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Nanotherapeutic modulation of
excitotoxicity and oxidative stress in
acute brain injury
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Abstract
Excitotoxicity is a primary pathological process that occurs during stroke, traumatic brain injury (TBI), and global brain
ischemia such as perinatal asphyxia. Excitotoxicity is triggered by an overabundance of excitatory neurotransmitters
within the synapse, causing a detrimental cascade of excessive sodium and calcium influx, generation of reactive oxygen
species, mitochondrial damage, and ultimately cell death. There are multiple potential points of intervention to combat
excitotoxicity and downstream oxidative stress, yet there are currently no therapeutics clinically approved for this specific
purpose. For a therapeutic to be effective against excitotoxicity, the therapeutic must accumulate at the disease site at the
appropriate concentration at the right time. Nanotechnology can provide benefits for therapeutic delivery, including
overcoming physiological obstacles such as the blood–brain barrier, protect cargo from degradation, and provide con-
trolled release of a drug. This review evaluates the use of nano-based therapeutics to combat excitotoxicity in stroke, TBI,
and hypoxia–ischemia with an emphasis on mitigating oxidative stress, and consideration of the path forward toward
clinical translation.
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The impacts and challenges of neurological
disease

Acute brain injury is a common phenomenon associated

with significant morbidity and mortality. Each year in the

United States, around 800 thousand people suffer from a

hemorrhagic or ischemic stroke, 60 thousand newborns

experience perinatal asphyxia and subsequent hypoxia–

ischemia (HI) encephalopathy, and three million people

suffer from a traumatic brain injury (TBI).1–3 The costs

associated with these diseases total over $113 billion per

year and are not limited to the medical treatments, subse-

quent pathological complications, and loss of earned wages

throughout life; additional unquantifiable costs also include

the physical and emotional toll on the individual, along

with their caregivers, family, and friends.1,4,5

Acute brain injuries exhibit a set of characteristic

mechanisms that contribute to neurological damage. The

pathological sequelae include immediate cell death and tis-

sue loss followed by ongoing excitotoxicity, inflammation,
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and oxidative stress.6,7 Excitotoxicity is the pathological

process of neuronal death due to dysregulated neuronal

overstimulation by excitatory amino acids (EAAs) such as

glutamate. Excitotoxicity leads to oxidative stress, where an

excess of reactive oxygen species (ROS) exhausts native

antioxidant systems. Understanding the etiology of neuro-

logical disease progression, especially the role of excitotoxi-

city and oxidative stress, is essential for determining ideal

points of intervention for the development and implementa-

tion of effective therapeutics.

There have been extensive efforts in the fundamental

sciences of pathology, immunology, and neuroscience to

expand knowledge of excitotoxic neuronal death to eluci-

date key stages of intervention. Promising candidates

include natural antioxidant, inorganic antioxidant-

mimetic, and growth factor therapeutics, among others.

However, developing a successful therapeutic requires a

drug that not only has biochemical efficacy, but also effec-

tively accumulates at the target site at therapeutic concen-

trations. In neurological disease, free drugs often fail to

reach the target site due to in vivo degradation, systemic

clearance mechanisms, and the barrier properties of the

neurovascular unit.8 Consequently, despite the research

progress achieved, there are currently no approved thera-

peutics for targeting excitotoxicity or its direct sequelae

after acute neurological injury. Nanotechnology can be

leveraged to help overcome each of the aforementioned

delivery obstacles to the brain. By conjugating drugs to

nanoparticle surfaces, encapsulating drugs within nanopar-

ticles, or utilizing materials with intrinsic therapeutic

effects in nanoparticle form, nanoparticle therapeutics can

stabilize labile free drugs and traverse steric obstacles to

reach diseased sites.8 Here, we provide an overview of the

relevant disease mechanisms and points of intervention in

excitotoxicity and subsequent oxidative stress including the

advantages of nanotechnology, a summary of nanothera-

peutic progress achieved thus far with a focus on in vivo

work, and research strategies to implement for effective

clinical translation.

Mechanisms of excitotoxicity in acute
brain injury

Glutamate is the major excitatory neurotransmitter in the

central nervous system (CNS), responsible for the sense of

sight, smell, taste (umami), nociception, and hearing, as

well as the more complex processes of memory formation

and learning.9 During neuronal activity, vesicles containing

neurotransmitters in the presynaptic neuron merge with the

membrane, expelling their contents, namely glutamate, into

the synaptic cleft.10 Glutamate then rapidly diffuses across

the synapse to bind to ionotropic glutamate receptors

(iGluRs) on the postsynaptic neuron, eliciting an influx of

sodium, which triggers an action potential that propagates

down the neuron, forming the basis of neuronal communi-

cation.9 Astrocytic end feet enveloping the synapse rapidly

uptake glutamate to recycle back to the presynaptic neuron

to replenish vesicular stores.11 Upon neuronal excitation,

calcium also influxes and binds to post synaptic density

protein 95 (PSD-95) to initiate the recruitment of neuronal

nitric oxide synthase (nNOS) and production of nitric oxide

(NO).12 NO then activates the nicotinamide adenine dinu-

cleotide phosphate oxidase (NOX) complex that generates

superoxide radical anion (SOX, O2
�).13

In acute brain injury, a number of pathological processes

result in excitotoxicity depending on the nature of the

insult. During stroke and HI, asphyxiation reduces ATP

production leading to sodium/potassium ATPase pump

failure and subsequent anoxic depolarization-induced glu-

tamate release.14 Under hypoxia, as cells switch to lactic

acid production and undergo acidosis, ATP generation fur-

ther decreases, inhibiting ATP-dependent astrocytic gluta-

mate uptake.15 In TBI, direct trauma induces immediate

necrotic death of neurons and glia resulting in neuronal

release of their glutamate stores, and subsequent dysregu-

lation of cerebral blood flow leading to similar energy def-

icits as occurs in stroke and HI.16,17 Once blood flow

returns after a hypoxic event, reperfusion injury may

exacerbate neuronal damage.18 Regardless of the injury,

excessive synaptic glutamate accumulation causes excito-

toxicity.12,19 Substantially elevated intracellular glutamate,

ROS, and calcium levels lead to cell death, increased glu-

tamate release from dying neurons, and propagation of

excitotoxicity.12,20

Mitochondria play a prominent role in excitotoxicity,

oxidative stress, and cell death processes due to energy,

calcium, and ROS dynamics.21 During excitotoxicity,

mitochondria uptake excess cytosolic calcium and produce

high concentrations of SOX during mitochondrial respira-

tion in response to excitatory postsynaptic currents.22

NOX-derived SOX triggers even greater SOX production

from mitochondria.23–26 SOX mediates mitochondrial

damage, resulting in electron transport chain failure as well

as reverse electron transport leading to greater SOX pro-

duction.23 Other sources of SOX include production by

xanthine oxidase or invading neutrophils during reperfu-

sion, monoamine oxidase, and uncoupled nNOS by SOX

oxidation of the nNOS cofactor tetrahydrobiopterin.18,27–30

Abundant SOX reacts with NO to form peroxynitrite,

which can cause lipid peroxidation, protein deactivation,

DNA mutation, and poly(ADP ribose) polymerase (PARP)

activation.31,32 High intracellular calcium and SOX levels

lead to extensive mitochondrial fission and mitochondrial

permeability transition pore (mPTP) formation.22,33 The

exact mechanism of mPTP formation remains to be eluci-

dated, but ROS contributes several roles.34–36 mPTP for-

mation results in burst release of SOX, calcium, and other

necrosis and apoptosis effectors into the cytosol.37 Mito-

chondrial burst release of SOX further induces NOX SOX

production and neighboring mitochondrial stress, reducing

mitochondrial antioxidant functions and creating a reinfor-

cing cycle.23,38 As excitotoxicity, ROS generation, and
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mPTP formation are intimately linked to death processes,

ROS scavenging is a promising therapeutic strategy after

acute brain injury.

After acute neurological injury, a number of neuroinflam-

matory processes occur both alongside and due to excitotoxi-

city. Oxidative stress plays a prominent role in

neuroinflammation as well. SOX generated from NOX and

subsequent oxidation to hydrogen peroxide (H2O2) elicit

microglial proliferation and other downstream inflammatory

signaling pathways.39,40 For instance, in perinatal asphyxia

models, HI induces both excitotoxic neuronal death as well as

neuroinflammatory microglial proliferation.41 Inflammation

can in turn cause further delayed excitotoxicity, as occurs in

depression and Parkinson’s disease.42,43 Therefore, therapies

that manage oxidative stress seen after acute neurological

injury have the combined promise of alleviating excitotoxi-

city as well as neuroinflammation. An in-depth discussion of

neuroinflammation is beyond the scope of this review, and we

refer readers to other reviews.44–46 Figure 1 illustrates the

major processes of excitotoxicity along with therapeutic

points of intervention, while Table 1 introduces promising

therapeutic candidates at these points of intervention and the

potential benefits that nanotechnology can provide.

Therapeutic requirements for overcoming
CNS barriers

To combat oxidative stress in excitotoxicity, a therapeutic

must perform its biochemical function of scavenging ROS

or inhibiting ROS generation but also be capable of reach-

ing the diseased area. The mammalian body is highly effi-

cient in the clearance of foreign substances. The kidneys

readily filter out molecules smaller than 5–10 nm, while the

liver metabolizes any molecule above 200 nm before reach-

ing the brain.69 Therapeutics also require an inert near-

neutral surface charge to avoid non-specific adsorption to

circulating serum proteins, extracellular matrix compo-

nents, or cell membranes.70 Without an inert surface, ther-

apeutics can readily be opsonized for digestion by resident

macrophages within many organs.71 Furthermore, the in

vivo microenvironment may affect drug stability with

potential deactivation due to proteases, oxidation/reduc-

tion, hydrolysis, pH, and unfavorable binding. Therapeutic

proteins are especially susceptible to rapid degradation

from in vivo proteases.72–74 Even after overcoming sys-

temic clearance, a therapeutic must be capable of crossing

the highly restrictive blood–brain barrier (BBB).75 The

BBB inhibits passage of all macromolecules such as pro-

teins, and 98% of small molecule drugs.76 However, in

acute brain injuries such as stroke and TBI, there is some

BBB breakdown, resulting in “leakiness” of the BBB to a

wider range of molecules.77–79 We refer readers to other

reviews that cover how acute brain injury mediates BBB

breakdown.78,80 After admittance to the brain, a therapeutic

must avoid expulsion by efflux transporters such as the P-

glycoprotein, ATP-binding cassette, and solute carrier

transporters, and then subsequently navigate the brain par-

enchyma to reach diseased areas.81,82 Depending on the

ultimate target, a therapeutic may also require a specific

surface chemistry to undergo cell-type specific uptake.

Application of nanoparticles and their
therapeutic benefits

Nanotechnology holds promise to both maintain therapeu-

tic stability and overcome the barriers to brain delivery.

There are a wide variety of nanoparticle platforms used for

therapeutic delivery to the brain, including polymeric nano-

particles, liposomes, hydrogels, and dendrimers. Polymeric

nanoparticles can provide controlled drug release, targeting

capabilities, and prolonged drug action by protection from

proteases, and have been shown to cross an intact or

impaired BBB.72,83 Nanoparticle size, shape, flexibility,

and surface charge can be tailored to overcome steric clear-

ance and non-specific binding to alter pharmacokinetics

and improve brain accumulation.84–86 With a dense

poly(ethylene glycol) (PEG) coating, nanoparticles exhibit

increased systemic circulation time by reducing interac-

tions that lead to clearance and opsonization.75 Densely-

PEG coated nanoparticles up to 114 nm are also capable of

diffusive and convective transport through the brain par-

enchyma.87,88 Drug-incorporation strategies include load-

ing within nanoparticle matrices, cores, or lipophilic

bilayers, or covalent conjugation to surface end groups.8

To improve pharmacokinetics or cellular uptake, nanopar-

ticles can also be further decorated with surface ligands or

surfactants, while incorporation of biology-responsive

materials can further specialize therapeutic delivery.83,89

Incorporation of pH-sensitive groups can imbue nanoparti-

cles with triggered release capabilities, only releasing drug

when reaching the acidotic ischemic area, or when inter-

nalized within an acidic lysosome.90,91 Similar strategies

apply for attachment of protease-cleavable linkers and oxi-

dation/reduction-sensitive bonds.92,93 Superparamagnetic

nanoparticles can also be guided to diseased tissue regions

using magnetic resonance (MR).94 Nanoparticles may also

serve as biomarkers of disease, however, biomarker appli-

cations are outside the scope of this review and have been

covered in other reviews.95,96 By leveraging the benefits of

nanoparticle drug delivery and understanding neurological

disease processes at the biomolecular level, therapeutic

agents can be better designed to combat excitotoxicity.

ROS scavenging antioxidant enzyme-
loaded nanoparticles

Nanoparticles have been investigated for delivering thera-

peutics in in vivo models of stroke, TBI, and HI. One of the

most promising enzyme therapeutic candidates is superox-

ide dismutase (SOD), a native antioxidant enzyme that con-

verts SOX into H2O2 and water. SOD-loaded polymeric

poly(lactic-co-glycolic acid) (PLGA) nanoparticles reduced
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infarct volume by 65% in a middle cerebral artery occlusion

(MCAO) rat model, compared to only a 25% reduction from

free SOD alone.97 While 0% of rats survived without treat-

ment after 4 weeks, SOD-nanoparticle application resulted

in 75% survival.98 Similarly, Yun et al. evaluated SOD

delivery in liposomes, polybutylcyanoacrylate (PBCA)

nanoparticles, and PLGA nanoparticles in a mouse model

of multi-vessel ischemia (MVI). All three platforms resulted

in 35–45% infarct volume reduction, with 50–60% reduc-

tion when conjugated with N-methyl-D-aspartic acid recep-

tor 1 (NMDA-R1) antibodies.99 The efficacy of SOD-loaded

liposomes against bilateral common carotid artery occlusion

(BCCAO) was also evaluated in gerbils, where treatment

prevented a decrease in endogenous SOD levels and

Figure 1. Schematic overview of excitotoxic and oxidative stress processes in acute brain injury with points of intervention (white
hexagons labeled A–G) at the A) synapse and B) mitochondria, where the left side is healthy, and the right side is injured. Excessive
glutamate concentrations in the synapse can lead to excitotoxicity through enhanced ionotropic glutamate receptor activation, sodium
and calcium influx, and generation of NO and SOX. These processes amplify mitochondrial ROS stress, resulting in mitochondrial
fragmentation and mPTP formation, and release of calcium, SOX, and apoptotic cell death effectors.
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mitigated mitochondrial membrane lipid peroxidation but

failed to reduce brain swelling.100 From other studies,

SOD-loaded liposomes reduced infarct size by 18–33% after

focal cerebral ischemia in rats, and reduced BBB permeabil-

ity and brain edema in cold-induced TBI rats.101,102 In a

MCAO mouse model, SOD-encapsulating polyion conden-

sation complexes of PEG-b-poly(L-lysine) (PEG-PLL) or

PEG-b-poly(aspartate diethyltriamine) (PEG-DET) fol-

lowed by crosslinking reduced infarct volume by 50–

60%.103,104

Even though SOD converts SOX into H2O2, there is

evidently a therapeutic benefit in reducing SOX levels at

the expense of increasing H2O2 levels, by reducing mito-

chondrial oxidative stress and fragmentation.105 Catalase

scavenging of H2O2 by itself or in tandem with SOX

scavenging has also shown positive effects in reducing

acute brain injury. Catalase delivery via PLGA polymer

or polyion complexed micelle nanoparticles has been

explored in vitro, but in vivo application has been lim-

ited.106,107 Zhang et al. observed a reduction in infarct size

with cross-linked dendrigraft poly-L-lysine (DGL) nano-

particles containing cis-aconitic anhydride-modified cata-

lase after MCAO in mice, with further infarct reduction

when nanoparticles were decorated with N-acetyl-proline-

glycine-proline tripeptides with a high affinity for neutro-

phils, which enhanced BBB penetration.108 SOD and

catalase loaded separately into PLGA nanoparticles were

administered after tissue plasminogen activator (tPA) in a

thromboembolic stroke rat model, resulting in reduced

number of caspase-positive cells, neutrophils, and hippo-

campal swelling, and an increase in nestin-positive neuron

progenitor cells.109 Combinatorial delivery of SOD nano-

particles and catalase nanoparticles offers promise in

disrupting neuronal death processes via interruption of

SOX-mediated primary damage as well as longer time-

scale inflammatory processes caused by H2O2 accumula-

tion.110 Although enzyme-encapsulating nanoparticles are

promising for combating excitotoxicity with their precise

and continuous catalytic functions, enzyme delivery still

faces many challenges including poor hydrophilic macro-

molecule loading in hydrophobic matrices, and enzyme

deactivation from high-energy mixing and organic/aqueous

interfaces during formulation processes.111–114 Researchers

are exploring other antioxidant-capable nanoparticle stra-

tegies that circumvent some of these challenges.

ROS scavenging antioxidant-mimetic
materials as nanoparticles

Nanoparticles themselves may be composed of therapeutic

materials that exhibit antioxidant capabilities.115,116 Cer-

ium oxide nanoparticles of 4 nm diameter exhibit SOD-

and catalase-mimetic activity, and can scavenge NO, and

peroxynitrite.117 They have been shown to reduce infarct

size by over 50% after MCAO in rats at 0.5 mg/kg and

0.7 mg/kg doses.118 Interestingly, higher concentrationsT
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of 1 mg/kg and 1.5 mg/kg provided no significant change in

infarct volume compared to no treatment.118 Capping

cerium oxide nanoparticles with zeolitic imidazolate

framework-8 further improved ROS scavenging ability.119

Cerium oxide nanoparticles have been covered in-depth in

other reviews.117,120,121 Platinum nanoparticles are also

SOD- and catalase-mimetics and result in reduced infarct

size in the cortex after transient MCAO in mice.116 Yttrium

oxide nanoparticles have similar antioxidant effects as cer-

ium oxide nanoparticles in in vitro cell culture and could

warrant further exploration.122

Fullerene nanoparticles, which are carbon allotropes

consisting of 60 carbons in a spherical arrangement, have

also been investigated for their free radical scavenging

capabilities of neutralizing hydroxyl radicals, SOX, and

NO by transferring radicals into stable conformations

within the fullerene nanoparticle.123–125 Hydroxylated full-

erene nanoparticles reduced neuronal death in the CA1

hippocampal region after MVI in rats.126 Vani et al. applied

hydroxylated fullerene nanoparticles before or after MCAO

in rats, yielding a 53% or 81% reduction in infarct volume,

respectively, a reduction in malondialdehyde levels, and

rescuing of reduced glutathione (GSH) content and SOD

activity.127 Carboxyfullerene nanoparticles decreased cor-

tical infarction and prevented GSH depletion and lipid per-

oxidation, but also had adverse effects including writhing

and even death in rats after MCAO and BCCAO.124 Full-

erenes can also produce pro-oxidant SOX and singlet oxy-

gen in the presence of UV light, which could lead to

adverse effects if fullerene nanoparticles localize in skin

epithelium.125 This UV-induced radical producing capabil-

ity warrants further study of fullerene nanoparticles in the

presence of other biologically relevant radical-generating

conditions such as free iron.

PEG-functionalized hydrophilic carbon clusters (PEG-

HCCs) consisting of 40 nm by 2–3 nm carbon nanotubes

have also been explored for excitotoxic and immunomodu-

lation applications due to their SOD-mimetic and hydroxyl

radical scavenging properties.128,129 Interestingly, PEG-

HCCs are inert towards NO and peroxynitrite, holding

potential as selective ROS scavengers that avoid NO

scavenging and consequent vasodilatation and blood flow

interference.128 PEG-HCCs can also load hydrophobic

molecules into their hydrophobic core for combinatorial

therapy.130 PEG-HCCs administered during reperfusion

of transient MCAO rats under hyperglycemic conditions

resulted in a 42% reduction in infarct size, and reduced

edema and hemorrhage.131 PEG-HCCs furthermore nor-

malized NO and SOX levels and restored cerebral blood

flow after controlled cortical impact (CCI)-induced TBI in

rats.132 With self-regenerating ROS-specific rapid antiox-

idant capacity, PEG-HCCs warrant further investigation as

a viable excitotoxicity therapeutic for stroke and TBI appli-

cations.130 Due to the non-biological origin of antioxidant-

mimetic material nanoparticles and their relatively recent

application in the neurological disease fields, further

research is also needed to assess their long-term biocom-

patibility, clearance and pharmacokinetics, and maximum

tolerated dosing before translation to clinical trials can be

achieved.133,134

Broad-acting antioxidant-loaded
nanoparticles

While the antioxidant-nanoparticle strategies covered thus

far have focused on specific scavenging of SOX and/or

H2O2, there are also several broad-acting antioxidants that

have utilized nanoparticle delivery to improve therapeutic

accumulation at the target site to enhance efficacy. Erythro-

poietin (EPO) exerts its neuroprotective effects for acute

brain injury by chelating iron to reduce radical formation,

modulating inflammation in multiple brain cell types, and

acting as a neurotrophic agent.135–137 EPO delivery within

PLGA nanoparticles has been shown to reduce infarct vol-

ume in a perinatal rat model of HI at 10 times lower doses

than recombinant EPO.138

Curcumin is a small molecule found in the culinary spice

turmeric that has broad-acting anti-inflammatory and anti-

oxidant effects. Curcumin has been associated with activa-

tion of the antioxidant response element pathway in mice

after closed-skull impact-induced TBI, *50% infarct vol-

ume reduction after MCAO in rats, and microglial polariza-

tion towards the anti-inflammatory state after distal MCAO

in mice.139–141 However, curcumin’s direct application for

acute brain injury is suboptimal due to its hydrophobicity

and consequent low aqueous solubility. Curcumin incor-

poration within PLGA-PEG nanoparticles permitted curcu-

min penetration across the BBB, diffusion effectively to

disease sites, and a decreased infarct size in neonatal HI rats

while free curcumin provided no significant therapeutic effi-

cacy.41 Curcumin-loaded within solid lipid nanoparticles

administered orally to rats after BCCAO also improved neu-

rological scoring by 79% and restored SOD, GSH, and

catalase levels to sham control levels.142 Curcumin-loaded

N-isopropyl acrylamide (PNIPAM) nanoparticles adminis-

tered intranasally after MCAO in rats restored grip strength,

locomotor activity, glutathione peroxidase, glutathione

reductase, SOD, and catalase activity, and reduced lipid

peroxidation and neuronal loss by *40%.143

Multiple other antioxidants have also shown promise for

acute brain injury when incorporated into nanoparticle plat-

forms. Melanin exhibits broad antioxidant activity against

SOX, H2O2, hydroxyl radical, peroxynitrite, and NO.144

Injection of PEGylated melanin nanoparticles before MCAO

injury in rats resulted in*50% infarct reduction and showed

no immediate toxicity in preliminary in vitro and in vivo

studies.144 N-acetylcysteine (NAC) is a precursor to GSH and

therefore an antioxidant and free radical scavenger, as well as

a pleiotropic anti-inflammatory agent.145 Once internalized

into cells, NAC is hydrolyzed to release cysteine which is then

used for GSH production.145 NAC-conjugated dendrimers

(D-NAC) administered to neonatal mice that underwent

6 Nanobiomedicine



permanent unilateral carotid artery ligation with mild hypoxia

improved white matter myelination.146 Adenosine provides

neuroprotection by binding to inhibitory adenosine A1 recep-

tors to hyperpolarize neurons and reduce glutamate release,

mitigating downstream excitotoxic processes.147,148 The

hydrophilic small molecule adenosine is readily metabolized

and cleared in the bloodstream, but when conjugated to squa-

lene and formed into nanoparticles, these adenosine com-

plexes significantly improved neurologic deficit scores after

MCAO in mice.149 The natural polyphenol antioxidant

resveratrol is water insoluble with a short half-life in its free

form.150 Resveratrol-loaded poly(N-vinylpyrrolidone)-b-

poly(e-caprolactone) (PVP-b-PCL) polymeric nanoparticles

reduced infarct volume by 30–40%, malondialdehyde levels,

and neuronal apoptosis after transient MCAO in rats.150 The

flavanone glycoside antioxidant hesperidin suffers from poor

BBB passage and therefore bioavailability.151 Hesperidin

nanoparticles increased GSH, catalase, and total protein lev-

els, and decreased infarct volume and malondialdehyde levels

after BCCAO in rats.151 Broad-acting antioxidants are pro-

mising in mitigating ROS damage in acute brain injury, and

many also exhibit broad anti-inflammatory properties as well,

which may further improve therapeutic efficacy. However,

because pleiotropic drugs act via multiple neuroprotective

mechanisms, gleaning broader understanding of which spe-

cific mechanisms to target from these studies to combat exci-

totoxicity is limited.

Our review of anti-excitotoxicity and antioxidant thera-

peutic efficacy has focused on survival, infarct volume

reduction, and oxidative stress markers at the molecular and

cellular scales. Fortunately, physical improvement overall

correlated well with behavioral outcomes across

antioxidant-nanoparticle studies.98,116,131,138,142 For exam-

ple, infarct reduction occurred alongside improvements in

hind limb flexion, the ability to walk straight, and noise

sensitivity upon administration of SOD-loaded PLGA nano-

particles after transient MCAO in rats.98 However, slight

impairment in forelimb movement and blinking reaction

remained.98 Platinum nanoparticles and PEG-HCCs

improved performance on the Bederson exam, encompass-

ing forelimb strength, stability from pushing, and circling

behavior, alongside infarct reduction after transient MCAO

in rats.116,131 Nanoerythropoietin in a neonatal HI rat model,

platinum nanoparticles after MCAO in rats, and curcumin-

loaded solid lipid nanoparticles after BCCAO in rats

improved performance on the Rotarod test alongside infarct

reduction.116,138,142 Curcumin-loaded solid lipid nanoparti-

cles also improved Morris water maze and elevated plus

maze performance to closer to that of sham injury scores.142

Pitfalls of translating anti-excitotoxic
therapies

There remains a distinct lack of therapeutics targeting exci-

totoxicity in routine clinical use, despite having been

described as a key component of the pathophysiology of

acute neurological injury mechanisms for several decades.

A large part of this lack of successful translation is likely

due to the issues outlined above—the requirement of more

targeted or stable delivery of therapeutics to the site of

injury. However, a number of other obstacles or common

problems exist in the translational pipeline that should be

addressed as new therapeutics are developed. These

include the timing of the therapeutic, adequate control of

confounding physiological factors in preclinical studies,

and the number and heterogeneity of animal models

assessed before moving to clinical trials.

The timing of therapies with respect to the specific

pathophysiological processes that occur after injury is a

crucial component of successful clinical translation. This

is likely to be particularly important for therapies that

directly target the accumulation of EAAs such as gluta-

mate. For instance, in piglet models of perinatal HI brain

injury, a small increase in extracellular glutamate is seen

during the insult itself as a result of primary energy failure,

followed by a decrease after resuscitation until a significant

increase as secondary energy failure occurs 6–12 h later.152

Preclinically, therapeutic hypothermia (TH) is significantly

neuroprotective in a wide range of acute brain injuries, at

least in part due to its ability to suppress the release of

EAAs.153–155 However, TH has only shown clinical success

after perinatal asphyxia, and must be initiated within 6 h of

the injury or earlier for maximum benefit.156

Similarly, the NMDA-R antagonist xenon augments

hypothermic neuroprotection in rat and piglet models of

perinatal asphyxia when given at a concentration of 50%
and initiated within 3 h of resuscitation.157–159 Yet, the

TOBY-Xe trial found no benefit of adding xenon to TH

for infants after birth asphyxia, with significant confoun-

ders including that median time of xenon onset was 10 h

(range: 4.0–12.6 h), and that it was given at a concentration

of 30%.160 Overall, the data therefore suggest that any

directly anti-excitotoxic therapy must be in place as soon

as possible after reperfusion.156 This may be because of

ongoing excitotoxicity that occurs even in the absence of

measurable increases in extracellular glutamate. For

instance, despite the relatively delayed rise in glutamate

after injury, others have shown that an “excitotoxic index”

consisting of relative levels of glutamate, aspartate, and

glycine to g-aminobutyric acid (GABA) begins to increase

almost immediately after resuscitation in a piglet model of

perinatal HI brain injury.161 In the clinical setting, it is

likely that any anti-excitotoxic therapeutic should therefore

be at high local concentrations within 3–6 h of the initial

injury, and this must be incorporated into the design of both

preclinical and clinical studies. Importantly, therapies that

target downstream mitochondrial dysfunction, neuroin-

flammation, oxidative stress, and delayed neurodegenera-

tion, which continue to occur over hours to days, may have

an extended therapeutic window as long as they can be

reliably delivered to the site of injury.162,163

Liao et al. 7



The history of anti-excitotoxic therapies, particularly

when used in rodent studies, is significantly confounded

by issues with temperature regulation because hypother-

mia, which is known to be neuroprotective, spontaneously

occurs after brain injury and is rarely adequately con-

trolled.156,164–166 Additionally, glutamate signaling plays

a dominant role in thermoregulation and maintenance

of normal temperature, with pharmaceutical inhibition of

glutamate signaling generally associated with loss of cold-

evoked temperature responses (e.g. brown fat thermogen-

esis), and subsequent hypothermia.167–169 In both animal

models and humans, early spontaneous hypothermia is a

common occurrence after global brain injury, with greater

decreases in core temperature generally seen with a greater

extent and severity of injury.166,170–173 In preclinical mod-

els at least, this spontaneous hypothermia can result in

neuroprotection, with enforced periods of temperature reg-

ulation required after injury to standardize the degree of

injury seen.166,174 However, in one analysis of studies

assessing neuroprotective strategies in adult rodent models

of both global and focal ischemia, only around 30% of

studies did temperature measurements after the injury pro-

cedure.164 A more recent analysis of preclinical studies

examining neuroprotective agents in perinatal HI injury

found similar results.165

In their seminal paper in 2006, O’Collins et al. described

“1,026 Experimental Treatments in Acute Stroke,” the vast

majority of which had not been translated to clinical trials.175

Anti-excitotoxic therapies provided, on average, about 25%
neuroprotection, which was a similar magnitude to thrombo-

lysis, the current standard of care for acute ischemic stroke.

The general lack of successful translation of anti-excitotoxic

therapies in this setting may either be due to problems with

timing relative to injury, or that the majority of benefit from

directly anti-excitotoxic therapies, for instance those that reg-

ulate glutamate release or signaling, result in hypothermia

that is not controlled for in the preclinical setting.164,165

Hypothermia has not been shown to be robustly beneficial

after stroke, TBI, or global brain ischemia (e.g. after cardiac

arrest) in pediatric or adult populations.153,155,173 However,

rigorous temperature management is commonplace in hospi-

talized adults after global and focal acute brain injuries due to

the benefit of preventing hyperthermia (fever).153,173,176,177

Therefore, more evidence is still required to examine whether

directly anti-excitotoxic therapies will have their place in

routine clinical use by providing neuroprotection above and

beyond their effects on thermoregulation. Although promis-

ing, antioxidant-nanoparticle therapies will also necessarily

undergo the same rigor of evaluation before clinical

translation.

Barriers to clinical translation of
nanotechnologies for acute brain injury

As with the majority of putative therapies developed for

treating neurological disorders, any lack of success in the

clinical setting could potentially be determined earlier by

developing an adequate preclinical pipeline.178 This was

the goal of the STAIR (Stroke Therapy Academic Industry

Roundtable) criteria when they were developed more than

two decades ago. To fully meet the criteria, a therapy had to

be successfully tested: i) in two or more laboratories, ii) in

two or more species, iii) in animals at a disease-appropriate

life stage, iv) in both sexes, v) in both temporary and per-

manent models of ischemia, vi) at least 1 hour after reper-

fusion, vii) at two or more doses, viii) using a clinically

relevant mode of delivery, ix) using both histological and

behavioral outcomes, and x) with outcomes at least 4 weeks

after injury. Unfortunately, these criteria, as well as the

ARRIVE (Animal Research: Reporting of In Vivo Experi-

ments) criteria for design and reporting of preclinical stud-

ies, are still rarely applied today.178

In addition to these criteria, any use of nanotechnology

to transport therapeutic cargo must also include the neces-

sary controls to account for the nanoparticle vehicle and

any component of the nanoparticle that could result in toxi-

city, off-site effects, or added therapeutic benefit. For nano-

particles encapsulating a therapeutic, this typically

involves adding treatment groups for the empty nanoparti-

cle and the free drug. For therapeutics chemically linked to

nanoparticles, controls might also need to include the nano-

particle with and without the linker chemistry. Further

complicating preclinical studies, the use of nanoparticles

to deliver therapeutics should decrease the necessary dose

of the therapeutic; yet, this difference in dose between the

therapeutic nanoparticle and the therapeutic in free form

introduces an additional variable. Inevitably, the more mul-

tifunctional the nanoparticle delivery system, the more con-

trols are needed to account for the potential effects of each

component of that system.

While nanotechnologies might increase drug bioavail-

ability and reduce dosing needs over the longer term, initial

preclinical studies often require more experimental groups.

Meeting these needs increases costs substantially, espe-

cially when scaling nanotherapeutic formulation methods

to test in multiple animal models with increasingly larger

species. By not testing therapies in multiple animal models,

including both rodent species and larger gyrencephalic ani-

mals (pigs, sheep, dogs, nonhuman primates, etc.) at mul-

tiple different time points in relation to the initial injury, the

preclinical pipeline is unlikely to capture the heterogeneity

of acute brain injury populations seen clinically. Preclinical

work often focuses on reproducibility of injury to maintain

statistical power while using small group sizes, and without

testing a therapy in the variety of settings outlined in the

STAIR criteria, the likelihood of failure in the clinic will

remain high.178 Any anti-excitotoxicity therapy must

achieve target site delivery at the right dose at the right

timing of injury. Therefore, a robust preclinical pipeline

including a combination of complementary models (Table

2) is paramount in the translation of nanotherapeutics for

the treatment of excitotoxicity and oxidative stress.
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Conclusions and looking forward

Delivering drugs that act specifically at diseased target sites at

the appropriate dose at the right time is crucial for neurother-

apeutics given the sensitivity and precision of brain function.

Antioxidant intervention by scavenging injury-associated

SOX and other ROS provides alleviation of multiple subse-

quent neuronal death pathways. Many studies have already

shown the therapeutic potential of SOD-loaded nanoparticles

or SOD-mimetic platforms, as well as various other antiox-

idants. However, despite promising inhibition of excitotoxic

damage, further work needs to be performed to identify the

ideal intervention point for therapeutic efficacy.

Understanding the mechanisms involved in excitotoxi-

city and oxidative stress can assist the nanoparticle drug

delivery field in identifying promising points of interven-

tion. Therapeutic development to inhibit ROS production

can be guided by pinpointing the threshold at which ROS

overwhelms antioxidant defenses and whether antioxidant

uptake would enhance therapeutic effect. Determining

whether excessive SOX elevation is primarily generated

by NOX after glutamate receptor activation, by respiring

mitochondria, or by xanthine oxidase after reperfusion, or

whether the SOX source even matters, would better inform

how to target the downstream pathology. However, it is

imperative to remember that excitotoxicity is not the only

disease hallmark at play. Inhibition of ROS in neuroinflam-

matory pathways could also assist in preventing delayed

neurodegeneration that can arise days, months, or even

years later.163,179 Since neuronal excitation and inflamma-

tion play roles in survival and growth, there is risk of

injuriously over-inhibiting basal neuronal function or over-

scavenging ROS and interrupting cell signaling.40,179–181

Preclinically, most antioxidant-nanoparticle therapies

achieved no greater than 60% reduction in infarct size on

ischemia/reperfusion, HI, or TBI injury in vivo. It remains to

be elucidated whether *60% reduction is a practical limit,

or whether additional strategies could further reduce dam-

age. Therapeutic advances achieving greater than 60%
infarct reduction could consist of increasing drug concentra-

tions at injured sites, using targeting ligands for improved

accumulation or cell-specific uptake at the target site,

optimization of the timing of administration, or applying

combination therapies with anti-inflammatory agents, pro-

regenerative growth factors, or stem-cell based therapies.

Furthermore, despite extensive preclinical evidence of

antioxidant-nanoparticle efficacy in acute brain injury,

research must comply with STAIR and ARRIVE criteria

before translation to clinical studies. Finally, though excito-

toxicity is a primary mechanism of brain damage in stroke,

TBI, and HI, the process may be present in the majority of

neurological diseases.14 Therefore, even when excitotoxi-

city is not the primary mechanism of pathology, neurologi-

cal diseases more broadly could benefit from the

development of antioxidant-nanoparticle therapies to

reduce neuronal injury.
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