ¼
X1
n[odd

ð1
�1

σn(t) e
�iωt dt, (14)

KKR: GENERAL EXPRESSION 975
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where the contribution of the nth mode is

σ̂n(ω) ¼ 1

(2π)n�1

ð1
�1

� � �n
ð1
�1

G*
n(ω1, . . . , ωn)

δ ω�
Xn
m¼1

ωm

 ! Yn
m¼1

_̂γ(ωm) dωm

 !
: (15)

The nonlinear complex relaxation modulus
G*

n ω1, ω2, . . . , ωnð Þ is the modified Fourier transform of the
nonlinear relaxation modulus Gn(t1, . . . , tn),

G*
n(ω1, . . . , ωn) ¼

Yn
m¼1

iωm

 !ð1
0
� � �n
ð1
0
Gn(t1, . . . , tn)

�
Yn
m¼1

e�iωmtm dtm

 !
: (16)

Note that the first term corresponding to n ¼ 1 is the usual
linear complex modulus G*

1(ω) ¼ G*(ω) encountered in the
LVE regime as Eq. (2). The next odd term corresponding to
n ¼ 3, or G*

3(ω1, ω2, ω3), represents the leading nonlinear
term that can be experimentally characterized using MAPS
rheology. Due to the Volterra representation, G*

n obeys permu-
tation symmetry and is invariant with respect to the permuta-
tion of its arguments. Thus, for example, G*

3(ω1, ω2, ω3)
¼ G*

3(ω2, ω1, ω3) ¼ G*
3(ω3, ω2, ω1), etc.

Analogous to the linear complex viscosity
η*(ω) ¼ G*(ω)=(iω), it is convenient to introduce the nth
order complex viscosity η*n(ω1, . . . , ωn) ¼ η0n(ω1, . . . , ωn)
�iη00n(ω1, . . . , ωn), which is related to the nth order complex
modulus G*

n via

G*
n(ω1, . . . , ωn) ¼

Yn
m¼1

iωj

 !
η*n(ω1, . . . , ωn): (17)

Using this definition, we can write Eq. (16) as

η*n(ω1, . . . , ωn) ¼
ð1
0
� � �n
ð1
0
Gn(t1, . . . , tn)

Yn
m¼1

e�iωmtm dtm

 !
:

(18)

Now that we have defined all the relevant terms, we can
begin deriving a general form of KKR following the
approach of Hutchings et al. [38]. Let u and ω denote arbi-
trary frequencies. Consider the following integral with pi � 0
for all i ¼ 1, . . . , n:

I ¼
ð1
�1

η*n(ω1 þ p1u, . . . , ωn þ pnu)
u� ω

du: (19)

Substituting Eq. (18) for η*n,

I ¼
ð1
�1

ð1
0
� � �n
ð1
0
Gn(t1, . . . , tn) e

�i
P

ωmtm

� e
�iu
P

pmtm

u� ω

Yn
m¼1

dtm

 !
du, (20)

where the summations that occur as arguments to exponential
functions,

P
ωmtm and

P
pmtm, run from m ¼ 1 to n. We

can switch the order of integration to isolate terms that
involve u and obtain

I ¼
ð1
0
� � �n
ð1
0
Gn(t1, . . . , tn) e

�i
P

ωmtm
Yn
m¼1

dtm

 !

�
ð1
�1

e�iu
P

pmtm

u� ω
du: (21)

We can analytically compute the integral over u, by using the
following result for constant a = 0:ð1

�1

e�iua

u� ω
du ¼ (� iπ) e�iωa: (22)

Using Eq. (22) in Eq. (21) and invoking Eq. (18) in the last
step, we can show that

I ¼ (� iπ)
ð1
0
� � �n
ð1
0
Gn(t1, . . . , tn)e

�i
P

ωmtm

� e�iω
P

pmtm
Yn
m¼1

dtm

 !

¼ (� iπ)
ð1
0
� � �n
ð1
0
Gn(t1, . . . , tn) e

�i
P

(ωmþpmω)tm
Yn
m¼1

dtm

 !

¼ (� iπ)η*n(ω1 þ p1ω, . . . , ωn þ pnω): (23)

We can equate the RHS of Eqs. (19) and (23) to obtain a
general form of nonlinear KKR,

η*n(ω1 þ p1ω, . . . , ωn þ pnω)

¼ i

π

ð1
�1

η*n(ω1 þ p1u, . . . , ωn þ pnu)
u� ω

du: (24)

Note that this relation holds when pi � 0 for all
i ¼ 1, . . . , n, with at least one pi . 0, due to Eq. (22). This
is the most general form of KKR for nonlinear rheology in
this work. Several other useful forms are special cases of this
relation. A particular special case is obtained by substituting
pj ¼ 1 and pi ¼ 0 for all i = j where 1 � i, j � n, ωj ¼ 0,
u ¼ ω0

j, and ω ¼ ωj,

η*n(ω1, . . . , ωj, . . . , ωn) ¼ i

π

ð1
�1

η*n(ω1, . . . , ω0
j, . . . , ωn)

ω0
j � ωj

dω0
j:

(25)

Note that the RHS involves integrating over the jth input fre-
quency. For n ¼ 1, the correspondence with the linear KKR
in Eq. (5) is obvious. We can obtain an equivalent form in
terms of higher-order complex modulus by using Eq. (17),

G*
n(ω1, . . . , ωj, . . . , ωn)

ωj

¼ i

π

ð1
�1

G*
n(ω1, . . . , ω0

j, . . . , ωn)=ω0
j

ω0
j � ωj

dω0
j: (26)
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III. KRAMERS–KRONIG RELATIONS FOR MAPS
AND MAOS

We can specialize the general forms of KKR derived for
nonlinear rheology [Eqs. (24)–(26)] for MAPS and MAOS
experiments. For MAPS, two useful forms follow directly
from Eqs. (25) and (26) with n ¼ 3, and (say) j ¼ 2,

η*3(ω1, ω2, ω3) ¼ i

π

ð1
�1

η*3(ω1, ω0
2, ω3)

ω0
2 � ω2

dω0
2,

G*
3(ω1, ω2, ω3)

ω2
¼ i

π

ð1
�1

G*
3(ω1, ω0

2, ω3)=ω0
j

ω0
2 � ω2

dω0
2:

(27)

For concreteness, the RHS of the equations above involve
integrating over the second input frequency. Due to permuta-
tion symmetry, equivalent relations can also be furnished for
first and third input frequencies. Figure 1 illustrates this rela-
tion for the case where the integral is expressed over the first
input frequency. This family of KKR is useful for validating
MAPS experiments, where G*

3(ω1, ω2, ω3) or η*3(ω1, ω2, ω3)
is available.

A. KKR for MAOS

We can manipulate the general KKR relation [Eq. (24)] to
develop KKR that are useful for relating the real and imagi-
nary parts of the MAOS moduli G*

33, where the perturbation
is single-tone. With n ¼ 3, we set ω1 ¼ ω2 ¼ ω3 ¼ 0 and
p1 ¼ p2 ¼ p3 ¼ 1 to obtain

η*3(ω, ω, ω) ¼
i

π

ð1
�1

η*3(u, u, u)
u� ω

du: (28)

Using Eqs. (10) and (17), we can rewrite the corresponding
KKR in terms of the modulus

G*
33(ω) ¼

i

π
ω3
ð1
�1

1
u3

G*
33(u)

u� ω
du: (29)

We can equate the real and imaginary parts separately to
obtain a pair of KKR relations. Using G0

33(�ω) ¼ G0
33(ω)

and G00
33(�ω) ¼ �G00

33(ω), we can express these KKR for
MAOS moduli G*

33 on a non-negative frequency domain
similar to the linear KKR as

G0
33(ω) ¼ � 2ω4

π

ð1
0

1
u3

G00
33(u)

u2 � ω2ð Þ du,

G00
33(ω) ¼

2ω3

π

ð1
0

1
u2

G0
33(u)

u2 � ω2ð Þ du:
(30)

Just like linear KKR, these MAOS KKR can be used for
numerically evaluating one signal from the other or for data
validation. Similar relations for the third-harmonic are widely
used in nonlinear optics [38–40].

Interestingly, while we can write specific expressions
relating the real and imaginary parts of G*

33(ω) [Eq. (30)],
MAOS KKR relating the real and imaginary parts of G*

31(ω)
do not exist. In Eq. (24), since pi � 0, the integrand on the
RHS cannot be expressed as η*3(u, u, � u), which is equal
to η*31(u). However, by using p1 ¼ 1, p2 ¼ 0, p3 ¼ 0, and
ω1 ¼ 0, ω2 ¼ ω, ω3 ¼ �ω, we obtain η*3(u, ω, �ω) with
two fixed input frequencies in the integrand, leading to

η*31(ω) ¼ η*3(ω, ω, �ω) ¼ i

π

ð1
�1

η*3(u, ω, �ω)
u� ω

du,

G*
31(ω) ¼ G*

3(ω, ω, �ω) ¼ iω

π

ð1
�1

G*
3(u, ω, �ω)=u

u� ω
du:

(31)

The same expression can also be obtained by using ω1 ¼ ω
and ω3 ¼ �ω in Eq. (27). This is the closest we can
approach a KKR involving the MAOS modulus G*

31(ω).
This situation arises because MAOS moduli are a projec-
tion or subspace of the MAPS modulus G*

3(ω1, ω2, ω3). As
illustrated in Fig. 2, the MAOS moduli can be visualized as
two particular diagonal vectors (marked by black lines) in
the three-dimensional domain of G*

3. For G
*
33, the integrand

of the corresponding KKR relation [Eq. (30)] lives in the
same subspace shown by the dashed red line in Fig. 2(a).
Unfortunately, the integrand of Eq. (31) shown by the
dashed red line in Fig. 2(b) lives in a different subspace
and does not yield a KKR.

IV. VALIDATION OF KKR FOR MAPS AND MAOS

The various KKR expressions developed hitherto are tab-
ulated in Table II for convenience. In this section, we verify
the KKR expressions corresponding to the MAPS [Eq. (27)]
and MAOS moduli [Eqs. (30) and (31)] for the single mode
Giesekus model. For this model, analytical expressions for
the MAPS and MAOS moduli are available in the literature
[32,45,46].

A. KKR for MAPS

The single mode Giesekus model has three parameters,
the two linear parameters: modulus G0, and the relaxation
time τ0, and the nonlinear parameter α. The zero shear

FIG. 1. KKR for MAPS relates the third-order modulus at a point (dark
circle) to an integral over the first input frequency (ω0

1) [see Eq. (27)]
illustrated by the thick dashed line.

KKR: GENERAL EXPRESSION 977
 11 D

ecem
ber 2023 10:34:54



viscosity is related to the linear parameters via η0 ¼ G0τ0.
Lennon et al. [32] derived the third-order complex modulus

for various constitutive equations including the single mode
Giesekus model, which can be written as

η*3(ω1, ω2, ω3)

η0τ
2
0

¼
α (3� 2α)þ i

P
j z j

� �
3
Q

j 1þ iz j
� �� � �3� 4i

P
j z j þ

P
j z

2
j þ 3

P
j

Q
k=j zk

� �h i
Q

j 1þ i
P

k=j zk
� �h i

1þ i
P

j z j
� � , (32)

using the dimensionless frequency or Deborah number zi ¼ ωiτ0, with i ¼ 1, 2, 3, for brevity. To validate the MAPS KKR
[Eq. (27)], we consider the integral

1

η0τ
2
0

ð1
�1

η*3 ω1, u, ω3ð Þ
u� ω2ð Þ du ¼

ð1
�1

α

3(z� z2)
3� 2αð Þ þ i z1 þ zþ z3ð Þ
1þ iz1ð Þ 1þ izð Þ 1þ iz3ð Þ

� �3� 4i(z1 þ zþ z3)þ z21 þ z2 þ z23
� �þ 3 z1zþ zz3 þ z3z1ð Þ

1þ i z1 þ zð Þð Þ 1þ i zþ z3ð Þð Þ 1þ i z3 þ z1ð Þð Þ 1þ i z1 þ zþ z3ð Þð Þ dz, (33)

where z ¼ τ0u. This integral over z can be evaluated analytically
using mathematical software like MATHEMATICA. As expected
from the MAPS KKR Eq. (27), it leads to original expression
for η*3(ω1, ω2, ω3) given by Eq. (32) with the appropriate prefac-
tors. It is perhaps useful to point out that in trying to verify the
MAPS KKR, a small typo was discovered in Eqs. (61) and (D8)
of [32] [the authors reported missing a factor of i in the numera-
tor of the first term on the RHS, which is fixed in Eq. (32)].
Note that verification of the MAPS KKR automatically validates
Eq. (31) for η*31, which, as alluded to before, is strictly not a
KKR as it does not relate the real and imaginary parts of the
same property through an integral transform.

It is known that for inelastic constitutive equations such as
generalized Newtonian fluids, the linear elastic moduli at all fre-
quencies is G0 ¼ 0. Consequently, generalized Newtonian
fluids do not obey the Fourier transform relation between G00(ω)
and G(t) given by Eq. (2). They violate the principle of causal-
ity, and even linear KKR given by Eq. (5) do not apply. For a
generalized Newtonian fluid η*3(ω1, ω2, ω3) ¼ η0(0) = constant
[32]. For this case, we get

Ð1
�1 η*3 ω1, u, ω3ð Þ= u� ω2ð Þ du ¼ 0,

FIG. 2. Schematic diagram illustrating KKR MAOS within the context of MAPS: (a) for G*
33, application of KKR at a point (shown by coordinates) involves

an integral (thick dashed line) that coincides with G*
33 at all frequencies; (b) for G

*
31, the corresponding integral involves a quantity (thick dashed line) that does

not coincide with G*
31.

TABLE II. Summary of nonlinear KKR for general (nth order), MAPS and
MAOS (third order) complex moduli. These equations can be derived from the
general nonlinear KKR listed at the top of the table, which is derived in Sec. II.

General nonlinear KKR

η*n(ω1 þ p1ω, . . . , ωn þ pnω) ¼ i

π

ð1
�1

η*n(ω1 þ p1u, . . . , ωn þ pnu)
u� ω

du, pi � 0

General
ηn*

η*n(ω1, . . . , ωj, . . . , ωn) ¼ i

π

ð1
�1

η*n(ω1, . . . , ω0
j, . . . , ωn)

ω0
j � ωj

dω0
j

Gn*
G*

n(ω1, . . . , ωj, . . . , ωn)
ωj

¼ i

π

ð1
�1

G*
n(ω1, . . . , ω0

j, . . . , ωn)=ω0
j

ω0
j � ωj

dω0
j

MAPS
η3*

η*3(ω1, ω2, ω3) ¼ i

π

ð1
�1

η*3(ω1, ω0
2, ω3)

ω0
2 � ω2

dω0
2

G3*
G*

3(ω1, ω2, ω3)
ω2

¼ i

π

ð1
�1

G*
3(ω1, ω0

2, ω3)=ω0
2

ω0
2 � ω2

dω0
2

MAOS
η33*

η*33(ω) ¼
i

π

ð1
�1

η*33(u)
u� ω

du

G33*

G*
33(ω) ¼

i

π
ω3
ð1
�1

1
u3

G*
33(u)

u� ω
du
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and hence, MAPS KKR does not hold either. This result is
expected because a generalized Newtonian fluid is an idealiza-
tion; no real fluid demonstrates G0(ω) ¼ 0 at all frequencies.

B. KKR for MAOS: Finite frequency window

Unlike η*31, the real and imaginary parts of η*33 are
related through a KKR [Eq. (28)]. As with η*31, the

validity of the corresponding specialized KKR is auto-
matically implied by the validity of the MAPS KKR.
MAOS KKR [Eq. (30)] can also be directly verified using
the relations for G*

33 derived by Gurnon and Wagner [45]
and Bharadwaj and Ewoldt [46]. We obtain the same
expressions from the MAPS relation [Eq. (32)] using
ω1 ¼ ω2 ¼ ω3 ¼ ω,

G0
33(ω)
G0

¼ � 1
4
G0

3(ω, ω, ω)
G0

¼ αDe4(�21þ 30De2 þ 51De4 þ 4α(4� 17De2 þ 3De4))

4(1þ De2)
3
(1þ 4De2)(1þ 9De2)

G00
33(ω)
G0

¼ � 1
4
G00

3(ω, ω, ω)
G0

¼ αDe3(�3þ 48De2 þ 33De4 � 18De6 þ α(2� 48De2 þ 46De4))

4(1þ De2)
3
(1þ 4De2)(1þ 9De2)

,

(34)

with Deborah number De ¼ ωτ0. Note that there is a small
typo in Bharadwaj and Ewoldt [46] in the expression for G0

33
where the term þ30De2 in the numerator is accidentally
replaced by �30De2.

Note that MAOS KKR require knowledge of G*
33 over an

infinite frequency window. In what follows, we explore the
sensitivity of MAOS KKR when experimental data are avail-
able only over a limited frequency range, ωmin � u � ωmax.
We denote these approximations of MAOS KKR by decorat-
ing the corresponding moduli with a tilde,

~G
0
33(ω) ¼ � 2ω4

π

ðωmax

ωmin

1
u3

G00
33(u)

u2 � ω2ð Þ du,

~G
00
33(ω) ¼

2ω3

π

ðωmax

ωmin

1
u2

G0
33(u)

u2 � ω2ð Þ du:
(35)

Fortunately, these integrals can be evaluated analytically
for the Giesekus model, although the resulting expres-
sions are somewhat elaborate. We can define the absolute
error between the true and approximate moduli to quantify
the sensitivity of KKR to truncation of the frequency
window as

ϵ033(ω; ωmin, ωmax) ¼ G0
33(ω)� ~G

0
33(ω; ωmin, ωmax)

��� ���,
ϵ0033(ω; ωmin, ωmax) ¼ G00

33(ω)� ~G
00
33(ω; ωmin, ωmax)

��� ���: (36)

The error due to truncation has contributions from the left,
u [ [0, ωmin], and right, u [ [ωmax, 1], tails. At large fre-
quencies u ! 1, the integrands of both the MAOS KKR
decay rapidly as 1=u6,

lim
u!1

1
u3

G00
33(u)

u2 � ω2ð Þ/
1
u6

, lim
u!1

1
u2

G0
33(u)

u2 � ω2ð Þ/
1
u6

: (37)

Thus, the typical correction due to truncation of the high fre-
quency or right tail is relatively modest compared to the trunca-
tion of the left tail, which we consider next. At low frequencies,

lim
u!0

1
u3

G00
33(u)

u2 � ω2ð Þ/
u0

ω2
, lim

u!0

1
u2

G0
33(u)

u2 � ω2ð Þ/
u2

ω2
: (38)

This left tail contribution to the error in Eq. (36) can be
approximated as

ϵ033(ω; ωmin, 1) ¼ � 2ω4

π

ðωmin

0

1
u3

G00
33(u)

u2 � ω2ð Þ du � � 2ω4

π

ðωmin

0

u0

ω2
du/ ω2ωmin,

ϵ0033(ω; ωmin, 1) ¼ 2ω3

π

ðωmin

0

1
u2

G0
33(u)

u2 � ω2ð Þ du � 2ω3

π

ðωmin

0

u2

ω2
du/ ωω3

min:

(39)

Figure 3 depicts the total truncation error [Eq. (36)] at four
different frequencies corresponding to De = 0.1, 1, 10, and
100 as a function of the width of the frequency window, which
is controlled by the parameter f . We set ωmin ¼ ω=f and
ωmax ¼ fω for each choice of ω and f . As f ! 1, the fre-
quency window becomes infinite, and the errors ε033 and ε0033 go

to zero. Error analysis [Eq. (39)], which assumes that the left tail
is primarily responsible suggests, ε033 / ω2(ω=f ) ¼ ω3=f . This
is clearly evident in Fig. 3(a) at sufficiently large f , where the
1=f dependence is shown by the dashed line, and the error is
normalized by ω3. Similar analysis suggests that ε0033 / ω(ω=f )3

¼ ω4=f 3, which is also evident at large f in Fig. 3(b).
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At smaller values of f deviations from the asymptotic
trendlines are visible. These deviations surface when the
finite frequency window [ω=f , fω] does not include suffi-
cient information around the characteristic relaxation time
of the Giesekus model, τ0. That is, it is important for the
finite frequency window to include sufficient information
around the corresponding characteristic frequency, i.e.,
ωmin � 2π=τ0 � ωmax. The dataseries corresponding to
De = 1 always includes this region for the range of f
explored in Fig. 3. Thus, it tracks the asymptotic trendline
more faithfully than other frequencies.

Two other practical observations can be made from the
figure: (i) at a given ω and f , the magnitude of the error ε0033
is smaller, often much smaller, than the corresponding error
ε033, and (ii) for a fixed but sufficiently large frequency
window, both errors increase rapidly with frequency ω. This
suggests that limiting the frequency window adversely affects
high frequency predictions of ~G

0
33(ω) and ~G

00
33(ω).

In practice, standard rheometers have a fixed frequency
range, typically between 10�3 and 103 rad/s. Hence, we can

explore the sensitivity of ~G
0
33(ω) and ~G

00
33(ω), when the

experimental data are available from a fixed frequency
window ωmin ¼ 1=p and ωmax ¼ p. Figure 4 shows ~G

0
33(ω)

for De [ [0:1, 10], at three different values of p ¼ 10, 100,
and 1000.

As expected, the agreement between the approximate and
true moduli improves as p increases. Note that when p ¼ 10,
the prediction, particularly for ~G

0
33(ω), is poor. The correspond-

ing prediction for ~G
00
33(ω) is not quite as bad. This seems to be

a general trend: predictions of G00
33(ω) using MAOS KKR on

limited frequency data for G0
33(ω) are far more reliable than

vice versa. This was foreshadowed by Fig. 3(b), where the
error ε00 , ε0 at the same value of ω and f .

However, even for G00
33(ω), we need data approximately

one order of magnitude larger (p ¼ 100 corresponds to
ωmin ¼ 10�2 and ωmax ¼ 102) than the range of reliable pre-
diction (De [ [0:1, 10]) shown in Fig. 4(b) [47]. Increasing p
by another order of magnitude to 1000 results only in minor
improvements in prediction of G00

33(ω). Unlike G
00
33(ω), the pre-

dictions of ~G
0
33(ω) at high frequency, even at p ¼ 1000 are

quite poor. This is anticipated by Eq. (39), which suggested
that the error for the storage modulus is proportional to ω2=p,

FIG. 4. Finite frequency window approximations of the third harmonic
MAOS moduli ~G

0
33(ω) and ~G

00
33(ω) for the single mode Giesekus model with

G0 ¼ τ0 ¼ 1 and α ¼ 0:2. Three different widths of the frequency window
where ωminτ0 ¼ 1=p and ωmaxτ0 ¼ p are shown. The dashed lines are the
true MAOS moduli.

FIG. 3. Normalized errors for finite frequency approximations of MAOS
KKR for the single mode Giesekus model with G0 ¼ τ0 ¼ 1 and α ¼ 0:2:
(a) ε033=ω

3 and (b) ε0033=ω
3 are plotted as a function of the parameter f , which

controls the width of the frequency window via ωmin ¼ ω=f and ωmax ¼ fω.
Four different values of the frequency ωτ0 are selected. When the low fre-
quency correction dominates the error, we expect ε033 / ω3=f and
ε0033 / ω4=f 3, which are indicated by the dashed gray lines.
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unlike the loss modulus which is proportional to ω=p3 and
much better behaved.

V. SUMMARY

Linear KKR are integral transforms that relate the real
and imaginary parts of the complex modulus G* (or
complex viscosity η*). These relations are a mathematical
reflection of the principle of causality that constrains the
linear relaxation modulus [G(t , 0) ¼ 0]. We started with a
multiple integral expansion that generalizes the Boltzmann
superposition principle to nonlinear rheology. Nonlinear
KKR, similar to their linear counterparts, arise from the
principle of causality, which also constrains the nth order
relaxation modulus Gn(t1, . . . , tn).

We derived a general form of nonlinear KKR [Eq. (24)]
following the approach of Hutchings et al. [38]. We special-
ized this general KKR to MAPS rheology, which relates the
real and imaginary parts of the third-order complex modulus
G*

3(ω1, ω2, ω3) or complex viscosity η*3(ω1, ω2, ω3)
[Eq. (27)]. Recall that knowledge of G*

3(ω1, ω2, ω3) allows us
to predict the asymptotically nonlinear material response to
any arbitrary medium amplitude deformation history.
MAOS rheology can then be considered as a popular special
case of MAPS rheology that is characterized by two moduli
G*

31 ¼ (3=4)G*
3(ω, �ω, ω) and G*

33 ¼ (� 1=4)G*
3(ω, ω, ω).

While a MAOS KKR relating the real and imaginary parts of
G*

33 can be written, no such expression relating the real and
imaginary parts of G*

31 exists.
We verified the MAPS KKR relations on the single mode

Giesekus model for which the third-order complex modulus
G*

3(ω1, ω2, ω3) is analytically known. With practical applica-
tions in mind, we investigated the sensitivity of the MAOS
KKR when the domain of integration is truncated and data
are limited to a finite frequency window. We found that
(i) the truncation error is typically dominated by the low-
frequency or left tail, (ii) inferring G00

33 from G0
33 is more reli-

able than vice versa, (iii) making predictions over a particular
frequency range requires approximately an extra decade of
data beyond the frequency range of prediction, and (iv) pre-
dictions of G0

33 at large frequencies are poor, even when two
decades of data beyond the prediction range are available.
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