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Abstract—Population cancer registries can benefit from Deep Learning (DL) to automatically extract cancer characteristics from the
high volume of unstructured pathology text reports they process annually. The success of DL to tackle this and other real-world
problems is proportional to the availability of large labeled datasets for model training. Although collaboration among cancer registries
is essential to fully exploit the promise of DL, privacy and confidentiality concerns are main obstacles for data sharing across cancer
registries. Moreover, DL for natural language processing (NLP) requires sharing a vocabulary dictionary for the embedding layer which
may contain patient identifiers. Thus, even distributing the trained models across cancer registries causes a privacy violation issue. In
this paper, we propose DL NLP model distribution via privacy-preserving transfer learning approaches without sharing sensitive data.
These approaches are used to distribute a multitask convolutional neural network (MT-CNN) NLP model among cancer registries. The

model is trained to extract six key cancer characteristics — tumor site, subsite, laterality, behavior, histology, and grade — from cancer
pathology reports. Using 410,064 pathology documents from two cancer registries, we compare our proposed approach to
conventional transfer learning without privacy-preserving, single-registry models, and a model trained on centrally hosted data. The
results show that transfer learning approaches including data sharing and model distribution outperform significantly the single-registry
model. In addition, the best performing privacy-preserving model distribution approach achieves statistically indistinguishable average
micro- and macro-F1 scores across all extraction tasks (0.823,0.580) as compared to the centralized model (0.827,0.585).

Index Terms—Privacy-preserving, multi-task CNN, transfer learning, NLP, information extraction, cancer pathology reports.

1 INTRODUCTION

A CCURATE, timely, and comprehensive cancer monitor-
ing is critical for not only assessing the population
level impact of cancer but also for informing population-
based cancer control policies. Population cancer registries
process annually large volumes of unstructured pathol-
ogy reports to extract cancer characteristics such as tu-
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mor anatomic location site, histological type, tumor grade,
and stage at diagnosis for reporting to the national cancer
surveillance programs. Such critical information resides in
narrative text full of typos, abbreviations, and linguistic
variation. Natural language processing (NLP) has been ex-
plored extensively in oncology to semi-automate the time-
consuming and laborious manual effort [1], [2]. Scalable
NLP can have a dramatic impact in cancer surveillance
by assisting cancer registries in providing near real time
detailed measurements of cancer incidence, progression,
survival, and mortality. However, existing clinical NLP
methods are mainly rule-based requiring human experts to
manually engineer input features. This is an unsustainable
endeavor due to the prohibitively large number of rules
that need to be carefully curated by domain experts to
comprehensively capture all possible linguistic expressions.
Therefore, artificial intelligence (AI) could potentially ad-
dress clinical NLP challenges [3] and facilitate effective
translation of NLP tools across cancer registries.

Among different Al approaches, Deep Learning (DL) has
been successfully applied to classify and recognize complex
features in images, speech, and text data. Recent studies
have shown the potential of DL models in automatically
extracting cancer key characteristics from cancer pathology
reports [4], [5], [6], [7] by achieving accuracy superior to
traditional machine learning NLP methods. Successfully
applying DL in the specific domain requires a large training
corpus that has similar characteristics as the prospective
testing data. Furthermore, this success is proportional to the
size of the training corpus. Obtaining a large enough corpus
from a single cancer registry is challenging, particularly
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with respect to rare cancer anatomic location sites (i.e., body
organs where cancer develops) and histologies (i.e., different
cell types). This challenge can be overcome by aggregating
cancer pathology reports from multiple cancer registries in a
centralized hub which can serve as a neutral entity to train
a generalized model on all the data. Upon completion of
training, the trained model can be shared with the registries.
However, data privacy and confidentiality concerns prevent
cancer registries from sharing patient data and benefiting
from each other’s knowledge by leveraging DL.

Transfer learning can be exploited to avoid data sharing
by distributing learning models across cancer registries in-
stead of distributing pathology reports. In transfer learning,
a model can be developed at one clinical site, and then
reused as a starting point at another clinical site. Therefore,
a cancer registry can benefit from other registries labeled
datasets to get a more generalized model and reach better
performance by using fewer training samples on its end. Al-
though the transfer learning approach has been widely and
successfully used in many computer vision applications [8],
applying the same approach on text applications and shar-
ing the whole model across data holders still requires access
to the source data dictionary which includes sensitive in-
formation, such as patient names and residential addresses.
Without a universally accepted de-identification algorithm,
large scale de-identification is not currently a viable option
across cancer registries. Image-based DL models do not
contain any individually-identifiable patient information;
however, text-based DL models contain such information
as part of the word embeddings. To distribute a trained
text-based DL model across cancer registries, the vocabulary
dictionary, which contains individually-identifiable patient
information, must be distributed too. Therefore distributing
DL NLP models across cancer registries poses privacy con-
cerns.

This work builds upon our previous work [9], in which
we implemented a conventional transfer learning (TL) ap-
proach among cancer registries and applied it on a single
task CNN model for cancer subsite extraction from pathol-
ogy reports. We also compared the model trained via TL
with a model trained on centrally hosted data. The main
contributions of this work are as follows:

o We develop a multitask CNN (MT-CNN) model for
information extraction from cancer pathology re-
ports. It differs from the previous work [7] by extract-
ing information at the pathology report level instead
of the tumor-level. Also, we consider all available
classes of cancer characteristics without condensing
low prevalent classes. The model is used to extract
six key cancer characteristics — tumor anatomic loca-
tion site (i.e., site) (70 classes), subsite (313 classes),
laterality (7 classes), behavior (4 classes), histology
(543 classes), and grade (9 classes).

e We propose a new privacy-preserving approach that
protects any PHI information in the word embedding
vocabulary dictionary by applying restrictions on
which word tokens are included in the vocabulary.
To prevent PHI information such as patient names
and residential addresses from being included, we
limit the vocabulary to words from publicly available

corpus that has been prescreened for PHI, such as the
MIMIC-III dataset and the PubMed abstracts dataset.
Thus, a trained model can be shared with other
registries without data restrictions.

o We evaluate the effectiveness of collaboration across
cancer registries on the performance of the MT-
CNN using different TL methods with and without
our privacy-preserving vocabulary. These methods
are necessary in scenarios where cancer registries
are unable to directly share their patient data for
training. We compare the conventional TL approach,
acyclic TL, and the state-of-the-art model distribu-
tion approach, cyclic transfer learning [10]. Cyclic
transfer learning has been used in medical imaging
applications, but to our knowledge this is the first
time it is applied to medical text. We compare these
approaches against the baselines of training the MT-
CNN on data from only a single registry and training
the MT-CNN on data from all available registries
without any restrictions.

2 RELATED WORK

Collaboration among cancer registries through sharing raw
data or trained models is hindered by security and privacy
violations. One approach of data collaboration without pri-
vacy violation is through text de-identification by detecting
and scrubbing protected health information (PHI) including
name, social security number, geographic identifiers, and
dates from cancer pathology reports; the sanitized data
can then be shared with other institutes for research pur-
poses. Since manual de-identification approach is costly
and time consuming, different techniques have been pro-
posed to support automatic clinical text de-identification
using traditional machine learning [11] and DL models [12].
However, automatically locating and scrubbing all sensitive
information from clinical text is still highly challenging — de-
identifying unstructured text in pathology reports is more
challenging than structured data [13], and de-identification
models trained on a specific dataset do not generalize well
to other datasets [14]. Existing solutions typically cannot
guarantee de-identification up to regulatory standards, es-
pecially with scattered PHI across the unstructured text of
pathology reports; therefore, there is still need for alterna-
tive privacy-preserving methods to protect PHI and directly
or indirectly share large corpora of pathology reports from
various sources.

Another approach of secure collaboration among cancer
registries is through DL model distribution. Parallelizing
the training of deep networks by distributing the process
across computing nodes has been proposed to handle large
datasets and accelerate DL models training. Recently, this
approach has inspired the effort of privacy-preserving DL.
It protects confidential features by distributing a trained
model without sharing raw data. Sharing the raw data
across clinical institutes can be protected by sharing the
trained models. However, to achieve a highly protected
mechanism, model characteristics including the architec-
ture, parameters and loss function have to be protected as
well. Some of these techniques, such as federated learn-
ing [15] and large batch synchronous stochastic gradient de-
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scent SGD [16], require sharing the model hyperparameters,
parameters and intermediate representations without any
protection. Hitaj et al. [17] have shown the ability of gen-
erative adversarial networks to recover raw data from the
shared model. Other techniques like SplitNN [18] protect the
model parameters; however, they require a relatively larger
overall communication bandwidth [19]. The challenge of
model distribution increases when dealing with DL NLP
models. Such models may include personally identifiable
information as part of the word embeddings — each word in
the dataset vocabulary is represented by an N-dimensional
vector. To distribute a trained model across different insti-
tutes, the vocabulary list with word embeddings must be
distributed as well, which may contain patient names or
other patient details with corresponding vector represen-
tations. Thus, simply distributing models across different
institutes does not satisfy the privacy-preserving condition
since it contains PHI information.!

Recently, data encryption techniques have been used to
protect DL distribution and provide a secure collaboration
environment. Techniques, such as differential privacy [20]
and homomorphic encryption [21], have shown the ability
to protect model shared parameters from re-identification
attacks. The challenge of encryption techniques is that they
can be attacked by untrusted platforms and unauthorized
users. Some of them are not robust and can be affected by
noise and errors. Moreover, the protection mechanism has to
consider computation resource requirements, such as com-
putation time, memory usage, etc. Encryption-based tools
require additional computational cost, which may raise re-
source costs above acceptable levels. Most existing research
on differential privacy in DL focuses either on preventing
users from gaining knowledge about the training data when
the model is deployed in the inference stage [20], [22], [23]
or on how to train a model on multiple datasets without
directly sharing access to those datasets [20], [24]. However,
differential privacy often comes at the cost of an accuracy
reduction for models trained on the corrupted data [20].
Also, information can be retrieved from a trained model
using adversarial networks even when differential privacy
mechanisms have been applied [25]. Khattak et al. [26] have
presented a survey of word embeddings for clinical text, and
discussed the limitations of word embeddings including
privacy issues for clinical data.

This work introduces a simple and inexpensive method
to prevent PHI information from entering the word em-
bedding vocabulary. It offers a privacy by design solu-
tion without losing in accuracy performance nor increas-
ing the computation cost. By combining this method with
TL techniques such as cyclic or acyclic training, we show
that users can gain the performance benefits of training
on additional sensitive data without directly accessing that
data. We demonstrate the effectiveness of our approach in
the clinical application of classifying key data elements in
cancer pathology reports in which protected data is spread
across multiple cancer registries.

1. https:/ /www.hhs.gov /hipaa/for-professionals / privacy /special-
topics/de-identification/index.html

3 MATERIALS AND METHODS
3.1 Datasets and Pre-processing

We used text corpora of cancer pathology reports obtained
from the Louisiana Tumor Registry (LTR) and Kentucky
Cancer Registry (KCR) of the National Cancer Institute’s
(NCI) Surveillance, Epidemiology, and End Results (SEER)
Program. The study was executed in accordance to the
institutional review board protocol DOE000152. The LTR
and KCR datasets consist of 374,899 and 172,128 pathology
reports respectively. The LTR corpus spans the period 2004-
2018 while the KCR corpus spans the period 2009-2018. Each
pathology report is identified by a combination of patient
ID and tumor ID, which is called case ID. Each case ID may
be associated with one or more pathology reports. Certified
Tumor Registrars (CTRs) manually coded the ground truth
labels associated with each unique case based on free text
from the corresponding pathology reports according to the
SEER program coding and staging manual®. Labels were
provided for various data elements, such as tumor type, and
other cancer characteristics. In this paper, we consider the
International Classification of Diseases for Oncology, Third
Edition (ICD-O-3), topography (i.e., site/subsite), laterality,
behavior, histology, and grade as the data elements of in-
terest as they are fundamental information extraction tasks
for cancer reporting. Figures 8 and 9 in Appendix A show
the number of occurrences per label of all six cancer charac-
teristics in LTR and KCR datasets, respectively. We can see
from the figures there is an extreme class imbalance. Some
classes are represented by less than 10 pathology reports,
while others are represented by thousands of pathology
reports. Documents generated within 10 days between the
date of diagnosis and either path specimen collection date or
the surgery date were identified as relevant to the specific
case ID. The 10-day window was based on an analysis of
the pathology report submissions with the vast majority of
reports and addenda included within that time frame. The
remaining pathology reports which were outside the 10-day
window were excluded from the study.

To simulate a scenario in which four cancer registries are
interested in collaborating, we randomly split each registry
corpus into two subsets with similar size which resulted into
four separate datasets. Table 1 summarizes the total number
of pathology reports for each “virtual” cancer registry and
the number of labels observed in the corresponding data.
For each set, 80% of the samples were used for train and
validation with 80-20 ratio, while the remaining 20% was
used for testing. Since multiple cancer pathology reports
might have the same case ID, we ensured that unique case
IDs can be either in train, validation or test sets to avoid any
positive bias in the reported results.

We applied standard text pre-processing techniques to
clean our corpus, as we have described in previous stud-
ies [4], [5], [7]. After excluding metadata (e.g., patient ID,
registry ID) in cancer pathology reports, text was cleaned by
removing any consecutive punctuation and by lowercasing
all alphabetical characters. To reduce the vocabulary size,
all words with document frequency less than five were
replaced with an “unknown_word” token, all decimals were

2. https:/ /seer.cancer.gov/tools/codingmanuals/index.html

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2983404, IEEE

Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, MONTH YEAR 4

converted to a “decimal” word token, and all integers larger
than 100 were converted to a “large_integer” word token.
Cancer pathology reports are represented as one dimen-
sional vectors, where each element is a word token. Different
lengths of cancer pathology reports are accommodated by
specifying a fixed length of L = 1,500 words for all
reports. All documents longer than L are truncated and all
documents shorter than L are padded. Please note that 95%
of the pathology documents in our dataset have fewer than
1,500 words.

3.2 Multitask CNN for Information Extraction from Text
Data

Multitask learning (MTL) is a mechanism for learning mul-
tiple related tasks simultaneously while leveraging knowl-
edge across the tasks [27]. These related tasks can be learned
using the same or different datasets. MTL was successfully
used to train a word-level convolutional neural network
(CNN) model to extract simultaneously five different data
elements from cancer pathology reports — site, laterality,
behavior, histology, and grade [7]. In this approach, each
data element of interest is modeled as a separate learning
task. The common architecture of MTL utilizes shared hid-
den layers for all tasks and then one separate output layer
for each task. For NLP applications, the first hidden layer
of a CNN model is the embedding layer which represents
the semantic meanings of words using d-sized real-valued
vectors.

The word embeddings layer produces a 2-D document
matrix of size (L x d), where L is the document length. This
matrix serves as input to the convolution layers. For NLP
applications, the convolution layers in CNNs are not stacked
as in computer vision models. Instead, they are structured
as parallel layers that operate simultaneously on document
matrices. Convolution filters are applied to the document
matrix by sliding linear filters over the text in order to
extract features at each position. To extract multiple features,
multiple filters are used with variable window sizes. Since
words are represented by d-sized vectors, the width of filters
equals to d. Thus, the size of filters is n x d, where the
height of a filter n corresponds to a context length of n word
vectors or an n-gram. Convolution layers with non-linear
activations generate L-sized feature maps which are the
representation of every context window over the document
matrix. Then, a max pooling layer is added to capture the
most important features by taking the max value from each
feature map as the extracted feature from a particular filter.
The outputs of the pooling layers are concatenated by the
last layers shared across all tasks. These shared layers are
followed by multiple, fully connected, task-specific softmax
layers to produce a rank for each label. Each task has a
separate fully connected layer and its size is determined by
the number of labels for each task.

In this paper, we adopted MTL to train a CNN model
to extract six different cancer characteristics from cancer
pathology reports: site, subsite laterality, behavior, histology,
and grade. Figure 1 illustrates the architecture diagram
of the MT-CNN model used in this paper. The network
weights are trained using the ADADELTA adaptive gradi-
ent descent algorithm treating the loss weight for all tasks

equally as in [28]. Dropout was applied with probability
50%. The number of filters in each set was 300, and the
kernel sizes, K1, K2, and K3 are 3, 4, and 5, respectively.
These parameters were optimized following our previous
studies [4], [7]. The model hyper-parameters were initialized
as the architecture presented in [29]. Then, we specified
the search space of the substantial hyper-parameters to be
explored. We used Scikit-Optimize library methods to find
the best hyper-parameters.

3.3 Word Embeddings

Word embeddings have been recognized as one of the
key breakthroughs for various NLP applications such as
document classification [30], and machine translation [31].
Word embeddings provide a way of converting words into
numerical vectors which are used as inputs to DL models.
These vectors have relatively lower dimensional features
than the one-hot representation. Word embeddings have
been shown to capture semantic information via observed
similarities in word contexts, where the vector representa-
tions of semantically similar words are close to each other.
Thus, they insert contextual knowledge into models helping
DL algorithms to automatically understand word analogies
and capture their semantic properties [32].

Figure 2 illustrates the traditional word embeddings pro-
cess. It starts by collecting all unique words in a corpus as a
vocabulary list of size V. Then each word in the vocabulary
list is assigned to an integer index i, where ¢ € {1,2,...V}.
The vocabulary is saved in a dictionary format, where keys
are the word tokens and values are their indices. For each
document of size L in the dataset, the words are converted
to their corresponding indices using the vocabulary dictio-
nary. These indices are used to access the corresponding
word vector representations in the embedding LUT. The
number of embedding LUT parameters is proportional to
the vocabulary size and word vector representation length,
ie. if a text corpus has V unique words and the feature
representation of each word is a d sized vector, then the
embedding LUT is going to be d x V dimensional, and
each word has a notation that corresponds to d by a one-
dimensional embedding vector. This process results in a
document matrix of size L X d which is used as input to
the convolution layer. Since the dictionary is associated to
the NLP DL model trained on the data corpus, it is required
when the trained model is used for inference. Since this
dictionary is comprised of word tokens that appear in the
data corpus of the cancer registry that provides the training
data, it is expected to include word tokens associated with
patient last names and other protected identifier informa-
tion. Thus, the trained model and its related dictionary does
not preserve data privacy if it is shared with another cancer
registry.

The word vector representations can be learned from
a large text corpus through Word2Vec [33] or GloVe [34]
techniques separately from the other model parameters.
They can also be learned from a task specific dataset with the
other model parameters through back propagation. In this
paper, the word embeddings parameters are randomly ini-
tialized and learned through back propagation since previ-
ous studies have shown to work well for this application [4].
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TABLE 1
Statistics of LTR, KCR and the centralized datasets and label counts for each cancer key characteristic.

Dataset Train Validation Test Total site subsite laterality behavior histology grade
LTR dataset-1 83,172 20,858 26,007 130,037 70 295 7 4 464 9
LTR dataset-2 83,418 20,769 26,019 130,206 70 294 7 4 463 9
KCR dataset-1 47,862 11,984 14,884 74,730 69 290 7 4 428 8
KCR dataset-2 48,109 12,015 14,967 75,091 69 287 7 4 428 8

Centralized 262,561 65,626 81,877 410,064 70 313 7 4 543 9
) Input Vector Shared Layers , Output ‘
F3 Rem
Word Vector (d) A M — — L site
F3 H H u AN A
Word Vector (d) :I—;\/ Q| H A M w7 N e - —,’
- — “ K3 °° —t ': T subsite
L LO 0O ] L O (RO
] ) s RS ENE
| THH ] TH ~x{ | \\‘\ M II aterality
] F2 H H - H AR —>
\ 1 ] ] (AR
. o Kz [ 1 1\/ ) .o | '({x\ S
d L H 4 o H — ,I,' \‘/“ behavior
|| d o S - i ,;' A \>_
P n,’ A
- I -\Fl ili - 0 histology
- K1 H H H DRI —>
T oo Fl 4 AN R .
’ N —
H H H . N —
- L L L L . grade
— J —
F1 |
Input Vector Word Embedding Convolution Filters Feature maps Max pooling  Concat. Output
from convolutions layer layer

Fig. 1. Architecture diagram of the MT-CNN, where (F1, F2, F3) are the number of filters in each convolution layer, while (K1, K2, K3) are the kernel
size for each set of filters. In this paper, (F1, F2, F3) are 300 filters each, (K1, K2, K3) are (3, 4, 5) respectively, Word Vector (d) is 300, and L is

1500 word tokens.
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Fig. 2. Word embedding example diagram, where vocabulary dictionary
converts words in the input sentence to the corresponding indices and
V is the vocabulary dictionary size.

For the models without privacy-preserving, the dictionary
created using the corpus of one cancer registry is shared
with other registries. However, for the privacy-preserving
models, only word tokens that appear in publicly available
word embeddings are shared across registries. Although
there are many available embeddings that are trained on
public datasets, we have used the embeddings trained on
PubMed and MIMIC-III datasets [35]. Unlike public datasets

such as Wikipedia and Google news, which may include
patient names, residential addresses, etc. that match what
registries have in their private data, the vocabulary of
MIMIC-III and Pubmed do not contain PHI information. We
note that the vocabulary of MIMIC-III and Pubmed covers
about 83% of the word tokens appearing in the LTR and
KCR datasets.

3.4 Transfer Learning

Transfer learning is defined as the process of transferring
knowledge learned from a source task, which can be a
dataset, to a target task [36]. It can be done either by trans-
ferring the low-level layers [37], the high-level layers [38], or
the whole model layers [9]. More details about a complete
study on the impact of layer transferability can be found
in [39]. The need for transfer learning emerges when the
labeled training dataset for a model cannot be shared due
to data sharing restrictions or when the dataset available for
learning is limited or highly imbalanced. This is the case
with population cancer registries in which not only there
are privacy concerns regarding patient data sharing but also
cancer registry data demonstrate substantial imbalance as
some cancer types are extremely rare while other cancer
types are very common. Transfer learning has been suc-
cessfully applied to different computer vision applications,
such as image classification [8] including clinical imaging
applications [40], [41]. In such applications, computer vision

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2983404, IEEE

Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, MONTH YEAR 6

models pre-trained on a very large but general image data
(e.g., ImageNet) are exploited to transfer knowledge to a
specialized clinical imaging dataset which is relatively small
but sufficient for domain-driven fine-tuning of the general
trained model. The success of applying transfer learning
on image applications, opened up the possibility to exploit
transfer learning in non-clinical NLP applications, such as
sentiment classification [42]. However, applying transfer
learning of DL models to clinical NLP tasks is still an
understudied research topic.

For NLP applications, word embeddings pre-trained on
unlabeled corpora using unsupervised learning approaches,
such as Word2Vec or GloVe have been extensively used to
transfer knowledge across tasks. This approach was also
used successfully for clinical NLP tasks by transferring the
embeddings of medical concepts learned from multimodal
medical data [43]. However, this approach did not improve
the performance of CNN models for information extraction
from cancer pathology reports [4]. This finding suggests that
transferring knowledge from general datasets (e.g., Google
News, PubMed) that are not semantically similar to the
target dataset (pathology reports) does not produce the best
performing models.

The main obstacle of applying transfer learning across
cancer registries to tackle text information extraction tasks
is preserving privacy. Transferring a model trained on a
cancer registry corpus requires transferring its associated
word embeddings and dictionary, which holds patient iden-
tifiers. Therefore, sharing trained NLP models across cancer
registries presents unique challenges. To evaluate the extent
of the problem, we implement three transfer learning ap-
proaches using the MT-CNN as the base NLP model: 1) The
conventional transfer learning without privacy-preserving
by transferring the whole model parameters across reg-
istries; 2) Transfer learning with privacy-preserving by
dropping the embedding layer parameters and sharing
the remaining model parameters; and 3) A novel privacy-
preserving transfer learning approach by constructing vo-
cabulary dictionary from word tokens available in publicly
accessible pre-trained word embeddings (instead of using
all word tokens appearing in the cancer registry corpus).

4 EXPERIMENTS
4.1 Experimental Setup

CR-A CR-B
Model A Model B
CR-D CR-C
Model D Model C
Final Model
Final Model Final Model
(A) (B) ©) (D)

Fig. 3. DL model training configurations: A) Single-registry model,
B) acyclic transfer learning with/without privacy-preserving, C) cyclic
transfer learning with/without privacy-preserving, D) centralized model.
Where CR is Cancer Registry.

In this paper, we perform comparative analysis of var-
ious transfer learning MT-CNN models for extracting six

key cancer characteristics from pathology reports - site, sub-
site, laterality, behavior, histology, and grade. Specifically,
we explored five different transfer learning approaches: (i)
transfer learning with drop embeddings model, (ii) acyclic
transfer learning without privacy preserving model, (iii)
cyclic transfer learning without privacy preserving model,
(iv) acyclic transfer learning with privacy-preserving model,
and (v) cyclic transfer learning with privacy-preserving
model. We benchmarked these models relative to single
registry models and a centralized model. Below we describe
the various models starting with the models that offer the
highest privacy protection:

e Single-registry model: This is the baseline model.
A MT-CNN model is trained and tested on each
registry separately without sharing any information
across them. This approach offers the highest data
privacy and protection since nothing is shared across
cancer registries. However, the limited dataset size
available in each dataset may affect overall model
accuracy.

o Transfer learning with drop embeddings: This ap-
proach was implemented to study the importance
of sharing word embeddings relative to the other
model parameters across cancer registries. A MT-
CNN model is trained on one of the registry datasets.
Then, the trained parameters, excluding the em-
beddings, are transferred to the next registry. This
approach offers a privacy-preserving property since
the vocabulary dictionary is not released to other
registries.

e Acyclic transfer learning with privacy preserving:
Acyclic distribution is the traditional transfer learn-
ing approach. A model is trained at one cancer reg-
istry and then it is shared with the next registry for
further fine-tuning. The process can continue across
all collaborating registries, each one fine-tuning the
shared model with their own data. This approach
opens questions whether the acyclic transfer learning
model differs depending on the registry order for
model sharing and fine-tuning. To ensure privacy
preservation, we build a vocabulary dictionary from
all available word tokens in the registry training
corpus while excluding all word tokens that are not
available in a publicly available vocabulary dictio-
nary (as described in the previous section).

e Cyclic transfer learning with privacy preserving:
Cyclic model distribution was proposed by K. Chang
et al. [10] and used for medical imaging applications.
In cyclic distribution, a MT-CNN model is trained for
a certain number of epochs on one of the registries.
Then, the model is transferred to the next registry
for further training with local data. This process is
iterated in a cyclic manner across all collaborating
registries until the model converges. The resultant
model is shared across registries for testing purposes.
To ensure privacy-preserving, the vocabulary dictio-
nary is built from the corpus word tokens that are
available in a publicly available vocabulary dictio-
nary as in the acyclic transfer learning with privacy
preserving approach.
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e Acyclic transfer learning without privacy preserv-
ing: This approach is similar to acyclic transfer learn-
ing with privacy preserving in terms of sequen-
tially distributing the model across cancer registries
without iteration. However, this approach builds the
vocabulary dictionary from all words observed in
the training corpus without restrictions. Since the
vocabulary dictionary is shared across registries, this
approach offers less data privacy though it does not
directly associate a first name with a specific last
name or cancer type. Still, this approach presents
increased risk for reverse engineering since Protected
Health Information (PHI) information can be cap-
tured from these tokens.

o Cyclic transfer learning without privacy preserv-
ing: This approach is similar to cyclic transfer learn-
ing with privacy preserving in terms of model shar-
ing across cancer registries in a cyclic manner. How-
ever, the vocabulary dictionary is built as in the
acyclic transfer learning without privacy preserving.
Thus, it offers less privacy for the same reasons
described above.

o Centralized model: In this approach, pathology re-
ports are collected from all collaborating cancer reg-
istries and hosted in a centralized location. Then,
a global MT-CNN model is trained on the whole
corpus and shared with cancer registries for testing.
This approach offers the lowest data privacy and pro-
tection among other approaches due to data sharing
with the central hub. It is expected though that this
approach also offers the best classification accuracy
as all the data is aggregated to train a global model.

4.2 Performance Evaluation

We evaluate the models using standard NLP metrics —
micro- and macro-F1 scores — for each of our six classi-
fication tasks. The micro-averaged metric is equivalent to
the model performance accuracy. It assigns weight to each
class proportional to the class prevalence in the dataset.
This metric is not sufficient to evaluate model performance,
especially when the dataset has extreme class imbalance.
Therefore, macro-averaged F1-score is used to help in eval-
uating model performance on the less prevalent classes. The
macro-F1 score gives equal weight to each class without con-
sidering the class size. The performance evaluation metrics
of each task are calculated separately. For each class (i) in C,
where C is the total number of classes and i € {1,...,|C|},
the number of class true positives, false positives, and false
negatives are denoted TP(i), FP(i), and FN(i), respectively.
Class-based metrics are defined as:

Precision(i) = ﬁ(%ﬂl)
L TPG)
Recall(i) = TP() + FNQ) 1)

2 x Precision(i) x Recall(i)
Precision(i) 4+ Recall(i)
1

Macro-F1 score (i) = @ . Z Fl1-score(i) 2)
ieC

Fl-score(i) =

For all metrics, we calculate 95% confidence intervals
by bootstrapping [44] from the test set to estimate the
variability of a model performance metric. The confidence
intervals are used to determine the statistical significance
of the difference in model performance. If the confidence
interval of a proposed model’s performance metric has no
overlap with the confidence interval of a baseline model’s
performance metric, then the two models are considered sta-
tistically significantly different. Algorithm 1 shows how to
derive confidence intervals using the bootstrap procedure.

Algorithm 1: Bootstrapping Procedure for Confidence
Interval
Input: y_true, y_pred, performance metric
Output: 95% confidence interval of the metric
1 bootstrap_samples = [];
2 fori=1to N do
R = random samples with replacement of size y;
y_true_bootstrap = y_true[ R];
y_pred_bootstrap = y_pred[R];
Fl-score(y_true_bootstrap,y_pred_bootstrap) ;
// micro or macro
7 Append score to bootstrap_samples;

N Ul e W

8 percentile(bootstrap_samples, 2.5);
9 percentile(bootstrap_samples, 97.5);

5 RESULTS

Average micro-F1 score of MT-CNN model

z:z:z "

0.820

0.810
0.800
0.790
0.780
LTR dataset-1 LTR dataset-2 KCR dataset-1 KCR dataset-2
Average macro-F1 score of MT-CNN model
0.630
0.600 l l [
0.570 l l l I l l [
0.540 [
0.510
0.480
0.450
0.420
LTR dataset-1 LTR dataset-2 KCR dataset-1 KCR dataset-2

m Single-registry Acyclic TL without PP Cyclic TL without PP Centralized

Fig. 4. Performance evaluation of different MT-CNN models without
privacy-preserving training as compared to single-registry training (with
95% confidence intervals).

We use the average micro- and macro-F1 scores across
all tasks to summarize the effectiveness different training
approaches. Detailed experimental results are available in
Tables 2 and 3 in Appendix B, which show the micro- and
macro-F1 scores of the MT-CNN using different training
approaches on each individual task — site, subsite, laterality,
behavior, histology, and grade.
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Fig. 5. Performance evaluation of different MT-CNN models with privacy-
preserving training as compared to single-registry and centralized train-
ing methods (with 95% confidence intervals).

In our first set of experiments, we evaluate the effective-
ness of collaboration methods among cancer registries with-
out any privacy-preserving considerations — these methods
include centralized learning, cyclic TL without privacy-
preserving, and acyclic TL without privacy-preserving. We
compare these training approaches with single-registry
learning in terms of micro- and macro-F1 scores across all
pathology report datasets — LTR dataset-1, LTR dataset-
2, KCR dataset-1, and KCR dataset-2 — as shown in Fig-
ure 4. Across all datasets, the single-registry model has
the lowest performance as compared to other approaches.
Specifically, the average micro- and macro-F1 scores are:
LTR dataset-1 (0.810, 0.525), LTR dataset-2 (0.809, 0.510),
KCR dataset-1 (0.800, 0.484), and KCR dataset-2 (0.809,
0.521). The inferior performance of the single registry model
highlights the importance of collaboration among cancer
registries by leveraging each other’s data. The centralized
model, which is concurrently trained on data from all
registries, achieves a statistically significantly better perfor-
mance across all datasets compared to the single-registry
model. The centralized model achieves average micro- and
macro-F1 scores on LTR dataset-1 (0.825, 0.584), LTR dataset-
2 (0.824, 0.572), KCR dataset-1 (0.826, 0.584), and KCR
dataset-2 (0.833, 0.601). The performance improvement is
particularly notable for the macro-F1 scores highlighting
the performance gains for the low prevalence classes as the
dataset size and variability in cancer reports increase from
single-registry data to multiple-registry data. The central-
ized model performance serves as the ideal case baseline for
the other models to reach while preserving patient privacy
and without data sharing. Acyclic transfer learning without
privacy-preserving significantly outperforms the baseline
single-registry model with average micro- and macro-F1
scores of: LTR dataset-1 (0.815, 0.560), LTR dataset-2 (0.814,
0.546), KCR dataset-1 (0.821, 0.564), and KCR dataset-2
(0.823, 0.589). This approach performs well for many tasks

and datasets compared to the centralized model with a
marginal drop in performance which is not statistically
significant. However, there is a significant degradation in
performance for LTR dataset-2 micro-F1 score. Tables 2
and 3 in Appendix B show the drop in performance for
some tasks, such as subsite in LTR dataset-1 and grade in
KCR dataset-2. Cyclic transfer learning without privacy-
preserving approach appears to mitigate this performance
drop, outperforming the acyclic transfer learning without
privacy-preserving approach across all datasets and infor-
mation extraction tasks with average micro- and macro-
F1 scores of: LTR dataset-1 (0.822, 0.580), LTR dataset-2
(0.823, 0.565), KCR dataset-1 (0.823, 0.576), and KCR dataset-
2 (0.829, 0.583). This approach also reaches the performance
level of the centralized model.

The second set of experiments compare the privacy-
preserving approaches — acyclic and cyclic transfer learning
with privacy-preserving and transfer learning with drop
embeddings — with the centralized and single-registry train-
ing. Figure 5 shows the performance of these training
approaches across all datasets. We also compare acyclic
and cyclic TL with and without the privacy-preserving
consideration. The most straightforward transfer learning
with PHI privacy-preserving approach is to drop the word
embeddings and share the remaining model parameters
(i.e., transfer learning with drop embeddings model). The
average micro- and macro-F1 scores of this approach are
very close to the single-registry model performance: LTR
dataset-1 (0.808, 0.530), LTR dataset-2 (0.808, 0.504), KCR
dataset-1 (0.804, 0.496), and KCR dataset-2 (0.803, 0.512).
This finding makes intuitive sense since the convolution
parameters are associated with the embeddings and trained
to capture features in the specific embeddings. Dropping
the embeddings from the model may help preserve privacy
but it does not transfer useful knowledge across cancer
registries and does not provide any performance gains over
the single-registry model, which is the main reason for
collaboration among registries. The acyclic transfer learning
with privacy-preserving model shows some benefits over
the single-registry training for some datasets, but not the
others. It achieves average micro- and macro-F1 scores on
LTR dataset-1 (0.812, 0.557), LTR dataset-2 (0.813, 0.545),
KCR dataset-1 (0.820, 0.563), and KCR dataset-2 (0.822,
0.592). On the other hand, the cyclic transfer learning with
privacy-preserving model outperforms the single-registry
model across all datasets. It achieves average micro- and
macro-F1 scores on LTR dataset-1 (0.821, 0.584), LTR dataset-
2 (0.822, 0.563), KCR dataset-1 (0.821, 0.572), and KCR
dataset-2 (0.827, 0.603). Finally, both the acyclic and cyclic
transfer learning with privacy-preserving models attain the
same performance as the acyclic and cyclic transfer learning
without privacy-preserving models, with micro- and macro-
F1 scores falling within the confidence intervals across all
tasks. Since the cyclic method is consistently better than the
acyclic one across all tasks, it is deemed as the best choice.
Compared to the centralized model, the cyclic transfer learn-
ing with privacy preserving is statistically indistinguishable
and in some cases even superior.
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6 DiscussiON

Our experiments show that data and model sharing ap-
proaches among cancer registries consistently improve the
performance of a MT-CNN NLP model for information
extraction from cancer pathology reports as compared to
the single-registry model. This finding highlights the im-
portance of collaboration across cancer registries to de-
velop a more efficient DL model for NLP tasks. Transfer
learning approaches, with and without privacy-preserving
significantly outperform the transfer learning with drop-
embeddings model. This is mainly due to the importance of
sharing the embedding layer parameters along with other
model parameters.

Figure 6 shows the validation loss convergence of
the transfer learning approaches with and without pri-
vacy preservation. Although the acyclic model distribution
yielded an increase in the speed of convergence of the
final model, the cyclic distribution yielded a lower final
loss value. The higher accuracy of cyclic model distribution
indicates the model is not overfitting on one cancer reg-
istry dataset. Instead, it is more generalizable through the
frequent model distribution among cancer registries. The
superior performance is consistent across all information
extraction tasks. Moreover, the cyclic model distribution —
with or without privacy preserving — achieves comparable
performance to the centralized model. A clear advantage
of cyclic over acyclic transfer learning is that the cyclic
approach is agnostic to the sequence in which a model is
trained on one registry before it is distributed to the next
one for fine-tuning. Based on additional experiments using
acyclic transfer learning with different registry sequences,
we observed variable model performance. Our study pre-
sented the performance of best acyclic transfer learning
model. The general trend was that the cyclic model distri-
bution is superior to the various acyclic transfer learning
models in terms of performance.

Cyclic Vs. Acyclic Model Loss

42 ’\\
Ny

3.7 = -~
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13 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61
epoch

——Cyclic TL without PP Acyclic TL without PP Cyclic TL with PP Acyclic TL with PP

Fig. 6. Validation loss of transfer learning with and without privacy-
preserving comparing cyclic and acyclic model distribution, where TL
is transfer learning and PP is privacy-preserving.

The experiments demonstrate that our proposed transfer
learning with privacy-preserving technique achieves com-
parable results to the conventional transfer learning without
privacy-preserving and centralized models. For some tasks,
although the performance metric is within the confidence
interval, the difference is noticeable. Upon evaluation of
the cases in which the difference is more than 1% we

observed it is due to labels with very few samples. Model
performance is not robust in low prevalence class labels, due
to the extreme class imbalance in cancer registry data. For
example, the ratio of low prevalent to high prevalent classes
ranges from 1:64,898 to 1:6,489 for histology task in the
LTR dataset. If we exclude the low prevalence class labels,
the difference is reduced significantly. For example, the
difference between the macro-F1 score of the cyclic transfer
learning with privacy-preserving model and the centralized
model on the histology task from LTR dataset-2 is 2.3%.
When excluding the classes with fewer than 10 samples, this
difference is reduced to 0.5%. The same trend is observed
when comparing the cyclic transfer learning with privacy-
preserving model to the cyclic transfer learning without
privacy-preserving model on the laterality task for the KCR
dataset-2. By excluding laterality_label = 3, which has
only one sample in the test set, the macro-F1 score difference
reduces from 7.9% to 0.7%.

Besides the advantage of developing a better performing
model by pulling the data from multiple cancer registries,
data sharing and transfer learning can also help tackle the
class imbalance problem. In cancer registries, this is a com-
mon challenge as some cancer types are highly prevalent
(e.g., breast, lung, prostate) while others are very rare (e.g.,
esophagus, gum, sinuses). Figure 7 shows the performance
of different training approaches on the histology task for
prevalent histologies with at least 100 samples and for
rare histologies with less than 100 samples. We selected
the histology extraction task for illustration purposes since
it has the highest number of class labels as well as the
highest class-imbalance ratio. Please note though that the
same trend is observed across all other information ex-
traction tasks. As expected, all models perform relatively
well on the more prevalent classes. However, on the low
prevalence classes, the difference in performance is much
clearer between the data sharing model (centralized), trans-
fer learning models (acyclic transfer learning with and with-
out privacy-preserving, cyclic transfer learning with and
without privacy-preserving) and the non-transfer learning
(single registry) or limited transfer learning models (drop-
embeddings). Among the transfer learning approaches,
cyclic learning with or without privacy-preserving achieves
a performance comparable to the centralized model over-
coming the challenge of imbalanced training data.

7 CONCLUSION

In this paper, we propose a privacy-preserving technique to
share a DL NLP model across cancer registries, excluding
any data that may compromise patient privacy. We demon-
strate the value of our technique with a MT-CNN model
for abstracting cancer characteristics from cancer pathology
reports, a time-consuming manual activity across cancer
registries. In addition, we study different model distribu-
tion and data sharing approaches with cancer registries.
The experiments demonstrate that model distribution and
data sharing approaches achieve the highest micro- and
macro-F1 scores across all information extraction tasks, as
compared to the single-registry model. The performance
improvement is especially noticeable for macro-F1 scores,
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Fig. 7. Average F1-score of extracting the most prevalent classes (left) and least prevalent classes (right) histologies from cancer pathology reports
using different training approaches, where TL is transfer learning and PP is privacy-preserving.

suggesting that these approaches do a better job classi-
fying low prevalent cases which is an important advan-
tage. Finally, our proposed transfer learning with privacy-
preserving models achieve a comparable performance as the
conventional transfer learning approach without privacy-
preserving and the centralized model. This opens the pos-
sibility of sharing knowledge through NLP models across
cancer registries without violating data privacy rules.
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APPENDIX A
DATASET DISTRIBUTIONS
Figures 8 and 9 show the number of occurrences per label

of all six cancer characteristics in LTR and KCR datasets,
respectively.

APPENDIX B

RESULTS

Tables 2 and 3 illustrate the evaluation performance in terms
of micro- and macro-F1 scores of different MT-CNN learning
approaches on site, subsite, laterality, behavior, histology,
and grade.
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Fig. 8. Histograms of the number of occurrences per label of LTR dataset for each of the six classification tasks, arranged from most common to
least common. For the subsite, and histology tasks, we only show the 50 most common labels. Detailed information about each label can be found
online in the SEER coding manual at https:// seer.cancer.gov/tools/codingmanuals/.
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Fig. 9. Histograms of the number of occurrences per label of KCR dataset for each of the six classification tasks, arranged from most common to
least common. For the subsite, and histology tasks, we only show the 50 most common labels. Detailed information about each label can be found
online in the SEER coding manual at https:// seer.cancer.gov/tools/codingmanuals/.
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TABLE 2
Evaluation performance of different models on the site, subsite, and laterality extraction tasks (with 95% confidence intervals).

LTR dataset-1 LTR dataset-2 KCR dataset-1 KCR dataset-2
Model Micro-F Macro-F Micro-F Macro-F Micro-F Macro-F Micro-F Macro-F
site extraction task
Single-registry 0.904 0.597 0.909 0.604 0.901 0.579 0.910 0.601
(0.901,0.908) (0.584,0.621)  (0.905,0.912) (0.583,0.619) (0.896,0.906) (0.560,0.608) (0.906,0.914) (0.581,0.626)
Transfer learning 0.904 0.591 0.906 0.594 0.906 0.618 0.905 0.602
with drop-embeddings (0.900,0.907) (0.579,0.614) (0.903,0.910) (0.576,0.612)  (0.902,0.911) (0.593,0.644) (0.900,0.909) (0.576,0.628)
Acyclic transfer learning 0.910 0.636 0.912 0.630 0.915 0.665 0.917 0.664
without privacy-preserving  (0.906,0.913) (0.621,0.658) (0.909,0.916) (0.610,0.649) (0.911,0.920) (0.640,0.685) (0.913,0.921) (0.638,0.689)
Cyclic transfer learning 0.914 0.669 0917 0.661 0.918 0.685 0.919 0.679
without privacy-preserving  (0.910,0.917) (0.653,0.691) (0.913,0.920) (0.640,0.677) (0.914,0.923) (0.660,0.702) (0.915,0.923) (0.654,0.705)
Acyclic transfer learning 0.911 0.640 0.912 0.621 0.915 0.668 0.919 0.661
with privacy-preserving (0.907,0.915) (0.622,0.663) (0.908,0.915) (0.600,0.640) (0.910,0.919) (0.644,0.688) (0.914,0.923) (0.636,0.687)
Cyclic transfer learning 0.914 0.637 0.918 0.655 0.918 0.674 0.919 0.675
with privacy-preserving (0.910,0917)  (0.622,0.659) (0.915,0.921) (0.638,0.670) (0.913,0.922) (0.650,0.697) (0.914,0.923) (0.647,0.693)
0.915 0.664 0.916 0.666 0.919 0.698 0.923 0.671

Centralized
(0.912,0.918) (0.647,0.687) (0.912,0.919) (0.644,0.680) (0.915,0.923) (0.672,0.717) (0.918,0.927) (0.650,0.702)

subsite extraction task

Single-registry 0.605 0.287 0.599 0.279 0.585 0.264 0.598 0.264
(0.600,0.611)  (0.281,0.304) (0.593,0.605) (0.273,0.298) (0.578,0.593) (0.259,0.288)  (0.589,0.606) (0.261,0.287)

Transfer learning 0.600 0.283 0.600 0.300 0.584 0.276 0.590 0.280

with drop-embeddings (0.594,0.606) (0.276,0.299)  (0.594,0.606) (0.290,0.317) (0.576,0.592) (0.272,0.301) (0.582,0.598) (0.273,0.304)

Acyclic transfer learning 0.623 0.326 0.621 0.323 0.635 0.343 0.626 0.343

without privacy-preserving  (0.617,0.629) (0.317,0.342) (0.615,0.627) (0.314,0.340) (0.627,0.642) (0.336,0.369) (0.618,0.634) (0.338,0.370)

Cyclic transfer learning 0.636 0.344 0.633 0.340 0.636 0.350 0.644 0.375

without privacy-preserving  (0.630,0.642) (0.334,0.360) (0.627,0.639)  (0.332,0.360) (0.629,0.644) (0.345,0.379) (0.637,0.651)  (0.364,0.400)

Acyclic transfer learning 0.614 0.324 0.616 0.318 0.621 0.331 0.619 0.350

with privacy-preserving (0.608,0.620)  (0.620,0.339) (0.610,0.622) (0.310,0.336) (0.613,0.629) (0.325,0.357) (0.611,0.626) (0.342,0.375)

Cyclic transfer learning 0.631 0.338 0.628 0.345 0.626 0.356 0.635 0.377

with privacy-preserving (0.625,0.637)  (0.329,0.355)  (0.622,0.634) (0.338,0.367) (0.618,0.634) (0.349,0.381) (0.627,0.642) (0.365,0.400)
0.640 0.362 0.634 0.359 0.638 0.357 0.643 0.371

Centralized
(0.634,0.646)  (0.351,0.380) (0.629,0.640) (0.350,0.380) (0.631,0.646) (0.350,0.384) (0.635,0.650) (0.361,0.397)

laterality extraction task

Single-registry 0.902 0.484 0.898 0.500 0.890 0.461 0.904 0.611
(0.899,0.906)  (0.467,0.500) (0.894,0.901) (0.470,0.531) (0.885,0.895) (0.432,0.488) (0.899,0.908) (0.581,0.639)

Transfer learning 0.900 0.499 0.900 0.463 0.896 0.445 0.904 0.607

with drop-embeddings (0.896,0.903)  (0.479,0.517)  (0.897,0.904) (0.442,0.484) (0.891,0.901) (0.417,0.473) (0.899,0.908) (0.576,0.633)

Acyclic transfer learning 0.901 0.498 0.901 0.495 0.898 0.500 0.909 0.651

without privacy-preserving  (0.897,0.905) (0.480,0.515) (0.897,0.905) (0.473,0.514) (0.893,0.903) (0.472,0.525) (0.905,0.914) (0.622,0.677)

Cyclic transfer learning 0.907 0.525 0.908 0.515 0.902 0.486 0.914 0.539

without privacy-preserving  (0.904,0.910) (0.497,0.553) (0.904,0.911) (0.489,0.543) (0.897,0.907) (0.461,0.508) (0.910,0.919) (0.515,0.640)

Acyclic transfer learning 0.899 0.480 0.903 0.488 0.902 0.497 0.908 0.619

with privacy-preserving (0.896,0.903)  (0.461,0.499) (0.899,0.906) (0.467,0.508) (0.897,0.907) (0.469,0.523) (0.903,0.913) (0.590,0.647)

Cyclic transfer learning 0.904 0.534 0.903 0.505 0.899 0.488 0.910 0.618

with privacy-preserving (0.901,0.908)  (0.506,0.563) (0.900,0.907) (0.480,0.534) (0.894,0.904) (0.463,0.511) (0.906,0.915) (0.590,0.643)
0.906 0.508 0.907 0.519 0.900 0.504 0.914 0.633

Centralized
(0.902,0.909) (0.491,0.525) (0.903,0.911) (0.494,0.549) (0.895,0.905) (0.479,0.527) (0.910,0.919) (0.606,0.658)
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TABLE 3
Evaluation performance of different models on the behavior, histology, and grade extraction tasks (with 95% confidence intervals).

LTR dataset-1 LTR dataset-2 KCR dataset-1 KCR dataset-2
Model Micro-F Macro-F Micro-F Macro-F Micro-F Macro-F Micro-F Macro-F
behavior extraction task
Single-registry 0.973 0.798 0.974 0.781 0.963 0.790 0.968 0.791
(0.971,0.975) (0.750,0.842) (0.973,0.976) (0.738,0.818) (0.959,0.966) (0.741,0.829) (0.965,0.971) (0.745,0.831)
Transfer learning 0.973 0.819 0.971 0.763 0.966 0.835 0.960 0.721
with drop-embeddings (0.971,0.975)  (0.775,0.859)  (0.969,0.973) (0.724,0.800) (0.963,0.969) (0.792,0.868) (0.957,0.963) (0.673,0.766)
Acyclic transfer learning 0.974 0.857 0.974 0.857 0.970 0.839 0.970 0.872
without privacy-preserving  (0.972,0.976) (0.817,0.891) (0.973,0.976) (0.822,0.887) (0.968,0.973) (0.800,0.874) (0.967,0.972) (0.833,0.902)
Cyclic transfer learning 0.976 0.864 0.976 0.861 0.970 0.851 0.970 0.864
without privacy-preserving  (0.974,0.978) (0.823,0.896) (0.974,0.978) (0.829,0.890) (0.968,0.973) (0.815,0.881) (0.968,0.973) (0.826,0.896)
Acyclic transfer learning 0.976 0.863 0.976 0.877 0.972 0.846 0.972 0.892
with privacy-preserving (0.974,0.977) (0.824,0.895) (0.974,0.978) (0.846,0.902) (0.969,0.975) (0.806,0.878) (0.969,0.975) (0.857,0.919)
Cyclic transfer learning 0.977 0.873 0.979 0.873 0.975 0.873 0.976 0.907
with privacy-preserving (0.976,0.979)  (0.833,0.905) (0.977,0.981) (0.841,0.902) (0.972,0.977) (0.837,0.902) (0.973,0.978) (0.875,0.933)
0.979 0.852 0.978 0.877 0.974 0.881 0.973 0.865

Centralized
(0.977,0.980) (0.805,0.888) (0.976,0.980) (0.844,0.907) (0.971,0.976) (0.849,0.911) (0.970,0.975) (0.820,0.900)

histology extraction task

Single-registry 0.748 0.266 0.751 0.278 0.729 0.216 0.730 0.230
(0.743,0.753)  (0.268,0.292)  (0.745,0.756)  (0.276,0.302) (0.722,0.736) (0.218,0.245) (0.723,0.737)  (0.226,0.254)

Transfer learning 0.752 0.275 0.751 0.288 0.731 0.226 0.729 0.259

with drop-embeddings (0.746,0.757)  (0.276,0.301) (0.745,0.756) (0.286,0.312) (0.724,0.738)  (0.227,0.253) (0.722,0.736)  (0.252,0.283)

Acyclic transfer learning 0.762 0.323 0.757 0.345 0.752 0.321 0.761 0.347

without privacy-preserving  (0.757,0.767)  (0.322,0.351) (0.752,0.763) (0.342,0.372) (0.745,0.759) (0.321,0.352) (0.754,0.768) (0.346,0.380)

Cyclic transfer learning 0.767 0.345 0.768 0.371 0.756 0.377 0.764 0.377

without privacy-preserving  (0.762,0.772)  (0.344,0.374)  (0.762,0.773)  (0.366,0.398) (0.749,0.763) (0.367,0.406) (0.757,0.771)  (0.369,0.405)

Acyclic transfer learning 0.758 0.322 0.755 0.342 0.751 0.325 0.761 0.377

with privacy-preserving (0.753,0.763)  (0.323,0.351) (0.750,0.761) (0.337,0.367) (0.744,0.758) (0.322,0.358) (0.754,0.767) (0.371,0.407)

Cyclic transfer learning 0.769 0.347 0.769 0.354 0.755 0.344 0.763 0.372

with privacy-preserving (0.764,0.774)  (0.346,0.375) (0.764,0.774) (0.349,0.383) (0.748,0.762) (0.340,0.375) (0.757,0.770)  (0.365,0.403)
0.771 0.347 0.771 0.377 0.765 0.359 0.774 0.395

Centralized
(0.766,0.776)  (0.346,0.378)  (0.765,0.776)  (0.371,0.402) (0.759,0.772) (0.352,0.388) (0.767,0.780) (0.387,0.426)

grade extraction task

Single-registry 0.726 0.717 0.725 0.618 0.735 0.595 0.747 0.630
(0.721,0.731)  (0.627,0.765)  (0.719,0.730)  (0.608,0.628) (0.728,0.742) (0.575,0.682) (0.740,0.754) (0.612,0.650)

Transfer learning 0.719 0.710 0.722 0.616 0.739 0.579 0.732 0.601

with drop-embeddings (0.713,0.724)  (0.622,0.758)  (0.716,0.727)  (0.605,0.626) (0.733,0.746)  (0.556,0.663) (0.725,0.739)  (0.580,0.623)

Acyclic transfer learning 0.721 0.722 0.718 0.626 0.757 0.714 0.758 0.655

without privacy-preserving  (0.715,0.727)  (0.633,0.768)  (0.713,0.724)  (0.616,0.635)  (0.750,0.764) (0.640,0.781)  (0.750,0.764) (0.641,0.667)

Cyclic transfer learning 0.735 0.729 0.739 0.640 0.755 0.707 0.762 0.666

without privacy-preserving  (0.729,0.740) (0.641,0.777) (0.734,0.745)  (0.630,0.649) (0.748,0.762) (0.633,0.774) (0.755,0.769) (0.653,0.679)

Acyclic transfer learning 0.716 0.714 0.717 0.624 0.760 0.710 0.753 0.652

with privacy-preserving (0.711,0.722)  (0.625,0.761) (0.711,0.722)  (0.615,0.634) (0.753,0.766) (0.635,0.775) (0.746,0.760)  (0.638,0.670)

Cyclic transfer learning 0.732 0.772 0.736 0.644 0.751 0.697 0.761 0.667

with privacy-preserving (0.727,0.738)  (0.735,0.779)  (0.731,0.741)  (0.635,0.653) (0.745,0.758)  (0.622,0.763) (0.754,0.767)  (0.654,0.680)
0.737 0.772 0.738 0.637 0.762 0.707 0.771 0.670

Centralized
(0.732,0.742)  (0.734,0.780) (0.733,0.744) (0.627,0.646) (0.755,0.769) (0.632,0.775) (0.765,0.777)  (0.657,0.685)
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