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Abstract

In this note we use the theory of theta functions to discover formulas for the number of representations of N as a sum
of three squares and for the number of representations of N as a sum of three triangular numbers. We discover various
new relations between these functions and short, motivated proofs of well known formulas of related combinatorial
and number-theoretic interest.

1 Introduction

There has been lots of work on the problem of writing a non negative integer as a sum of
squares. For references to the literature and background information we refer to the book
[G] by E. Grosswald and the article [M] by S. Milne. One of the facts that one learns from
these texts is that the problem is much harder when we wish information and the number
of summands is an odd integer. In this note we consider the case of sums of 3 squares and
develop some formulas for this case.

Let Sk(n) denote the number of ways one can write n as a sum of k squares or the number
of solutions to the diophantine equation

x2
1 + x2

2 + · · ·+ x2
k = n.

It is well known that for k = 2, 4 Jacobi gave a formula for this number in terms of the
divisors of n. Jacobi’s formulae are

S2(n) = 4(d1(n)− d3(n))

S4(n) = 8σ′(n)

where di(n) is the number of divisors of n congruent to i mod 4, and σ′(n) is the sum of the
divisors of n not congruent to 0 mod 4. It follows from Jacobi’s formula that

S2(4k + 3) = 0, S2(2k) = S2(k).

These facts, of course, do not require Jacobi’s formula and can be proven in a simple way
without it. If one defines Tk(n) to be the number of ways one can write n as a sum of k
triangular numbers or the number of solutions of the diophantine equation

x2
1 + x1

2
+

x2
2 + x2

2
+ · · ·+ x2

k + xk

2
= n

an additional easy fact that can be shown is that

T2(n) = S2(4n + 1).
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Definition 1. The theta function with characteristic

[
ε
ε′

]
∈ R2,

ζ ∈ C, τ ∈ H is defined by

θ

[
ε
ε′

]
(ζ, τ) =

∞∑
n=−∞

exp(2πi[
1

2
(n +

ε

2
)2τ + (n +

ε

2
)(ζ +

ε′

2
)])

where H is the upper half plane and C is the complex plane.

The theta function satisfies many identities among them the following

θ2

[
0
0

]
(0, τ) = θ2

[
0
0

]
(0, 2τ) + θ2

[
1
0

]
(0, 2τ) (1)

θ2

[
0
1

]
(0, τ) = θ2

[
0
0

]
(0, 2τ)− θ2

[
1
0

]
(0, 2τ) (2)

θ2

[
1
0

]
(0, τ) = 2θ

[
0
0

]
(0, 2τ)θ

[
1
0

]
(0, 2τ) (3)

The above three identities are enough for example to give the well known Jacobi quartic
identity

θ4

[
0
0

]
(0, τ) = θ4

[
0
1

]
(0, τ) + θ4

[
1
0

]
(0, τ). (4)

In terms of the variable x = exp(πiτ) we have

θ2

[
0
0

]
(0, τ) =

∞∑
n=0

S2(n)xn, θ2

[
1
0

]
(0, τ) = x

1
4

∞∑
n=0

T2(n)x2n,

so that (1) above translates to the identity

∞∑
n=0

S2(n)xn =
∞∑

n=0

S2(n)x2n +
∞∑

n=0

T2(n)x4n+1.

The three properties we recorded above which are satisfied by S2(n) are all consequences of
this quite elementary theta identity.

The purpose of this note is to find theta identities which will do for the function S3(n) what
equation (1) did for S2(n). In addition we shall obtain some interesting formulas for S3(n)
which will depend on the congruence class of n mod 8. A byproduct of this investigation is
the following.

It is well known that not every positive integer can be written as a sum of 3 squares. In
fact it is known that those positive integers congruent to 7 mod 8 are ”not” so expressible
and that these are the only ones not so expressible. On the other hand it is also known that
every positive integer is expressilble as the sum of three triangular numbers. We recall that
a triangular number is a number of the form k2+k

2
. Hence 3 squares do not suffice and 3

triangulars do. Here we reprove a result which seems to have been forgotten [L],[R].

Theorem 1. Every positive integer can be written as the sum of two squares plus one trian-
gular number and every positive integer can be written as the sum of two triangular numbers
plus one square.
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2 Theta constant identities

In this section we record some theta constant identities which we will need in the sequel.
A reference for this section is the book [FK] where the reader can find the proofs of the
statements not proved here. A rather simple identity is the following

θ

[
ε
ε′

]
(ζ, τ) =

k−1∑
l=0

θ

[
ε+2l

k
kε′

]
(kζ, k2τ). (5)

There are several simple consequences of this general identity. We list 4 instances of it
corresponding to k = 2, 3.

θ

[
0
0

]
(0, τ) = θ

[
0
0

]
(0, 4τ) + θ

[
1
0

]
(0, 4τ) (6)

θ

[
0
1

]
(0, τ) = θ

[
0
0

]
(0, 4τ)− θ

[
1
0

]
(0, 4τ) (7)

θ

[
1
0

]
(0, τ) = 2θ

[
1
3
0

]
(0, 9τ) + θ

[
1
0

]
(0, 9τ). (8)

In the above we have used the fact that θ

[
1
3
0

]
(0, 9τ) = θ

[
5
3
0

]
(0, 9τ). Our last instance

is the identity

θ

[
0
0

]
(0, τ) = 2θ

[
2
3
0

]
(0, 9τ) + θ

[
0
0

]
(0, 9τ). (9)

In the last identity we have used θ

[
4
3
0

]
(0, 9τ) = θ

[
2
3
0

]
(0, 9τ). We now begin to use these

elementary identities to prove

Lemma 1. For all τ in the upper half plane it is true that

θ3

[
0
0

]
(0, τ) + θ3

[
0
1

]
(0, τ) =

2θ3

[
0
0

]
(0, 4τ) + 6θ

[
0
0

]
(0, 4τ)θ2

[
1
0

]
(0, 4τ)

θ3

[
0
0

]
(0, τ)− θ3

[
0
1

]
(0, τ) =

2θ3

[
1
0

]
(0, 4τ) + 6θ2

[
0
0

]
(0, 4τ)θ

[
1
0

]
(0, 4τ)

Proof. Cubing equation (6), gives

θ3

[
0
0

]
(0, τ) = θ3

[
0
0

]
(0, 4τ) + 3θ2

[
0
0

]
(0, 4τ)θ

[
1
0

]
(0, 4τ)+ (10)

3θ2

[
1
0

]
(0, 4τ)θ

[
0
0

]
(0, 4τ) + θ3

[
1
0

]
(0, 4τ).
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Cubing equation (7) gives a similar expression only with alternating signs and the equa-
tions of the lemma are obtained by adding and subtracting the expressions obtained by the
cubing process.

We now make the elementary observation that in the variable x = exp(πiτ), the left hand
sides of the identities in the lemma are simply

2
∞∑

n=0

S3(2n)x2n, 2
∞∑

n=0

S3(2n + 1)x2n+1.

This follows from the elementary fact that in the variable x, if we set θ

[
0
0

]
(0, τ) = f(x),

then θ

[
0
1

]
(0, τ) = f(−x). With this in hand we have

Corollary 1. The function S3(n) satisfies the following equations.

S3(4k) = S3(k), S3(8k + 7) = 0, S3(8k + 3) = T3(k)

Proof. Writing the equations of the lemma in the variable x we have

2
∞∑

n=0

S3(2n)x2n = 2
∞∑

n=0

S3(n)x4n + 6x2

∞∑
n=−∞

x4n2
∞∑

n=0

T2(n)x8n (11)

2
∞∑

n=0

S3(2n + 1)x2n+1 = 2x3

∞∑
n=0

T3(n)x8n + 6x
∞∑

n=−∞

x8n2+n
2

∞∑
n=0

S2(n)x4n. (12)

The first statement of the corollary follows from equation (11), while the second and third
statements follow from equation (12).

Remark 1. The results of the corollary are well known and not hard to prove. Our objective
was getting them all as a consequence of a theta identity. We now will show that once we
have the identity things that we may not have thought of before become obvious and lend
themselves to a natural process of discovery. The third statement for example which is due
to Gauss and which does have a very elementary proof could have been missed by a lesser
person. Here it calls attention to itself.

3 Sums of triangulars

The above was deduced from the identity which followed from equation (6). Let us now see
what we can get from equation (8). Cubing equation (8) we have

θ3

[
1
0

]
(0, τ) = 8θ3

[
1
3
0

]
(0, 9τ) + 12θ2

[
1
3
0

]
(0, 9τ)θ

[
1
0

]
(0, 9τ)+ (13)

6θ

[
1
3
0

]
(0, 9τ)θ2

[
1
0

]
(0, 9τ) + θ3

[
1
0

]
(0, 9τ).
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When we write equation (13) in the variable x = exp(πiτ), make the obvious simplifications

and replace x by x
1
2 , we obtain

(
∞∑

n=−∞

x
n2+n

2 )3 = 8(
∞∑

n=−∞

x3 3n2+n
2 )3 + 12x(

∞∑
n=−∞

x3 3n2+n
2 )2

∞∑
n=−∞

x9n2+n
2 + (14)

6x2

∞∑
n=−∞

x3 3n2+n
2 (

∞∑
n=−∞

x9n2+n
2 )2 + x3(

∞∑
n=−∞

x9n2+n
2 )3.

Definition 2. Let Pk(n) denote the number of solutions of the diophantine equation

3x2
1 + x1

2
+ · · ·+ 3x2

k + xk

2
= n.

Clearly Pk(n) is the number of ways n can be written as a sum of k generalized pentagonal

numbers. We recall that a pentagonal number is a number of the form 3k2−k
2

with k non
negative. We now can write equation (14) as

∞∑
n=0

T3(n)xn = 8
∞∑

n=0

P3(n)x3n + 12x
∞∑

n=0

P2(n)x3n

∞∑
n=−∞

x9n2+n
2 + (15)

6x2

∞∑
n=0

T2(n)x9n

∞∑
n=−∞

x3 3n2+n
2 + x3

∞∑
n=0

T3(n)x9n.

As a consequence of equation (15) we obtain

Corollary 2. For all integers k we have

T3(3k) = 8P3(k) + T3(
k − 1

3
)

where Tk is defined to be 0 whenever the variable is not a non negative integer. Hence
T3(3k) = 8P3(k) unless k ≡ 1 mod 3.

Remark 2. The result of the corollary is of course immediate from equation (15). The result
is also proveable without the identity. It is really a consequence of the fact that a number
congruent to 0 mod 3 can be written as the sum of 3 triangular numbers in two ways. Either
as a sum of triangular numbers each one congruent to 0 mod three or as a sum of 3 triangular
numbers each congruent to 1 mod 3. We leave the details to the reader. Our point once
again is that using theta identities gives the identity automatically.

Continuing in this vein we also from equation (15) immediately obtain

Corollary 3. For all integers k we have

T3(3k + 2) = 6
∑
l∈Z

T2(
k − 3l2+l

2

3
)

and in particular T3(3k + 2) is congruent to 0 mod 24. Every non negative integer can be
written as a sum of 2 numbers congruent to 0 mod 3 and a generalized pentagonal number
where the numbers congruent to 0 mod 3 are 3 times a triangular number.
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Proof. The exponents in the power series given by the left hand side of equation (15) which

are congruent to 2 mod 3 all come from the expression 6x2
∑∞

n=−∞ x3 3n2+n
2

∑∞
n=0 T2(n)x9n.

This can be written as 6x2
∑∞

n=−∞ x3 3n2+n
2

∑∞
n=0 T2(n/9)xn and the Cauchy product of these

power series gives the coefficient of 3N + 2 as 6
∑

k∈Z T2(
3N−3 3k2+k

2

9
) = 6

∑
k∈Z T2(

N− 3k2+k
2

3
)

. This is the first statement in the corollary. The second statement follows since T2(n) is
always congruent to 0 mod 4.

The last statement follows from the fact that every non negative integer is expressible as
a sum of 3 triangular numbers. This means that T3(3N + 2) is always positive. This means

that for at least one k, T2(
N− 3k2+k

2

3
) is positive. This of course says that for this k we have

N− 3k2+k
2

3
= t1 + t2 where ti are triangular numbers. Hence we have N = 3t1 + 3t2 + 3k2+k

2
which is the final statement.

4 Sums of squares

In this section we continue our investigations of the function S3(n). We remind the reader
that it is well known that every number is a sum of 3 triangulars but not a sum of 3 squares.
We shall show however that 2 squares and a triangular suffice and that 2 triangulars and a
square also suffice.

We return to equation (10) and observe that by using equation (6) it can be rewritten as

θ3

[
0
0

]
(0, τ) = θ3

[
0
0

]
(0, 4τ) + θ3

[
1
0

]
(0, 4τ)+ (16)

3θ

[
0
0

]
(0, 4τ)θ

[
1
0

]
(0, 4τ)θ

[
0
0

]
(0, τ).

Using now equation (3) we can rewrite equation (16) as

θ3

[
0
0

]
(0, τ) = θ3

[
0
0

]
(0, 4τ) + θ3

[
1
0

]
(0, 4τ)+ (17)

3

2
θ

[
0
0

]
(0, τ)θ2

[
1
0

]
(0, 2τ).

This is our main identity in this paper from which the rest of the results will flow. As is
usual by now, replacing τ with the variable x = exp(πiτ) equation (17) becomes

∞∑
n=0

S3(n)xn =
∞∑

n=0

S3(n)x4n + x3

∞∑
n=0

T3(n)x8n+ (18)

3

2
x

∞∑
n=−∞

xn2
∞∑

n=0

T2(n)x4n.

We notice immediately that equation (18) repeats the information we already knew namely
that

S3(4n) = S3(n), S3(8n + 7) = 0, S3(8n + 3) = T3(n)
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but there is more imbedded in the remaining term

3

2
x

∞∑
n=−∞

xn2
∞∑

n=0

T2(n)x4n.

In order to extract the information we rewrite the last term in equation (18) in the following
way.

3

2
x(1 + 2

∞∑
n=1

x(2n)2 + 2
∞∑

n=0

x(2n+1)2)(
∞∑

n=0

T2(n)x4n)

This has given us a sum

3

2
x(1 +

∞∑
n=1

2x(2n)2)(
∞∑

n=0

T2(n/4)xn) + 3/2x(
∞∑

n=0

2x(2n+1)2)(
∞∑

n=0

T2(n/4)xn).

In the above the first power series contains all the exponents congruent to 1 mod 4 while the
second contains all the exponents congruent to 2 mod 4.

Theorem 2.

S3(4N + 1) =
3

2
(
∞∑

k=1

2T2(N − k2) + T2(N))

S3(4N + 2) = 3(
∞∑

k=0

T2(N − (k2 + k))

so that S3(4N + 1) is congruent to 0 mod 6 and S3(4N + 2) is congruent to 0 mod 12.
Moreover, every non negative integer is expressible as a sum of 2 triangular numbers plus a
square.

Proof. The first two statements follow from computing the Cauchy product and obtaining

S3(4N + 1) = 3/2(
∞∑

k=1

2T2(
4N − 4k2

4
) + T2(N))

which is clearly the same as the first statement. Similarly the second statement is obtained
by writing the Cauchy product

S3(4N + 2) = 3/2(
∞∑

k=0

2T2(
4N − (4k2 + 4k)

4
).

Since T2(n) is congruent to 0 mod 4 we get also the congruence statements. Finally since
S3(4N + 1) is positive it means the right hand side is positive. This means that at least for

one k we have T2(N−k2) is positive. This of course says that for this k, N−k2 = x2+x
2

+ y2+y
2

which is the last statement.

Remark 3. Note that the last statement of the theorem is already half of Theorem 1.

We now return to equation (12) and rewrite it as

∞∑
n=0

S3(2n + 1)x2n+1 = x3

∞∑
n=0

T3(n)x8n + 6x
∞∑

n=0

S2(n/4)xn

∞∑
n=0

x8n2+n
2

and conclude from this that
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Theorem 3. For all non negative k we have

S3(4N + 1) = 6
∞∑

k=0

S2(
4N − 4(k2 + k)

4
) = 6

∞∑
k=0

S2(N − (k2 + k)).

In particular we therefore have

S3(8N + 1) = 6
∞∑

k=0

S2(N − k2 + k

2
).

Proof. The proof of the first statement is just computing the coefficient of 4N + 1 in the
Cauchy product of the power series for the rewritten equation (12). The second statement
follows by letting M=2N in the first statement so that

S3(8N + 1) = 6
∞∑

k=0

S2(2M − (k2 + k)) = 6
∞∑

k=0

S2(M − k2 + k

2
),

the last equality being a consequence of the fact that S2(2M) = S2(M).

Remark 4. We note that the last statement is the proof of the second half of Theorem 1 so
that we have now completed the proof of that Theorem.

5 Some further identities

In this section we show how to obtain some further identities involving S3(N). We shall show
how equation(9) leads to an identity connecting S3(N) with L3(N) where L3(N) is defined
as

Definition 3. Lk(N) will denote the number of solutions to the diophantine equation N =
3x1(3x1 + 2) + · · ·+ 3xk(3xk + 2).

Theorem 4. If N is not congruent to 0 mod 3 then

S3(3N) = 8L3(3(N − 1)).

If N is congruent to 0 mod 3 then

S3(3N) = 8L3(3(N − 1)) + S3(N/3).

Proof. We use equation (9) to obtain

θ3

[
0
0

]
(0, τ) = 8θ3

[
2
3
0

]
(0, 9τ) + 12θ2

[
2
3
0

]
(0, 9τ)θ

[
0
0

]
(0, 9τ)+

6θ

[
2
3
0

]
(0, 9τ)θ2

[
0
0

]
(0, 9τ) + θ3

[
0
0

]
(0, 9τ).

In the variable x = exp(πiτ) we have

θ

[
2
3
0

]
(0, 9τ) = x

∞∑
n=−∞

x9n2+6n
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so that our identity above can be rewritten as

∞∑
n=−∞

S3(n)xn = 8
∞∑

n=0

L3(3n)x3n+3 +
∞∑

n=0

S3(n)x9n+

12x2

n=∞∑
n=0

L2(3n)x3n

∞∑
n=−∞

x9n2

+ 6x
∞∑

n=−∞

x9n2+6n

∞∑
n=0

S2(n)x9n.

The proof of the Theorem is now immediate from the the first two terms in the above
identity.

We could of course also compute S3(3n + 1), S3(3n + 2) from the above identity and
congruence relations for them but leave this to the reader.

6 Averaging

Our objective was to show how from a suitable theta constant identity we could obtain
information about S3(N). The idea was to start with zero knowlege and see what we would
get. We obtained Corollaries 1-3 and Theorems 2 and 3. We however do have some advance
information and know that the function S3(N) should in some way depend on the congruence
class of N mod 8. We could therefore, had we wished, adopted a more direct approach which
we now briefly describe.

For m a positive integer, 1 ≤ m ≤ 7 consider the average

7∑
l=0

exp[(πiτ)(m +
l

4
)]θ3

[
0
0

]
(0, τ +

l

4
).

Using the elementary fact, see [FK], that

θ

[
0
0

]
(0, τ + 1) = θ

[
0
1

]
(0, τ)

the above average can be rewritten as

exp(πimτ)
3∑

l=0

exp(
πilm

4
)(θ3

[
0
0

]
(0, τ +

l

4
) + (−1)mθ3

[
0
1

]
(0, τ +

l

4
)).

We now use the identity we derived in Lemma 1.
Assuming m is odd we get

exp((πimτ)
3∑

l=0

exp(
πilm

4
)(2θ3

[
1
0

]
(0, 4τ + l) + 6θ2

[
0
0

]
(04τ + l)θ

[
1
0

]
(0, 4τ + l)),

while if m is even we obtain

exp((πimτ)
3∑

l=0

exp(
πilm

4
)(2θ3

[
0
0

]
(0, 4τ + l) + 6θ2

[
1
0

]
(0, 4τ + l)θ

[
0
0

]
(0, 4τ + l).
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We now require another elementary fact and that is that

θ

[
1
0

]
(0, τ + 1) = exp(

πi

4
)θ

[
1
0

]
(0, τ).

We now note that θ

[
0
0

]
(0, 4τ + l) is either equal to θ

[
0
0

]
(0, 4τ) when l is even or equal

to θ

[
0
1

]
(0, 4τ) when l is odd. We thus see that the average we have can be written for m

odd as

exp(πimτ)[2θ3

[
1
0

]
(0, 4τ)

3∑
l=0

exp(
πil(m + 3)

4
+

6θ2

[
0
0

]
(0, 4τ)θ

[
1
0

]
(0, 4τ)(1 + exp(

πi(m + 1)

2
))+

6θ2

[
0
1

]
(0, 4τ)θ

[
1
0

]
(0, 4τ)(exp(

πi(m + 1)

4
) + exp(

3πi(m + 1)

4
)].

A little thought however will show the reader that what we are computing in this average

in the variable x = exp(πiτ) is simply the power series expansion of θ3

[
0
0

]
(0, τ) where

only the terms with exponent congruent to 0 mod 8 appear. In other words the result of
this averaging process yields

8
∞∑

n=0

S3(8n + 8−m)x8n+8.

As a consequence of the above computation we obtain

Lemma 2. The result of the averaging process is as follows:
For m=1 we obtain the identically zero power series.
For m=3 we obtain

12exp(3πiτ)θ

[
1
0

]
(0, 4τ)[θ2

[
0
0

]
(0, 4τ)− θ2

[
0
1

]
(0, 4τ)].

For m=5 we obtain

8exp(5πiτ)θ3

[
1
0

]
(0, 4τ)

and for m=7 we obtain

12exp(7πiτ)θ

[
1
0

]
(0, 4τ)[θ2

[
0
0

]
(0, 4τ) + θ2

[
0
1

]
(0, 4τ)].

Proof. The proof is simply by substituting the value of m into the averaging process.

By the remark made prior to the statement of the lemma we have as a consequence
many of the results obtained previously. We enumerate some of these. The case m=1 gives
immediately that S3(8n+7) = 0. The case m=5 yields immediately that S3(8n+3) = T3(n).
The cases m=3,7 yield respectively

8
∞∑

n=0

S3(8n + 5)x8n+8 =
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12exp(3πiτ)θ

[
1
0

]
(0, 4τ)[θ2

[
0
0

]
(0, 4τ)− θ2

[
0
1

]
(0, 4τ)]

and

8
∞∑

n=0

S3(8n + 1)x8n+8 =

12exp(7πiτ)θ

[
1
0

]
(0, 4τ)[θ2

[
0
0

]
(0, 4τ) + θ2

[
0
1

]
(0, 4τ)].

By analyzing these last two equations we can also see that we have the following formulas
for S3(n).

S3(8n + 1) = 6
∑
k≥0

S2(n−
k2 + k

2
)

a formula we already have obtained and

S3(8n + 5) = 6
∑
k≥0

S2(2(n−
k2 + k

2
) + 1)

a new formula.
One can now do the same computation for the even values of m. We leave this for the

reader.
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