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A spectral element method for the simulation of an acoustic field is applied to the case of a co-rotating vortex pair
in both stationary medium and mean flow. Based on the dilatation theory, the second time derivative of the pseudo-
pressure is used as the source of the inhomogeneous convected wave equation which is discretized by a spectral
element method in space and the Newmark-β method in time marching. In addition, the nonreflecting boundary
condition is adopted too. Then we compared the numerical results with the analytical solution. Numerical results
are in good agreement with the analytical solution. Moreover, different grid spacings and time steps are investigated
for evaluating the numerical accuracy. To study the frequency content of the sound, spectral analysis is also carried
out. Finally, sound propagation in uniform flows and sheared mean flows are simulated and analyzed. This
study shows the capabilities of the spectral element method combined with dilatation theory for the aeroacoustic
problems.

1. INTRODUCTION

The acoustic analogy theory1 introduced by Lighthill to
study jet noise is now over six decades, and it has been by
far the most successful and versatile theory in dealing with
aeroacoustic problems. Considering the pseudo-sound pres-
sure, Ribner2, 3 and Meecham4 offered a different approach to
Lighthill’s acoustic analogy which posited fluctuating fluid di-
latations as the acoustic source. One motivation for developing
a new expression is that the pseudo-sound term is much eas-
ier to calculate relative to Lighthill’s stress tensor. According
to this dilatation theory which also corresponds to the acous-
tic/viscous splitting technique derived by Hardin and Pope,5

Hurdle,6 Ribner and Crawley7 studied the aerodynamic noise
generating from a jet engine. Combining large eddy simula-
tion and dilatation theory, Flemming8 used a hybrid approach
to study the combustion noise of a turbulent flame. Hiramoto
et al.9 investigated the sound generated in a separated shear
flow by flow visualization and fluctuating static pressure mea-
surements, and the results showed that the dilatation theory’s
source term and the vortical structure are closely correlated.
Escobar et al.10 presented a study on vortex sound propagation
by using finite element method and compared dilatation theory
with Lighthill’s acoustic analogy theory. The results showed
that the dilatation theory can get good solutions easily. Based
on the dilatation theory, Papageorgakopoulos and Tsangaris11

developed a numerical discretization scheme for acoustic wave
equation and solved some benchmark problems.

Computational Aeroacoustics (CAA) is not the same as
Computational Fluid Dynamics (CFD). Needs of accurate and
efficient numerical solvers in CAA motivated the development
of low-dispersion and low-dissipation schemes. Varieties of
finite difference schemes12–14 occupy a dominant position in
CAA and some of them can provide certain accuracy. How-
ever, the spectral element method (SEM) can provide high res-
olution and good flexibility with a low number of elements.

Numerically, SEM has the advantage of low dispersion and
diffusion alongside exponential convergence in the polynomial
order. Therefore, the SEM has been widely used in wave prop-
agation studies,15, 16 CFD17 and CAA.18–20

The motivation for simulating the sound generated by a co-
rotating vortex pair5, 21–23 in this work is that various vortices
occupy only a very small portion in a flow but play a key role
in organizing the flow,24 as “the sinews and muscles of the
fluid motion”25 and “the sinews of turbulence”.26 Vortices are
also “the voice of fluid motion”27 because they, at low Mach
numbers, are the only source of aeroacoustic sound and noise.
The other reason is that it has analytic solutions. Moreover,
many other workers have used it to verify the validity of the
proposed numerical schemes for CAA.28–31

In the present work, we present an analysis methodology,
described in Section 2, which aims to supply another com-
putational tool for CAA. The inhomogeneous convected wave
equation based on the dilatation theory was solved numerically
by using the high resolution SEM. In order to demonstrate the
capabilities and limits of this method, we have studied a bench-
mark 2D vortex sound propagation problem in detail.

The paper is organized as follows. In Section 2 we provide
a description of the inhomogeneous convected wave equation
with dilatation theory. The governing equation obtained will
then be discretized by SEM in space and Newmark-β method
in time. In Section 3, the sound generated by a co-rotating
vortex pair is investigated in detail. Finally, Section 4 contains
the conclusions of our work.

2. GOVERNING EQUATION

As well known, the original Lighthill’s acoustic analogy
completely ignores the mean flow-sound interaction effects.
Then Phillips and Lilley make a correction for the Lighthill’s
equation. Phillips’ equation takes into account partially the
interaction of the mean flow with the sound. Thus, the equa-
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tion is valid for a moving medium, with some accuracy. Lil-
ley’s equation takes the effects of the static flow into account
in a better way than the Phillips’ equation. In Lilley’s equa-
tion, all the “propagation effects” that occur in a transversely
sheared mean flow are inside the left hand side of the equation.
Therefore, Lilley’s equation has been extensively used to ex-
amine the mean flow-sound interaction and for calculation of
subsonic jet noise. However, the complexity of solutions and
nonlinearity of equations has also been presented. Hence, in
the present paper, we consider the Lighthill’s acoustic analogy
theory in a mean flow velocity U which is constant and par-
allel to the x direction. For the simplicity of illustration, the
Lighthill’s equation can be written as

1

c20

D2p′

Dt2
− ∂2p′

∂x2
i

=
∂2Tij
∂xixj

; (1)

where
D

Dt
=

∂

∂t
+ U

∂

∂x
; (2)

and c0, U are the speed of sound and mean flow, respectively,
p′ is the pressure fluctuation, Tij represents the Lighthill’s
stress tensor.

Some assumptions are made here to obtain Eq. (1):

• The speed of sound is a constant.

• There are no mass, heat, force or momentum source dis-
tributions.

• The refraction effects are not included in the scope of this
paper.

• The sources were assumed to be acoustically compact.

For the inviscid flow with a low Mach number and high
Reynolds number in the form

Tij ∼= ρ0uiuj ; (3)

and ui is the fluid velocity of the i-direction. Introducing Mach
number Ma = U/c0, Eq. (1) can be written as

1

c20

∂2p′

∂t2
+ 2

Ma

c0

∂

∂x

(
∂p′

∂t

)
−(

(1−Ma2)
∂2p′

∂x2
+
∂2p′

∂y2

)
=
∂2Tij
∂xixj

. (4)

The pressure fluctuations will therefore satisfy the above in-
homogeneous convected wave equation which is an exact con-
sequence of the continuity and momentum equations. How-
ever, if the flow is incompressible, the pressure fluctuations
can be split into the pseudo-sound and acoustic part

p′ = pinc + pa. (5)

The pseudo-sound pressure is also called hydrodynamic pres-
sure fluctuations or incompressible pressure fluctuations. The
acoustic perturbations are what we term sound, as they are
characterized by their ability to propagate (not the generation)
into the hearing region. The pseudo-sound pressure perturba-
tions are the consequence of fluid flow simply changing in the
source region, it exhibits no wave propagation. The pinc field
dominating within and near the turbulence at subsonic speeds,

Figure 1. Diagram of decay for acoustic and pseudo-sound pressure in 3-D
problem.

constitutes what is known as the acoustic near field, and it has
virtually the characteristics of the pressure field in an incom-
pressible flow being dominated by inertial rather than compres-
sional effects, and hence the name pseudo-sound.3 Further, it
is overridden by the acoustic radiation field pa, which decays
more slowly with distance. Figure 1 shows the diagram of de-
cay for acoustic and pseudo-sound pressure in 3-D problem.
And it has also been suggested by Ribner,2 Crawley7 and Ris-
torcelli.32 The horizontal axis represents the distance from the
sound source, r/m.

Finally, by taking the divergence of momentum equation and
combined with the time derivative of the continuity equation,
we can get a specific equation for the pseudo-sound pressure
pinc

−∇2pinc = ρ0
∂2uiuj
∂xixj

; (6)

and substitute back in Eq. (1) and use Eq. (5) to get

1

c20

D2pa

Dt2
− ∂2pa

∂x2
i

= − 1

c20

D2pinc

Dt2
. (7)

The above equation can be rewritten as

∂2pa

∂t2
+ 2c0Ma

∂

∂x

(
∂pa

∂t

)
−

c20

(
(1−Ma2)

∂2pa

∂x2
+
∂2pa

∂y2

)
= −∂

2pinc

∂t2
. (8)

Equation (8) provides another view of getting acoustic pres-
sure by using only the second derivative of pseudo-sound pres-
sure. This formulation corresponds to what derived by Hardin
and Pope.5 The right hand side of Eq. (8) can be regarded as
the forcing term of the inhomogeneous convected wave equa-
tion for the acoustic pressure. And like Lighthill’s result, the
above equation is an exact consequence of the continuity and
momentum equations. The initial condition is given by

pa(x, y, 0) = 0,
∂pa

∂t
(x, y, 0) = 0. (9)
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2.1. Nonreflecting Boundary Condition

One of the typical problems in the numerical simulation of
acoustic wave propagation is the treatment of boundary con-
ditions. The nonreflecting boundary conditions are introduced
to suppress the spurious waves which are generated by trun-
cating the unbounded domain, and this would lead to a signif-
icant reduction in computational cost, especially for the three-
dimensional large-scale numerical simulation.

In this study, the C-E-M nonreflecting boundary condition
is modified to be appropriate for the convective wave equa-
tion.33–35 The expression appears as what shown below

1

c0(1∓Ma)

∂pa

∂t
+
∂pa

∂n
= 0; (10)

where n represents the outward unit normal vector out of the
computation region at the boundaries. With a minus sign
placed in front of Ma on the upstream boundary and a plus sign
on the downstream boundary, the Ma is zero on the boundary
perpendicular to the flow direction.

2.2. Spatial Discretization

Both integral formula and variational formula can be applied
to the governing equation. Because they are computationally
less expensive than volume discretization methods where a
whole discretization of the acoustic domain is required, the
integral methods remain widely used in CAA studies, but in
such a situation, integral formula would require extensive ex-
perience of a hard-wall Green’s function that is not known for
complex geometries. On the other hand, the integral formula
must explicitly take into account the interactions between the
solid surfaces and the induced noise which is named as surface
sources. On the contrary, the variational formula is able to
take into account the effects implicitly. And therefore, in the
present paper, we adopt the SEM to discretize the governing
equation in space.

After introducing the Sobolev space (d denotes the space
dimension)

H1(Ω) :=

{
v ∈ L2(Ω) :

∂v

∂xj
∈ L2(Ω),∀j = 1, . . . d

}
;

(11)
and its subspace

H1
0 (Ω) :=

{
v ∈ H1(Ω) : v|ΓD=0

}
. (12)

Then, the weak formulation of Eq. (8) and Eq. (9) reads as
follows: find pa(t) ∈ H1(Ω) such that, for any v ∈ H1

0 (Ω),

∫∫
Ω

(
∂2pa

∂t2
+ 2c0Ma

∂

∂x

(
∂pa

∂t

)
−

c20

(
(1−Ma2)

∂2pa

∂x2
+
∂2pa

∂y2

))
v dΩ =

∫∫
Ω

−∂
2pinc

∂t2
v dΩ.

(13)

The variational formulation of above equation with the nonre-

flecting boundary condition Eq. (10) yields as follows∫∫
Ω

∂2pa

∂t2
v dΩ + 2c0Ma

∫∫
Ω

∂

∂x

(
∂pa

∂t

)
v dΩ +

c20

∫∫
Ω

[
(1−Ma2)

∂pa

∂x

∂v

∂x
+
∂pa

∂y

∂v

∂y

]
dΩ−

c0

∮
Γxup

(1 + Ma)
∂pa

∂t
v ds+ c0

∮
Γy

∂pa

∂t
v ds+

c0

∮
Γxdown

(1−Ma)
∂pa

∂t
v ds =

∫∫
Ω

−∂
2pinc

∂t2
v dΩ. (14)

where Γxup , Γxdown and Γy is the upstream boundary, down-
stream boundary and the boundary in the y direction, respec-
tively.

In the Chebyshev spectral element method, the computa-
tional domain Ω is decomposed into Nd = Nm × Nn non-
overlapping subdomains, whereNm the element number in the
x direction, Nn the element number in the y direction. Each
spectral element is mapped into a standard element [−1, 1] by

ξ =
2

Lix
(x− xi)− 1 or x =

1

2
Lix(ξ + 1) + xi; (15)

η =
2

Liy
(y − yi)− 1 or y =

1

2
Liy(η + 1) + yi; (16)

where Lix = xm+1 − xm, Liy = yn+1 − ym are the lengths of
the ith element in x and y directions, respectively. Hence, the
trial functions and the test functions can be written as

pai(ξ, η) =

Ni
x∑

j=0

Ni
y∑

k=0

hij(ξ)h
i
k(η)uijk; (17)

vi(ξ, η) =

Ni
x∑

p=0

Ni
y∑

q=0

hip(ξ)h
i
q(η)vipq; (18)

where N i
x, N i

y is the number of nodes in each element in x
and y directions, respectively. Interpolation functions can be
expressed as

hij(ξ) =
2

N i
x

Ni
x∑

m=0

1

cjcm
Tm(ξij)Tm(ξ); (19)

hik(η) =
2

N i
y

Ni
y∑

n=0

1

ckcn
Tn(ηik)Tn(η); (20)

hip(ξ) =
2

N i
x

Ni
x∑

l=0

1

cpcl
Tl(ξ

i
p)Tl(ξ); (21)

hiq(η) =
2

N i
y

Ni
y∑

r=0

1

cqcr
Tr(η

i
q)Tr(η); (22)

where Tm, Tn, Tl, Tr are Chebyshev polynomials. The inter-
polation functions satisfy the cardinal interpolation property

hij(ξk) = δjk, hip(ηq) = δpq; (23)

where δjk, δpq are Kronecker’s deltas representing the identity
matrix. The parameter cm is defined by

cm =

{
2 m = 0, N i

x;

1 m 6= 0, N i
x.

(24)
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Finally, the variational problem discretized by the means of
SEM is equivalent to solving the following Differential Alge-
braic Equations

Mp̈a(t) + Cṗa(t) + Kpa(t) = S; (25)

where M, C, K and S are the global mass matrix, global
damping matrix, global stiffness matrix and global loading ma-
trix.

2.3. Time Integration Scheme
Newmark-β scheme is used to avoid the stability restriction.

It is an implicit method of direct integration of the equations,
for which the relationships between the acoustic pressure pa,
the first time derivative ṗa and the second time derivative p̈a in
the interval of t ∼ t+ ∆t are as follows:

ṗat+∆t = ṗat + (1− γ)p̈at∆t+ γp̈at+∆t∆t; (26)

pat+∆t = pat + ṗat∆t+

(
1

2
− β

)
p̈at∆t2 + βp̈at+∆t∆t

2.

(27)

The choice of γ and β in the equations above will influence
the stability and accuracy of the method.36 After utilising the
above relationships, Eq. (25) reduces to a system of algebraic
equations with constant coefficients for each given time step
∆t, the obtained form can be written as(

K +
1

β∆t2
M +

γ

β∆t
C

)
pat+∆t =

St+∆t + M

[
1

β∆t2
pat +

1

β∆t
ṗat +

(
1

2β
− 1

)
p̈at

]
+

C

[
γ

β∆t
pat +

(
γ

β
− 1

)
ṗat +

(
γ

2β
− 1

)
∆tp̈at

]
; (28)

and the initial step of is written as follows:

p̈a0 = M−1 (S0 −Kpa0 −Cṗa0) . (29)

3. RESULTS AND DISCUSSION

In this paper, the acoustic field generated by a co-rotating
vortex pair is calculated in detail, and can be used as a bench-
mark problem to verify computational aeroacoustics numerical
schemes. This vortex sound problem is a good test for the al-
gorithm because an analytical closed form solution exists for
both the incompressible flow field and the acoustic field. At
the same time, it also represents the basic acoustic field gen-
erated by turbulent shear flows and can be used to understand
the mechanism of sound generation.

The schematic of the co-rotating vortices is presented in
Fig. 2. The two point-vortices separated by a fixed distance
2r0 rotate around each other along a circular path of radius
r0 and have an equal circulation intensity Γ. The angular
rotational speed is ω = Γ/(4πr2

0), and the period of rota-
tion is T = 8π2r2

0/Γ. Each vortex induces on the other a
velocity vθ = Γ/(4πr0), thus the rotating Mach number is
Mr = vθ/c0.

The flow field is assumed to be viscous and incompressible.
Thus, it can be determined numerically by the evaluation of a
complex potential function φ(z, t)

φ(z, t) =
Γ

2πi
ln z2

(
1− b2

z2

)
; (30)

Figure 2. The schematic of the co-rotating vortex pair.

where z = x+ iy = reiθ, b = r0e
iωt.

To make acoustic computations, flow variables are required
as input to the acoustic equations. The hydrodynamic veloc-
ity can be obtained by differentiating Eq. (30) with respect to
z. From the unsteady Bernoulli’s equation, the hydrodynamic
pressure pinc can be found as follow

ux − iuy =
∂φ(z, t)

∂z
=

Γ

iπ

z

z2 − b2
; (31)

pinc = p0 − ρ0
∂

∂t

{
Re
(
φ(z, t)

)}
− 1

2
ρ0

(
u2
x + u2

y

)
; (32)

where Re denotes the real part of a complex quantity.
The inherent unsteadiness of the flow field of the co-rotating

vortex pair generates sound. The analytical solution by Müller
and Obermeier27 is used to validate the numerical simulation.
The fluctuating pressure is given by

pa =
ρ0Γ4

64π3r4
0c

2
0

[
J2(kr) sin(ψ)− Y2(kr) cos(ψ)

]
; (33)

where wave number k = 2ω/c0 and J2(kr), Y2(kr) are the
second-order Bessel function of the first and second kind, re-
spectively.

The acoustic computations are performed in the domain
L ∗ L with the uniform square grid system. The flow do-
main, the same as the acoustic source region, corresponds to
the inner square domain with dimensions 0.5L ∗ 0.5L. Zero
initial values are used for all acoustic fluctuations. The cir-
culation intensity and the rotating Mach number are the only
parameters that determine the frequency and amplitude of the
solution. The parameters used for the following simulation are
Γ = 1.00531 m2s−1, r0 = 1 m, c0 = 1 ms−1, Ma = 0,
L = 400 m, Nm = Nn = 55, Nx = Ny = 2, this results
in a wave length λ ≈ 39 m, Mr = 0.08 and the element size
∆x = ∆y = 3.64 m, corresponding to about 11 points per
wavelength (PPW), time step ∆t = 0.1 s.

Figure 3 shows a 3-D graphical view of the acoustic pres-
sure analytical solution. As what can be seen from the graph
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Figure 3. 3-D graphical view of the acoustic pressure analytical solution.

Figure 4. Vortex tangential velocity variation against the radial distance.

Figure 5. Comparison of the numerical and analytical acoustic pressure solu-
tions along the positive horizontal x-axis with different cut-off distances.

Figure 6. Source term distribution at time 100 s.

above, the double spiral pattern clearly illustrates the rotating
quadrupole nature of the radiated waves, and the acoustic pres-
sure becomes singular at the coordinate origin and has large
gradients close to the vortex centers. To avoid the numerical
singularity at the center of the vortices, the vortex core model20

is used, and the other method involves placing the mesh points
far enough from the vortex centers.22 The original point vor-
tex, Rankine vortex and Scully vortex tangential velocity vari-
ation against the radial distance are plotted in Fig. 4. A cut-off
practice was adopted in this study. The effect of considering
different cut-off distances at the coordinate origin is illustrated
in Fig. 5. The four different distances from the origin are:
r/r0 = 1.5, 4.0, 6.0 and 10.0, respectively. Figure 5 shows
that the amplitude of acoustic pressure is directly associated
with the cut-off distance. And with the decreasing of cut-off
distances, the numerical solutions are getting better and better.
The main reason for this phenomenon is that the bigger cut-off
distance has reduced the source terms more. However, for grid
points located closer than the point vortex separation distance
r0, convergence will not obtain on account of large velocity
gradients. In addition, on account of the fact that the element
size we select is not fine enough, thus for grid points located
at distances r/r0 ≤ 1.5, no source term (the right-hand side
of Eq. (8)) was computed. The source term distribution ac-
quired from the computation at time t = 100 s is presented in
Fig. 6. As can be seen from the Fig. 6, the source region is
large enough to avoid obvious truncation of the source term.
The amplitudes on the boundary are about 2.5‰ of their peak
in the source domain.

A grid resolution study is investigated. Figure 7a shows the
comparison of the numerical and analytical acoustic pressure
solutions along the positive horizontal x-axis obtained with
three different grid spacings. Good agreement is observed ex-
cept near the center of the vortices due to the source term’s
cut-off. It is shown that using a grid spacing of ∆x = 3.92 m,
with about 10 PPW, provides as good a result as those obtained
for the case of ∆x = 2.82 m, with about 14 PPW, except near
the center of the vortices. Hence grid independency is achieved
with ∆x = 3.92 m. Additionally, the effect of temporal res-
olution is given in Fig. 7b. It is easy to see that the accuracy
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Figure 7. Comparison of the numerical and analytical acoustic pressure solutions along the positive horizontal x-axis (a) different grid spacing and (b) different
time step.

Figure 8. Time evolution of predicted acoustic pressure contours in the stationary medium (a) 60 s, (b) 120 s, (c) 180 s, and (d) 240 s.
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Figure 9. Pressure time series at the monitor point (0, 58.2).

enhanced with the shortening of the time step, which means
the smaller time step, the better prediction of the amplitudes
and phase.

The time evolution of predicted acoustic pressure distribu-
tions in the stationary medium is presented in Fig. 8. It can
be indicated that the nonreflecting boundary condition worked
well for wave propagation in unbounded domains.

The pressure signal is recorded at the monitor point (0, 58.2)
in order to analyze the radiating frequency, its evolution is re-
ported in Fig. 9. It can be indicated that there is only some
slight difference between the amplitudes of the numerical so-
lutions and the analytical one, which could be owing to the
neglect of the source terms near the vortex centers.

The effect of considering different rotating Mach number is
illustrated in Fig. 10. The parameters used for this simulation
are L = 200 m, ∆x = ∆y = 3.33 m, ∆t = 0.1 s, Mr = 0.03,
0.08 and 0.13, respectively. It shows that the intensity of the
sound source is directly associated with the Mr. Moreover, a
higher Mach number means shorter wavelengths with a lower
spatial resolution of the waves when the space discretization is
not changed. In this case, a finer mesh discretization is needed
to resolve this problem.

To evaluate the frequency content of the sound generated by
the vortex pair, a fast Fourier transform algorithm was done.
Acoustic results of the three different rotating Mach number
given above are compared in Fig. 11 in terms of sound pres-
sure levels (SPL) radiated at the monitor point (0, 58.2). The
agreement is excellent at the fundamental frequency. But in
other frequencies, the amplitudes of the numerical solutions
are mostly lower than the analytical solutions, which could
also be due to the neglect of the source terms near the vortex
centers. In addition, the fundamental frequency is increased
as the Mr increases. Higher harmonics are seen in numerical
solutions, but they don’t appear in analytical ones.

There are numerous situations, however, where the sur-
rounding medium is more nearly in a state of motion. There-
fore, we now consider the situations with a uniform flow and
a sheared mean flow and discuss the behavior of the solution
for each case. All the other parameters remain the same while
the Mach number is changed into Mr = 0.1 and 0.3 in uni-

Figure 10. Effect of considering different rotating Mach number (a) Mr =
0.03, (b) Mr = 0.08, and (c) Mr = 0.13.

International Journal of Acoustics and Vibration, Vol. 23, No. 2, 2018 153



Z. Bao, et al.: APPLICATION OF SPECTRAL ELEMENT METHOD COMBINING DILATATION THEORY TO SOUND GENERATED BY. . .

Figure 11. Sound pressure level radiated at point (0, 58.2) with three different
rotating Mach number (a) Mr = 0.03, (b) Mr = 0.08, and (c) Mr = 0.13.

form mean flow situations. The acoustic pressure contours
generated by the vortex pair in the uniform mean flow at time
100 s is shown in Fig. 12. It can be indicated that the Doppler
effects are well captured, which means that the amplitude of
the waves increases and their wavelength decreases in the up-
stream regions. Meanwhile, it is opposite in the downstream
regions. Additionally, with the increase of the Mach number,
the Doppler effects become increasingly obvious.

Finally, the effects of non-uniform mean flows on acoustic
wave propagation are investigated. The shear profile, shown in
Fig. 13, is defined by the following hyperbolic tangent expres-
sion of the longitudinal mean velocity

u(y) = ∆U tanh(2y/δ); (34)

where ∆U and δ are, respectively, the peak velocity and the
shear layer thickness. In the present test, they are chosen to be
∆U = 0.1c0 and 0.3c0, δ = 10 m. The same computations
as in the previous case are performed. Figure 14 shows the
acoustic pressure contours generated by the vortex pair in the
sheared mean flow at time 100 s. In comparison with Fig. 12,
wave fronts are ovalized due to mean flow convection effects.

4. CONCLUSION

In the present study, the capabilities of the spectral element
method for the accurate simulation of the acoustic field gener-
ated by a co-rotating vortex pair using the inhomogeneous con-
vected wave equation combined with Ribner’s dilatation the-
ory are investigated. It was observed that the application of the
second time derivative of the pseudo-pressure as the source of
the inhomogeneous convected wave equation can better simu-
late the acoustic field propagation. The simulation of consider-

Figure 12. Acoustic pressure contours in the uniform mean flow at time 100s
with two different Mach number (a) Mr = 0.1 and (b) Mr = 0.3.

Figure 13. Scheme of the shear layer used for co-rotating vortex pair.
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Figure 14. Acoustic pressure contours in the sheared mean flow at time 100 s
with two different Mach number (a) Mr = 0.1 and (b) Mr = 0.3.

ing different grid spacings, time steps and rotating Mach num-
ber showed that this method can provide a good solution even
on relatively coarse grids and larger time steps. The acoustic
pressure amplitude decreased slightly due to the cut off of the
sources near the vortex centers, in this case the employment
of a vortex core model could provide better results. Addition-
ally, spectral analysis was also considered for evaluating the
frequency content of the sound generated by the vortex pair.
Moreover, sound propagation in uniform flows and sheared
mean flows were simulated and analyzed. Future work will
investigate the flow-induced noise problems with the spectral
element method and dilatation theory.
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25 Küchemann, D. Report on the IUTAM sympo-
sium on concentrated vortex motions in fluids,
Journal of Fluid Mechanics, 21 (1), 1–20, (1965).
https://dx.doi.org/10.1017/s0022112065000010

26 Moffatt, H., Kida, S., and Ohkitani, K. Stretched vor-
tices–the sinews of turbulence; large-Reynolds-number
asymptotics, Journal of Fluid Mechanics, 259, 241–264,
(1994). https://dx.doi.org/10.1017/s002211209400011x

27 Müller, E. A. and Obermeier, F. Vortex sound,
Fluid Dynamics Research, 3 (1), 43–51, (1988).
https://dx.doi.org/10.1016/0169-5983(88)90042-1
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