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Alzheimer’s disease (AD) is a  common neurodegenerative disease with a  prevalence estimated to reach 115 million by 2050. It 
is characterized by abnormal extracellular accumulation of amyloid‑beta (Aβ) peptide and intracellular neurofibrillary tangles 
(NFTs) that result in neuro‑inflammation, synaptic dysfunction, neurotransmitter imbalance, neuronal loss, and dendritic changes. 
A hypothesis of neurotrophic factor (NTF) involvement in neurodegenerative diseases and their potential as a therapeutic tool has 
emerged. There are wide information gaps on this topic. However, consistent with this hypothesis, AD may be caused by a deficiency 
in neurotrophin proteins or receptors expression. In AD brains, an increase in nerve growth factor and a decrease in brain-derived 
neurotrophic factor in the hippocampus and certain neocortical regions, and a decrease in TrkA in the cortex and nucleus basalis has 
been observed. Thus, comparative data relating to recent hypotheses addressing NTF content and receptors in experimental animals 
and human brains, along with their potential roles in the treatment of AD, are discussed in this review.
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INTRODUCTION

Neurotrophic factors (NTFs) are considered endog‑
enous proteins that activate neuronal repair genes in 
neurodegeneration (Pardridge, 2010; Géral et al., 2013). 
Several processes in neurons such as survival, migration, 
neurite outgrowth, formation of synapses, and neuronal 
plasticity are controlled by NTFs (Lipton, 1989; Rhee et 
al., 2004). Several recent reviews address which NTFs 
initially released by glial cells are responsible for the 
development of embryonic midbrain neurons (Boyd and 
Gordon, 2003; Tenenbaum and Humbert‑Claude, 2017; 
Pöyhönen et al., 2019). These factors play an important 
role in neural regeneration, remyelination, and regulat‑
ing the development and phenotypic survival of neu‑
rons of the peripheral and central nervous system (PNS 

and CNS, respectively) through specific receptors (Mil‑
brandt et al., 1998; Li et al., 2012; Bothwell, 2016; Sam‑
paio et al., 2017). The NTF superfamily consists of neu‑
rotrophins, glial cell line‑derived neurotrophic factor 
(GDNF), family ligands (GFLs), neuropoietic cytokines, 
the cerebral dopamine neurotrophic factor (CDNF)/
mesencephalic astrocyte‑derived neurotrophic factor 
(MANF) family, the nerve growth factor (NGF) family 
(Razavi et al., 2015; Wei, 2016), brain-derived neuro‑
trophic factor (BDNF) epidermal growth factors (EGF), 
fibroblast growth factors (FGF), GP130‑binding growth 
factors such as CNTF, heparin‑binding growth factors, 
insulin‑like growth factors, and transforming growth 
factors (TGF) (Kolomeyer and Zarbin, 2014). 

There are two classic neurotrophic factor families: 
neurotrophins NGF, BDNF, NT‑3, and NT‑4/5 belong to 
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the first group (Andreassen et al., 2009; Wei, 2016). NGF 
binds the P75NTR and the P140trk (TrkA) receptors 
(Deinhardt and Chao, 2014), BDNF and NT‑4/5 binds 
the TrkB receptor, and NT‑3 primarily binds the trkC 
receptor (Airaksinen et al., 1999; Saarma and Sariola, 
1999; Kolomeyer and Zarbin, 2014). The second group 
is the GDNF‑family, consisting of GDNF, neurturin 

(NRTN), artemin (ARTN), and persephin (PSPN) (Ibáñez 
and Andressoo, 2017). Currently, NTFs are categorized 
into four families: neurotrophins, GDNF family ligands 
(GFLs), neuropoietic cytokines, and the CDNF/MANF 
family (Fig.  1) (Airaksinen and Saarma, 2002; Lindahl 
et al., 2017). Recent studies have shown that NTFs play 
a pivotal role not only in aging but also in age‑related 
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Fig. 1. Two different neurotrophic factor family classifications. (A) Neurotrophic factor (NTFs) FGF: fibroblast growth factors, CDNF: cerebral dopamine 
neurotrophic factor, GFLs: family ligands, IGFs: insulin‑like growth factors, TGF: transforming growth factors, MANF: mesencephalic astrocyte‑derived 
neurotrophic factor, NGF: nerve growth factor, BDNF: brain derived‑neurotrophic factor. (B) NGF: nerve growth factor, BDNF: brain‑derived neurotrophic 
factor, NT‑3: neurotrophin 3, NT‑4/5: neurotrophin 4/5, GDNF: glial derived neurotrophic factor family, NRTN: neurturin, artemin (ARTN), PSPN: persephin.
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neurodegenerative diseases such as Alzheimer’s dis‑
ease (AD) (Budni et al., 2015). NTFs may serve as a po‑
tential therapeutic agent for the treatment of neurode‑
generative diseases including Parkinson’s disease (PD) 
and AD, as well as Huntington’s disease, amyotrophic 
lateral sclerosis, and other neurological disorders (Gill 
et al., 2003; Domanskyi et al., 2015).

Alzheimer’s disease 

AD has been regarded as the most common form of 
dementia and a progressive neurodegenerative disease 
in elderly people (Iulita and Cuello, 2014). AD affects 
almost 40 million people around the world, including 
over 5 million persons in the United States, and is esti‑
mated to steadily increase to nearly 115 million by 2050 
(Bishop et al., 2010). It is worth mentioning that cog‑
nition, judgment, behavior, and memory are severely 
impaired in patients suffering from ongoing AD (Devi 
and Ohno, 2014). Firstly, AD was described by Alois Alz‑
heimer, a German psychiatrist and neuropathologist, in 
1906 (Dong et al., 2012). The disease is characterized by 
selective neuronal loss in the hippocampus, amygdala, 
basal nucleus of Meynert, locus coeruleus, and neocor‑
tex (Connor et al., 1997). Due to a decline in hippocam‑
pal functions, the most common AD symptoms include 
gradual loss of memory, impaired verbal memory, de‑
ficiency in orientation and judgment, and behavioral 
and functional impairment (Alzheimer’s Association, 
2016; Sajjad et al., 2018; Chiroma et al., 2019). 

Since basal forebrain cholinergic neurons (BFCN) 
are prominently involved in AD, utilizing neurotroph‑
ic factors for AD therapy is highly reasonable (Siegel 
and Chauhan, 2000). AD is a multifaceted disorder and 
its pathogenesis is still poorly understood. Amyloid 
plaques, neurofibrillary tangles (NFTs), and oxidative 
stress are the main neuropathological hallmarks in 
AD patients. Amyloid‑β protein (Aβ), as extracellular 
plaque formations, and neurofibrillary tangles (NFTs), 
as intracellular formations, are two major neuropatho‑
logical features of AD. NFTs consist of paired helical fil‑
aments of hyperphosphorylated tau protein (Rudelli et 
al., 1984; Yatin et al., 1999; Armstrong, 2009; Singh et 
al., 2016; Chen and Mobley, 2019), which lead to synap‑
tic degeneration and neuronal loss (Serrano‑Pozo et al., 
2011; Overk and Masliah, 2014; Abrous and Wojtowicz, 
2015; Colom‑Cadena et al., 2020). Multiple sclerosis 
(MS), human immunodeficiency virus (HIV) encephali‑
tis, brain trauma, and stroke are all characterized by an 
infiltration of inflammatory blood cells, though reac‑
tive microglia and astrocytes have also been observed 
in AD patients (Amor et al., 2010; Heneka et al., 2014). 
Thus, AD must be considered a neurodegenerative dis‑

ease with an neuroinflammatory component (Eizirik 
et al., 2007). Aβ‑containing plaques activate astrocytes 
and microglia, along with the induction of inflammato‑
ry signaling cascades (Song et al., 2015). 

AD pathogenesis can be promoted by microglial me‑
diated inflammatory responses via two pathways (Song 
et al., 2015). Firstly, oxidative stress is thought to play 
a major role in the process of age‑related neurodegen‑
eration and cognitive decline (Kim et al., 2015). The 
brain is particularly vulnerable to oxidative imbalance 
due to its high energy demand, high consumption of 
oxygen, and rich in polyunsaturated fatty acids (Wang 
et al., 2014). Based on overwhelming evidence, oxida‑
tive stress in AD leads to protein oxidation, lipid perox‑
idation, DNA oxidation, and glycoxidation. It has also 
been observed that, in AD brains, ROS causes calcium 
influx via glutamate receptors and triggers an excito‑
toxic response leading to cell death. Moreover, oxida‑
tive stress leads to increased Aβ generation. Aβ causes 
lipoperoxidation of membranes and lipid peroxidation 
products. A  close relationship has been demonstrated 
between lipid peroxides, antioxidant enzymes, amyloid 
plaques and NFTs in AD brains (Sayre et al., 2008; Zuc‑
cato and Cattaneo, 2009; Gella and Durany, 2009; Feng 
and Wang, 2012). It is thought that the CNS is vulnera‑
ble to damage induced by free radicals because of the 
high lipid content, high oxygen utilization rate, and 
lower of antioxidant enzymes in the brain, compared 
to other tissues. Thus, free radicals appear to play an 
important role in some neurodegenerative disease such 
as PD, Down’s syndrome (DS), head injury, cerebral 
ischemia‑reperfusion, and AD (Murphy and Park, 2017; 
Chiroma et al., 2019; Siegel and Chauhan, 2000).

Second, up‑regulation of both the levels and activity 
of the Aβ‑generating enzymes ϒ secretase complex and 
β secretase increase the concentration of Aβ. In AD pa‑
tients, a gradual but ongoing structural alterations and 
thus an increasing dysfunction in the hippocampus and 
neocortex as the susceptible brain areas for memory 
and cognition, have been reported (Gralle et al., 2009; 
Ciaramella et al., 2013; Song et al., 2015). Based on pre‑
vious studies there are numerous hypotheses regarding 
the causes of AD, including the Aβ hypothesis, Tau hy‑
pothesis, cholinergic hypothesis of AD, mitochondrial 
cascade hypothesis, calcium homeostasis hypothesis, 
neurovascular hypothesis, and inflammatory hypothe‑
sis (An et al., 2008; Du et al., 2018; Fan et al., 2019; Liu 
et al., 2019; Cheng et al., 2021). Numerous studies have 
shown a significant loss of cholinergic activity in AD pa‑
tients’ brains (Budni et al., 2015). Meanwhile, a role for 
acetylcholine in cognitive functions has been demon‑
strated in human and animal models of AD. Moreover, 
it has been demonstrated that cholinergic agonists such 
as acetylcholinesterase inhibitors (AChEIs) can reverse 
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cognitive impairments only in early phases of AD. The 
described studies highlight the importance of the cho‑
linergic theory in AD as one the most plausible and reli‑
able (Bartus, 2000; Iqbal et al., 2009; Karran et al., 2011). 

Nerve growth factor (NGF) and 
Alzheimer’s disease

NGF was discovered by Rita Levi‑Montalcini and 
Stanley Cohen in the 1950s (Cowan, 2001). It was the 
first member of NGF‑superfamily of neurotrophins 
(NT), which provides neuronal survival during devel‑
opment and modulates neuronal functions throughout 
adulthood (Lanni et al., 2010). Multiple lines of evi‑
dence have indicated that the growth, differentiation, 
regeneration, neurotransmitter function, develop‑
ment, and phenotypic maintenance of neurons in the 
PNS are influenced and guided by NGF. NGF is found in 
hippocampus, cortex and olfactory bulb, and BFCN cell 
bodies (Lanni et al., 2010). NGF has a three‑dimension‑
al structure including α, β, and γ subunits. However, 
the biological activity of NGF is related to the β sub‑
unit and the γ subunit represents an EGF binding pro‑
tein, whereas the role of the α subunit is still relatively 
unknown (Razavi et al., 2015). NGF is made by cleav‑
age from pro‑NGF, the precursor protein form of NGF 
(Wang et al., 2014). Treatment with pro‑NGF in cervical 
ganglia neurons caused programmed cell death, while 
NGF treatment of the same neurons led to their surviv‑
al and axonal growth (Lee et al., 2001). Free NGF dis‑
plays multiple physiological actions in the CNS (Tucker 
et al., 2008; Xu et al., 2012). 

Most importantly, NGF has strong anti‑apoptotic 
and neurotrophic effects, which are critical for neur‑
ite and axonal outgrowth, survival and maintenance 
of neurons, and branching and extension (Lomb et al., 
2009). Two specific receptors, TrkA and p75 neurotro‑
phin receptor (NTR), mediate the biological activity of 
NGF. It has been demonstrated that NGF promotes the 
biosynthesis of myelin component sheaths in both the 
CNS and PNS (Chan et al., 2004). Recent in vivo and in 
vitro studies proposed NGF as a  new potential thera‑
peutic for the treatment of neurodegenerative disease 
(Chan et al., 2004; Aloe et al., 2015; Mitra et al., 2019; 
Wang et al., 2020). The level of NGF in the nervous sys‑
tem and cerebrospinal fluid (CSF) has been found to de‑
crease in AD patients (Budni et al., 2015). 

Cholinergic degeneration is reported in AD, provid‑
ing a  strong argument to link NGF and AD (Francis et 
al., 1999). Crowley and colleagues (1994) demonstrated 
that knockout mice lacking both NGF and TrkA showed 
marked reductions in ChAT immunoreactivity in the 
basal forebrain and loss of cholinesterase activity in 

both the hippocampus and neocortex. In addition, 
studies showed that deficits in long‑term potentiation 
(LTP) in old cognitively impaired rats was restored by 
chronic intraventricular infusion of NGF (Villoslada et 
al., 2000; Lanni et al., 2010). To further support NGF is 
a crucial neurotrophin in the CNS. Several studies de‑
scribed that its dysregulation may be involved in vari‑
ous neuronal degeneration diseases such as AD and MS 
(Biernacki et al., 2005; Cattaneo and Calissano, 2012). 
Other studies also demonstrated that, in AD patients, 
cognitive decline and dementia are related to increas‑
ing degeneration of the basal forebrain cholinergic 
system that can cause NGF deficits (Iulita and Cuello, 
2014; 2016). After NGF gene transfer therapy in early 
phase AD patients by Tuszynski et al. (2015), a trophic 
response to NGF included axonal extensions towards 
the NGF source and activation of the functional mark‑
ers cAMP response element‑binding protein (CREB) 
(as a canonical mediator of downstream neurotrophin 
signaling and cell activation) and c‑Fos (as a canonical 
marker of neurotrophin‑mediated activation of cell 
signaling) has been observed. Brain activity in an elec‑
troencephalogram, glucose metabolism, and cognition 
in AD patients was shown to be improved by NGF treat‑
ment (Ferreira et al., 2015). Moreover, a  lower rate in 
brain shrinkage, a better clinical status and, increased 
levels of CSF Aβ1‑42 were reported in these patients (Fer‑
reira et al., 2015; Wei, 2016). 

Numerous studies have indicated that NGFs en‑
riched amyloid precursor protein (APP), the non‑am‑
yloidogenic cleavage pathway, and reduced Aβ gen‑
eration in the brain of investigated mice (Yang et al., 
2014). There is also evidence that NGF levels in the CSF 
and dentate gyrus of AD patients were higher as com‑
pared to a  control group (Budni et al., 2015; Faria et 
al., 2014). Some interesting studies have revealed pos‑
itive results showing lower levels of Aβ1‑42 in CSF with 
NGF treatment in patients with AD (Andreasen et al., 
1999; Ferreira et al., 2015). Receptors for NGF located at 
the surface membrane of cells and TrkA are considered 
high affinity catalytic active receptors for NGF (Romon 
et al., 2010). After the binding of NGF to TrkA, phos‑
phorylation of TrkA occurs and then protein kinase B 
(Akt) is activated or extracellular signals will regulate 
protein kinase 1/2 (ERK1/2), then docking sites for ef‑
fector molecules such as Shc will be provided, which in 
turn induces the recruitment of a  Shc/Grb2 complex 
(Mahata et al., 1999). After phosphorylation of the TrkA 
receptor, TrkA interacts with phosphatidylinositol 
3‑kinase (PI3K) (Xia et al., 2012; Xu et al., 2012). Acti‑
vated PI3K leads to the production of phosphoinositide 
3,4,5‑trisphosphate and membrane translocation of the 
serine/threonine‑protein kinases Akt and Akt activa‑
tion (Wang et al., 2014). 

317Acta Neurobiol Exp 2021, 81: 314–327
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It should be noted that the PI3K/Akt signaling path‑
way is particularly important for neuronal survival and 
the synthesis of many new cellular proteins and even‑
tually causes neural differentiation and prevention of 
apoptosis. For example, head box‑O transcription fac‑
tors (FoxO) and B‑cell lymphoma 2 family members in‑
hibit neuronal apoptosis (Wang et al., 2013). The low 
affinity receptor p75NTR is another NGF receptor (De‑
ponti et al., 2009). However, the role of p75NTR is high‑
ly complex, for example it appears to promote cell sur‑
vival, cell death, or growth inhibition (Bai et al., 2010). 
Even though the affinity of NGF binding to p75NTR re‑
ceptor is weaker than NGF binding to TrkA, the cell type 
distribution of p75NTR is broader than that of TrkA; the 
TrkA receptor is mainly expressed in neurons respon‑
sive to NGF such as peripheral sensory, sympathetic, 
and BFCNs, while the p75NTR receptor displays a more 
broad distribution in motor neurons (Lee et al., 1994). 
In addition, Schwann cells and cerebellar Purkinje cells 
(PCs) also express the TrkA receptor (Bothwell, 1991). 
Rac GTPase and activated c‑jun N‑terminal kinase (JNK) 
are activated by p75NTR, and JNK3 is an injury‑specific 
isoform JNK (Harrington et al., 2002). The expression of 
proapoptotic genes through the transactivation of spe‑
cific transcription factors is stimulated by JNKs, conse‑
quently p75NTR can promote cell death (Jing and An‑
ning, 2005). Nevertheless, it also increases cell survival; 
NGF treatment activates nuclear transcription factor 
κB (NF‑κB) through p75NTR and, during this process, 
p75NTR‑mediated NF‑κB activation enhances the sur‑
vival response of developing sensory neurons to nerve 
growth factor (Hamanoue et al., 1999). 

Ras, a membrane‑associated G‑protein mediates 
activation of the mitogen‑activated protein kinase 
(MAPK) pathway, which is another NGF‑activated sig‑
naling pathway activated by recruitment and phos‑
phorylation of Shc (Chen et al., 1998). The active Ras 
protein binds to and phosphorylates several proteins, 
including the proto‑oncogene Raf. Then, MAPK kinase 
(MEK) is activated by Raf and subsequently ERK1/2 is 
activated by phosphorylated MEK (Wang et al., 2013). 
The activity of many transcription factors, including 
ETS domain‑containing protein ELK1, is regulated by 
phosphorylated ERK1/2 when it enters into the nu‑
cleus (Oh et al., 2012). Furthermore, if ERK1/2 phos‑
phorylates ribosomal S6 kinase (S6K), it can lead to the 
phosphorylation of cyclic adenosine monophosphate 
response element binding protein, affect the regu‑
lation of the expression of NGF‑inducible genes, and, 
taken together, contribute to neuronal differentiation 
or neurite outgrowth (Cheng et al., 2002). Apart from 
the two pathways mentioned previously, TrkA activa‑
tion through phospholipase C gamma1 (PLCγ1) is also 
involved in the survival and growth of neuronal cells 

(Wang et al., 2014). As a matter of fact, PLCγ1 supports 
the activation of the PKC signaling pathway and is thus 
involved in antimitogenic/mitogenic signaling (Cabeza 
et al., 2012).

Glial cell line derived neurotrophic factor 
and Alzheimer’s disease

GDNF is a  well‑known member of the neurotroph‑
in family, which was characterized in 1993 as the first 
member of the GFLs in the CNS (Lin et al., 1993; Sariola 
and Saarma, 2003; Sidorova and Saarma, 2016). GDNF is 
produced by dopaminergic neurons of the substantia 
nigra, BFCNs, brainstem noradrenergic neurons, and 
PCs. GDNF and its receptors are also widely expressed in 
hippocampus from early embryonic ages to adulthood 
(Lanni et al., 2010). Furthermore, apoptosis in motor 
neurons and regeneration of sensory axons after spinal 
cord injury is promoted by GDNF (Razavi et al., 2015). 
It is known that GFL binds to one of the four members 
of GDNF family receptor α (GFRα1 to α4). After anchor‑
ing the GFL‑GFRα complex, GFLs connect to receptor 
tyrosine kinase RET or the neuronal cell adhesion mol‑
ecule (NCAM). RET is widely expressed and is activated 
by GDNF, NRTN, or ARTN stimulation. The development 
of sympathetic, parasympathetic, motor, and sensory 
neurons is regulated by RET, which is also required for 
the postnatal survival of dopaminergic neurons (Sam‑
paio et al., 2017; Tansey et al., 2000). 

Although the importance of GDNF in AD brains is 
poorly documented, it was found to be decreased in 
plasma but increased in CSF from patients with mild 
cognitive impairment and AD (Marksteiner et al., 2011). 
Due to the fact that overexpression of GDNF (recombi‑
nant lentiviral vectors) led to improvement in learning 
and memory (Allen et al., 2013; Revilla et al., 2014), it 
was proposed that it GDNF may be important to protect 
neurons from both atrophy and degeneration (Allen et 
al., 2013). Recent studies revealed that gene therapy 
provides a  safe and effective treatment for AD. Revil‑
la et al. (2014) used recombinant lentiviral vectors to 
overexpress GDNF gene in hippocampal astrocytes of 
3xTg‐AD mice in vivo; they concluded that the overex‑
pression of GDNF protected against cognitive loss and 
memory impairment and this behavior represented 
a cross‑talk between astrocytes and neurons in the in‑
jured brain.

Numerous studies have demonstrated that, in nor‑
mal neurons, GDNF is responsible for expression of 
GFRα1, whereas it induced neuronal death in AD brains 
because it failed to induce GFRα1 expression in cortical 
neurons (Konishi et al., 2014). RET is known as a  pro‑
to‑oncogene encoding a receptor tyrosine kinase (RTK) 
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that forms a  transmembrane receptor complex with 
the glial GDNF. Unlike most receptor tyrosine kinases, 
since RET cannot bind its ligands directly and requires 
a co‑receptor (GFRα), GFLs are essential for activation 
of RET. GFRα1‑GFRα4 represent a  novel family of gly‑
cosyl‑phosphatidylinositol (GPI)‑anchored proteins 
that bind GFLs with high affinity. The GFL‑GFR complex 
triggers auto‑phosphorylation and intracellular signal‑
ing (Mologni, 2011; Santoro et al., 2004; Tansey et al., 
2000). For activation of RET, GFLs form a complex with 
glycosyl phosphatidylinositol (GPI)‑anchored co‑recep‑
tors. The co‑receptors themselves are characterized as 
members of the GFRα protein family. The unique bind‑
ing affinity feature for each GFL is determined by GFRα 
proteins such that GFRα1, GFRα2, GFRα3, and GFRα4 
specifically bind to GDNF, NRTN, ARTN, and PSPN, re‑
spectively (Airaksinen and Saarma, 2002). After binding 
to the GFRα1–4, a high‑affinity complex is formed and 
promotes the binding two RET molecules, triggering 
transphosphorylation of specific tyrosine residues in 
their tyrosine kinase domains and intracellular signal‑
ing (Airaksinen et al., 1999; Saarma and Sariola, 1999; 
Kolomeyer and Zarbin, 2014). 

Several intracellular signaling cascades are activat‑
ed by RET, which regulate cell survival, differentiation, 
proliferation, migration, chemotaxis, branching mor‑
phogenesis, neurite outgrowth, and synaptic plastici‑
ty (Chen et al., 2005). For both neuronal survival and 
neurite outgrowth, the PI3K pathway is essential (Del 
Río et al., 2011). Different targets inside and outside 
lipid rafts are affected after RET activation and lipid 
rafts are essential signaling compartments in the cell 
membrane, proposed to serve an important role in 
cell adhesion, axon guidance, and synaptic transmis‑
sion (Sariola and Saarma, 2003). Glycosil phosphatidyl 
inositol (GPI)‑anchored transmembrane, double acy‑
lated proteins, and cholesterol‑linked and palmityl‑
ated proteins are enriched in the lipid rafts (Paratcha 
and Ibáñez, 2002; Tsui‑Pierchala et al., 2002). Inactive 
RET is situated outside rafts and, through GDNF stim‑
ulation, GFRα1 recruits RET into lipid rafts; however, 
the exact mechanism is not completely understood 
(Paratcha and Ibáñez, 2002; Sariola and Saarma, 2003). 
Soluble GFRα1 also targets RET to lipid rafts. Addition‑
ally, Ledda et al. (2002) demonstrated that prolonged 
GDNF‑mediated activation of cyclin‑dependent kinase 
5 (CDK5) acts as an attractive guidance signal for ax‑
ons. Activated RET is preferentially associated with 
the adaptor SHC outside rafts, and with FGF receptor 
substrate 2 (FRS2) within rafts (Paratcha and Ibáñez, 
2002). These data suggest that differences in GDNF sig‑
naling through RET within and outside the rafts could 
lead to dramatically different cellular responses (Sari‑
ola and Saarma, 2003). 

GDNF can also signal RET independently through 
GFRα1 (Baloh et al., 1997; Trupp et al., 1996). Upon li‑
gand binding, GDNF, together with GFRα1, may interact 
with heparan sulphate glycosaminoglycans to activate 
the Met receptor tyrosine kinase through cytoplasmic 
Src‑family kinases that cause neurite outgrowth, neu‑
ronal survival, and ureteric branching (Airaksinen and 
Saarma, 2002; Barnett et al., 2002; Sariola and Saarma, 
2003). In several studies, four of these residues have 
been identified as the docking sites for various cyto‑
plasmic adaptor proteins that include: Grb7r10, Tyr905, 
PLCϒ, Tyr1015, Shc, ENIGMA, Tyr1062, Grb2, and 
Tyr1096. They are phosphorylated and, after the eleva‑
tion of cyclic AMP levels, Ser696 is also phosphorylated 
(Fukuda et al., 2002). In numerous studies PLCϒ, JNK, 
PI3K, and Ras‑MAP kinase pathways are considered 
second messenger pathways that are activated by RET 
(Kurokawa et al., 2001). The intracellular level of Ca2+ 
ions is regulated by the PLCϒ pathway by increasing 
the level of inositol (1,4,5)‑trisphosphate (Airaksinen 
and Saarma, 2002). Rac activation (Rac as Ras‑related 
C3 botulinum toxin substrate) in neurons plays a pivot‑
al role in lamellipodia formation that is critical for neu‑
ritogenesis (Fukuda et al., 2002). Hence, Rac activity is 
controlled via activation of PI3K by a variety of recep‑
tor tyrosine kinases. For GDNF‑induced Rac activation, 
protein kinase A (PKA)‑dependent Ser696 phosphory‑
lation is essential (Fukuda et al., 2002). RET contains 
additional tyrosine residues that are phosphorylated 
upon GFL binding (Tyr687, Tyr826, and Tyr1029), but 
the role of these proteins in GFL signaling is not been 
fully understood (Sariola and Saarma, 2003). 

Neural cell adhesion molecule (NCAM) has also been 
demonstrated to be a ligand for the GDNF family (Pop‑
sueva et al., 2003). In neurons, in the absence of the RET 
proteins, GDNF has a high affinity for binding to NCAM 
and GFRα1 complex (Chao et al., 2003), which activates 
the Src‑like kinase Fyn and focal adhesion kinase (FAK) 
in the cytoplasm. In some studies, NCAM is considered 
to function as an alternative or second signaling recep‑
tor for GFLs (Paratcha et al., 2003). Paratcha and col‑
leagues (2003) noticed that if GDNF is absent, GFRα1 
downregulates NCAM‑mediated cell adhesion. Schwann 
cell migration and axonal growth in hippocampal and 
cortical neurons are stimulated by the binding of 
NCAM to GDNF in a  RET‑independent fashion (Chao 
et al., 2003). Accordingly, by using different signaling 
pathways it modulates both short and long‑range in‑
tercellular communication. Interestingly, many studies 
demonstrated that NCAM is co‑expressed and directly 
interacts with GFRα1 in embryonic PCs (Charoy et al., 
2012; Paratcha et al., 2003; Sariola and Saarma, 2003; 
Sergaki and Ibáñez, 2017). In vitro and in vivo studies 
demonstrated that, by using an NCAM blocking anti‑
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body, GDNF through NCAM signaling has an inhibitory 
effect on midbrain dopaminergic neurons (Chao et al., 
2003). In some studies, an increased in wild‑type PC mi‑
gration has been reported with a  reduction of NCAM 
expression (Sergaki and Ibáñez, 2017).

The best strategy remains a  question: positive al‑
losteric modulation of GFLs signaling or targeting RET, 
NCAM, or GFRα coreceptors? The potency and other 
properties of available molecules should be optimized. 
Moreover, extensive preclinical experiments are re‑
quired to evaluate their safety. However, the drugga‑
ble targets of GFL receptors have been proven. Despite 
promising preliminary data, many questions regarding 
the clinical translation of compounds targeting GFL re‑
ceptors remain to be answered.

Brain derived neurotrophic factor 
and Alzheimer’s disease

BDNF is highly expressed and widely distributed 
in the CNS in both neurons and glia, especially in the 
hippocampus, cerebral cortex, hypothalamus, claus‑
trum, and amygdala, which are brain regions involved 
in learning and memory processes and vegetative func‑
tions in the adult brain (Murer et al., 1999; 2001). As 
BDNF regulates LTD (long‑term depression) and LTP, 
synaptic plasticity, axonal sprouting, dendritic pro‑
liferation, and neuronal differentiation, it is a  critical 
factor in learning and memory processes (Minichiello, 
2009; Rösch et al., 2005). It should be noted that such 
mechanisms in the CNS are activated through BDNF’s 
interaction with tyrosine receptor kinase B (TrkB) re‑
ceptors (Islam et al., 2009). Pro‑BDNF (an inactive pre‑
cursor) binds to p75NTR and then apoptotic pathways 
are activated in peripheral neurons and glia (Hibbert 
et al., 2006; Teng et al., 2005). As the TrkB receptor is 
activated by mature BDNF (Lu et al., 2014; Lu et al., 
2013) and auto‑phosphorylation of tyrosine residues, 
activation of PI3K begins (Ledda and Paratcha, 2016). 
Accordingly, it provides trophic support to neurons 
and induces neuronal growth (Sandhya et al., 2013). 
The BDNF‑TrkB pathway can be regarded as a  crucial 
signaling pathway in the biological activity of BDNF, 
and a loss of the signal may be particularly involved in 
several neurodegenerative diseases, such as AD and PD 
(Song et al., 2015). 

The development of sympathetic, parasympathet‑
ic, motor, and sensory neurons, and the postnatal 
maintenance of dopaminergic neurons are regulated 
by RET (Mologni, 2011). A  reduction of BDNF mRNA 
levels in the hippocampus was reported after blockade 
by administration of scopolamine to glutamatergic 
neurons and/or stimulation of the GABAergic system 

(Connor et al., 1997; Berzaghi et al., 1993). Addition‑
ally, involvement of the cholinergic neuronal system 
in regulating BDNF mRNA levels within the hippocam‑
pus has been observed (Phillips et al., 1991; Rossor et 
al., 1982). The degeneration of both the glutamater‑
gic and cholinergic systems are characteristic neuro‑
pathological features of AD (Araujo et al., 1988; Coyle 
et al., 1983). Thus, it is hypothesized that BDNF might 
be involved in the etiology of cognitive impairment 
(Connor et al., 1997). Since BDNF provides trophic 
support to the basal forebrain cholinergic system it 
is most likely that a decrease in BDNF may contribute 
to the progressive atrophy of BFCNs associated with 
AD (Phillips et al., 1991). As Phillips et al. (1991) found 
that BDNF mRNA decreased in the hippocampus of 
individuals with AD, it was suggested that BDNF may 
contribute to the progression of cell loss (apoptosis) 
in AD.

Several lines of evidence further demonstrate that 
BDNF treatment may decrease abnormal Aβ production 
and repair Aβ‑induced damage, mediate cell death, 
ameliorate cognitive dysfunction and loss of synaps‑
es, and even retard cognitive decline (Li et al., 2012; 
Rohe et al., 2009). Reduced BDNF signaling through 
TrkB leads to impaired spatial memory, whereas over‑
expression of TrkB enhances memory. In addition, sig‑
naling through TrkB and BDNF improved LTP at hip‑
pocampal synapses. Consequently, these properties of 
BDNF led to speculations about its role in AD (Ji et al., 
2010; Monteggia et al., 2004; Wan et al., 2014). Some 
studies reported that BDNF mRNA and protein levels 
were reduced in postmortem brains of AD patients 
(Meng et al., 2013; Michalski and Fahnestock, 2003). 
Gene transfer of BDNF into the entorhinal cortex led 
to increased BDNF protein levels in the hippocampus 
and improved hippocampal‑dependent memory in APP 
transgenic mice and aged rats, and spatial learning 
improved after transplantation of neuronal stem cells 
into the hippocampi of aged APP/PS1/tau transgenic 
mice (Lattanzio et al., 2014; Nagahara et al., 2009; Blur‑
ton‑Jones et al., 2009). 

In addition to increased hippocampal neurogene‑
sis and spatial memory in APP/PS1 mice, other stud‑
ies demonstrated an increased level of hippocampal 
BDNF mRNA (Hsiao et al., 2014). While there is little 
experimental evidence supporting this view, a  reduc‑
tion in BDNF mRNA expression has been observed in 
human post‑mortem AD hippocampi when compared 
to normal hippocampal levels. While the level of BDNF 
mRNA expression in human post‑mortem AD hippo‑
campus has been reported, it is unknown whether this 
observed alteration in BDNF expression also occurs at 
the protein level. Using a  polyclonal antibody direct‑
ed against the BDNF polypeptide, we compared the 
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level of BDNF protein in human post‑mortem AD and 
neurologically normal hippocampal and temporal cor‑
tex sections using immunohistochemistry techniques 
(Murray et al., 1994). The locus coeruleus (LC), as 
a noradrenergic (NAergic) area in the brainstem, plays 
important roles in the regulation of behaviors such 
as anxiety, depression, and attention (Mann, 1983). In 
several studies neuronal damage was reported in neu‑
rodegenerative diseases and in up to 70% of AD (Bond‑
areff et al., 1989; Niikura et al., 2006; Pamphlett, 2014; 
Zarow et al., 2003). 

Despite many efforts to reduce LC damage and data 
revealing that BDNF is one of the factors essential to 
LC survival, the role of the factors responsible are not 
fully understood (Traver et al., 2006). Zheng provid‑
ed evidence that proteolytic conversion to BDNF from 
pro‑BDNF can be inhibited by Aβ protein (Zheng et al., 
2010). Additionally, BDNF levels can be affected by Aβ 
indirectly at synapses via hyperphosphorylation of 
the microtubule‑associated protein tau through cal‑
cineurin activation (Ramser et al., 2013). Moreover, 
Aβ, via a  mechanism involving the deubiquitinating 
enzyme ubiquitin C‑terminal hydrolase L1, can in‑
hibit retrograde axonal transport of the BDNF‑TrkB 
complex (Poon et al., 2013). In vitro experiments fur‑
ther confirmed that administration of oligomeric 
Aβ significantly down‑regulated BDNF expression 
(DaRocha‑Souto et al., 2012; Garzon and Fahnestock, 
2007; Rosa and Fahnestock, 2015). Thus, it was sug‑
gested that the interaction of Aβ with PKA activation 
can downregulate CREB phosphorylation, which may 
be a new mechanism for Aβ‑induced BDNF downregu‑
lation (Colucci‑D’Amato et al., 2020; Rosa and Fahne‑
stock, 2015). 

Holback et al. (2005) suggested that BDNF could 
shift APP processing towards the α‑secretase pathway 
in a neuronal cell line, however, reports on the effects 
of BDNF on APP processing in primary neurons are, 
currently, non‑existent. Moreover, interactions be‑
tween BDNF and tau protein are not completely under‑
stood (Tanila, 2017). Hypothetically, the activity of the 
most important tau kinase, glycogen synthase kinase‑3 
beta (GSK3β), should be reduced by BDNF signaling via 
the TrkB receptor and also activation of the PI3K‑Akt 
pathway via its inhibitory phosphorylation (Elliott et 
al., 2005). One study reported that, after BDNF stimu‑
lation, tau de‑phosphorylation could be distinguished 
in the common AD‑associated AT8 site in neuronal cells 
(Tanila, 2017). Although less is known about possible 
effects of BDNF on Aβ production, BDNF co‑incuba‑
tion in hippocampal or entorhinal cortical slices also 
prevented Aβ1‑ 42 induced impairment in LTP induction 
(Arancibia et al., 2008; Criscuolo et al., 2015; Kitiyanant 
et al., 2012; Tanila, 2017). 

Cerebral dopamine neurotrophic factor 
and Alzheimer’s disease

Cerebral dopamine neurotrophic factor (CDNF) is 
a new class of the NTF family located in the endoplas‑
mic reticulum (ER) (Lindahl et al., 2014). It has been 
shown that CDNF has a  strong protective and restor‑
ative effect in dopaminergic neurons (Garcia‑Alloza 
et al., 2006). Previous studies using overexpression of 
CDNF provided further evidence that cell damage could 
be alleviated and nerve regeneration could be promot‑
ed (Kemppainen et al., 2015). Since CDNF and a related 
protein, mesencephalic astrocyte‑derived neurotroph‑
ic factor (MANF), are involved in ER stress and unfolded 
protein response (UPR) and since protein aggregation 
triggers ER stress and neuronal death in AD, it can be 
speculated that CDNF may reduce ER stress, block neu‑
ronal cell death, partially regenerate hippocampal neu‑
rons, and thus improve cognitive function in a  mouse 
model of AD (Lindahl et al., 2014; Albert and Airavaara, 
2019; Garcia‑Alloza et al., 2006; Kemppainen et al., 2015; 
Wang et al., 2017). 

As several studies have proposed that UPR is acti‑
vated in AD brain (Costa et al., 2013; Hoozemans et al., 
2012; Kemppainen et al., 2015), Wei et al. (2016) hypoth‑
esized that UPR activation occurs in Aβ‑induced early 
synaptic dysfunction, an effect that can be rescued by 
CDNF. They showed that Aβ induced an increase in Bip/
GRP78 and peIF2α (two known ER stress markers), pJNK 
(phosphorylated JNK), CHOP, and cleaved caspase‑3 
(another three ER stress related proteins) indicating 
that UPR could be triggered by Aβ treatment at an early 
stage (Zhou et al., 2016). Surprisingly, they confirmed 
that the increase in Bip, p‑eIF2α, and p‑JNK could be 
suppressed by pre‑treatment with CDNF, suggesting 
that CDNF could alleviate UPR in ER stress and facil‑
itate restoration of ER homeostasis (Apostolou et al., 
2008; Palgi et al., 2009). Interestingly, they found that 
by pre‑treatment with CDNF before Aβ exposure, CHOP 
(a well‑known proapoptotic factor) was significantly 
upregulated (Zhou et al., 2016). This was further sub‑
stantiated by other studies demonstrating that CHOP 
can prevent cell death and promote demyelination 
(Chen et al., 2012; Halterman et al., 2010; Southwood et 
al., 2002). In summary, CHOP should be regarded more 
broadly as a mediator of responses to stress rather than 
only a  proapoptotic factor during different time win‑
dows (Zhou et al., 2016). 

Since, it was demonstrated that synaptic proteins 
such as PSD95 or synapsin I decreased in hippocampus 
with tunicamycin‑induced ER stress, it was hypothe‑
sized that ER stress is linked to synaptic dysfunction 
(Lin et al., 2014). All these results indicate that CDNF 
may play a  protective role through distinct mecha‑
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nisms that has to be further investigated (Zhou et al., 
2016). Revilla and colleagues (2014) reported a decline 
in spatial memory by using intra hippocampal protein 
CDNF in APP/PS1 mice modeling AD. Moreover, Wei et 
al. (2016) showed that CDNF could cause an Aβ‑induced 
decrease in synaptic proteins such as PSD95 and syn‑
aptophysin. Thus, it has been suggested that CDNF may 
have a  synapto‑protective role during early Aβ treat‑
ment. In addition, gene therapy with CDNF showed the 
potential to improve long‑term memory in APP/PS1 
transgenic animals (Kemppainen et al., 2015). Kemp‑
painen et al. (2015) reported that although long‑term 
memory is improved by CDNF‑therapy in one‑year‑old 
APP/PS1 mice, it was without evidence of a decline in 
amyloid load or hippocampal neurogenesis. In other 
words, spontaneous exploration, object neophobia, or 
early stages of spatial learning were not affected by in‑
tra hippocampal CDNF treatment (Lindahl et al., 2017; 
Zhou et al., 2016). Even though long‑term memory is 
improved by intracranial CDNF treatment, the under‑
lying mechanism still remains unknown and requires 
further attention (van der Harg et al., 2014; Zhou et 
al., 2016). 

However, a  number of studies demonstrated that 
in AD animal models, PERK (pancreatic ER kinase 
[PKR]‑like ER kinase) phosphorylation can lead to ac‑
tivation of Aβ‑producing β‑secretase (BACE1), tau hy‑
perphosphorylation, and, as a  result, to memory im‑
pairment and neuronal loss (Ghemrawi and Khair, 2020; 
Hashimoto and Saido, 2018; Shacham et al., 2021). In 
animal studies, the connection between diabetes and 
AD has been demonstrated, while the rate of cognitive 
decline and age‑related memory impairment in humans 
increased with decreased insulin‑signaling (type 1 di‑
abetes [T1D]) and insulin‑resistance (type 2 diabetes 
[T2D]) (Muñoz‑Jiménez et al., 2020; Shieh et al., 2020). 

CONCLUSION 

A direct link between impairments in NTFs gener‑
ation and neurodegenerative pathogenesis has been 
demonstrated. Thus, in light of the above‑mentioned 
data, NTF treatment may be a  good candidate for de‑
laying several neurodegenerative diseases such as AD. 
This review aimed to provide the pharmacological 
basis for clinical usage of NTFs in the prevention and 
treatment of AD.
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