

Edinburgh Research Explorer

Training very large scale nonlinear SVMs using Alternating
Direction Method of Multipliers coupled with the Hierarchically
Semi-Separable kernel approximations

Citation for published version:
Cipolla, S & Gondzio, J 2022, 'Training very large scale nonlinear SVMs using Alternating Direction Method
of Multipliers coupled with the Hierarchically Semi-Separable kernel approximations', EURO Journal on
Computational Optimization, vol. 10, 100046. https://doi.org/10.1016/j.ejco.2022.100046

Digital Object Identifier (DOI):
10.1016/j.ejco.2022.100046

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
EURO Journal on Computational Optimization

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Feb. 2023

https://doi.org/10.1016/j.ejco.2022.100046
https://doi.org/10.1016/j.ejco.2022.100046
https://www.research.ed.ac.uk/en/publications/13af19b6-1ddb-4101-a8ad-f169d81e81c5

EURO Journal on Computational Optimization 10 (2022) 100046
Contents lists available at ScienceDirect

EURO Journal on Computational
Optimization

www.elsevier.com/locate/ejco

Training very large scale nonlinear SVMs using

Alternating Direction Method of Multipliers

coupled with the Hierarchically Semi-Separable

kernel approximations

S. Cipolla ∗, J. Gondzio ∗

The University of Edinburgh, School of Mathematics, United Kingdom of Great
Britain and Northern Ireland

a r t i c l e i n f o a b s t r a c t

Keywords:
Computational science
Support vector machines
Hierarchically Semi-Separable kernel
approximations
Alternating Direction Method of
Multipliers

Typically, nonlinear Support Vector Machines (SVMs) pro-
duce significantly higher classification quality when compared
to linear ones but, at the same time, their computational com-
plexity is prohibitive for large-scale datasets: this drawback
is essentially related to the necessity to store and manipulate
large, dense and unstructured kernel matrices. Despite the fact
that at the core of training an SVM there is a simple convex
optimization problem, the presence of kernel matrices is re-
sponsible for dramatic performance reduction, making SVMs
unworkably slow for large problems. Aiming at an efficient
solution of large-scale nonlinear SVM problems, we propose
the use of the Alternating Direction Method of Multipliers
coupled with Hierarchically Semi-Separable (HSS) kernel ap-
proximations. As shown in this work, the detailed analysis of
the interaction among their algorithmic components unveils
a particularly efficient framework and indeed, the presented
experimental results demonstrate, in the case of Radial Basis
Kernels, a significant speed-up when compared to the state-

* Corresponding authors.
E-mail addresses: scipolla@ed.ac.uk (S. Cipolla), j.gondzio@ed.ac.uk (J. Gondzio).
https://doi.org/10.1016/j.ejco.2022.100046
2192-4406/© 2022 The Author(s). Published by Elsevier Ltd on behalf of Association of European
Operational Research Societies (EURO). This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ejco.2022.100046
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ejco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejco.2022.100046&domain=pdf
mailto:scipolla@ed.ac.uk
mailto:j.gondzio@ed.ac.uk
https://doi.org/10.1016/j.ejco.2022.100046
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046
of-the-art nonlinear SVM libraries (without significantly af-
fecting the classification accuracy).
© 2022 The Author(s). Published by Elsevier Ltd on behalf
of Association of European Operational Research Societies

(EURO). This is an open access article under the CC
BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Support vector machine (SVM) is one of the most well-known supervised classification
method which has been extensively used in different fields. At its core, training nonlin-
ear SVMs classifier boils down to a solution of a convex Quadratic Programming (QP)
problem whose running time heavily depends on the way the quadratic term interacts
with the chosen optimizer. Typically, such interaction, is represented by the solution of a
linear system involving the quadratic term (perhaps in some suitably modified version).
However, in the nonlinear SVM case, the quadratic term involves a kernel matrix which
(except for the linear kernel) is a dense and unstructured matrix. Solving (or merely
storing) a linear system involving such matrices may result in unworkably slow algo-
rithms for large scale problems. Although the use of kernel approximations in SVMs
classification has been for a long time a relevant research question, see Section 1.1 for
references, the existing structured approximations are not always able to capture the
essential features of the kernel (see, once more, Section 1.1 for a detailed explanation of
this statement) and, moreover, the selected structure for the kernel approximation may
not be exploitable by the chosen optimizer. Aim of this work is to devise a computa-
tional framework based on the use of the Alternating Direction Method of Multipliers
(ADMM) [6] coupled with Hierarchically Semi-Separable (HSS) [7] kernel approxima-
tions. Indeed, on the one hand, this framework allows to produce kernel approximations
essentially in a matrix-free regime and with guaranteed accuracy [12], and, on the other,
allows the efficient solution of (shifted) linear systems involving it. In turn, when QP
problems are solved using ADMM, the solution of shifted kernel linear systems is the
main expensive computational task. Such a harmonized interaction between the kernel
approximation and the optimizer not only allows a fast training phase but also makes
possible a fast grid search for optimal hyperparameters selection through caching the
HSS approximation/factorization.

1.1. Background and related works

Support vector machines (SVMs) [4,14] are useful and widely used classification meth-
ods. Training a nonlinear SVM has at its core (in its dual form) the solution of the
following convex quadratic optimization problem:

min f(x) := 1xTY KY x − eTx

x∈Rd 2

http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046 3
s.t. yTx = 0, (1)

xi ∈ [0, C] for all i = 1, . . . , d,

where yi ∈ {−1, 1} are target labels, Y := diag(y), Kij := K(fi, fj) is a Positive Definite
Kernel [24, Def. 3], fi ∈ Rr are feature vectors and e is the vector of all ones.

Once a solution x̄ of problem (1) has been computed, the classification function for
an unlabelled data f can be determined by

ỹ = sign(
d∑

i=1
yix̄iK(fi, f) + b).

The bias term b is computed using the support vectors that lie on the margins, i.e.,
considering j s.t. 0 < x̄j < C, the following formula is used:

b =
d∑

i=1
yix̄iK(fi, fj) − yj . (2)

Despite their simplicity, when compared with Neural Networks (NNs), nonlinear SVMs
are still recognized by practitioners of Machine Learning and Data Science as the pre-
ferred choice for classification tasks in some situations. In particular, the community
seems to widely agree on the fact that NNs are not efficient on low-dimensional input
data because of their huge overparametrization and, in this case, SVMs may represent
the state of the art for classification, see, e.g., [43,48]. Indeed, SVMs have only two hyper-
parameters (say the choice of a kernel-related parameter h and the penalization constant
C), so they are very easy to tune to specific problems: the parameter tuning is usually
performed by a simple grid-search through the parameter space.

On the other hand, even if the SVM training is related to a convex optimization
problem for which there exist efficient solution methods, training SVMs for large scale
datasets may be a computationally challenging option essentially due to the fact that, in
order to be able to use the Kernel Trick, SVMs cache a value for the kernelized “distance”
between any two pairs of points: for this reason an O(d2) storage requirement is to be
expected. In general, without any particular specialization, training SVMs is unworkably
slow for sets beyond, say, 104 datapoints.

Without any doubts, the most successful class of methods designed to handle storage
difficulties, is represented by decomposition methods [18,26,35,36]: unlike most opti-
mization methods which update all the variables in each step of an iterative process,
decomposition methods modify only a subset of these at every iteration leading, hence,
to a small sub-problem to be solved in each iteration. A prominent example in this
class is represented by [9] which delivers a standard benchmark comparison in the SVMs
training panorama. It is important to note at this stage that since only few variables
are updated per iteration, for difficult/large-scale problems, decomposition methods may
suffer from a slow convergence.

4 S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046
Fig. 1. Left Panel: decay of the singular values for Gaussian Kernel matrices. Right Panel: Gaussian Kernel
matrices obtained with/without preliminary data clustering. Dataset: heart_scale [9].

On the other hand, an alternative way to overcome storage issues is to approximate
the kernel matrix K and, indeed, there is a rich literature concerned with the acceleration
of kernel methods which are usually based on the efficient approximation of the kernel
map. The most popular approach is to construct a low-rank matrix approximation of
the kernel matrix reducing the arithmetic and storage cost [15,16,19,21–23,29,30,41,54].
We mention explicitly Nyström-type methods [21,28,49] and random feature maps to
approximate the kernel function directly [37] or as a preconditioner [1]. However, the
numerical rank of the kernel matrix depends on parameters, which are, in turn, data-
dependent: the Eckart–Young–Mirsky theorem, see [46, Sec. 2.11.1] justifies low-rank
approximations only when the kernel matrix is characterized by a sufficiently fast decay

of the singular values. For example, the Gaussian kernel matrix, i.e., Kij = exp− ‖fi−fi‖2

2h2 ,
is approximately low-rank only if h > 0 is sufficiently large (see the left panel in
Fig. 1 for an example) but, for classification purposes, a small value of h may be re-
quired.

Several methods were proposed to overcome the fact that K is not necessarily ap-
proximately low-rank. The main idea, in this context, relies on the initial splitting of
the data into clusters, so that between-classes interactions in the kernel matrix may be
represented/well approximated by either sparse or low-rank matrices [42,47,53] (see right
panel in Fig. 1 for a pictorial representation of this idea).

1.2. Motivations and contribution

This work represents a methodological contribution for the efficient solution of SVM
problems. In particular, the aim of this work is to propose and analyze the use of the
Hierarchically Semi-Separable (HSS) matrix representation [7] for the solution of large
scale kernel SVMs. Indeed, the use of HSS approximations of kernel matrices has been
already investigated in [12,38] for the solution of large scale Kernel Regression problems.
The main reason for the choice of the HSS structure also in the SVM context can be
summarized as follows:

S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046 5
1. using the STRUctured Matrix PACKage (STRUMPACK) [39] it is possible to obtain HSS
approximations of the kernel matrices without the need to store/compute explicitly
the whole matrix K. Indeed, for kernel matrix approximations, STRUMPACK uses a
partially matrix-free strategy (see [12]) essentially based on an adaptive randomized
clustering and neighboring-based preprocessing of the data: in the preprocessing
step employed by STRUMPACK, approximate clustering algorithms are employed to
find groups of points with large inter-group distances and small intra-group dis-
tances. This feature permits to fully exploit the underlying geometry of the data
to obtain valuable algebraic approximations of the kernel matrix. Indeed, the HSS
structure does not require K to be low-rank, but only some off-diagonal parts to
be rank-deficient, at least, after some suitable preprocessing. Broadly speaking, the
preprocessing takes advantage of the fact that the interaction between two well sep-
arated clusters of data points can be approximated accurately when expressed in
terms of the interaction between a smaller number of representative points from
each cluster [38]. The implicit assumption made when using the HSS structure to
approximate kernel matrices is that, after the preprocessing explained above and due
to the exponential decay of many kernels, the resulting small intra-group distances
can be approximated by low-rank matrices and hence the resulting kernel matrices
can be well approximated by the HSS structure (see [38, Fig. 1a]);

2. the resulting approximations allow fast approximate kernel matrix computations
with linear scalability for the computation of matrix-vector products and solution of
linear systems, see [7,8,39].

In particular, we trace the main contribution of this work in unveiling a particularly
efficient interaction between the HSS structure and ADMM [6] in the SVMs case, see
Section 2. When problem (1) is suitably reformulated in a form exploitable by ADMM,
the solution of just one linear system involving the (shifted) kernel matrix is required
per ADMM iteration: kernel matrices approximated using the HSS structure allow highly
efficient solutions of such linear systems. Indeed, in this framework, approximating the
kernel matrix with an HSS structure (h fixed) results in a very efficient optimization
phase for a fixed value of C (see Section 3.3). Moreover, it is important to note that
the computational footprint related to the kernel matrix approximation phase is fully
justified by the fact that the same approximation can be reused for training the model
with different values of C; this feature makes our proposal particularly attractive when
a fine grid is used for the tuning of the penalization parameter C. It is important to
note, at this stage, that also the works [25,52] analyze the use of ADMM for SVMs:
in [52] ADMM has been used to solve linear SVMs with feature selection whereas in
[25] a hardware-efficient nonlinear SVM training algorithm has been presented in which
the Nyström approximation is exploited to reduce the dimension of the kernel matrices.
Nevertheless, as highlighted at the end of Section 1.1, the ability to approximate kernel
matrices with low-rank ones depends on the chosen kernel parameters (see the left panel
in Fig. 1). On the other hand, the optimal values of the kernel parameters are, in turn,

6 S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046
data-dependent. Indeed, in general, when training a kernel based SVM, the kernel pa-
rameters for which the best performance is achieved in terms of classification accuracy,
are not known before hand, and, to the best of our knowledge, the validity of the small
numerical rank assumption is one of the main limitations for training Kernel SVM using
kernel approximations. The efficient combination of ADMM with kernel approximations
applicable in cases where the small numerical rank of the kernel matrix is not assumed,
represents the key element of novelty of our approach when compared to the existing
literature.

2. The computational framework

Problem (1) can be written as follows:

min
x, z∈Rd

1
2xTY KY x − eTx + IyTx=0(x) + I[0,C](z)

s.t. x − z = 0,
(3)

where, for a given subset S ⊂ Rd, IS(x) is the indicator function of the set S, defined as

IS(x) :=
{

0 if x ∈ S

+∞ if x /∈ S.

The Augmented Lagrangian corresponding to (3) reads as

Lβ(x, z,μ) = 1
2xTY KY x− eTx + IyTx=0(x) + I[0,C](z)−μT (x− z) + β

2 ‖x− z‖2. (4)

Reformulation (3) with an extra copy of variable x makes it easier to exploit partial
separability and facilitates a direct application of ADMM to solve it. Indeed, ADMM
[6] is our choice of an (efficient) solution technique for problem (3). In Algorithm 1 we
summarize its main steps:

Algorithm 1: ADMM.
1 for k = 0, 1, . . . do
2 xk+1 = minx∈Rd Lβ(x, zk, μk) ; /* x minimization */
3 zk+1 = minz∈Rd Lβ(xk+1, z, μk) ; /* z minimization */
4 μk+1 = μk − β(xk+1 − zk+1) ; /* Multiplier Update */
5 end

2.1. ADMM details

Let us observe that the solution of the problem in Line 2 of Algorithm 1 is equivalent
to the solution of the problem

S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046 7
min
x∈Rd

1
2xTY (K + βI)︸ ︷︷ ︸

=:Kβ

Y x − (e + μk + βzk)T︸ ︷︷ ︸
=:qk

x

s.t. yTx = 0.

(5)

Stating the KKT conditions of problem (5), i.e.,

[
Y KβY −y
−yT 0

] [
x
λ

]
=

[
e + μk + βzk

0

]
,

and eliminating the variable λ, it is possible to write its solution in a closed form:

xk+1 = Y K−1
β Y qk −

eTK−1
β Y qk

eTK−1
β e

Y K−1
β e,

where we used the fact that Y y = e. Moreover, the problem at Line 3 of Algorithm 1
can be written alternatively as

arg min
z∈[0,C]

g(z) := β

2 zT z − βzTxk+1 + zTμk,

which also has a closed-form solution (see [3, Example 2.2.1]):

zk+1 = Π[0,C](xk+1 − 1
β
μk), (6)

where Π[0,C] is the component-wise projection onto the interval [0, C]. Summarizing the
observations carried out in this section, we observe that Algorithm 1 can be written in
closed form as in Algorithm 2:

Algorithm 2: Closed form ADMM for problem (3).
1 for k = 0, 1, . . . do
2 xk+1 = Y K−1

β Y qk − eT K−1
β

Y qk

eT K−1
β e

Y K−1
β e ; /* x minimization */

3 zk+1 = Π[0,C](xk+1 − 1
βμk) ; /* z minimization */

4 μk+1 = μk − β(xk+1 − zk+1) ; /* Multiplier Update */
5 end

2.1.1. Computational cost and convergence
Algorithm 2 requires the solution of a linear system involving the matrix Kβ at ev-

ery iteration (the vector Y K−1
β e can be precomputed) plus a series of operations of

linear complexity. Moreover, since Algorithm 2 is a particular instance of ADMM, it is
convergent, see [6].

8 S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046
3. Experiments

3.1. Hierarchically semi-separable matrix representation

As already pointed out previously, one of the main computational issues associated
with problem (1) relates to the fact that the matrix K is usually dense and of large
dimension: the cubic computational complexity of application and the quadratic storage
requirements for kernel matrices limit the applicability of kernel methods for SVM in
large scale applications. To overcome this problem many different approaches have been
proposed in literature, see the discussion in Section 1. The one we decide to employ
here is the Hierarchically Semi-Separable (HSS) approximation of the kernel matrix in
the form proposed in [12]. In general, the HSS approximation of a given matrix uses
a hierarchical block 2 × 2 partitioning of the matrix where all off-diagonal blocks are
compressed, or approximated, using a low-rank product [7]. The accurate description of
the HSS compression technique in the case of kernel matrices is out of the scope of this
work and, for this reason, we refer the reader to [12, Sec. II.B – II.C] for the full details.
See also [32] and [39, Sec. 2.1] for more details on the HSS structure. The particular
version of HSS we choose for our purposes is HSS-ANN (Hierarchically Semi-Separable
- Approximate Nearest Neighbours), introduced in [12]. We mention explicitly the the
features of HSS-ANN which have driven our choice:

• instead of using a randomized sampling (see [32]) to approximate column range of
sub-matrices of K, this approach uses the kernel function to assess the similarity be-
tween data points and hence to identify the dominating entries of the kernel matrix.
In particular, the columns corresponding to dominating Approximate Nearest Neigh-
bours (ANN, see [31,51]) of the data points are selected to produce approximations
of the column basis of particular sub-matrices of K, see [12, Sec. II.B]. As a result,
the overall sampling strategy fully exploits the geometry of the underlying data-set
and has a reduced cost when compared to the earlier HSS construction approaches,
see [12, Sec. II-A] for a detailed comparison.

• the overall complexity of the HSS-ANN construction (excluding the preprocessing
clustering phase on the data) is O(r2d) where r is the maximum HSS rank, i.e., the
maximum rank over all off-diagonal blocks in the HSS hierarchy, see [12, Sec. II.C
and Alg. 3]. The storage complexity of HSS-ANN is O(dr);

• as a result of the previous two items, HSS-ANN exhibits better performance in terms
of efficiency and approximation quality when compared with its predecessor and
direct competitor, namely ASKIT/INV-ASKIT [10,11,31], which uses a block-diagonal-
plus-low-rank hierarchical matrix format to construct an approximate representation,
see [12, Sec. III];

• after the compression, the (shifted) HSS kernel matrix approximation can be factor-
ized into a ULV -type form [39, Sec. 2.4], which exploits the special structure of the
HSS generators coming from the Interpolative Decomposition, see [12, Alg. 3] and

S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046 9
references therein. This factorization, computed just once for fixed h in our approach,
has a cost of O(r2d) and can be used to solve linear systems involving the (shifted)
kernel matrix in complexity O(rd), see [39, Sec. 2.5].

3.2. Implementation details

In Algorithm 3 we summarize the pseudo-code of our implementation. It is based
on STRUMPACK library (Version 5.1.0) [20,44] which provides efficient routines for the
approximation K̃ of a kernel matrix K and efficient routines for the solution of the
corresponding shifted linear systems. In particular, in Line 1 of Algorithm 3 such K̃ is
obtained and, in Line 3, the ULV -type factorization of the matrix K̃β := K̃+βI is com-
puted for the efficient solution of linear systems of the form K̃βx = b. It is worth noting,
at this stage, that for a fixed kernel value h the approximation K̃ and the ULV -type fac-
torization of K̃β are computed just once and then reused for all the values C in the grid
search (see Line 7 of Algorithm 3). Lines 9 - 14 of Algorithm 3 correspond to the ADMM
optimization routine, see Algorithm 2 (resp. Algorithm 1). The “x minimization” step,
which represents the dominant step in terms of computational cost, see Line 11, is per-
formed resorting to the ULV -type factorization previously computed. In Lines 15 - 17
of Algorithm 3 the bias b is computed. It is important to note that, in practice, the bias
is obtained averaging over all the support vectors that lie on the margin (see Line 17)
instead of using equation (2). Indeed, defining M := {j | 0 < x̄j < C} and ēj = 1 if
j ∈ M or ēj = 0 otherwise, the bias b is often computed using

b = 1
|M |

∑
j ∈M

(
d∑

i=1
yix̄iK(fi, fj) − yj) = 1

|M | (x̄
T
yKē −

∑
j ∈M

yj), (7)

where (x̄y)j := yj x̄j . If the full kernel matrix K is not available, computing (7) may
be time consuming for large datasets since it requires a series of kernel evaluations. On
the other hand, the right-hand side of equation (7) suggests that if an approximation
K̃ of K is available for which matrix vector products can be inexpensively evaluated,
the bias computation requires exactly just one matrix vector product and one scalar
product. This is indeed the case when an HSS approximation of the kernel matrix is
available and we exploit this property in our implementation, see, once more, Line 17 in
Algorithm 3. Finally, in Lines 18 - 20 of Algorithm 3 we report the details for the “Label
Assignment” of the testing instances.

To conclude this section, we address briefly the problem of relating the solution x̃ of
the approximated SVM problem

min
x∈Rd

f̃(x) := 1
2xTY K̃Y x − eTx

s.t. yTx = 0, (8)

xi ∈ [0, C] for all i = 1, . . . , d,

10 S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046
Algorithm 3: SVM training/testing using Strumpack and ADMM.
Input: K kernel function, h kernel parameter, β ADMM parameter, Ftrain ∈ Rr×d, ytrain ∈ Rd,

Ftest ∈ Rr×m , ytest ∈ Rm – training and testing data.
1 K̃ = HSScompression(K(Ftrain, Ftrain), h) ;
2 K̃β = K̃ + βI;
3 [U, L, V] = ULVfactorization(K̃β) ;
4 w = (ULV)−1e;
5 w1 = eTw;
6 w = Ytrainw ;
7 for C ∈ {C1, . . . , Cmax} do
8 Initialize x0, z0, μ0 ;
9 for k = 0, 1, . . . , MaxIt do

10 w2 = wTxk;
11 xk+1 = Y (ULV)−1Y xk − w2

w1w ; /* x minimization, see Algorithm 2 */
12 zk+1 = Π[0,C](xk+1 − 1

βμk) ; /* z minimization, see Algorithm 2 */
13 μk+1 = μk − β(xk+1 − zk+1) ; /* Multiplier Update, see Algorithm 2 */
14 end
15 Define zy = YtrainzMaxIt ; /* Computing Bias */
16 Define ēj = 1 if 0 < (zMaxIt)j < C or ēj = 0 otherwise ;
17 b = 1

‖ē‖1
(zy

T K̃ē −
∑

j :ēj �=0(ytrain)j) ;
18 for j = 1, . . . , m do
19 (ỹtest)j = sign(

∑d
i=1(zy)iK((ftrain)i, (ftest)j) + b) ; /* Label Assignement */

20 end
21 end

to the solution x̄ of the original problem (1). Indeed, using a similar technique to the
one presented in [19, Sec. 4.1.], for any unitary invariant form we obtain

|f(x̄) − f̃(x̃)| ≤ max{1
2 |x̃

TY (K̃ −K)Y x̃|, 1
2 |x̄

TY (K − K̃)Y x̄|}

≤ 1
2 max{‖x̃‖2, ‖x̄‖2}‖K̃ −K‖.

(9)

Using the boundedness of 1
2 max{‖x̃‖2, ‖x̄‖2}, we obtain that for K̃ → K it holds

f̃(x̃) → f(x̄). Equation (9) suggests that for increasingly accurate approximations K̃
of K, the accuracy classification performance of the approximate SVM classifier (8)
matches increasingly closely the accuracy classification performance of the exact SVM
classifier (1). Nonetheless, we will show experimentally, that this may be also true when
quite poor approximations are used, see Table 4 in the following section. Indeed, sur-
prisingly enough, it has been observed multiple times that for kernel methods even poor
approximations of the kernel can suffice to achieve near-optimal performance [2,40]. On
the other hand, it is also important to note that if the matrix K has the HSS property
(see [32, Sec. 3]), and assuming that K̃ is computed by truncating every HSS block with
a truncation tolerance O(ε), then also the global error ‖K − K̃‖ stays of order O(ε):
specific results are available for the Frobenius and spectral norms, see [50, Corollary
4.3] and [27, Theorem 4.7]. In particular, supposing that every HSS block of K can be
approximated with an error O(ε) by a matrix of rank r, if a randomized sampling pro-
cedure is used to produce the low-rank approximations with oversampling parameter p,

S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046 11
Table 1
Problem Set Details. * = Test Set obtained using Random 30% of the original Training Set.

Dataset Features Training Set Dim. |Train+| Test Set Dim. |Test+|
a8a 122 22696 5506 9865 2335
w7a 300 24692 740 25057 739
rcv1.binary 47236 20242 10491 135480 71326
a9a 122 32561 7841 16281 3846
w8a 300 49749 1479 14951 454
ijcnn1 22 49990 4853 91701 8712
cod.rna 8 59535 19845 271617 90539
skin.nonskin* 3 171540 135986 73517 58212
webspam.uni* 254 245000 148717 105000 63472
susy* 18 3500000 1601659 1500000 686168

then K̃ is a global O(ε) approximation with probability at least 1 − 6p−p (see [32, Sec.
2.3] and discussion in [33, Sec. 3.2]).

3.3. Numerical results

Our code is written in C++ and the numerical experiments are performed on a Dell
PowerEdge R920 machine running Scientific Linux 7 and equipped with Four Intel
Xeon E7-4830 v2 2.2 GHz, 20M Cache, 7.2 GT/s QPI, Turbo (4x10Cores) 256 GB
RAM. The code is publicly available at the address https://github .com /StefanoCipolla /
Strumpack _ADMM. In the following, we report on its performance in the case of the
Gaussian Kernel, but similar computational results are expected to hold for Laplacian
and ANOVA kernels since the efficiency of HSS-ANN has been demonstrated also in
these cases, see [12, Fig. 5].

Table 1 summarizes the details for the chosen dataset. In Tables 4 and 5 we report the
results obtained using our proposal for different parameters related to the accuracy of the
HSS-ANN approximation (increasing accuracy) where all the other non specified HSS-
ANN parameters have to be considered the default ones. In our experiments we choose,
in Algorithm 3, MaxIt = 10 and the Gaussian Kernel function K(fi, fj) = exp− ‖fi−fi‖2

2h2 .
Indeed, it is important to observe that the choice of making a prescribed number of
ADMM iterations instead of using a standard stopping criterion is motivated by the
fact that for machine learning applications going for accurate optimal solution does
not necessarily have to deliver the best classification accuracy. On the other hand, the
fact that one choice of the ADMM parameter MaxIt permits to obtain satisfactory
classification accuracy for all the problems in our dataset confirms the robustness of the
proposed approach. It is worth mentioning that computational experience confirms that
a different choice of this parameter may lead to a better classification performance for
particular test examples. Finally, concerning the choice of the ADMM parameter β, we
observed that for larger problems an increasing value of β is recommended: we chose
β = 102 if the training size d ∈ [104, 105], β = 103 if d ∈ [105, 106] and β = 104 if
d ≥ 106.

https://github.com/StefanoCipolla/Strumpack_ADMM
https://github.com/StefanoCipolla/Strumpack_ADMM

12 S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046
Table 2
LIBSVM. †† = stopped after 10h.

Dataset Runtime [s] Accuracy [%]
a8a 123.308 83.953
w7a 148.110 97.904
rcv1.binary 261.399 93.247
a9a 305.913 82.697
w8a 508.232 99.444
ijcnn1 345.805 96.007
cod.rna 110.997 90.374
skin.nonskin 344.938 99.960
webspam.uni 13354.384 99.081
susy ††

Table 3
RACQP. †† = stopped after 10h.

Dataset Runtime [s] Accuracy [%]
a8a 98.269 79.757
w7a 82.838 97.050
rcv1.binary 67.830 71.987
a9a 206.527 82.237
w8a 348.122 97.806
ijcnn1 427.551 91.460
cod.rna 531.787 33.333
skin.nonskin 4689.815 97.649
webspam.uni 21669.329 92.830
susy ††

In Table 2 we report the results obtained using LIBSVM Version 3.25 [9], which
implements specialized algorithms for the SVM problem (LIBSVM uses a Sequential
Minimal Optimization type decomposition method [5,17,36]). In Table 3 we report the
results obtained using RACQP [34] (where a multi-block generalization of ADMM is
employed, see also [13,45] for related theoretical analysis).

In particular, the kernel parameter h and the penalization term C were estimated
by running a grid-check when instances were solved using our proposal (the HSS-ANN
accuracy parameters used were those specified in Table 5 since our proposal achieved
(generally) the best classification accuracy in this case). Those pairs were then used to
solve the instances with LIBSVM and RACQP. The pairs were chosen from a relatively
coarse grid, h, C ∈ {0.1, 1, 10} because the goal of this experiment was to demonstrate
that although our approach uses kernel approximations, it can still achieve comparable
classification accuracy but with a reduced runtime when compared with other algorithms
for the solution of SVM problems which use the true kernel matrices.

The first important observation concerning Tables 4 and 5 is that, unexpectedly (see
equation (9)), increasing the HSS accuracy parameters (generally) does not lead to a sig-
nificant increase of classification accuracy: we obtain quite good classification accuracy
despite using very rough approximations (see Table 4). The problem which benefited
most an improved kernel approximation is webspam.uni. Indeed, the classification ac-
curacy has increased by nearly 1% in this case. At the same time, increasing the HSS

S.
C
ipolla,

J.
G

ondzio
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

10
(2022)

100046
13

proximate_neighbors= 64.
Best Parameters Accuracy [%]
h C

1 1,10 83.314
1 1,10 97.465
10 1,10 89.940
1 1,10 83.477
1 1,10 97.679
0.1 1,10 92.403
10 0.1 89.305
10 0.1,1,10 99.846
0.1 0.1,1,10 95.551
1 0.1,1,10 72.338

s_approximate_neighbors= 512.
Best Parameters Accuracy [%]
h C

1 1,10 83.476
1 1,10 97.465
10 1,10 87.921
1 1,10 83.643
1 1,10 97.672
0.1 1,10 92.314
10 1,10 89.308
10 0.1,1,10 99.855
0.1 0.1,1,10 96.123
1 0.1,1,10 72.047
Table 4
Strumpack&ADMM. Strumpack parameters: hss_rel_tol= 1, hss_abs_tol= 0.1, hss_max_rank= 200, hss_ap

Dataset HSS Construction ADMM Time [s]
Compression [s] Factorization [s] Memory [MB]

a8a 135.923 6.181 112.968 0.300
w7a 2161.920 14.442 99.345 0.486
rcv1.binary 6319.780 1.665 58.839 0.173
a9a 256.032 8.162 179.192 0.471
w8a 10476.200 107.71 273.1 1.498
ijcnn 9.772 1.980 153.586 0.470
cod.rna 2.900 2.863 181.47 0.444
skin.nonskin 1127.79 11.078 538.349 1.219
webspam.uni 5809.6 3.228 757.969 0.909
susy 3938.68 25.614 13599.4 9.471

Table 5
Strumpack&ADMM. Strumpack parameters: hss_rel_tol= 0.5, hss_abs_tol= 0.05, hss_max_rank= 2000, hs

Dataset HSS Construction ADMM Time [s]
Compression [s] Factorization [s] Memory [MB]

a8a 795.597 16.276 218.673 0.588
w7a 2311.330 15.229 107.393 0.621
rcv1.binary 14211.0 1.425 58.84 0.210
a9a 1176.99 21.3909 379.852 0.986
w8a 10774.900 124.076 296.472 1.738
ijcnn 21.393 2.041 168.007 0.298
cod.rna 23.242 2.377 182.424 0.280
skin.nonskin 1232.730 7.560 544.544 0.972
webspam.uni 7003.52 5.640 861.542 1.297
susy 14495.9 159.972 18264.2 15.889

14 S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046
Fig. 2. Heatmap of the classification accuracy for the datasets a9a and ijcnn1.

accuracy parameters adversely affects the Compression and Factorization time. It is
important to note also that the ADMM Time needed to train the model is completely neg-
ligible when compared to the time needed to produce the HSS-ANN approximations. As
was already pointed out, this feature allows for a very fast grid-search on the parameter
C (for the largest considered problem it takes roughly 10 s to train the model for a fixed
C). Indeed, the choice of the parameter C may greatly affect the performance of the
classification accuracy (see Fig. 2 for some examples).

Concerning the comparison of our approach with LIBSVM and RACQP (compare
Tables 4 and 5 with Tables 2 and 3, respectively) several remarks are in order. The
first one concerns the coherence of the HSS-ANN approximations with the classifica-
tion accuracy: the accuracy results obtained for the grid-selected h and C are always
comparable to those obtained using LIBSVM and generally better than those obtained
using RACQP (both approaches use, in different ways, the true kernel matrices). The
second one concerns the computational time: for smallest problems or problems with
high dimensional features, our proposal may not be the best performer (see, e.g., the
problems w7a, rcv1.binary and w8a) but, on the contrary, when the dimension of the
training set increases and the number of features is small, the approach proposed in this
paper becomes a clear winner (see problems ijcnn, cod.rna, webspam.uni and susy):
the goodness and advantages of our approach are further underpinned observing that
the total training time needed for the grid search on the parameter C (h fixed) can be
roughly obtained multiplying the values in the column ADMM Time by the number of grid
values selected for C (in our case 3). This is not true for LIBSVM and RACQP where
the training phase is restarted from scratch for all the values C (considering also in this
case h fixed). All the previous observations are further highlighted by Fig. 3, where the
results presented in Table 2 (LIBSVM), Table 3 ((RACQP), Table 4 (HSS-ADMM (1)) and
Table 5 (HSS-ADMM (2))) are pictorially summarized.

Finally, for the sake of fairness, concerning the comparison of running times of our pro-
posal with those from RACQP, we should mention the fact that RACQP is implemented
in Matlab, which is presumably slower than a compiled language such as C++.

S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046 15
Fig. 3. Summary of the results contained in Table 2 (LIBSVM), Table 3 (RACQP), Table 4 (HSS-ADMM (1)) and
Table 5 (HSS-ADMM (2)).

4. Conclusions and future work

In this work we proposed an ADMM-based scheme (see Algorithm 3) which employs
HSS-ANN approximations (see [12] and Section 3) to train SVMs. Numerical experiments
obtained using STRUMPACK [44] in a sequential architecture, show that our proposal com-
pares favorably with LIBSVM [9] and RACQP [34] in terms of computational time and
classification accuracy when the dimension of the training set increases. Indeed, both
LIBSVM and RACQP use different decomposition methods for the exact kernel matrix,
which may be slow for large scale problems. Our proposal, instead, resorting on an all-
at-once optimal exploitation of structured approximations of the kernel matrices, is less
prone to the curse of dimensionality allowing us to train datasets of larger dimensions.
Finally, as subject of future work, the authors will consider performing a thorough com-
parison of the efficiency of the proposed framework against other possible couplings of
the type ADMM+Kernel Approximation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by Oracle Labs through the project “Randomly Sampled
Cyclic Alternating Direction Method of Multipliers”.

16 S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046
References

[1] H. Avron, K.L. Clarkson, D.P. Woodruff, Faster kernel ridge regression using sketching and precon-
ditioning, SIAM J. Matrix Anal. Appl. 38 (4) (2017) 1116–1138.

[2] F. Bach, Sharp analysis of low-rank kernel matrix approximations, in: Conference on Learning
Theory, in: PMLR, 2013, pp. 185–209.

[3] D.P. Bertsekas, Nonlinear Programming, second ed., Athena Scientific Optimization and Compu-
tation Series, Athena Scientific, Belmont, MA, 1999, xiv+777.

[4] B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Pro-
ceedings of the Fifth Annual Workshop on Computational Learning Theory, 1992, pp. 144–152.

[5] L. Bottou, C.-J. Lin, Support vector machine solvers, in: Large Scale Kernel Machines, vol. 3.1,
2007, pp. 301–320.

[6] S. Boyd, N. Parikh, E. Chu, Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers, Now Publishers Inc., 2011.

[7] S. Chandrasekaran, M. Gu, W. Lyons, A fast adaptive solver for hierarchically semiseparable rep-
resentations, Calcolo 42 (3–4) (2005) 171–185.

[8] S. Chandrasekaran, M. Gu, T. Pals, A fast ULV decomposition solver for hierarchically semisepa-
rable representations, SIAM J. Matrix Anal. Appl. 28 (3) (2006) 603–622.

[9] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, in: ACM Transactions on
Intelligent Systems and Technology, vol. 2, 3.2011, 27. Software available at http://www .csie .ntu .
edu .tw /~cjlin /libsvm.

[10] D.Y. Chenhan, W.B. March, G. Biros, An n log n parallel fast direct solver for kernel matrices, in:
2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2017,
pp. 886–896.

[11] D.Y. Chenhan, et al., INV-ASKIT: a parallel fast direct solver for kernel matrices, in: 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2016, pp. 161–171.

[12] G. Chávez, et al., Scalable and memory-efficient kernel ridge regression, in: 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2020, pp. 956–965.

[13] S. Cipolla, J. Gondzio, Random multi-block ADMM: an ALM based view for the QP case, arXiv :
2012 .09230 [math .OC], 2020.

[14] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273–297.
[15] P. Drineas, M.W. Mahoney, On the Nyström method for approximating a Gram matrix for improved

kernel-based learning, J. Mach. Learn. Res. 6 (2005) 2153–2175.
[16] P. Drineas, et al., Fast approximation of matrix coherence and statistical leverage, J. Mach. Learn.

Res. 13 (2012) 3475–3506.
[17] R.-E. Fan, P.-H. Chen, C.-J. Lin, Working set selection using second order information for training

support vector machines, J. Mach. Learn. Res. 6 (2005) 1889–1918.
[18] R.-E. Fan, et al., Working set selection using second order information for training support vector

machines, J. Mach. Learn. Res. 6 (12) (2005).
[19] S. Fine, K. Scheinberg, Efficient SVM training using low-rank kernel representations, J. Mach.

Learn. Res. 2 (Dec. 2001) 243–264.
[20] P. Ghysels, et al., A robust parallel preconditioner for indefinite systems using hierarchical ma-

trices and randomized sampling, in: 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), IEEE, 2017, pp. 897–906.

[21] A. Gittens, M.W. Mahoney, Revisiting the Nyström method for improved large-scale machine learn-
ing, J. Mach. Learn. Res. 17 (2016) 117.

[22] G.H. Golub, C.F. Van Loan, Matrix Computations, vol. 3, JHU Press, 2012.
[23] N. Halko, P.G. Martinsson, J.A. Tropp, Finding structure with randomness: probabilistic algorithms

for constructing approximate matrix decompositions, SIAM Rev. 53 (2) (2011) 217–288.
[24] T. Hofmann, B. Schölkopf, A.J. Smola, Kernel methods in machine learning, Ann. Stat. 36 (3)

(2008) 1171–1220.
[25] S.-A. Huang, Y.-Y. Hsieh, C.-H. Yang, Design optimization for ADMM-based SVM training pro-

cessor for edge computing, in: 2021 IEEE 3rd International Conference on Artificial Intelligence
Circuits and Systems (AICAS), IEEE, 2021, pp. 1–5.

[26] T. Joachims, Making large-scale SVM learning practical, in: B. Scholkopf, C. Burges, A. Smola
(Eds.), Advances in Kernel Methods-Support Vector Learning, 1998.

[27] D. Kressner, S. Massei, L. Robol, Low-rank updates and a divide-and-conquer method for linear
matrix equations, SIAM J. Sci. Comput. 41 (2) (2019) A848–A876.

http://refhub.elsevier.com/S2192-4406(22)00022-3/bib76CE682DA5AEC93E5BCE88F283FE26F3s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib76CE682DA5AEC93E5BCE88F283FE26F3s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibFB6085435F175BC211751ECD646D53B6s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibFB6085435F175BC211751ECD646D53B6s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibD876EA0087DB722637155FDD3E000686s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibD876EA0087DB722637155FDD3E000686s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibB16D1F45DB75AA4E3B7FB094210B1C60s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibB16D1F45DB75AA4E3B7FB094210B1C60s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib60D5CFC7115D27D96B5C7E1C3E6268ADs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib60D5CFC7115D27D96B5C7E1C3E6268ADs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibBC921F23AF43AE450FD3C614607E4C0Bs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibBC921F23AF43AE450FD3C614607E4C0Bs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib6E91ED8E41B916CEED2B4FC04E9F1F3Cs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib6E91ED8E41B916CEED2B4FC04E9F1F3Cs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib1DB91D76A5CB5C72A871AC92A1EE6C5Fs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib1DB91D76A5CB5C72A871AC92A1EE6C5Fs1
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib73346CC973A98DA68B0933FDDA3FF40As1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib73346CC973A98DA68B0933FDDA3FF40As1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib73346CC973A98DA68B0933FDDA3FF40As1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibA8677EC024F2A57CB9A3F9CDFEBAF9E1s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibA8677EC024F2A57CB9A3F9CDFEBAF9E1s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib248EB68184A53CDEF91EBA5E33807290s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib248EB68184A53CDEF91EBA5E33807290s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib355424E0CB6A53452155A31270B295FBs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib355424E0CB6A53452155A31270B295FBs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibD69FB439F8EE7A63AF89B730F1D0E578s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibCAFDBB0A227BDB5ACB41AEA0B5FA017Bs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibCAFDBB0A227BDB5ACB41AEA0B5FA017Bs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib45E671238E8A9D0A91D5352CDA098AEDs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib45E671238E8A9D0A91D5352CDA098AEDs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibE8F9DE85719C0C8BB3ABDCF43F105598s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibE8F9DE85719C0C8BB3ABDCF43F105598s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib580E926CBA49D75F73B1164849BCFC70s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib580E926CBA49D75F73B1164849BCFC70s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib580E926CBA49D75F73B1164849BCFC70s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib81D8E833FD2AA497083CA08F02BE7F8Es1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib81D8E833FD2AA497083CA08F02BE7F8Es1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib58C4EDB008F5DF7A0137637EBA0549D1s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib58C4EDB008F5DF7A0137637EBA0549D1s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib58C4EDB008F5DF7A0137637EBA0549D1s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3C46AE1C5EA29834E4E085E34BD962C2s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3C46AE1C5EA29834E4E085E34BD962C2s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib25ED275F1A817CBB257D86E9C4EB72FCs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib25ED275F1A817CBB257D86E9C4EB72FCs1

S. Cipolla, J. Gondzio / EURO Journal on Computational Optimization 10 (2022) 100046 17
[28] S. Kumar, M. Mohri, A. Talwalkar, Sampling methods for the Nyström method, J. Mach. Learn.
Res. 13 (2012) 981–1006.

[29] E. Liberty, et al., Randomized algorithms for the low-rank approximation of matrices, Proc. Natl.
Acad. Sci. USA 104 (51) (2007) 20167–20172.

[30] M.W. Mahoney, Randomized algorithms for matrices and data, Found. Trends Mach. Learn.
123–224 (3) (2011).

[31] W.B. March, B. Xiao, G. Biros, ASKIT: approximate skeletonization kernel-independent treecode
in high dimensions, SIAM J. Sci. Comput. 37 (2) (2015) A1089–A1110.

[32] P.G. Martinsson, A fast randomized algorithm for computing a hierarchically semiseparable repre-
sentation of a matrix, SIAM J. Matrix Anal. Appl. 32 (4) (2011) 1251–1274.

[33] S. Massei, L. Robol, D. Kressner, hm-toolbox: MATLAB software for HODLR and HSS matrices,
SIAM J. Sci. Comput. 42 (2) (2020) C43–C68.

[34] K. Mihic, M. Zhu, Y. Ye, Managing randomization in the multi-block alternating direction method
of multipliers for quadratic optimization, Math. Program. Comput. (2020).

[35] E. Osuna, R. Freund, F. Girosit, Training support vector machines: an application to face detection,
in: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, IEEE, 1997, pp. 130–136.

[36] J. Platt, Fast training of support vector machines using sequential minimal optimization, in: B.
Scholkopf, C. Burges, A. Smola (Eds.), Advances in Kernel Methods-Support Vector Learning,
1998.

[37] A. Rahimi, B. Recht, et al., Random features for large-scale kernel machines, in: NIPS, vols. 3, 4,
2007, p. 5.

[38] E. Rebrova, et al., A study of clustering techniques and hierarchical matrix formats for kernel ridge
regression, in: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), IEEE, 2018, pp. 883–892.

[39] F.-H. Rouet, et al., A distributed-memory package for dense hierarchically semi-separable matrix
computations using randomization, ACM Trans. Math. Softw. 42 (4) (2016) 27.

[40] A. Rudi, R. Camoriano, L. Rosasco, Less is more: Nyström computational regularization, in: NIPS,
2015, pp. 1657–1665.

[41] T. Sarlos, Improved approximation algorithms for large matrices via random projections, in: 2006
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), IEEE, 2006,
pp. 143–152.

[42] S. Si, C.-J. Hsieh, I.S. Dhillon, Memory efficient kernel approximation, J. Mach. Learn. Res. 18
(2017) 20.

[43] S. Singh, et al., SVM based system for classification of microcalcifications in digital mammograms,
in: 2006 International Conference of the Ieee Engineering in Medicine and Biology Society, IEEE,
2006, pp. 4747–4750.

[44] STRUMPACK website, http://portal .nersc .gov /project /sparse /strumpack/.
[45] R. Sun, Z.-Q. Luo, Y. Ye, On the efficiency of random permutation for ADMM and coordinate

descent, Math. Oper. Res. 45 (1) (2020) 233–271.
[46] E.E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis, Birkhäuser Boston, Inc., Boston,

MA, 1997, xii+202.
[47] R. Wang, et al., Block basis factorization for scalable kernel evaluation, SIAM J. Matrix Anal. Appl.

40 (4) (2019) 1497–1526.
[48] L. Wei, et al., A study on several machine-learning methods for classification of malignant and

benign clustered microcalcifications, IEEE Trans. Med. Imaging 24 (3) (2005) 371–380.
[49] C. Williams, M. Seeger, Using the Nyström method to speed up kernel machines, in: Proceedings

of the 14th Annual Conference on Neural Information Processing Systems, 2001, pp. 682–688.
[50] Y. Xi, et al., Superfast and stable structured solvers for Toeplitz least squares via ran- domized

sampling, SIAM J. Matrix Anal. Appl. 35 (1) (2014) 44–72.
[51] B. Xiao, G. Biros, Parallel algorithms for nearest neighbor search problems in high dimensions,

SIAM J. Sci. Comput. 38 (5) (2016) S667–S699.
[52] G.-B. Ye, Y. Chen, X. Xie, Efficient variable selection in support vector machines via the alternating

direction method of multipliers, in: Proceedings of the Fourteenth International Conference on Ar-
tificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, 2011, pp. 832–840.

[53] Y. You, et al., Accurate, fast and scalable kernel ridge regression on parallel and distributed systems,
in: Proceedings of the 2018 International Conference on Supercomputing, 2018, pp. 307–317.

[54] K. Zhang, J.T. Kwok, Clustered Nyström method for large scale manifold learning and dimension
reduction, IEEE Trans. Neural Netw. 21 (10) (2010) 1576–1587.

http://refhub.elsevier.com/S2192-4406(22)00022-3/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibEFCDC82E10C6879C208C34ED8A216CD9s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibEFCDC82E10C6879C208C34ED8A216CD9s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib387041FB651791D678ED33D526921FCCs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib387041FB651791D678ED33D526921FCCs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibF6E1E2BC862E222A5AF868655AC18D43s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibF6E1E2BC862E222A5AF868655AC18D43s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibBBB9420B92DD10C378EA1BCA9C5E834Cs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibBBB9420B92DD10C378EA1BCA9C5E834Cs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib089CCBBF8E28B4E6A20E94A56C6E86FDs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib089CCBBF8E28B4E6A20E94A56C6E86FDs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib089CCBBF8E28B4E6A20E94A56C6E86FDs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib5A75204B13AF21F536AF871FD2333B10s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib5A75204B13AF21F536AF871FD2333B10s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib5A75204B13AF21F536AF871FD2333B10s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibA5BFC9E07964F8DDDEB95FC584CD965Ds1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibA5BFC9E07964F8DDDEB95FC584CD965Ds1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3F36DD140CADCCD2504530F05E68E7F3s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3F36DD140CADCCD2504530F05E68E7F3s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3F36DD140CADCCD2504530F05E68E7F3s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib8345F94CDA0E3E95F2AE3CD5B0E76177s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib8345F94CDA0E3E95F2AE3CD5B0E76177s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibB30405C9110976C4390E2F3C8EF6D977s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibB30405C9110976C4390E2F3C8EF6D977s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3416A75F4CEA9109507CACD8E2F2AEFCs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3416A75F4CEA9109507CACD8E2F2AEFCs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3416A75F4CEA9109507CACD8E2F2AEFCs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibA1D0C6E83F027327D8461063F4AC58A6s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibA1D0C6E83F027327D8461063F4AC58A6s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3B55EFD60DF8028E559FD59DE3260CC1s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3B55EFD60DF8028E559FD59DE3260CC1s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3B55EFD60DF8028E559FD59DE3260CC1s1
http://portal.nersc.gov/project/sparse/strumpack/
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib7C86FBB4CE137F3341496FCB7D9E6D01s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib7C86FBB4CE137F3341496FCB7D9E6D01s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibE704489865DED308AC0C94826B16DCEEs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibE704489865DED308AC0C94826B16DCEEs1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib67C6A1E7CE56D3D6FA748AB6D9AF3FD7s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib67C6A1E7CE56D3D6FA748AB6D9AF3FD7s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib534BC21B70C41BC290693F69A9911402s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib534BC21B70C41BC290693F69A9911402s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibF457C545A9DED88F18ECEE47145A72C0s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibF457C545A9DED88F18ECEE47145A72C0s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibCCF3779798FDFE9EB6B7DA8EBA76D0B7s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibCCF3779798FDFE9EB6B7DA8EBA76D0B7s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib2838023A778DFAECDC212708F721B788s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib2838023A778DFAECDC212708F721B788s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3CAC277045B67BCF40AE354B1F684CF6s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3CAC277045B67BCF40AE354B1F684CF6s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bib3CAC277045B67BCF40AE354B1F684CF6s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibD82C8D1619AD8176D665453CFB2E55F0s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibD82C8D1619AD8176D665453CFB2E55F0s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibA684ECEEE76FC522773286A895BC8436s1
http://refhub.elsevier.com/S2192-4406(22)00022-3/bibA684ECEEE76FC522773286A895BC8436s1

	Training very large scale nonlinear SVMs using Alternating Direction Method of Multipliers coupled with the Hierarchically ...
	1 Introduction
	1.1 Background and related works
	1.2 Motivations and contribution

	2 The computational framework
	2.1 ADMM details
	2.1.1 Computational cost and convergence

	3 Experiments
	3.1 Hierarchically semi-separable matrix representation
	3.2 Implementation details
	3.3 Numerical results

	4 Conclusions and future work
	Declaration of competing interest
	Acknowledgements
	References

