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A B S T R A C T   

The 2020 European Bioinformatics Community for Mass Spectrometry (EuBIC-MS) Developers’ meeting was held 
from January 13th to January 17th 2020 in Nyborg, Denmark. Among the participants were scientists as well as 
developers working in the field of computational mass spectrometry (MS) and proteomics. The 4-day program 
was split between introductory keynote lectures and parallel hackathon sessions. During the latter, the partici
pants developed bioinformatics tools and resources addressing outstanding needs in the community. The 
hackathons allowed less experienced participants to learn from more advanced computational MS experts, and to 
actively contribute to highly relevant research projects. We successfully produced several new tools that will be 
useful to the proteomics community by improving data analysis as well as facilitating future research. All keynote 
recordings are available on https://doi.org/10.5281/zenodo.3890181.   

1. Introduction 

The EuBIC-MS Developers’ Meeting is organized every other year by 
the European Bioinformatics Community for Mass Spectrometry (EuBIC- 
MS, eubic-ms.org), an initiative of the European Proteomics Association 
(EuPA) for user-oriented bioinformatics. EuBIC-MS promotes the use of 
bioinformatics for mass spectrometry (MS). Our goal is to bring together 
the European MS bioinformatics community, including students and 
early-career researchers as well as long-standing experts from both 
academia and industry. Through the setup of community-driven initia
tives, EuBIC-MS mainly focuses on improving education in computa
tional methods, highlighting job and funding opportunities, promoting 
international collaborations, publications of specialized studies, and 
training in specialized software tools. To this end, EuBIC-MS maintains, 
in collaboration with EuPA, several web resources that include educa
tional videos, grant overviews, a job fair, and tutorials, all available on 
www.proteomics-academy.org. Besides these online resources, EuBIC- 
MS regularly organizes workshops and hubs at major international 
conferences on MS and proteomics. Additionally, an annual conference 
on computational MS is organized by EuBIC-MS itself, forming an 
important community outreach effort to bring together bioinformatics 
researchers from all over Europe. 

Since 2017, EuBIC-MS’s Winter School takes place every two years 
[1,2]. These events are highly attended and are a unique opportunity to 
learn, discover new tools and methods, and discuss current challenges in 
the field. However, not all computational expertise is utilized to its full 
potential in a typical conference setup. Therefore, every other year we 
alternate the Winter School with a Developers’ Meeting, which targets 
software developers and computation-aware end-users. The first official 
Developers’ Meeting took place in Ghent, Belgium in 2018 [3]. This 
year’s meeting was organized in Nyborg, Denmark, from January 13th to 

January 17th 2020. A total of 54 participants, including trainees and 
keynote speakers participated in the meeting. It took off with an 
educational introduction to MS and proteomics by the OpenMS team 
(www.openms.de) [4] and was followed by 6 keynotes. The next three 
days, the participants split up into six teams to each work on a project 
that was proposed and selected through an open call and selection 
process (github.com/eubic/EuBIC2020). This meeting, organized by 
and for the European computational MS community, provided a unique 
opportunity to learn, network, and participate in the development of 
promising tools. The full program is available on eubic-ms.org/eve 
nts/2020-developers-meeting (Fig. 1). 

2. Keynote presentations 

2.1. Eric W. Deutsch - application of the Universal Spectrum Identifier 

Eric W. Deutsch (Institute for Systems Biology, Seattle, WA, USA) 
kicked off the keynote sessions with a presentation on the Universal 
Spectrum Identifier (USI), a community standard under development in 
the Mass Spectrometry Standards Working Group of the Human Prote
ome Organization - Proteomics Standards Initiative (HUPO-PSI, www.ps 
idev.info). The main goal of the USI is to provide a straight-forward and 
easy-to-use identifier for publicly available MS spectra, optionally 
including their interpretation (peptidoform and charge). This will be 
useful to refer to individual key spectrum identifications in research 
articles, spectral libraries, and spectrum visualization applications. 
More information on the USI and its development can be found at www. 
psidev.info/usi. 
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2.2. Andy Jones - Statistical considerations for determining PTM site 
localization confidence, including discovery of rare or unusual 
modification types 

Joining the Developers’ Meeting remotely, Andy Jones (Institute of 
Systems, Molecular and Integrative Biology, University of Liverpool, 
Liverpool, GB) addressed some of the open questions and issues in the 
statistical analysis of post-translational modification (PTM) site locali
zation. Although PTMs can be analyzed in high-throughput by mass 
spectrometry-based proteomics, pinpointing the exact location of the 
PTM on the peptide sequence remains challenging. Several tools have 
been developed to score a PTM’s localization, and the concept of false 
localization rate (FLR) –analogous to the false discovery rate (FDR)– has 
been established. The score threshold that is expected to result into a 
given FLR is, however, not generally determined for each data set 
individually, as is the case for the FDR, but is based on a small amount of 
benchmark data sets. In his presentation, Andy Jones highlighted the 
fact that the relation of the localization score and the FLR heavily de
pends on the data set characteristics, such as instrument settings and the 
search engine that was used [5]. He therefore proposed to use decoy 
modifications, for instance phosphorylated alanine in the case of phos
phoproteomics, to assess the FLR on a case-by-case basis. 

2.3. Olga Vitek - Components of reproducible quantitative mass 
spectrometry-based research: a statistician’s perspective 

Covering the statistical side of computational proteomics, Olga Vitek 
(Northeastern University, Boston, MA, US) described aspects of repro
ducibility that vary across quantitative analyses, with the end goal of 
being able to obtain the same results with new experiments and new 
subjects for a given hypothesis. Towards that goal, she provided a case- 
study of MSstats [6], a software package developed by her lab to sta
tistically model differentially abundant proteins in proteomics studies. 
The future of reproducible research was proposed through public data 
re-analysis with MassIVE.Quant (massive.ucsd.edu/ProteoSAFe/stati 
c/massive-quant.jsp) and education/training (May Institute courses on 
computation and statistics for mass spectrometry and proteomics). 

2.4. Alexander Peltzer - Scalable, reproducible bioinformatics workflows 
using Nextflow & nf-core 

The development of workflows is time consuming and complex for 
beginners in the field. Building on the Nextflow workflow framework, 
Alexander Peltzer (Quantitative Biology Center, University of Tübingen, 
Tübingen, DE) presented a community effort to standardize and collect 
robust workflows. nf-core (https://nf-co.re) offers a collection of tested 
and curated workflows with documentation and error management, 
which is portable to any Linux-based platform due to the capability of 
Nextflow to provide a reproducible and scalable execution framework. 

This allows the user to run the data analysis workflow –composed of 
multiple tools for the often computationally demanding data oper
ations– on a local computer, a research high-performance cluster (HPC) 
or cloud providers. The project supports existing workflows as well as 
new implementations and will contribute to the reproducibility and 
comparability of proteomics research. 

2.5. Ole N. Jensen - Top-down and middle-down proteomics: 
experimental methods and computational challenges 

Ole N. Jensen (University of Southern Denmark, Odense, DK) pre
sented his team’s work on modified proteoforms using top-down and 
middle-down approaches. Digesting with the endopeptidase Glu-C, 
which generates long peptides, allows the study of variant-specific N- 
terminal modifications on histones. With this approach, Tvardovskiy 
et al. analyzed the relative quantities of modified histone H3 and H3.3 in 
several mouse tissues and their evolution over time [7]. Computational 
tools were developed, such as the PTM interplay score that describes the 
functional links occurring between PTMs: positive as well as negative 
crosstalk. These can be visualised on a two-dimensional plot with 
CrossTalkMapper [8] (https://github.com/veitveit/CrossTalkMapper). 
Nowadays, an increasing number of laboratories utilize intact protein 
MS to study proteoforms and PTM crosstalk. Although this technology is 
on the rise, comprehensive proteoform characterization using top-down 
proteomics remains a challenge. A major bottleneck is that isolation and 
fragmentation parameters for getting interpretable MS2 spectra are 
highly protein-dependent, requiring individualized instrument param
eters for each protein. Ole N. Jensen’s team developed the topdownr tool 
that allows automatic batch-testing of multiple instrument parameters 
and reports the quality of MS2 spectra for each parameter set [9]. Using 
this strategy on an increasing number of proteins should provide the 
basis to predict protein-specific optimal top-down data acquisition pa
rameters in the future. 

2.6. Lydie Lane - Mining the dark human proteome using neXtProt’s 
SPARQLing tools 

Lydie Lane (Swiss Institute of Bioinformatics, CMU, Geneva, CH) 
presented the neXtProt database [10] (www.nextprot.org), a protein 
knowledge base that combines selected publicly available genomic, 
transcriptomic and proteomic datasets with human 
UniprotKB/Swiss-Prot sequences and annotations. She described in 
detail the data structure (RDF format), which has the particularity to be 
isoform centric. Its web interface provides many visualization options 
that allow data mining such as mapping of MS-identified peptide se
quences to protein sequences, PTM localization, and mapping of vari
ants. Lydie Lane went through a guided tour on how to mine neXtProt 
data using SPARQL for protein-level data, or SNORQL for any type of 
data (https://snorql.nextprot.org). These are facilitated by a set of 
available pre-filled queries, and detailed guide/help pages. neXtProt 
took on the challenge of mapping functional annotation to the dark 
proteome and published the list of nearly 2000 proteins without func
tional annotation from free-text (UniProt summaries), pathway anno
tations, gene ontology (GO) terms, amongst others, and tackled this 
challenge using SPARQL queries. They propose hypotheses on the 
function of 26 of them [11]. The presentation ended by a call to the 
community: neXtProt provides tools dedicated to assessing peptide 
unicity, either based on the canonical sequences or on all variant se
quences available [12]; or for in silico peptide digestion, which are freely 
available for their integration in independent tools. Furthermore, 
neXtProt integrates independent tools developed by the community. 
This paves the way for a federated system of interoperable public da
tabases and tools that would improve functional analysis. 

Fig. 1. Participants of the EuBIC-MS Developers’ Meeting 2020.  
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3. Hackathons 

During the subsequent days, the participants split up into small 
groups to actively develop bioinformatics applications. Project pro
posals for the hackathon sessions were crowd-sourced in a transparent 
and open process: prior to the meeting, community members could 
submit project proposals for hackathon sessions, which were subse
quently evaluated on scientific merit and community interest. 

3.1. Batch XIC and spectra extraction in ThermoRawFileParser (Vladimir 
Gorshkov, Niels Hulstaert, Yasset Perez-Riverol) 

ThermoRawFileParser [13] is an open-source cross-platform soft
ware tool that converts raw files from ThermoFisher Scientific MS in
struments to open data formats, namely mzML and MGF. Each open 
format has its specific use case, for example, mzML is best for data 
retention, i.e. preserving the MS data to the fullest extent. The downside 
is, however, the complex (“heavy”) structure of the data. On the other 
hand, the MGF format –built for supplying spectra to database search 
engines– is very “light” and thus lacks important metadata. During the 
hackathon, ThermoRawFileParser was extended with two modules. The 
first one creates extracted ion chromatograms (XICs) directly from raw 
files and exports them to a JSON format. The parameters used for XIC 
retrieval are supplied in the structured JSON: m/z value and tolerance, 
m/z range, peptide sequence and retention time cutoffs. The second 
module retrieves individual spectra from a raw file and returns them in a 
PROXI format that was recently drafted by the Human Proteome Or
ganization Proteomics Standard Initiative (HUPO-PSI, https://github. 
com/HUPO-PSI/proxi-schemas). Both modules facilitate programmatic 
access to partial data from a raw file avoiding overhead for converting a 
complete raw file to mzML or other open formats. They serve as a middle 
layer between data in a raw file and other services accessing these data. 
Use cases would be accessing individual scans from raw files stored in 
repositories using universal spectrum identifier (USI), or batch retrieval 
of XICs to be displayed on a website. Apart from adding specific func
tionality to ThermoRawFileParser, the hackathon contributed to 
creating a community that collectively supports further developments of 
the software. As a result, one major and three minor releases of Ther
moRawFileParser (fixing bugs and adding new features) were published 
after the hackathon. 

3.2. How can we best use Cytoscape for proteomics data analysis? 
(Nadezhda T. Doncheva, Marc Legeay) 

Cytoscape [14] is an open-source software to visualize and analyze 
biological networks. Developers can add new features to Cytoscape by 
developing their own Java-based apps. The Cytoscape community also 
maintains a REST API [15] that enables Cytoscape and most of its apps to 
be used from R and Python in a more automated way. In this hackathon, 
we assembled several such automation workflows to facilitate more 
reproducible proteomics data analysis in Cytoscape. We made use of the 
core Cytoscape functionality as well as two apps, stringApp [16] and 
Omics Visualizer [17], which were developed with a focus on the 
analysis and visualization of proteomics and phosphoproteomics data. 
We also performed an exploratory study of tissue expression visualiza
tion for aging-related proteins in a STRING [18] network by combining 
gene expression from the TISSUES database [19] and peptide based 
protein expression evidence for each mapped tissue from the neXtProt 
database [10]. The resulting workflows, implemented in both R and 
python, are freely available on GitHub (https://github.com/scaramonch 
e/EuBIC2020_Cytoscape). 

3.3. Mapping proteins to functions: method and benchmark development 
(Bart Mesuere, Pieter Verschaffelt, Henning Schiebenhoefer) 

Understanding how the microbiome works requires knowledge 

about the functions of the expressed proteins [20]. Retrieving these 
functions is currently one of the major challenges in metaproteomics 
[21]. This results in an increasing number of proteomics tools that either 
provide functional information themselves (e.g. MetaProteomeAnalyzer 
[22]), or connect to functional annotation tools such as Unipept [23,24]. 
Gene Ontology (GO) terms are commonly used to describe protein 
functionality. Comparing GO terms between tools or datasets is a com
plex task, hindered, for example, by the different annotation levels of 
proteins. Moreover, due to the high similarity between some GO terms 
(e.g. one list provides the parent term, while another list provides the 
child term), exact matching fails in providing the user with an optimal 
result. Therefore, we developed MegaGO [39], which compares two lists 
of GO-terms while taking this inherent similarity into account. The tool 
calculates the relevance semantic similarity metric [25] and returns a 
single number for similarity. The tool is freely available on Github 
(github.com/MEGA-GO/MegaGo). 

3.4. Online spectrum identification validation by comparison to 
predicted/experimental spectra (Tobias Schmidt, Patroklos Samaras) 

Confirmation of a single MS2 spectrum identification by comparison 
to other spectra is still not simple (enough). Although many different 
resources such as PeptideAtlas [26], MassIVE [27], and ProteomicsDB 
[28,29] have a deep back catalog of high-confidence mass spectra, they 
are not easily obtainable. During this hackathon, ProteomicsDB 
extended its API following the FAIR principles [30]. It now offers a 
direct and query-able interface to > 108,000,000 experimental spectra 
covering > 70 % of the human and arabidopsis proteome. Every 
experimental spectrum comes with detailed metadata of the underlying 
experimental and acquisition schema. Additionally, virtually any un
modified peptide can be predicted in high quality by the deep-learning 
algorithm Prosit [31] and can also be accessed via the above-mentioned 
API. In the hackathon, we combined this REST interface with the core 
visualizations of the Interactive Peptide Spectral Annotator (IPSA) [32] 
to build a minimal website for researchers to visualize their acquired 
spectra and get an instantaneous comparison to an external source, 
which can either be a predicted spectrum or one included in Proteo
micsDB. In addition, by enabling the use of the Universal Spectrum 
Identifier (http://psidev.info/usi) every user can request, compare, and 
validate spectra from any resource implementing this standard (http 
s://www.proteomicsdb.org/use/). The API and the online spectrum 
identification validator will be available soon. 

3.5. Simulating a quantified phosphoproteome for software benchmarking 
and algorithm development (Marie Locard-Paulet, Veit Schwämmle, 
Vasileios Tsiamis, Ludwig Lautenbacher) 

Many cellular processes are controlled by phosphorylation events, 
often forming cascades for tight and fast control/adaptation of cellular 
function. Bottom-up mass spectrometry provides a highly sensitive and 
high throughput platform to measure these events, and most studies 
base their results on peptide quantities. Such strategy still suffers from 
several data analysis challenges, coming from the difficulty to assemble 
the quantitative behavior of phosphoproteins –real players of cell 
signaling events– from short peptides and incomplete fragmentation 
patterns [33,34]. The development of new and better algorithms to 
determine the quantitative phosphoproteome is hindered by the absence 
of golden standard datasets with known abundance changes of selected 
phosphoproteins. Since this is not possible yet (or extremely expensive) 
to produce such a sample, we undertook the development of a compu
tational pipeline that creates peptide-level MS-like data from a known 
theoretical proteoform-level gold standard (from a FASTA file). This 
hackathon resulted in the new PhosFake tool that simulates the full 
experimental data acquisition of a typical phosphoproteomics experi
ment. Proteomes (protein sequences with PTMs) with arbitrary a priori 
defined changes at the proteoform level are transformed into 
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quantitative peptide profiles over any number of experimental condi
tions and replicates. Currently, the tool implements a total of 38 pa
rameters to simulate the many factors that contribute to experimental 
design, biological composition, protein digestion, PTM enrichment, MS 
data acquisition and subsequent computational analysis of the resulting 
raw spectra. PhosFake will be used to study if and how quantitative 
changes on the proteoform level can be determined from the noisy and 
incomplete data obtained in standard phosphoproteomics experiments. 
The tool, still in development, is available on https://github.com/veit 
veit/PhosFake. 

3.6. Formation of spectral libraries by representative spectra (by Lukas 
Käll, Yasset Perez-Riverol) 

Spectral clustering algorithms aim to accurately and efficiently 
group large numbers of spectra based on their similarity, such that all 
spectra in a given cluster stem from the same analyte (peptides in this 
case) [35]. A frequent output from clustering of spectra are consensus 
spectra, i.e. a common representation of the spectra in each cluster. A 
consensus spectrum can be used either as a means to annotate the 
spectra, instead of annotating all the cluster members one can search a 
single spectrum, or as an optimal representation of the analyte they stem 
from. Consensus spectra have successfully been utilized for the purpose 
of quality control of existing peptide identifications in proteomics ar
chives [36], improvement of peptide identification and performing or 
refining label-free quantification based on the consensus spectra [37, 
38]. In such applications, the performance could be assumed to rely on 
which algorithm constructs the consensus spectra. During the hackathon 
we implemented a workflow to benchmark different algorithms for 
assembling consensus spectra (github.com/statisticalbiotechnology/rep 
resentative-spectra-benchmark). A synthetic peptide library dataset was 
used to benchmark the different methods for which best-spectrum, 
binned-spectrum, most-similar-spectrum, and clustering-spectrum 
were determined. Preliminary results showed no major differences be
tween binned-spectrum and best-spectrum algorithms, which are the 
two algorithms that perform best in peptide identifications. The group is 
still working on the project to benchmark more data sets including 
phosphoproteomics data sets to explore how clustering algorithms and 
consensus spectra generation can affect the phospho-localization 
algorithms. 

4. Poster presentations 

The poster presentations took place the evening of the first day in a 
relaxed atmosphere. Two prices of 250€ were funded by EuPA for the 
best posters, which were selected by the keynote speakers (Fig. 2). 

5. Conclusion and outlook 

The keynote speakers provided a wide overview of the current 
challenges faced by the community of computational MS. These were 
tackled by some of the hackathons, such as the development of an in 
silico pipeline for generation of a proteoform centric quantitative gold 
standard that could be utilized in some of the topics developed by Ole N. 
Jensen and Andy Jones. The invited speakers that stayed for the entire 
meeting were seen in several hackathons, providing guidance, and 
helping out with the integration of their tools in the different projects. 
For example, the USI presented by Eric W. Deutsch was utilized in 
several hackathons, and Lydie Lane contributed to the integration of the 
neXtProt database in one of the pipelines developed for Cytoscape. In 
our opinion, this Developers’ Meeting was a success in providing 
training, favorizing networking, nesting collaborations, and resulted in 
several tools that are either already available or under active 
development. 

We believe that working as a community for the community is the 
most efficient way to go forward, and we hope that our next events will 

be as productive as this one. If you are interested in joining us, please 
contact us directly (info@eubic-ms.org). Our next events will be 
advertised on our website (eubic-ms.org) and posted on our mailing list. 
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