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Abstract

Excitotoxicity is a primary pathological process that occurs during stroke, traumatic brain injury (TBI), and global brain
ischemia such as perinatal asphyxia. Excitotoxicity is triggered by an overabundance of excitatory neurotransmitters
within the synapse, causing a detrimental cascade of excessive sodium and calcium influx, generation of reactive oxygen
species, mitochondrial damage, and ultimately cell death. There are multiple potential points of intervention to combat
excitotoxicity and downstream oxidative stress, yet there are currently no therapeutics clinically approved for this specific
purpose. For a therapeutic to be effective against excitotoxicity, the therapeutic must accumulate at the disease site at the
appropriate concentration at the right time. Nanotechnology can provide benefits for therapeutic delivery, including
overcoming physiological obstacles such as the blood—brain barrier, protect cargo from degradation, and provide con-
trolled release of a drug. This review evaluates the use of nano-based therapeutics to combat excitotoxicity in stroke, TBI,
and hypoxia—ischemia with an emphasis on mitigating oxidative stress, and consideration of the path forward toward
clinical translation.
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The impacts and challenges of neurological Acute brain injuries exhibit a set of characteristic
disease mechanisms that contribute to neurological damage. The

pathological sequelae include immediate cell death and tis-
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and oxidative stress.®’ Excitotoxicity is the pathological
process of neuronal death due to dysregulated neuronal
overstimulation by excitatory amino acids (EAAs) such as
glutamate. Excitotoxicity leads to oxidative stress, where an
excess of reactive oxygen species (ROS) exhausts native
antioxidant systems. Understanding the etiology of neuro-
logical disease progression, especially the role of excitotoxi-
city and oxidative stress, is essential for determining ideal
points of intervention for the development and implementa-
tion of effective therapeutics.

There have been extensive efforts in the fundamental
sciences of pathology, immunology, and neuroscience to
expand knowledge of excitotoxic neuronal death to eluci-
date key stages of intervention. Promising candidates
include natural antioxidant, inorganic antioxidant-
mimetic, and growth factor therapeutics, among others.
However, developing a successful therapeutic requires a
drug that not only has biochemical efficacy, but also effec-
tively accumulates at the target site at therapeutic concen-
trations. In neurological disease, free drugs often fail to
reach the target site due to in vivo degradation, systemic
clearance mechanisms, and the barrier properties of the
neurovascular unit.® Consequently, despite the research
progress achieved, there are currently no approved thera-
peutics for targeting excitotoxicity or its direct sequelae
after acute neurological injury. Nanotechnology can be
leveraged to help overcome each of the aforementioned
delivery obstacles to the brain. By conjugating drugs to
nanoparticle surfaces, encapsulating drugs within nanopar-
ticles, or utilizing materials with intrinsic therapeutic
effects in nanoparticle form, nanoparticle therapeutics can
stabilize labile free drugs and traverse steric obstacles to
reach diseased sites.® Here, we provide an overview of the
relevant disease mechanisms and points of intervention in
excitotoxicity and subsequent oxidative stress including the
advantages of nanotechnology, a summary of nanothera-
peutic progress achieved thus far with a focus on in vivo
work, and research strategies to implement for effective
clinical translation.

Mechanisms of excitotoxicity in acute
brain injury

Glutamate is the major excitatory neurotransmitter in the
central nervous system (CNS), responsible for the sense of
sight, smell, taste (umami), nociception, and hearing, as
well as the more complex processes of memory formation
and learning.’ During neuronal activity, vesicles containing
neurotransmitters in the presynaptic neuron merge with the
membrane, expelling their contents, namely glutamate, into
the synaptic cleft.'® Glutamate then rapidly diffuses across
the synapse to bind to ionotropic glutamate receptors
(iGluRs) on the postsynaptic neuron, eliciting an influx of
sodium, which triggers an action potential that propagates
down the neuron, forming the basis of neuronal communi-
cation.” Astrocytic end feet enveloping the synapse rapidly

uptake glutamate to recycle back to the presynaptic neuron
to replenish vesicular stores.'' Upon neuronal excitation,
calcium also influxes and binds to post synaptic density
protein 95 (PSD-95) to initiate the recruitment of neuronal
nitric oxide synthase (nNOS) and production of nitric oxide
(NO).'? NO then activates the nicotinamide adenine dinu-
cleotide phosphate oxidase (NOX) complex that generates
superoxide radical anion (SOX, 0,7)."?

In acute brain injury, a number of pathological processes
result in excitotoxicity depending on the nature of the
insult. During stroke and HI, asphyxiation reduces ATP
production leading to sodium/potassium ATPase pump
failure and subsequent anoxic depolarization-induced glu-
tamate release.'* Under hypoxia, as cells switch to lactic
acid production and undergo acidosis, ATP generation fur-
ther decreases, inhibiting ATP-dependent astrocytic gluta-
mate uptake.'> In TBI, direct trauma induces immediate
necrotic death of neurons and glia resulting in neuronal
release of their glutamate stores, and subsequent dysregu-
lation of cerebral blood flow leading to similar energy def-
icits as occurs in stroke and HI.'®!'7 Once blood flow
returns after a hypoxic event, reperfusion injury may
exacerbate neuronal damage.'® Regardless of the injury,
excessive synaptic glutamate accumulation causes excito-
toxicity.'>'? Substantially elevated intracellular glutamate,
ROS, and calcium levels lead to cell death, increased glu-
tamate release from dying neurons, and propagation of
excitotoxicity.'**°

Mitochondria play a prominent role in excitotoxicity,
oxidative stress, and cell death processes due to energy,
calcium, and ROS dynamics.?! During excitotoxicity,
mitochondria uptake excess cytosolic calcium and produce
high concentrations of SOX during mitochondrial respira-
tion in response to excitatory postsynaptic currents.??
NOX-derived SOX triggers even greater SOX production
from mitochondria.?>2® SOX mediates mitochondrial
damage, resulting in electron transport chain failure as well
as reverse electron transport leading to greater SOX pro-
duction.”® Other sources of SOX include production by
xanthine oxidase or invading neutrophils during reperfu-
sion, monoamine oxidase, and uncoupled nNOS by SOX
oxidation of the nNOS cofactor tetrahydrobiopterin. %73
Abundant SOX reacts with NO to form peroxynitrite,
which can cause lipid peroxidation, protein deactivation,
DNA mutation, and poly(ADP ribose) polymerase (PARP)
activation.”'* High intracellular calcium and SOX levels
lead to extensive mitochondrial fission and mitochondrial
permeability transition pore (mPTP) formation.”>** The
exact mechanism of mPTP formation remains to be eluci-
dated, but ROS contributes several roles.>*>¢ mPTP for-
mation results in burst release of SOX, calcium, and other
necrosis and apoptosis effectors into the cytosol.>” Mito-
chondrial burst release of SOX further induces NOX SOX
production and neighboring mitochondrial stress, reducing
mitochondrial antioxidant functions and creating a reinfor-
cing cycle.*® As excitotoxicity, ROS generation, and
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mPTP formation are intimately linked to death processes,
ROS scavenging is a promising therapeutic strategy after
acute brain injury.

After acute neurological injury, a number of neuroinflam-
matory processes occur both alongside and due to excitotoxi-
city. Oxidative stress plays a prominent role in
neuroinflammation as well. SOX generated from NOX and
subsequent oxidation to hydrogen peroxide (H,0,) elicit
microglial proliferation and other downstream inflammatory
signaling pathways.>**’ For instance, in perinatal asphyxia
models, HI induces both excitotoxic neuronal death as well as
neuroinflammatory microglial proliferation.*' Inflammation
can in turn cause further delayed excitotoxicity, as occurs in
depression and Parkinson’s disease.*** Therefore, therapies
that manage oxidative stress seen after acute neurological
injury have the combined promise of alleviating excitotoxi-
city as well as neuroinflammation. An in-depth discussion of
neuroinflammation is beyond the scope of this review, and we
refer readers to other reviews.** ¢ Figure 1 illustrates the
major processes of excitotoxicity along with therapeutic
points of intervention, while Table 1 introduces promising
therapeutic candidates at these points of intervention and the
potential benefits that nanotechnology can provide.

Therapeutic requirements for overcoming
CNS barriers

To combat oxidative stress in excitotoxicity, a therapeutic
must perform its biochemical function of scavenging ROS
or inhibiting ROS generation but also be capable of reach-
ing the diseased area. The mammalian body is highly effi-
cient in the clearance of foreign substances. The kidneys
readily filter out molecules smaller than 5—-10 nm, while the
liver metabolizes any molecule above 200 nm before reach-
ing the brain.®” Therapeutics also require an inert near-
neutral surface charge to avoid non-specific adsorption to
circulating serum proteins, extracellular matrix compo-
nents, or cell membranes.”® Without an inert surface, ther-
apeutics can readily be opsonized for digestion by resident
macrophages within many organs.”' Furthermore, the in
vivo microenvironment may affect drug stability with
potential deactivation due to proteases, oxidation/reduc-
tion, hydrolysis, pH, and unfavorable binding. Therapeutic
proteins are especially susceptible to rapid degradation
from in vivo proteases.”” '* Even after overcoming sys-
temic clearance, a therapeutic must be capable of crossing
the highly restrictive blood—brain barrier (BBB).”> The
BBB inhibits passage of all macromolecules such as pro-
teins, and 98% of small molecule drugs.”® However, in
acute brain injuries such as stroke and TBI, there is some
BBB breakdown, resulting in “leakiness” of the BBB to a
wider range of molecules.””” We refer readers to other
reviews that cover how acute brain injury mediates BBB
breakdown.”®3® After admittance to the brain, a therapeutic
must avoid expulsion by efflux transporters such as the P-
glycoprotein, ATP-binding cassette, and solute carrier

transporters, and then subsequently navigate the brain par-
enchyma to reach diseased areas.®'® Depending on the
ultimate target, a therapeutic may also require a specific
surface chemistry to undergo cell-type specific uptake.

Application of nanoparticles and their
therapeutic benefits

Nanotechnology holds promise to both maintain therapeu-
tic stability and overcome the barriers to brain delivery.
There are a wide variety of nanoparticle platforms used for
therapeutic delivery to the brain, including polymeric nano-
particles, liposomes, hydrogels, and dendrimers. Polymeric
nanoparticles can provide controlled drug release, targeting
capabilities, and prolonged drug action by protection from
proteases, and have been shown to cross an intact or
impaired BBB.”*** Nanoparticle size, shape, flexibility,
and surface charge can be tailored to overcome steric clear-
ance and non-specific binding to alter pharmacokinetics
and improve brain accumulation.®**® With a dense
poly(ethylene glycol) (PEG) coating, nanoparticles exhibit
increased systemic circulation time by reducing interac-
tions that lead to clearance and opsonization.”> Densely-
PEG coated nanoparticles up to 114 nm are also capable of
diffusive and convective transport through the brain par-
enchyma.®”*® Drug-incorporation strategies include load-
ing within nanoparticle matrices, cores, or lipophilic
bilayers, or covalent conjugation to surface end groups.®
To improve pharmacokinetics or cellular uptake, nanopar-
ticles can also be further decorated with surface ligands or
surfactants, while incorporation of biology-responsive
materials can further specialize therapeutic delivery.**
Incorporation of pH-sensitive groups can imbue nanoparti-
cles with triggered release capabilities, only releasing drug
when reaching the acidotic ischemic area, or when inter-
nalized within an acidic lysosome.””®' Similar strategies
apply for attachment of protease-cleavable linkers and oxi-
dation/reduction-sensitive bonds.”*** Superparamagnetic
nanoparticles can also be guided to diseased tissue regions
using magnetic resonance (MR).”* Nanoparticles may also
serve as biomarkers of disease, however, biomarker appli-
cations are outside the scope of this review and have been
covered in other reviews.””’® By leveraging the benefits of
nanoparticle drug delivery and understanding neurological
disease processes at the biomolecular level, therapeutic
agents can be better designed to combat excitotoxicity.

ROS scavenging antioxidant enzyme-
loaded nanoparticles

Nanoparticles have been investigated for delivering thera-
peutics in in vivo models of stroke, TBI, and HI. One of the
most promising enzyme therapeutic candidates is superox-
ide dismutase (SOD), a native antioxidant enzyme that con-
verts SOX into H,O, and water. SOD-loaded polymeric
poly(lactic-co-glycolic acid) (PLGA) nanoparticles reduced
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Figure |. Schematic overview of excitotoxic and oxidative stress processes in acute brain injury with points of intervention (white
hexagons labeled A—G) at the A) synapse and B) mitochondria, where the left side is healthy, and the right side is injured. Excessive
glutamate concentrations in the synapse can lead to excitotoxicity through enhanced ionotropic glutamate receptor activation, sodium
and calcium influx, and generation of NO and SOX. These processes amplify mitochondrial ROS stress, resulting in mitochondrial
fragmentation and mPTP formation, and release of calcium, SOX, and apoptotic cell death effectors.

infarct volume by 65% in a middle cerebral artery occlusion
(MCAO) rat model, compared to only a 25% reduction from
free SOD alone.”” While 0% of rats survived without treat-
ment after 4 weeks, SOD-nanoparticle application resulted
in 75% survival.”® Similarly, Yun et al. evaluated SOD
delivery in liposomes, polybutylcyanoacrylate (PBCA)
nanoparticles, and PLGA nanoparticles in a mouse model

of multi-vessel ischemia (MVI). All three platforms resulted
in 35-45% infarct volume reduction, with 50-60% reduc-
tion when conjugated with N-methyl-D-aspartic acid recep-
tor | (NMDA-R 1) antibodies.”® The efficacy of SOD-loaded
liposomes against bilateral common carotid artery occlusion
(BCCAO) was also evaluated in gerbils, where treatment
prevented a decrease in endogenous SOD levels and
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Table |. Promising treatments for excitotoxicity in acute brain injury corresponding to Figure | points of intervention, labeled in white hexagons as A—G. These therapeutics could

potentially benefit from nanoparticle strategies to surpass biological barriers and increase site specific localization.

Nanocarrier
benefit

Point of

Administration time after injury

Mechanistic effect

Therapeutic candidates

intervention

24 h, daily for 20 days*’ Sustained release

Presynaptic glutamate release inhibitor

levetiracetam™*’*8

A Presynaptic glutamate

release
B lonotropic glutamate

Acute injury time window (within hours)49 Target site specific

N-methyl-D-aspartate (NMDA) receptor

antagonist
Astrocytic EAAT?2 expression upregulation

selfotel, aptiganel, eliprodil, licostinel,

.49
gavestinel

. 50-53
ceftriaxone

delivery

Within 24 h, daily for 4 days**%; 30 m, daily Target site specific

receptor
C Glutamate uptake

delivery
Protease protection

Aqueous solubility

for 7 days®
1h*% | h or 3h*; immediately®®

immediately®®

PSD-95 inhibitor

Tat-NR2B9c**>¢

PSD-95

D

iNOS and nNOS inhibitor

2-iminobiotin®’~°
allopurinol®"¢?

E nNOS

within 24h*6'; 15m®? Controlled release

Xanthine oxidase inhibitor

F SOX generation

Target site specific

I5 m prior®; 30 m prior®*

NOX inhibitor

apocynin?é6364

delivery

Acute injury time window (within hours)®® BBB permeability

Precursor for NAD-, improve mitochondrial Immediately68

6567

creatine

G Mitochondrial

Improve mitochondrial bioenergetics

Target site specific

nicotinamide riboside®®

metabolism

delivery

bioenergetics

*denotes analysis based on clinical patients.

mitigated mitochondrial membrane lipid peroxidation but
failed to reduce brain swelling.'®® From other studies,
SOD-loaded liposomes reduced infarct size by 18-33% after
focal cerebral ischemia in rats, and reduced BBB permeabil-
ity and brain edema in cold-induced TBI rats.'*"'? In a
MCAO mouse model, SOD-encapsulating polyion conden-
sation complexes of PEG-b-poly(L-lysine) (PEG-PLL) or
PEG-b-poly(aspartate diethyltriamine) (PEG-DET) fol-
lowed by crosslinking reduced infarct volume by 50—
609, 103-104

Even though SOD converts SOX into H,O,, there is
evidently a therapeutic benefit in reducing SOX levels at
the expense of increasing H,O, levels, by reducing mito-
chondrial oxidative stress and fragmentation.'® Catalase
scavenging of H,O, by itself or in tandem with SOX
scavenging has also shown positive effects in reducing
acute brain injury. Catalase delivery via PLGA polymer
or polyion complexed micelle nanoparticles has been
explored in vitro, but in vivo application has been lim-
ited.'®1%7 Zhang et al. observed a reduction in infarct size
with cross-linked dendrigraft poly-L-lysine (DGL) nano-
particles containing cis-aconitic anhydride-modified cata-
lase after MCAO in mice, with further infarct reduction
when nanoparticles were decorated with N-acetyl-proline-
glycine-proline tripeptides with a high affinity for neutro-
phils, which enhanced BBB penetration.'’® SOD and
catalase loaded separately into PLGA nanoparticles were
administered after tissue plasminogen activator (tPA) in a
thromboembolic stroke rat model, resulting in reduced
number of caspase-positive cells, neutrophils, and hippo-
campal swelling, and an increase in nestin-positive neuron
progenitor cells.'” Combinatorial delivery of SOD nano-
particles and catalase nanoparticles offers promise in
disrupting neuronal death processes via interruption of
SOX-mediated primary damage as well as longer time-
scale inflammatory processes caused by H,O, accumula-
tion."'® Although enzyme-encapsulating nanoparticles are
promising for combating excitotoxicity with their precise
and continuous catalytic functions, enzyme delivery still
faces many challenges including poor hydrophilic macro-
molecule loading in hydrophobic matrices, and enzyme
deactivation from high-energy mixing and organic/aqueous
interfaces during formulation processes.'''''* Researchers
are exploring other antioxidant-capable nanoparticle stra-
tegies that circumvent some of these challenges.

ROS scavenging antioxidant-mimetic
materials as nanoparticles

Nanoparticles themselves may be composed of therapeutic
materials that exhibit antioxidant capabilities.''>''® Cer-
ium oxide nanoparticles of 4 nm diameter exhibit SOD-
and catalase-mimetic activity, and can scavenge NO, and
peroxynitrite.'!” They have been shown to reduce infarct
size by over 50% after MCAO in rats at 0.5 mg/kg and
0.7 mg/kg doses.''® Interestingly, higher concentrations
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of 1 mg/kg and 1.5 mg/kg provided no significant change in
infarct volume compared to no treatment.''® Capping
cerium oxide nanoparticles with zeolitic imidazolate
framework-8 further improved ROS scavenging ability.'"’
Cerium oxide nanoparticles have been covered in-depth in
other reviews.'!”"'2%12! Platinum nanoparticles are also
SOD- and catalase-mimetics and result in reduced infarct
size in the cortex after transient MCAO in mice.''® Yttrium
oxide nanoparticles have similar antioxidant effects as cer-
ium oxide nanoparticles in in vitro cell culture and could
warrant further exploration.'??

Fullerene nanoparticles, which are carbon allotropes
consisting of 60 carbons in a spherical arrangement, have
also been investigated for their free radical scavenging
capabilities of neutralizing hydroxyl radicals, SOX, and
NO by transferring radicals into stable conformations
within the fullerene nanoparticle.'** "% Hydroxylated full-
erene nanoparticles reduced neuronal death in the CAl
hippocampal region after MV in rats.'*® Vani et al. applied
hydroxylated fullerene nanoparticles before or after MCAO
in rats, yielding a 53% or 81% reduction in infarct volume,
respectively, a reduction in malondialdehyde levels, and
rescuing of reduced glutathione (GSH) content and SOD
activity.'?” Carboxyfullerene nanoparticles decreased cor-
tical infarction and prevented GSH depletion and lipid per-
oxidation, but also had adverse effects including writhing
and even death in rats after MCAO and BCCAO."** Full-
erenes can also produce pro-oxidant SOX and singlet oxy-
gen in the presence of UV light, which could lead to
adverse effects if fullerene nanoparticles localize in skin
epithelium.'?® This UV-induced radical producing capabil-
ity warrants further study of fullerene nanoparticles in the
presence of other biologically relevant radical-generating
conditions such as free iron.

PEG-functionalized hydrophilic carbon clusters (PEG-
HCCs) consisting of 40 nm by 2-3 nm carbon nanotubes
have also been explored for excitotoxic and immunomodu-
lation applications due to their SOD-mimetic and hydroxyl
radical scavenging properties.'**'** Interestingly, PEG-
HCCs are inert towards NO and peroxynitrite, holding
potential as selective ROS scavengers that avoid NO
scavenging and consequent vasodilatation and blood flow
interference.'® PEG-HCCs can also load hydrophobic
molecules into their hydrophobic core for combinatorial
therapy.'** PEG-HCCs administered during reperfusion
of transient MCAO rats under hyperglycemic conditions
resulted in a 42% reduction in infarct size, and reduced
edema and hemorrhage.'*! PEG-HCCs furthermore nor-
malized NO and SOX levels and restored cerebral blood
flow after controlled cortical impact (CCI)-induced TBI in
rats.'*> With self-regenerating ROS-specific rapid antiox-
idant capacity, PEG-HCCs warrant further investigation as
a viable excitotoxicity therapeutic for stroke and TBI appli-
cations."*° Due to the non-biological origin of antioxidant-
mimetic material nanoparticles and their relatively recent
application in the neurological disease fields, further

research is also needed to assess their long-term biocom-
patibility, clearance and pharmacokinetics, and maximum
tolerated dosing before translation to clinical trials can be
achieved.'*13*

Broad-acting antioxidant-loaded
nanoparticles

While the antioxidant-nanoparticle strategies covered thus
far have focused on specific scavenging of SOX and/or
H,0,, there are also several broad-acting antioxidants that
have utilized nanoparticle delivery to improve therapeutic
accumulation at the target site to enhance efficacy. Erythro-
poietin (EPO) exerts its neuroprotective effects for acute
brain injury by chelating iron to reduce radical formation,
modulating inflammation in multiple brain cell types, and
acting as a neurotrophic agent.'>*"'*” EPO delivery within
PLGA nanoparticles has been shown to reduce infarct vol-
ume in a perinatal rat model of HI at 10 times lower doses
than recombinant EPO.'*®

Curcumin is a small molecule found in the culinary spice
turmeric that has broad-acting anti-inflammatory and anti-
oxidant effects. Curcumin has been associated with activa-
tion of the antioxidant response element pathway in mice
after closed-skull impact-induced TBI, ~50% infarct vol-
ume reduction after MCAO in rats, and microglial polariza-
tion towards the anti-inflammatory state after distal MCAO
in mice."*'*! However, curcumin’s direct application for
acute brain injury is suboptimal due to its hydrophobicity
and consequent low aqueous solubility. Curcumin incor-
poration within PLGA-PEG nanoparticles permitted curcu-
min penetration across the BBB, diffusion effectively to
disease sites, and a decreased infarct size in neonatal HI rats
while free curcumin provided no significant therapeutic effi-
cacy.*' Curcumin-loaded within solid lipid nanoparticles
administered orally to rats after BCCAO also improved neu-
rological scoring by 79% and restored SOD, GSH, and
catalase levels to sham control levels.'** Curcumin-loaded
N-isopropyl acrylamide (PNIPAM) nanoparticles adminis-
tered intranasally after MCAO in rats restored grip strength,
locomotor activity, glutathione peroxidase, glutathione
reductase, SOD, and catalase activity, and reduced lipid
peroxidation and neuronal loss by ~40%.'*?

Multiple other antioxidants have also shown promise for
acute brain injury when incorporated into nanoparticle plat-
forms. Melanin exhibits broad antioxidant activity against
SOX, H,0,, hydroxyl radical, peroxynitrite, and NO.'**
Injection of PEGylated melanin nanoparticles before MCAO
injury in rats resulted in ~50% infarct reduction and showed
no immediate toxicity in preliminary in vitro and in vivo
studies.'* N-acetylcysteine (NAC) is a precursor to GSH and
therefore an antioxidant and free radical scavenger, as well as
a pleiotropic anti-inflammatory agent.'*> Once internalized
into cells, NAC is hydrolyzed to release cysteine which is then
used for GSH production.'*> NAC-conjugated dendrimers
(D-NAC) administered to neonatal mice that underwent
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permanent unilateral carotid artery ligation with mild hypoxia
improved white matter myelination.'*® Adenosine provides
neuroprotection by binding to inhibitory adenosine A recep-
tors to hyperpolarize neurons and reduce glutamate release,
mitigating downstream excitotoxic processes.'*”'*® The
hydrophilic small molecule adenosine is readily metabolized
and cleared in the bloodstream, but when conjugated to squa-
lene and formed into nanoparticles, these adenosine com-
plexes significantly improved neurologic deficit scores after
MCAO in mice.'* The natural polyphenol antioxidant
resveratrol is water insoluble with a short half-life in its free
form.'>® Resveratrol-loaded poly(N-vinylpyrrolidone)-b-
poly(e-caprolactone) (PVP-b-PCL) polymeric nanoparticles
reduced infarct volume by 30-40%, malondialdehyde levels,
and neuronal apoptosis after transient MCAO in rats.'> The
flavanone glycoside antioxidant hesperidin suffers from poor
BBB passage and therefore bioavailability.'>' Hesperidin
nanoparticles increased GSH, catalase, and total protein lev-
els, and decreased infarct volume and malondialdehyde levels
after BCCAO in rats.'! Broad-acting antioxidants are pro-
mising in mitigating ROS damage in acute brain injury, and
many also exhibit broad anti-inflammatory properties as well,
which may further improve therapeutic efficacy. However,
because pleiotropic drugs act via multiple neuroprotective
mechanisms, gleaning broader understanding of which spe-
cific mechanisms to target from these studies to combat exci-
totoxicity is limited.

Our review of anti-excitotoxicity and antioxidant thera-
peutic efficacy has focused on survival, infarct volume
reduction, and oxidative stress markers at the molecular and
cellular scales. Fortunately, physical improvement overall
correlated well with behavioral outcomes across
antioxidant-nanoparticle studies.”®''¢'31138:142 Eor exam-
ple, infarct reduction occurred alongside improvements in
hind limb flexion, the ability to walk straight, and noise
sensitivity upon administration of SOD-loaded PLGA nano-
particles after transient MCAO in rats.”® However, slight
impairment in forelimb movement and blinking reaction
remained.”® Platinum nanoparticles and PEG-HCCs
improved performance on the Bederson exam, encompass-
ing forelimb strength, stability from pushing, and circling
behavior, alongside infarct reduction after transient MCAO
inrats.''®!3! Nanoerythropoietin in a neonatal HI rat model,
platinum nanoparticles after MCAO in rats, and curcumin-
loaded solid lipid nanoparticles after BCCAO in rats
improved performance on the Rotarod test alongside infarct
reduction.''®!3%142 Curcumin-loaded solid lipid nanoparti-
cles also improved Morris water maze and elevated plus
maze performance to closer to that of sham injury scores.'*?

Pitfalls of translating anti-excitotoxic
therapies
There remains a distinct lack of therapeutics targeting exci-

totoxicity in routine clinical use, despite having been
described as a key component of the pathophysiology of

acute neurological injury mechanisms for several decades.
A large part of this lack of successful translation is likely
due to the issues outlined above—the requirement of more
targeted or stable delivery of therapeutics to the site of
injury. However, a number of other obstacles or common
problems exist in the translational pipeline that should be
addressed as new therapeutics are developed. These
include the timing of the therapeutic, adequate control of
confounding physiological factors in preclinical studies,
and the number and heterogeneity of animal models
assessed before moving to clinical trials.

The timing of therapies with respect to the specific
pathophysiological processes that occur after injury is a
crucial component of successful clinical translation. This
is likely to be particularly important for therapies that
directly target the accumulation of EAAs such as gluta-
mate. For instance, in piglet models of perinatal HI brain
injury, a small increase in extracellular glutamate is seen
during the insult itself as a result of primary energy failure,
followed by a decrease after resuscitation until a significant
increase as secondary energy failure occurs 6-12 h later.'>?
Preclinically, therapeutic hypothermia (TH) is significantly
neuroprotective in a wide range of acute brain injuries, at
least in part due to its ability to suppress the release of
EAAs.'>7'%° However, TH has only shown clinical success
after perinatal asphyxia, and must be initiated within 6 h of
the injury or earlier for maximum benefit.'>®

Similarly, the NMDA-R antagonist xenon augments
hypothermic neuroprotection in rat and piglet models of
perinatal asphyxia when given at a concentration of 50%
and initiated within 3 h of resuscitation.!>”'%° Yet, the
TOBY-Xe trial found no benefit of adding xenon to TH
for infants after birth asphyxia, with significant confoun-
ders including that median time of xenon onset was 10 h
(range: 4.0-12.6 h), and that it was given at a concentration
of 30%.'%" Overall, the data therefore suggest that any
directly anti-excitotoxic therapy must be in place as soon
as possible after reperfusion.’>® This may be because of
ongoing excitotoxicity that occurs even in the absence of
measurable increases in extracellular glutamate. For
instance, despite the relatively delayed rise in glutamate
after injury, others have shown that an “excitotoxic index”
consisting of relative levels of glutamate, aspartate, and
glycine to y-aminobutyric acid (GABA) begins to increase
almost immediately after resuscitation in a piglet model of
perinatal HI brain injury.'®' In the clinical setting, it is
likely that any anti-excitotoxic therapeutic should therefore
be at high local concentrations within 3—6 h of the initial
injury, and this must be incorporated into the design of both
preclinical and clinical studies. Importantly, therapies that
target downstream mitochondrial dysfunction, neuroin-
flammation, oxidative stress, and delayed neurodegenera-
tion, which continue to occur over hours to days, may have
an extended therapeutic window as long as they can be
reliably delivered to the site of injury.'®*'®?
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The history of anti-excitotoxic therapies, particularly
when used in rodent studies, is significantly confounded
by issues with temperature regulation because hypother-
mia, which is known to be neuroprotective, spontaneously
occurs after brain injury and is rarely adequately con-
trolled.'**'416¢ Additionally, glutamate signaling plays
a dominant role in thermoregulation and maintenance
of normal temperature, with pharmaceutical inhibition of
glutamate signaling generally associated with loss of cold-
evoked temperature responses (e.g. brown fat thermogen-
esis), and subsequent hypothermia.'®” ' In both animal
models and humans, early spontaneous hypothermia is a
common occurrence after global brain injury, with greater
decreases in core temperature generally seen with a greater
extent and severity of injury.'®®!7°"173 In preclinical mod-
els at least, this spontaneous hypothermia can result in
neuroprotection, with enforced periods of temperature reg-
ulation required after injury to standardize the degree of
injury seen.'®®!”* However, in one analysis of studies
assessing neuroprotective strategies in adult rodent models
of both global and focal ischemia, only around 30% of
studies did temperature measurements after the injury pro-
cedure.'® A more recent analysis of preclinical studies
examining neuroprotective agents in perinatal HI injury
found similar results.'®>

In their seminal paper in 2006, O’Collins et al. described
“1,026 Experimental Treatments in Acute Stroke,” the vast
majority of which had not been translated to clinical trials.'”®
Anti-excitotoxic therapies provided, on average, about 25%
neuroprotection, which was a similar magnitude to thrombo-
lysis, the current standard of care for acute ischemic stroke.
The general lack of successful translation of anti-excitotoxic
therapies in this setting may either be due to problems with
timing relative to injury, or that the majority of benefit from
directly anti-excitotoxic therapies, for instance those that reg-
ulate glutamate release or signaling, result in hypothermia
that is not controlled for in the preclinical setting.'®*!6
Hypothermia has not been shown to be robustly beneficial
after stroke, TBI, or global brain ischemia (e.g. after cardiac
arrest) in pediatric or adult populations.'>*!>>!'”* However,
rigorous temperature management is commonplace in hospi-
talized adults after global and focal acute brain injuries due to
the benefit of preventing hyperthermia (fever).'33-!73-176:177
Therefore, more evidence is still required to examine whether
directly anti-excitotoxic therapies will have their place in
routine clinical use by providing neuroprotection above and
beyond their effects on thermoregulation. Although promis-
ing, antioxidant-nanoparticle therapies will also necessarily
undergo the same rigor of evaluation before clinical
translation.

Barriers to clinical translation of
nanotechnologies for acute brain injury

As with the majority of putative therapies developed for
treating neurological disorders, any lack of success in the

clinical setting could potentially be determined earlier by
developing an adequate preclinical pipeline.'”® This was
the goal of the STAIR (Stroke Therapy Academic Industry
Roundtable) criteria when they were developed more than
two decades ago. To fully meet the criteria, a therapy had to
be successfully tested: 1) in two or more laboratories, ii) in
two or more species, iii) in animals at a disease-appropriate
life stage, iv) in both sexes, v) in both temporary and per-
manent models of ischemia, vi) at least 1 hour after reper-
fusion, vii) at two or more doses, viii) using a clinically
relevant mode of delivery, ix) using both histological and
behavioral outcomes, and x) with outcomes at least 4 weeks
after injury. Unfortunately, these criteria, as well as the
ARRIVE (Animal Research: Reporting of In Vivo Experi-
ments) criteria for design and reporting of preclinical stud-
ies, are still rarely applied today.'”®

In addition to these criteria, any use of nanotechnology
to transport therapeutic cargo must also include the neces-
sary controls to account for the nanoparticle vehicle and
any component of the nanoparticle that could result in toxi-
city, off-site effects, or added therapeutic benefit. For nano-
particles encapsulating a therapeutic, this typically
involves adding treatment groups for the empty nanoparti-
cle and the free drug. For therapeutics chemically linked to
nanoparticles, controls might also need to include the nano-
particle with and without the linker chemistry. Further
complicating preclinical studies, the use of nanoparticles
to deliver therapeutics should decrease the necessary dose
of the therapeutic; yet, this difference in dose between the
therapeutic nanoparticle and the therapeutic in free form
introduces an additional variable. Inevitably, the more mul-
tifunctional the nanoparticle delivery system, the more con-
trols are needed to account for the potential effects of each
component of that system.

While nanotechnologies might increase drug bioavail-
ability and reduce dosing needs over the longer term, initial
preclinical studies often require more experimental groups.
Meeting these needs increases costs substantially, espe-
cially when scaling nanotherapeutic formulation methods
to test in multiple animal models with increasingly larger
species. By not testing therapies in multiple animal models,
including both rodent species and larger gyrencephalic ani-
mals (pigs, sheep, dogs, nonhuman primates, etc.) at mul-
tiple different time points in relation to the initial injury, the
preclinical pipeline is unlikely to capture the heterogeneity
of acute brain injury populations seen clinically. Preclinical
work often focuses on reproducibility of injury to maintain
statistical power while using small group sizes, and without
testing a therapy in the variety of settings outlined in the
STAIR criteria, the likelihood of failure in the clinic will
remain high.'”® Any anti-excitotoxicity therapy must
achieve target site delivery at the right dose at the right
timing of injury. Therefore, a robust preclinical pipeline
including a combination of complementary models (Table
2) is paramount in the translation of nanotherapeutics for
the treatment of excitotoxicity and oxidative stress.
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Conclusions and looking forward

Delivering drugs that act specifically at diseased target sites at
the appropriate dose at the right time is crucial for neurother-
apeutics given the sensitivity and precision of brain function.
Antioxidant intervention by scavenging injury-associated
SOX and other ROS provides alleviation of multiple subse-
quent neuronal death pathways. Many studies have already
shown the therapeutic potential of SOD-loaded nanoparticles
or SOD-mimetic platforms, as well as various other antiox-
idants. However, despite promising inhibition of excitotoxic
damage, further work needs to be performed to identify the
ideal intervention point for therapeutic efficacy.

Understanding the mechanisms involved in excitotoxi-
city and oxidative stress can assist the nanoparticle drug
delivery field in identifying promising points of interven-
tion. Therapeutic development to inhibit ROS production
can be guided by pinpointing the threshold at which ROS
overwhelms antioxidant defenses and whether antioxidant
uptake would enhance therapeutic effect. Determining
whether excessive SOX elevation is primarily generated
by NOX after glutamate receptor activation, by respiring
mitochondria, or by xanthine oxidase after reperfusion, or
whether the SOX source even matters, would better inform
how to target the downstream pathology. However, it is
imperative to remember that excitotoxicity is not the only
disease hallmark at play. Inhibition of ROS in neuroinflam-
matory pathways could also assist in preventing delayed
neurodegeneration that can arise days, months, or even
years later.'®*!”® Since neuronal excitation and inflamma-
tion play roles in survival and growth, there is risk of
injuriously over-inhibiting basal neuronal function or over-
scavenging ROS and interrupting cell signaling *%-'79~'8!

Preclinically, most antioxidant-nanoparticle therapies
achieved no greater than 60% reduction in infarct size on
ischemia/reperfusion, HI, or TBI injury ir vivo. It remains to
be elucidated whether ~60% reduction is a practical limit,
or whether additional strategies could further reduce dam-
age. Therapeutic advances achieving greater than 60%
infarct reduction could consist of increasing drug concentra-
tions at injured sites, using targeting ligands for improved
accumulation or cell-specific uptake at the target site,
optimization of the timing of administration, or applying
combination therapies with anti-inflammatory agents, pro-
regenerative growth factors, or stem-cell based therapies.
Furthermore, despite extensive preclinical evidence of
antioxidant-nanoparticle efficacy in acute brain injury,
research must comply with STAIR and ARRIVE criteria
before translation to clinical studies. Finally, though excito-
toxicity is a primary mechanism of brain damage in stroke,
TBI, and HI, the process may be present in the majority of
neurological diseases.'* Therefore, even when excitotoxi-
city is not the primary mechanism of pathology, neurologi-
cal diseases more broadly could benefit from the
development of antioxidant-nanoparticle therapies to
reduce neuronal injury.
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