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Abstract

Background: This study aims to suggest an approach that integrates multilevel models and eigenvector spatial
filtering methods and apply it to a case study of self-rated health status in South Korea. In many previous health-related
studies, multilevel models and single-level spatial regression are used separately. However, the two methods should be
used in conjunction because the objectives of both approaches are important in health-related analyses. The multilevel
model enables the simultaneous analysis of both individual and neighborhood factors influencing health outcomes.
However, the results of conventional multilevel models are potentially misleading when spatial dependency across
neighborhoods exists. Spatial dependency in health-related data indicates that health outcomes in nearby neighborhoods
are more similar to each other than those in distant neighborhoods. Spatial regression models can address this problem
by modeling spatial dependency. This study explores the possibility of integrating a multilevel model and eigenvector
spatial filtering, an advanced spatial regression for addressing spatial dependency in datasets.

Methods: In this spatially filtered multilevel model, eigenvectors function as additional explanatory variables accounting
for unexplained spatial dependency within the neighborhood-level error. The specification addresses the inability
of conventional multilevel models to account for spatial dependency, and thereby, generates more robust outputs.

Results: The findings show that sex, employment status, monthly household income, and perceived levels of stress are
significantly associated with self-rated health status. Residents living in neighborhoods with low deprivation and a high
doctor-to-resident ratio tend to report higher health status. The spatially filtered multilevel model provides unbiased
estimations and improves the explanatory power of the model compared to conventional multilevel models although
there are no changes in the signs of parameters and the significance levels between the two models in this case study.

Conclusions: The integrated approach proposed in this paper is a useful tool for understanding the geographical
distribution of self-rated health status within a multilevel framework. In future research, it would be useful to apply the
spatially filtered multilevel model to other datasets in order to clarify the differences between the two models. It is
anticipated that this integrated method will also out-perform conventional models when it is used in other contexts.
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Background
To analyze both effects of individual and neighborhood
factors on individual health outcomes, many previous
health-related studies utilized multilevel models that can
analyze two- (or more) level independent variables in
tandem [1-6]. These studies analyzed various health out-
comes, such as infant mortality [1], a low birth weight
[2], preterm birth [3], late-stage breast cancer [4], chil-
dren’s health-related quality of life [5], and tuberculosis
incidence [6], using aggregated data in common, such
as county-level, census tract-level, and postal code-level
data to represent neighborhood-level variables. The stud-
ies, however, do not take into account underlying spatial
dependency across neighborhoods; thus their multilevel
analyses results are potentially misleading in cases where
data exhibit spatial dependency. Spatial dependency in
health-related data indicates that health outcomes in
nearby neighborhoods are more similar to each other
than to those in distant neighborhoods. In other words,
these studies only consider within-neighborhood correl-
ation (i.e., correlation between individuals within the same
neighborhood) using a hierarchical setting, but fail to ac-
count for potential between-neighborhood correlation.
According to Jerrett et al. [7], spatial dependency of

health outcomes among nearby neighborhoods may arise
from similar socioeconomic (e.g., health facilities and
services) and natural environmental conditions (e.g., air
quality). For example, catchment areas for health facil-
ities may encompass a broader area, thereby transcend-
ing localized administrative boundaries. In terms of
local environment, disease risks from air pollution tend
to be similar among closer neighborhoods because their
local wind direction and/or road conditions (and environ-
mental and traffic policies) are more likely to be similar; as
a result, residents of those neighborhoods are exposed to
similar types and concentrations of atmospheric pollutants
[7-9]. However, the non-spatial multilevel model cannot
address this spatial dependency because the method
typically assumes that neighborhoods (i.e., spatial units)
are statistically independent of each other [10]; thus
multilevel models have been criticized as non-spatial
and unrealistic [10-13].
Based on the notion of spatial dependency of health out-

comes, some researchers used both a non-spatial single-
level linear model ignoring spatial dependency (i.e., linear
models estimated with ordinary least squares or weighted
least squares) and a spatial autoregressive model (SAR)
considering spatial dependency, and compared the two
methods [9,14]. The authors found that non-spatial
single-level models and the SAR models provided dif-
ferent regression results depending on the presence of
spatial dependency. These two studies, however, made
limited attempts to model individual characteristics
when using spatial models, because they used only
aggregated variables. Studies that analyze health out-
comes solely via aggregated data using a single-level
spatial model cannot fully explain factors that truly
influence individual health outcomes [15].
A few researchers have tried to incorporate a geo-

graphical perspective into the multilevel setting in vari-
ous ways to take into account both the multilevel
framework and spatial effects. Some studies attempting
to address spatial dependency in residuals of multilevel
models employed spatial lag regression model specifica-
tions [16,17]. In the spatial lag regression model, the
spatial autoregressive parameter is denoted as ρ, which
indicates the intensity of spatial dependency. Another
study [18] used multilevel models with geographically
weighted regression (GWR) developed by Fotheringham
et al. [13] to consider a spatially varying relationship
between neighborhood factors and obesity. GWR allows
researchers to estimate varying regression parameters
over space. However, in some cases, there can still be
spatial dependency after GWR is used, although this
method may mitigate spatial dependency by considering
spatial variation to some degree; this can influence the
regression results considerably. In addition, according to
Wheeler and Tiefelsdorf [19], GWR’s R2 goodness of fit
tends to be high when residuals have high spatial de-
pendency. Therefore, GWR should be used as an ex-
ploratory tool for understanding spatial variation rather
than a statistically stable method for addressing spatial
dependency.
As discussed above, limited attention has been paid

within the literature to integrating multilevel models and
spatial regression models. However, these two approaches
should be used in combination because the objectives of
both methods are important in health-related analyses.
Thus, it is increasingly necessary to integrate multilevel
models and spatial regression models, especially the eigen-
vector spatial filtering method, an advanced approach to
addressing spatial dependency in datasets. Compared to
spatial lag regression (or SAR) model specifications, which
present only one parameter of global spatial component,
the greatest advantage of eigenvector spatial filtering used
in this paper is to visualize a spatial structure in a map
form by decomposing it into smaller-scale spatial patterns
or local clusters with a set of eigenvectors [20,21]. This
trait could provide a better understanding of how health
phenomena are distributed across the space. Additionally,
because the spatial filtering technique can be applied to a
generalized linear model specification based on the bino-
mial or Poisson probability models, it is more flexible than
the spatial lag regression (or SAR) model, which re-
quires normalizing factor computation [22]. Compared
with GWR, which has an inherent problem of multi-
collinearity among local regression coefficients [19], the
spatial filtering method is more statistically reliable because



Table 1 Descriptive statistics for a dependent variable
and independent variables

N %

Individual-level variables (n = 61817)

Sex

Males 26116 42.2

Females 35701 57.8

Employment status

Employed 24508 39.7

Unemployed 37293 60.3

Perceived levels of stress

High level 13140 21.3

Low level 48649 78.7

Mean Standard
dev.

Range

Monthly household income (US$) 1382.1 1988.4 0.0 – 99553.6

Neighborhood-level variables
(n = 223)

Korean Deprivation Index (KDI) 0.3 0.9 -1.5 – 1.7

The number of doctors
per 1000 people

2.2 2.0 0.6 – 20.7

Degree of the Local Governments’
Financial Independence (LGFI)

65.1 9.5 33.7 – 91.4

Dependent variable

EQ-5D index 0.783 0.261 - 0.229 – 1.000
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eigenvectors generated in filtering procedure are mutually
orthogonal, which indicates the absence of multicollinear-
ity issues.
Griffith’s study [22] showed the possibility of combin-

ing hierarchical generalized linear models with spatial
filtering method as a disease mapping technique. Based
on this idea, the present study presents how multilevel
modeling components can be linked to the spatial filter-
ing framework by showing an integrated formulation
and uses self-rated health status in South Korea to inves-
tigate whether an integrated “spatially filtered multilevel
model” generates a more robust regression results than
a conventional multilevel model.
This study first identifies whether spatial dependency

exists within neighborhood-level residuals in the multi-
level model. Where spatial dependency is detected, the
eigenvector spatial filtering technique is applied to the
multilevel model to control for spatial dependency. The
study then compares the explanatory power of the
models and the regression results between the conven-
tional model and the spatially filtered model.

Methods
Data and variables
Data are obtained from the following sources: (1) the
2009 Community Health Survey (CHS) of South Korea;
(2) the e-Regional Indicators (2009) provided by Statis-
tics Korea; and (3) the Korean Deprivation Index (KDI)
designed by Yoon [23]. The CHS is a survey of health
outcomes among adults aged 19 or older, conducted by
the Korea Centers for Disease Control and Prevention.
A dependent variable, EQ-5D index (EuroQol-5 Dimen-
sion [24]), is obtained from the CHS. The EQ-5D index
indicates one of the measures of self-rated health status.
This index comprises five dimensions (mobility, self-care,
usual activities, pain/discomfort, and anxiety/depression)
that are measured by means of a three-point scale (no
problems; some problems; extreme problems). Respon-
dents are asked to assess their own health status by select-
ing the most appropriate indicator for each dimension.
Thus, based on these responses, a total of 35 types of self-
rated health status are produced. Each type has different
EQ-5D values that enable researchers to compare health
status between regions or countries [25,26]. A higher value
indicates that a respondent perceives him/herself health-
ier. Based on CHS’ EQ-5D questionnaire responses, the
study employs a weighted modela developed by Kang et al.
[27] to calculate a Korean EQ-5D index. Table 1 provides
descriptive statistics for the Korean EQ-5D index. In order
to minimize the impact of variability in age distribution
across the country, the study included individuals aged 60
and older. From 61,817 respondents, the average of the
Korean EQ-5D index is 0.783 and standard deviation is
0.261 (range −0.229 to 1.0).
To explore how self-rated health status varies across the
study area, census tracts are classified into four quartiles
depending on neighborhood-level EQ-5D values: “Very
low” (first quartile: 0.675 – 0.756), “Low” (second quartile:
0.757 – 0.787), “Average” (third quartile: 0.788 – 0.815),
and “High or very high” (fourth quartile: 0.816 – 0.883).
The values are visualized as a choropleth map (Figure 1).
Figure 1 shows how self-rated health status is more

similar to that in nearby neighborhood census tracts than
that in distant neighborhoods. This is because nearby
neighborhoods are likely to have similar demographic and
socioeconomic characteristics (e.g., sex, age, race, income,
language, and religion) and political resources within a lar-
ger citywide system [28,29]. In South Korea, development
policies have focused more on rapid economic growth
than the distribution of accumulated wealth, resulting
in serious regional disparities in health status across the
country. For example, most districts in Seoul, Korea’s
largest metropolitan area, show high self-rated health
status (Figure 1). This is because the Seoul metropolitan
area has sufficiently dense infrastructure provision for a
healthy environment to ensure good accessibility to
health services [30]. In contrast, many provincial cities
in non-metropolitan areas excluded from the benefits of



Figure 1 Self-rated health status by census tracts, South Korea.
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economic development, such as Gangwon, Chungnam,
and Gyeongbuk show low self-rated health status.
The CHS also provides individual-level variables such as

sex, employment status, perceived levels of stress, and
monthly household income. Among these, sex (0 =males;
1 = females), employment status (0 = employed; 1 = un-
employed), and perceived levels of stress (0 = people with
high perceived levels of stress; 1 = people with low per-
ceived levels of stress) are binary. Monthly household in-
come is a continuous variable. Descriptive statistics for the
independent variables are summarized in Table 1.
The neighborhood-level variables consist of the KDI

[23], the doctor-to-resident ratio (number of doctors per
1,000 population), and the degree of the local govern-
ments’ financial independence (LGFI). The KDI is based
on eight census indicators reflecting neighborhood so-
cioeconomic levels, such as the proportions of house-
holds that are: without car ownership; in a low social
class; comprised of elderly people, etc. The number of
doctors per 1,000 population and LGFI were obtained
from e-Regional Indicators (2009). LGFI refers to the
local government’s level of autonomy to raise and use
financial funds. This ability facilitates implementation of
welfare policy, such as providing healthy residential en-
vironment or enhancing health care services. The ratio
of physicians to residents reflects accessibility to health
care services. Descriptive statistics for neighborhood-
level variables are provided in Table 1.

Multilevel model
When analyzing both individual and neighborhood va-
riables in tandem, a multilevel model is generally more
appropriate than an ordinary single-level regression mo-
del because it enables researchers to deal with hierarch-
ical structure of variables [31]. The multilevel model
assumes that individuals (i.e., lower hierarchy) belonging
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to a particular neighborhood (i.e., higher hierarchy) are
not independent of each other because they are presumed
to share the similar characteristics of that neighborhood;
thus the model considers intra-neighborhood correlation.
Model construction begins with analyzing a ‘null’ model,

which is the simplest model and uses no independent vari-
able. The null model includes distinct types of variance of
the dependent variable, such as within-neighborhood and
between-neighborhood variances [32]. Based on this null
model, an Intra-class Correlation Coefficient (ICC) is
calculated, which guides how the null model should be
extended further. The ICC is the ratio between the
between-neighborhood variance and the sum of both
within-neighborhood and between-neighborhood variances.
A high ICC indicates that between-neighborhood variance
is not negligible, and thus a multilevel model should be
employed to explain the inter-neighborhood dynamics.
The null model is then extended to a more advanced

multilevel model by adding independent variables at
the individual- and neighborhood-levels. The two-level
Equation 1 is expressed as follows [32]:

Individual−level: Y ij ¼ β0 j þ β1jXij þ rij

Neighborhood−level: β0 j ¼ γ00 þ γ01Zj þ u0 j; β1j ¼ γ10 þ u1j

ð1Þ

Here, Yij represents the value of the dependent variable
of the i th individual in neighborhood j, while Xij and Zj

indicate the independent variables at different levels. In
other words, Xij includes data about the individuals in
neighborhood j; Zj contains data about the neighborhoods.
β0 j and β1j are the individual-level intercept and slope, re-
spectively, in neighborhood j. rij indicates the error term
at the individual-level (i.e., within-neighborhood variance).
γ00 denotes the average of the dependent variable Yij, con-
trolling for the neighborhood-level variables Zj; γ01 is the
slope of the neighborhood-level variables Zj; and γ10 indi-
cates the overall value of slope at the individual-level, con-
trolling for the neighborhood-level variables Zj. Lastly, u0 j
and u1j are error terms at the neighborhood-level (i.e.,
between-neighborhood variance). In the framework of
multilevel modeling, an intercept is assumed to be incon-
sistent if the neighborhood averages of a dependent vari-
able differ between neighborhoods. Similarly, when effects
of independent variables on the dependent variable vary
across neighborhoods, the slopes of each neighborhood
are expected to deviate from their average.

Eigenvector spatial filtering
Proposed by Griffith [33], an eigenvector spatial filtering
technique handles spatial dependency within ordinary
single-level regression by utilizing a linear combination of
eigenvectors. Eigenvectors function as synthetic explana-
tory variables expressing underlying spatial structures of
the regression model [20]. This method allows one to
visualize local spatial clusters in a map form. Because eigen-
vectors are always independent of each other, the associated
spatial structures are thus regarded as being distinct.
From the perspective of eigenvector spatial filtering, an

ordinary single-level regression applied to spatial datasets
consists of two parts: (1) a systematic trend explained by
independent variables, and (2) unexplained random errors
that are often spatially autocorrelated [34,35]. That is to
say, the eigenvector spatial filtering technique can capture
a spatial signal from unexplained random errors, which in
turn reinforces the independence of the error term
[35,36]. This is expressed numerically in Equation 2:

Y ¼ Xβþ ε� ¼ Xβþ Eγ þ ξ|fflfflffl{zfflfflffl}
ε�

ð2Þ

where Xβ refers to the systematic trend, while ε* is the
n-by-1 spatially autocorrelated error vector. X denotes
the n-by-k data matrix (i.e., n number of observations
and k number of independent variables); β indicates the
k-by-1 parameter vector corresponding to the independ-
ent variables. Eγ is the spatial signal captured by selected
eigenvectors E. The dimension of E is n-by-p (i.e., n num-
ber of observations and p number of selected eigenvectors),
and γ is the p-by-1 parameter vector corresponding to the
selected eigenvectors. Lastly, ξ is the n-by-1 spatially-
independent error vector.
When generating eigenvectors, two different spatial

processes are considered: (1) simultaneous autoregres-
sive (SAR); and (2) spatial lag [35]. These processes may
generate different analytical results due to their differing
model structures; for further details, see the study by
Tiefelsdorf and Griffith [35]. The present study deals
only with eigenvectors for the SAR process.
Eigenvectors for the SAR process, {e1, e2,⋯, en}SAR,

are extracted from a transformed spatial weight matrix
as follows:

e1; e2;⋯; enf gSAR ≡ evec M Xð Þ
1
2

V þ VT
� �

M Xð Þ

� �

ð3Þ

where a projection matrix M(x) ≡ I −X(XTX)-1XT; I re-
presents an n-by-n identity matrix; X is an n-by-k matrix
including n number of objectives and k number of inde-
pendent variables. A subset of {e1, e2,⋯, en}SAR is denoted
by ESAR, which contains only selected eigenvectors. This
set of eigenvectors can be introduced in a model as spatial
proxies to ‘filter out’ spatial dependency [35].
Eigenvectors are selected in a stepwise manner, and

the selection procedure is repeated until the value of
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Moran’s Ib (an indicator of a strength of spatial de-
pendency) approaches a pre-determined threshold
(e.g., |z(Moran’s I)| < 0.1). Each eigenvector, owing to
their mutual orthogonality, shows its unique spatial pat-
terns and different degrees of spatial dependency. The first
selected eigenvector has the highest Moran’s I value and
therefore accounts for the largest proportion of the overall
spatial dependency. The second eigenvector has the second-
highest Moran’s I value, and is uncorrelated with the first
one [20]; similarly, the nth eigenvector is considered to have
the nth-highest Moran’s I value, expressing the nth-largest
proportion of the spatial dependency.

Spatially filtered multilevel model
Equation 1 of the conventional multilevel model can be
rearranged as follows:

Y ij ¼ γ00 þ γ01Zj þ γ10Xij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fixed effects

þ u0 j þ u1jXij þ rij|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
random effects

ð4Þ

Basically, this multilevel model can be divided into two
parts, representing fixed effects (that are modeled in a
multileveled manner), and random effects (that are unex-
plained and often spatially autocorrelated). If this model is
corrected by the eigenvector spatial filtering technique,
the spatial signal can be introduced as follows:

Yij ¼
fixed effects

Xβðsystematic trendÞ

ðγ00 þ γ01Zj þ γ10XijÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

spatially autocorrelated random effects

þ ðγ0 þ γ1e1j þ � � � þ γnenjÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}þðu00 j þ u01j Xij þ rijÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Eγðspatial signalÞ ξðwhite�noiseÞ
ð5Þ

This integrated model, entitled ‘spatially filtered mul-
tilevel model,’ regards the fixed effects in the multilevel
model as identical to the systematic trend Xβ in the
framework of eigenvector spatial filtering. In this mo-
del, a linear combination of eigenvectors Eγ is included
as a spatial proxy to separate the spatial signal from
the spatially autocorrelated random effects at the
neighborhood-level (u0j + u1jXij), leaving only a white-
noise u

0
0j þ u

0
1jXij within them. This filtering process

results in unbiased regression results that improve the
explanatory power of the model.
All analyses are conducted in the R environment. The

‘lme4’ package [37] is used for the multilevel model run, and
the ‘spdep’ package [38] is employed for the ‘SpatialFiltering’
function for the eigenvector spatial filtering.
Results
Results of the conventional multilevel model
The null model finds that the variance at neighborhood-
level is 2.3% (ICC = 0.023). This indicates that 2.3% of
the total variance in self-rated health status arises from
inter-neighborhood dynamics. Given that a health out-
come itself is generally influenced more by individual
factors than by neighborhood characteristics, it is rea-
sonable that variance at individual-level is much larger
than that at neighborhood-level. The 2.3% variance at
neighborhood-level should be regarded with some cau-
tion, because Kreft and de Leeuw pointed out that for a
sufficiently large number of samples, even a small ICC
(for example, 1%) could considerably affect the degree of
significance [31].
To identify the effects of independent variables on indi-

vidual health status, the individual-level model (hereafter,
Level-1 model) is then designed by adding individual-level
variables to the null model. An intercept for each inde-
pendent variable in this study is assumed to be random
across the study area. Except for the slope for the monthly
household income variable, a slope for each independent
variable is regarded as fixed for simplicity of modeling. As
shown in Table 2, the Level-1 model yields much lower
Akaike Information Criterion (AIC) compared to the null
model, indicating a better model fit [39]. All individual-
level variables (sex, employment status, perceived levels
of stress, and monthly household income) are signifi-
cantly associated with individual self-rated health status.
These variables are found to account for 22% of
variance at individual-level and 31% of variance at
neighborhood-level. The reason why the Level-1 model
partially explains variance at neighborhood level—des-
pite it not including neighborhood-level variables—is
that regression analyses are performed separately for
each neighborhood.
For the next step, both individual-level and neighbor

hood-level variables are added together in the neighbor
hood-level model (hereafter, Level-2 model). By introdu-
cing neighborhood-level variables, a further 2% of vari-
ance at neighborhood-level is explained compared with
the Level-1 model. This suggests that neighborhood fac-
tors explicitly influence the individuals’ self-rated health
status. The Level-2 model shows the lowest AIC and
the highest explanatory power among the three models.
Like the Level-1 model, all individual-level variables
remain significant (p < 0.001). Of the three neighbor
hood-level variables, only two variables, KDI and the
doctor-to-resident ratio, are statistically significant
(p < 0.05) (Table 2).

Results of applying eigenvector spatial filtering
Before applying the eigenvector spatial filtering method,
we tested for spatial dependency between neighborhood-



Table 2 Estimation results for the conventional multilevel model and the spatially filtered multilevel model

Variables Null
model

Level-1 multilevel
model

Level-2 multilevel
model

Spatially filtered
multilevel model

Individual-level variables

Sex (male:0; female:1) - – 49.88*** – 49.65*** – 49.69***

Monthly household income – 0.10*** 0.10*** 0.09***

Employment status (employed:0; unemployed:1) – –134.10*** –134.90*** –135.30***

Perceived levels of stress (high:0; low:1) – 154.60*** 155.60*** 155.70***

Neighborhood–level variables

Korean Deprivation Index (KDI) – – –23.82* –15.51*

The number of doctors per 1000 people – – 4.85* 2.60*

Degree of the Local Governments’ Financial Independence (LGFI) – – 0.98 0.16

Random effects

Variance at individual–level 66725 52226 52225 56013

Between monthly household income variance – 0.0039 0.0036 0.0011

Variance at neighborhood–level 1591 1102 1062 555

Constant 785.31*** 761.40*** 747.00*** 770.70***

Eigenvector selection – – – 8 eigenvectors

Moran’s I of neighborhood–level residuals – – 0.101* 0.005

AIC 861942 830665 830650 830549

Log–likelihood – 447328 – 415324 – 415314 – 415254

***p < =0.001 *p < =0.05.

Figure 2 Reduction of Moran’s I by eigenvector spatial
filtering procedure.
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level residuals in the multilevel model and found this to
be significant (Moran’s I = 0.101; p < 0.05). Hence, it is
necessary to eliminate this spatial dependency by apply-
ing the eigenvector spatial filtering.
Eigenvectors in this study are extracted from a trans-

formed spatial weight matrix based on topological adja-
cency, so-called a “Queen” criterion—if two areas share
a boundary or a vertex, the entity of the spatial weight
matrix is coded as 1, and otherwise, 0. As an eigen-
vector selection algorithm, this study uses a Moran’s I
minimization scheme [35].
Figure 2 shows that by adding eigenvectors to the

model, the degree of spatial dependency becomes reduced
to the threshold (|z(Moran’s I)| < 0.1). This is because se-
lected eigenvectors explain spatial dependency as synthetic
variables. A group of 8 eigenvectors (e11, e3, e7, e5, e17, e23,
e39 and e29) are finally selected. The first selected eigen-
vector e11 explains the greatest proportion of spatial de-
pendency (Figure 2).
Selected eigenvectors are illustrated in Figure 3, all of

which portray positive spatial dependency patterns. The
first four eigenvectors exhibit explicit local clusters re-
lated to positive spatial dependency across the study
area. Given that the first sequenced eigenvector repre-
sents more noticeable cluster than those later in the
series, e11 displays the most prominent local cluster
pattern, as shown in Figure 3-A.
Discussion
The spatially filtered multilevel model presents unbiased
regression results and yields a lower AIC than the con-
ventional multilevel model. Both analyses present similar
regression parameters and the same parameter signs
(Table 2). In this study, addressing spatial dependency
has little effect on the fixed effects, whereas it improves
the independence of the random effects. With eigenvector
spatial filtering, the Moran’s I of the neighborhood-level



Figure 3 Spatial patterns of selected SAR eigenvectors. Notes: (A) First selected eigenvector e11. (B) Second selected eigenvector e3. (C) Third
selected eigenvector e7. (D) Fourth selected eigenvector e5. (E) Fifth selected eigenvector e17. (F) Sixth selected eigenvector e23. (G) Seventh
selected eigenvector e39. (H) Eighth selected eigenvector e29.
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residual declines from 0.101 to 0.005 and becomes non-
significant (p = 0.824).
According to the regression results, self-rated health

status is significantly higher for respondents meeting the
following conditions: male; employed; higher monthly
household income; lower stress level; living in a neigh-
borhood with lower KDI and proportionally more physi-
cians. These findings are similar to those of previous
studies [23,40-45]. For the doctor-to-resident ratio vari-
able, however, Matteson et al. reported conversely that
counties with more family practitioners per capita have
higher infant mortality [1]. However, they also found
that more hospital beds per capita predicted lower risk
of infant death. These results are somewhat contradict-
ory because it is generally considered that the numbers
of physicians and hospital beds tend to have a strong
positive relationship [46,47]. There does not appear to
be a clear and consistent effect of the doctor-to-resident
ratio on individual health outcomes; further studies are
therefore needed. The present study finds no significant
relationship between health status and LGFI, whereas
some previous domestic studies reported positive rela-
tionship between LGFI and health outcomes [48,49].
This study has several limitations that should be con-

sidered in future research. First, even after introducing
neighborhood-level variables into the model, variance at
neighborhood-level still remains. This may be because
some of the key determinants of self-rated health status
are omitted. In future research, other neighborhood
socioeconomic and environmental factors should be
considered to explain the remaining variance. For envir-
onmental factors such as air pollution, it is possible to
use the interpolated map data in multilevel modeling by
integrating it with survey datasets via geographic infor-
mation science (GIS) [50]. Second, given that the re-
spondents in this study are elderly (aged 60 and over),
the employment status variable used in this study can be
problematic, because people in their 70s or older are
more likely to retire than people in their 60s. In other
words, it is possible that the regression result could be
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confounded by an ‘age’ factor. Third, although census
tract data are the only viable option in this study, it
could be unclear whether census tracts accurately
represent the geographical areas where health-related
activities actually occur [21,51]. If they do not, then the
estimation of neighborhood effects via these adminis-
trative units would be unclear. Due to human mobility,
individual health outcomes may be influenced by more
complex geographical and temporal contexts beyond
their residential environment [52]. However, it is ac-
tually difficult to delineate these complex contexts
because there is a lack of spatial and temporal informa-
tion in many cases [51]. Kwan defined this as the un-
certain geographic context problem (UGCoP) [51]. To
obtain more realistic results, future studies should at-
tempt to identify the actual contexts influencing indi-
vidual health and mitigate UGCoP. Lastly, some recent
studies notice that an approach of removing spatial de-
pendency should practice caution in some cases where
neighborhood characteristics change abruptly across a
study area. Some researchers have begun to examine
this issue; so it must be left to future research.

Conclusion
This study explores the effects of individual- and neigh
borhood-level factors on self-rated health status of
people over the age of 60 via an approach that combines
a multilevel model and an eigenvector spatial filtering
technique. The findings show that sex, employment sta-
tus, monthly household income, and perceived levels of
stress are significantly associated with self-rated health
status. In addition, residents living in neighborhoods
with low deprivation and a high doctor-to-resident
ratio tend to report higher health status. There are no
changes in the signs of parameters or the significance
level between the two models used in this case study.
Nevertheless, the proposed spatially filtered multilevel
model provides unbiased and robust estimations and
has greater explanatory power than conventional multi-
level models. The spatially filtered approach is a useful
tool for understanding the spatial dynamics of self-
rated health status within a multilevel framework. In
future research, it would be useful to apply the spatially
filtered multilevel model to other datasets in order to
clarify the differences between the two models. The in-
herent modeling complexities of the eigenvector spatial
filtering method mean this approach has only recently
been put to practical use despite its advantage of visual-
izing underlying spatial structures. This study hopes
that applied models using the eigenvector spatial filter-
ing might be developed in many future studies. Finally,
it is hoped that the present findings might inform pol-
icy interventions to mitigate health inequality in South
Korea.
Endnote
aSee the study by Kang et al. [27].
bMoran’s I, developed by Moran [53], is calculated as

follows:

I ¼ nX
i

X
j
vij

X
i

X
j
vij yi− y�ð Þðyj− y�ÞX
i
yi− y�ð Þ2

where n is the number of spatial units; yi and yj are attri-
bute values at spatial units i and j; �y is the average of y;
and vij is an entity of a spatial weight matrix. If attribute
values at i and j are both higher (or both lower) than the
average, Moran’s I is a positive value between 0 and 1.
When the Moran’s I is 1, the attribute values of i and j
are assumed to be perfectly correlated. On the other
hand, if the attribute value at i is higher than the aver-
age, but the value at j is lower than the average, the
Moran’s I is negative. If attribute values of spatial units
are perfectly dispersed, Moran’s I is −1. A Moran’s I of
zero indicates that there is no spatial dependency and
thus observations are randomly distributed.
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