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industrial technology advances

The future of biometrics technology: from face
recognition to related applications

hitoshi imaoka, hiroshi hashimoto, koichi takahashi, akinori f. ebihara,
jianquan liu, akihiro hayasaka, yusuke morishita and kazuyuki sakurai

Biometric recognition technologies have become more important in the modern society due to their convenience with the recent
informatization and the dissemination of network services. Among such technologies, face recognition is one of the most conve-
nient and practical because it enables authentication from a distance without requiring any authentication operationsmanually.
As far as we know, face recognition is susceptible to the changes in the appearance of faces due to aging, the surrounding lighting,
and posture. There were a number of technical challenges that need to be resolved. Recently, remarkable progress has been made
thanks to the advent of deep learning methods. In this position paper, we provide an overview of face recognition technology
and introduce its related applications, including face presentation attack detection, gaze estimation, person re-identification and
image data mining. We also discuss the research challenges that still need to be addressed and resolved.
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I . I NTRODUCT ION

Unlike using passwords or physical keys, biometrics tech-
nology has great potential to usher in a new world where
nobody needs to be conscious of authentication or identi-
fication processes. In particular, face recognition technol-
ogy is evolving very rapidly in terms of its recognition
accuracy along with the recent advances in deep machine
learning, and has attracted much research attention as a
promising technology that can simultaneously offer both
convenience and precision. The advantages of face recogni-
tion technology are threefold: (1) it enables authentication
from a distance, (2) it works simply with a universal appa-
ratus like a smartphone or tablet, no longer requiring any
special device, and (3) it assures the convenience of the
users by complementing confirmation by humans if it unex-
pectedly stops working, unlike using fingerprint authen-
tication. At the same time, face recognition technology
faces various critical challenges in practical implementa-
tion, including discrepancy in the face images of an identical
person (squinting or shutting eyes, altering facial expres-
sion), changes in the face by aging (baby to elderly), facial
resemblance (twins or siblings), and accessories concealing
a part of the face (eyeglasses or a mask).
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To tackle the aforementioned challenges, as a pioneer,
NEC has made a series of contributions to face recogni-
tion technology from 1989. We developed a 3D and 2D face
recognition system in 1996 and 2000, respectively. In 2004,
our face recognition technology was incorporated into an
immigration administration system, which has since been
deployed in 45 countries.

From the technical perspective, our face recognition
technology was evolving by adopting major methods of
the time in three different stages: (1) distance comparison
among feature points (e.g. eyebrows and nose) in 1990,
(2) statistical methods such as Eigenface and FisherFace
in the 2000s, and (3) recently used methods such as deep
machine learning after the 2010s. At the current stage, our
face recognition technology also adopts hand-crafted fea-
tures or lightweight convolutional neural networks (CNNs)
to optimize its processing pipeline due to limited computa-
tional resources on a device.

In addition, NEC also actively conducts researches on
presentation attack detection (PAD), which aims to dis-
tinguish live face samples from spoof artifacts, for secur-
ing biometrics authentication. How to develop a robust
face PAD on smartphones is one of the most important
practical issues. From the viewpoint of ensuring biomet-
rics authentication security, various key technologies have
already been developed, including secret authentication
that enables matching and identification without decryp-
tion of feature values, and a cancellable biometrics tech-
nique that changes feature values by utilizing both biological
features and a secret key [1–3].

1https://doi.org/10.1017/ATSIP.2021.8
Downloaded from https://www.cambridge.org/core. IP address: 54.146.7.40, on 02 Nov 2021 at 11:25:56, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3891-9410
mailto:h-imaoka\protect _cb@nec.com
https://doi.org/10.1017/ATSIP.2021.8
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


2 hitoshi imaoka et al.

Fig. 1. Face recognition processing.

We organize the rest of this paper as follows. Section II
provides an overview of face recognition technology includ-
ing face detection, face alignment, face matching as shown
in Fig. 1, and reports the recent results of the National Insti-
tute for Standards and Technology (NIST) benchmarking
regarding face recognition. Section III reports the recent
progress of face PAD. Section IV introduces key applica-
tions of face recognition including gaze estimation and per-
son re-identification. Following, the use cases in real scenes
are introduced in Section V. We conclude this paper and
discuss future challenges in Section VI.

I I . OVERV IEW OF FACE
RECOGN IT ION TECHNOLOGY

A) Face detection
Face detection technology has two important tasks: deter-
mining facial regions in an image against various back-
grounds and determining the alignment of each face, such
as position, size, and rotation, to obtain a better perfor-
mance in face-related applications such as face recognition
systems. Because this technology is usually utilized in the
first step of the applications (Fig. 1), many face detection
algorithms have been proposed over the past 20 years. One
of the most successful approaches is based on the cascaded
structure of the AdaBoost classifiers proposed in 2001 by
Viola and Jones [4]. The Viola–Jones algorithm achieved
remarkable performance in terms of accuracy and speed for
the first time in the history of this technology. The algorithm
has also been implemented in various open-source soft-
ware applications, leading to its extensive use by many
researchers in the field of computer vision.

We developed a novel hierarchical scheme combined
with face and eye detection in 2005 [5] by using generalized
learning vector quantization (GLVQ) [6] as a classifier to
improve performance. In the process of face detection, the
face position is roughly determined using low-frequency
components by searching over multi-scale images. Figure 2
shows the flow of the proposed face detection system. First,
multi-scale images are generated from an input image,
and then reliability maps are generated by GLVQ. Finally,
thesemaps aremerged through interpolation to obtain final
results. In the process of eye detection, the positions of both
eyes are determined precisely by a coarse-to-fine search
using high-frequency components of the image. With this
method, we achieved both real-time face detection and
precise face alignment, and subsequently have applied this
method to many practical applications.

With the development of face-related applications,
advanced face detection technology has become increas-
ingly necessary in recent years to detect faces in more diffi-
cult situations typified by various head poses, illumination
changes, and occlusions such as wearing a surgical mask.
The conventional approaches mentioned above are not able
to handle such situations due to the limitation of represen-
tation capacity of image features and the classifiers they use.
Meanwhile, deep learning technology has been applied to
generic object detection tasks that focus on commonobjects
found in everyday life. Two major approaches using deep
learning are Faster R-CNN [7], the best known two-stage
approach, and Single Shot MultiBox Detector [8], the best
known for single-stage approach. In general, deep learning-
based object detection (including the above methods) con-
sists of two parts: a backbone, which is equivalent to feature
extraction, and a detector, which calculates object locations
and confidences for each object. In the field of generic object
detection using deep learning, many methods that use a
deep and large backbone have been proposed, and they have
achieved high accuracy. In the cases that algorithms are run-
ning on a CPU, not a GPU, various lightweight backbones
such as MobileNet [9] and ShuffleNet [10] have been pro-
posed in recent years and are now being applied to generic
object detection tasks.

Since the face detection task has already been utilized in
many real-life situations, e.g. searching a query face against
tens of millions of faces in an image database or analyzing
faces from thousands of IP cameras processed on hundreds
of servers, a faster algorithm is required to gain competitive
business advantage in this field. Therefore, we have devel-
oped an original, real-time face detection algorithm using
a ResNet-based backbone with a single-shot detector net-
work. In our technology, we trained our model with face
images and human body images from our own-captured
internal database to output the positions of the faces and
human bodies captured in input images. We also applied
this technology to person re-identification described in
Section IV.B. Due to differences in individual posture and
clothing, human bodies can present near-infinite appear-
ance variations, making them much more complex than
faces. To deal with this complexity, a massive number of
images of the human body – showing an enormous vari-
ety of individuals engaged in activities such as walking and
running – is input into the system as training data. This
makes it possible to ensure the detection of faces and human
bodies in various settings, which is shown in Fig. 3. In our
algorithm, we carefully tuned the parameters of the back-
bone network with a focus on CPU processing. As a result,
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Fig. 2. Processing flow of the face detection proposed in 2005 [5].

Fig. 3. Processing flow of the face/human body detection technology based on
a deep neural network.

the proposed network is able to achieve the throughput of
25 fps on average on a single core of Core i7 when a 2K image
is down-sampled by a factor of 2.25 before passing to the
network. The network detects faces of size 50× 50 pixels
in an original 2K image, which is a sufficient condition for
practical use. In other words, the proposed network is able
to process a 2K image almost in real-time, with high detec-
tion accuracy for not only usual faces but also faces in the
wild.

B) Face alignment
Figure 4 shows an example of face alignment for detect-
ing the feature points of facial parts, such as the eyes, nose,
and mouth. To achieve accurate face recognition, it is cru-
cial to align the position and shape of facial parts precisely,
as the face recognition accuracy is affected by facial pose
and facial expressions. A robust face alignment algorithm is
required, especially for wild face recognition, where there is
no limitation on the photographing conditions. Low com-
putational cost is another important concern from the view-
point of practical application in real environments. Recent
face-matching algorithms require a time-consuming large-
scale CNN. We therefore aim to reduce the computational
cost of face alignment compared with face-matching.

Recent face alignment algorithms are roughly divided
into two types: handcrafted feature-based methods and
deep learning-based methods.

Regarding handcrafted feature-basedmethods, cascaded
regression models were commonly utilized in the 2010s.
Cascaded regression models have multiple stages of hand-
crafted feature extraction and linear regression. Designing

Fig. 4. Face alignment for detecting the feature points of facial parts.

effective handcrafted features is the major issue facing cas-
caded regression models for fast and accurate face align-
ment. For example, the size of the feature descriptor affects
the face alignment speed and accuracy. The coarse-to-fine
strategy, where large descriptors are used in the early stage
and small descriptors in the latter, can improve the accu-
racy, but it also decreases the speed. Thanks to the adoption
of histogram of oriented gradients, fast feature extraction of
a large descriptor can be achieved by means of the integral
images of each gradient [11]. As a result, cascaded regression
models have achieved accurate face alignment over 1000 fps
on ordinary CPUs.

Deep learning-based methods have been utilized exten-
sively since the late 2010s. In contrast to cascaded regression
models, where handcrafted features need to be designed
manually, deep learning models automatically learn the
effective feature representation for a face alignment task.
However, the computational cost of deep learning models
is much higher than that of the cascaded regressionmodels.
Thus, low computational deep learningmodels are expected
to utilize for lowering the cost. On the other hand, deep
learning models are effective for accuracy improvement in
difficult situations, such as large occlusions and head poses,
thanks to their higher representation performance than the
cascaded regression models.
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We have two choices for face alignment algorithms: fast
cascaded regression models and robust deep learning mod-
els. It is important to select an appropriate face alignment
algorithm depending on practical situations.

C) Face matching
Face matching technology extracts a feature vector from a
face image and identifies whether the person in the image is
a pre-registered person. The query image and the registered
image are not always shot under the same conditions. Vari-
ations of posture or illumination, as well as facial expres-
sions and aging, constitute important factors in matching
performance degradation.

In order to solve the problem of pose variation, we devel-
oped a face normalization technology using the obtained
facial feature points. The face normalization technology
corrects the posture to frontal face as well as the position
and size of a face image by utilizing a 3D shape model
of an average frontal face. For the facial expressions and
aging that are difficult to model, we apply a discrimina-
tivemulti-feature fusionmethod [12] to extract features that
are useful for person identification from a large amount
of face image data to reduce the performance degradation.
With this method, various features such as edge direction
and local textures are extracted from the face image, and
the feature vectors are then projected to the feature space
that remains unaffected by variation and is effective for per-
son identification. Then, the query image is compared with
the registered images on the basis of the angle between the
vectors in the feature space. In this way, by utilizing the
two different methods, we can achieve high-accuracy face
matching that is able to cope with diverse variation factors.

Recently, we have achieved more accurate face matching
by using a deep learning-based technology. The normal-
ized face image created by our face normalization method
is input to a CNN to extract the optimal features (Fig. 5),
necessary to accurately identify an individual. We use a
ResNet-based architecture combinedwith a novel loss func-
tion and our original deep metric learning method [13, 14].
This metric learning method is designed to simultaneously
minimize intra-class distance and maximize inter-class dis-
tance. This makes the system less susceptible to recogni-
tion problems caused by partial occlusion, aging, wearing
a mask, etc. The CNN trained with the aforementioned
methods shows more robust individual identification per-
formance despite changes in appearance.

D) Benchmarking results
In the field of face recognition, especially, differences in
evaluation data often lead to a completely different evalua-
tion of recognition accuracy. The Face Recognition Vendor
Test (FRVT) conducted by NIST has promoted practical
applications of face recognition technology by providing
a fair and reliable comparative evaluation of face recogni-
tion algorithms. To ensure the fairness and reliability of
the test, the NIST defines evaluation prerequisites in a very

Fig. 5. Feature extraction with a CNN for the face matching.

strict manner and uses a common database that is well-
suited for practical application.Weparticipated in such tests
ever since we joined the Multiple Biometric Grand Chal-
lenge (MBGC) in 2009 [15], and had significant recognition
accuracy in many evaluation indices in the Multiple Bio-
metric Evaluation (MBE) [16], FRVT2013 [17], Face inVideo
Evaluation (FIVE) [18] 2015, and FRVT2018 [19]. In the
FRVT2018, specifically, our algorithm achieved the highest
accuracy with a false-negative-identification-rate of 0.5 at
a false-positive-identification-rate of 0.3 when registering
12 million people. Furthermore, our algorithm showed high
robustness in matching the images of a subject taken over
10 years ago and performed the extreme high-speed face
matching of 7ms when registering 1.6 million people.

I I I . RECENT PROGRESS OF FACE
PRESENTAT ION ATTACK
DETECT ION

Although it has clear advantages over the conventional
authentication systems, face authentication has a major
drawback common to other forms of biometric authenti-
cation: a nonzero probability of false rejection and false
acceptance. While false rejection is less problematic, since
a genuine user can usually make a second attempt to be
authorized, false acceptance entails a higher security risk.
When a false acceptance occurs, the systemmay actually be
under attack by a malicious imposter attempting to break
in. Acquiring facial images via social networks is now eas-
ier than ever, allowing attackers to execute various attacks
using printed photos or recorded video. The demand for
technologies for face PAD is thus rising in an effort to ensure
the security of sites deploying face recognition systems.

A) Face presentation attack databases
Face presentation attacks can be subdivided into two major
categories: 2D attacks and 3D attacks (Fig. 6). The former
includes print attacks and video-replay attacks, while the
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Fig. 6. Example of presentation attack types. (a) 2D print attack. (b) 2D replay attack. (c) 3D spoofing mask attack.

latter includes 3D spoofing mask attacks. Several publicly
available databases simulate these attacks. To name a few,
the NUAA [20] and Print-Attack [21] databases simulate
print attacks. The Replay-Attack [22], CASIA Face Anti-
Spoofing [23], MSU Mobile Face Spoofing [24], and Spoof-
ing in the Wild (SiW, [25]) databases contain replay attacks
in addition to photo attacks. The 3D Mask Attack Database
[26] and HKBU-Mask Attack with Real World Variations
[27] simulate 3D mask attacks. Example countermeasures
to each attack type are summarized below.

B) Countermeasures to 2D attacks
The 2D attacks, including print and replay attacks, have
prominent features in common: the characteristic surface
texture and flatness. To use the texture as a key feature,
PAD algorithms that utilize a local binary pattern [28, 29]
or Gaussian filtering [30, 31] have been proposed. To detect
flatness, stereo vision [32] and depth measurement from
defocusing [33] are used to detect spoofing attacks.

Infrared imaging can be used to counter replay attacks,
as the display emits light only at visible wavelengths (i.e. a
face does not appear in an infrared picture taken of a display
whereas it does appear in an image of an actual person [34]).
Another replay-attack-specific surface property is themoiré
pattern [35].

C) Countermeasures to 3Dmask attacks
The recent 3D reconstruction and printing technologies
have given malicious users the ability to produce realistic
spoofing masks [36]. One example countermeasure against
such a 3D attack is multispectral imaging. Steiner et al.
[37] reported the effectiveness of short-wave infrared imag-
ing for detecting masks. Another approach is remote pho-
toplethysmography, which calculates pulse rhythms from
periodic changes in face color [38].

D) End-to-end deep neural networks
The advent of deep learning has enabled researchers to con-
struct an end-to-end classifier without having to design an
explicit descriptor. Research on face PAD is no exception;
that is, deep neural network-based countermeasures have

been found for not only photo attacks but also replay and
3D mask attacks [39–41].

E) Flash-based PAD algorithm for mobile
devices
Face recognition systems are being used at places as diverse
as airports and office entrances and as the login systems of
edge devices. Each site has its own hardware availability; i.e.
it may have access to a server that can perform computa-
tionally expensive calculations, or it may be equipped with
infrared imaging devices. On the other hand, it may only
have access to a low-performance CPU. It is thus natural
that the suitable face PAD algorithmwill differ according to
the hardware availability. The advent of deep-learning tech-
nologies has enabled high-precision image processing that
competes with human abilities at the expense of high com-
putational cost. On the other hand, there is still a need for
an efficient PAD algorithm that works with minimal com-
putational resources. Specifically, countermeasures for 2D
attacks including photo and display attacks are important
because they are more likely to occur than 3D attacks due to
their lowproduction cost. In order to prevent the 2Dattacks,
we recently proposed an efficient face PAD algorithm that
requires minimal hardware and only a small database, mak-
ing it suitable for resource-constrained devices such as
mobile phones [42].

Utilizing one monocular visible light camera, our pro-
posed algorithm takes two facial photos, one taken with a
flash and the other without a flash. The proposed feature
descriptor is constructed by leveraging two types of reflec-
tion: (i) specular reflections from the iris region that have
a specific intensity distribution depending on liveness, and
(ii) diffuse reflections from the entire face region that rep-
resents the 3D structure of a subject’s face. The descriptor
is then classified into either live or spoof face class, using
Support Vector Machine (SVM, [43, 44]).

Our tests of the proposed algorithm on three pub-
lic databases and one in-house database showed that
it achieved statistically significantly better accuracy than
an end-to-end deep neural network classifier (Fig. 7(a),
Table 1). Moreover, the execution speed of the proposed
algorithm was approximately six times faster than that of
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Fig. 7. Speed and accuracy test results, adapted from [42]. (a) Two-wayANOVAcomparing SpecDiff andResNet4. (s)BPCER and (s)ACER indicate that sBPCER and
sACER are used for evaluating public databases, while genuine BPCER and ACER are used for evaluating the in-house database. Resulting p-values show statistical
significance in APCER and (s)ACER. (b) Summary of execution speeds. The proposed SpecDiff descriptor classified with the SVM RBF kernel is compared with
ResNet4. Execution speeds on iPhone7, iPhone XR, and iPad Pro are measured.

Table 1. Mean validation errors of selected algorithms.

In-house NUAA [20] Replay-attack [22] SiW [25]

Descriptor/classifier APCER BPCER APCER sBPCER APCER sBPCER APCER sBPCER

LBP – SVM RBF kernel [45] 1.73 10.53 21.55 16.49 2.11 22.07 3.36 21.95
ResNet4 [19] 1.49 1.88 6.50 1.39 2.71 1.28 3.83 0.52
SpecDiff – SVM RBF kernel [42] 0.36 0.79 0.021 0.83 0.25 0.98 0.93 0.79

For the experimental details, see [42].
Bold significance (ANOVA) followed by Tukey-Kramer multicomparison test to show that our proposed method achieved statistically significantly better
accuracy than the ResNet4.

Fig. 8. Average detection error tradeoff (DET) curves across 10-fold cross-validation trials, adapted from [42]. Implicit3D is a different flash-based algorithm [46]
included for comparison. (1) NUAA database. (2) Replay-Attack database. (3) SiW database.

the deep neural networks (Fig. 7(b)). The evaluation met-
rics for these tests were attack presentation classification
error rate, bona fide presentation classification error rate
(BPCER), and average classification error rate (ACER), fol-
lowing ISO/IEC 30107-3. Note that one problem in evalua-
tion is that our proposed algorithm needs pairs with photos
with and without flash. However, we cannot access the live
subjects appearing in the public databases. Thus, in order
to obtain metrics equivalent to BPCER and ACER, we iso-
lated a part of the live faces of an in-house database from the
training dataset and used them as a substitute for live faces
of the public databases. Hereafter we refer to these simu-
lated metrics as simulated BPCER (sBPCER) and simulated
ACER (sACER) (see Fig. 8)

PAD systems are now an essential part of face authen-
tication systems for secure deployment. To ensure the
highest possible accuracy, we consider the following two
approaches to be effective for strengthening PAD systems.
First, multiple PAD algorithms should be combined. Each
PADalgorithmhas its owndrawbacks, so relying on just one
entails security risks. Second, multiple modalities should
be used together. Most of the spoofing attacks these days
have a similar appearance to live faces in the visible-light
domain, thus using only a visible-light-based algorithmmay
increase risks. For example, the flash-based PAD algorithm
mentioned above cannot detect 3D mask attacks. Combin-
ing the flash-based algorithm with an infrared-based PAD
algorithm will ensure robustness against various spoofing
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as well as various environmental conditions (e.g. adverse
lighting).

I V . APLL ICAT IONS OF FACE
RECOGN IT ION

In this section, we introduce the recent progress of key
applications adopting face recognition technology with
its advantages, including gaze estimation and person
re-identification.

A) Gaze estimation
Gaze estimation is one of the amazing applications that can
help to capture the users’ interests or intents by their eyes.
We developed a remote gaze estimation technology (Fig. 9)
that enables real-time detection of the direction an individ-
ual is looking at, even when using existing cameras from
remote locations.

Conventional technologies estimate an individual’s line-
of-sight using specialized devices equipped with infrared
lights and advanced cameras that detect light as it is reflected
from an individual’s eye. In contrast, our technology uses
face alignment, one of the key components of our face
recognition, to identify characteristics in and around the
eye (e.g. the pupil and the corners of the eye) accurately
from images taken by ordinary cameras, including web,
surveillance, tablet, and smartphone cameras, without spe-
cialized equipment. After face alignment, image features are
extracted by a ResNet-based neural network and then an
individual’s line-of-sight is estimated based on the extracted
features.

Since a deep neural network-based gaze estimation
method [47] has been proposed so far, we have been seek-
ing a lightweight network to realize real-time processing.
We proposed a new formalism of knowledge distillation
for regression problems [48]. In this formalism, we made
a twofold contribution: (1) a novel teacher outlier rejection
loss, which rejects outliers in training samples using teacher
model predictions, and (2) amulti-task network. Themulti-
task network estimates both noise-contaminated training
labels and the teacher model’s output, the latter of which
is expected to modify the noise labels following the mem-
orization effects. Our experiments in [48] showed that the
mean absolute error (MAE) of the proposed method using
our knowledge distillation was 1.6 in degree on MPIIGaze
[47]. In addition, its standard deviation was 0.2. It indicates
that the proposed method enables high-accuracy detection
of an individual’s line-of-sight, with an error of 2.5 degrees
or less in most cases. Meanwhile, the MAE of their method
[47] was 5.4 in degree for leave-one-person-out evaluation
protocol, and 2.5 in degree for person-specific evaluation
protocol, respectively. We could not provide a fair com-
parison with the previous work because we did not follow
their evaluation protocol but we split MPIIGaze database
into training and test set randomly in [48]. However, it
is worth noting that the difficulty of our randomly-split

protocol lies between the two evaluation protocols used in
[47] and it suggests that our proposed method achieved
significantly better accuracy than the previous work. Also,
in this paper, we could not provide a comparison between
our RGB image-based technology and conventional tech-
nologies using IR images because there is no public database
with RGB and IR images captured on the same condition.

Furthermore, in our remote gaze estimation technol-
ogy, by adopting our facial alignment method described
in Section II.B, the response to low-resolution images and
changes in brightness is enhanced to detect an individual’s
line-of-sight even when they are separated from the cam-
era by as much as 10m, as shown in Fig. 9, because our
facial alignment method is highly robust even in such case.
This enhancement makes our gaze estimation technology
well suited for the real-world application of automatically
detecting products that draw the attention of shoppers in
retail stores. Applying the strengths of this technology, we
can analyze the line-of-sight of pedestrians and help to opti-
mize the placement of important announcements on public
streets. The technology can also contribute to the safety
and the security of our communities by monitoring the eye
behavior of suspicious individuals. This is in addition to its
business potential, where the technology can help retailers
learn more about which products are attracting the most
attention from visiting customers.

B) Person re-identification
Subsequently, person re-identification should be counted as
another key application of face recognition, which recog-
nizes (or retrieves) the same people from the images taken
by non-overlapping cameras. Similar to face-matching pro-
cessing, person re-identification is utilized to determine
whether an individual is the same person in the gallery
or not. The difference is that person re-identification uses
whole-body images as the basis for identification, rather
than just using face images. In this case, an image of an indi-
vidual’s entire body is input to a feature extractor, extracted
feature vectors in the gallery images are then compared
with those of the individual and finally similarity scores are
computed. The similarity score is then used to determine
whether the subject is the person in the gallery.

One of the commonapproaches for person re-identification
is to design robust features [49–52]. For example, Liao et al.
[49] developed the Local Maximal Occurrence (LOMO)
features that used the maximum amongst the local his-
togram bins to handle viewpoint variations. Another tech-
nique for solving the person re-identification task is to
learn a discriminative metric [49, 53–56]. For example, Li
et al. [54] proposed the Locally Adaptive Decision Func-
tion (LADF) wherein they learn a metric as well as a rule
for thresholding. Recently, artificial neural networks have
shown excellent performance in many computer vision
tasks. In person re-identification task, neural networks also
have performed well [57–59]. Xiao et al. in [59] learn bet-
ter deep features by using images from multiple datasets
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Fig. 9. Outline of remote gaze estimation technology.

Fig. 10. Examples of non-mate image pairs with similar backgrounds. Images
are selected from VIPeR [60] dataset.

(domains) and use a new dropout to fine-tune the CNN to
a particular dataset.

Similar to most recognition tasks, the accuracy of per-
son re-identification is affected by background, viewpoint,
illumination, scale variation, and occlusion. Typically, we
focused on the background variation problem. The person
re-identification task involves extracting features from the
images of people and using a discriminant metric to match
the features. The feature extraction process has to be robust
enough to deal with background variations. As shown in
Fig. 10, the backgrounds in the pair of images are very sim-
ilar. This often leads to false-positive matching results in
non-mate images.

We addressed this problem by using saliency maps in a
deterministic dropout scheme to help a CNN learn robust
features. We defined a saliency map as the probability of a
pixel belonging to the foreground (person) or background.
Similar to Simonyan et al. [61] computing class saliency
maps by back-propagation of a multi-class CNN, we com-
puted the saliency maps of a binary output by CNN. Given
the label y of an input image x and a binary classifier f (x),
we would like to find an image x0, such that the score f (x0)
is maximized. According to [61], we can approximate the
classifier f (·) by its Taylor expansion as

f (x) ≈ wTx + b (1)

where b is a bias term and the weightsw is given by equation
(2) below.

w = ∂f (x0)
∂x

(2)

From equation (1), it is clear that the contribution of the
pixels in x is given by w. By using a ConvNet trained for the
binary classification problem (human or not), we can back
propagate to the input and get w according to equation (2).

These maps highlight the parts of the image that con-
tribute highly to the score or label of that image and need to
be smoothed to contain other portions of the person as well.
We combined the saliency map with a CNN using a deter-
ministic dropout technique to enhance the performance.
The workflow of the technique, shown in Fig. 11, is divided
into two stages. At the first stage, for each input color image,
a saliencymap is computed. This map is the same size as the
input image except it has only one channel. For clarity, the
saliency map in Fig. 11 is shown by adding pseudo colors.
At the second stage, the color image and its saliency map
are input to a CNN that uses the deterministic dropout and
outputs the ID of the input image.

To evaluate the effectiveness of our technique, we con-
ducted experiments on a publicly available dataset andmea-
sured the contribution of the different components. We
mainly compared the performance of three systems:

(1) CNN1 with only color image as input and without the
deterministic dropout,

(2) CNN1 with four-channel image as input, i.e. RGB with
saliency map, and no deterministic dropout, and

(3) Full CNN with color images as input to CNN1, saliency
maps as input to Multi Layered Perceptron, and using
the deterministic dropout.

Weused theCumulativeMatchingCharacteristic (CMC)
accuracies as the evaluation metric. The performance
results are summarized in Table 2, where the first three
rows list the various components of our method. We can
see that the performance of CNN1 (row 1) was improved
when a four-channel image was input instead of a three-
channel color image (row 2). This indicates that the saliency
information is useful for the re-identification task. More-
over, additional performance gains can be made by using
this information in a principled manner with our method
(row 3). This suggests that we canmake the features learned
by a CNNmore robust by using the saliency information.
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Fig. 11. Workflow of dropout technique. In the first stage, a color image is input and the saliency map is calculated. This map is used in the next stage along with
the original image to learn robust features by a CNN. The output is shown as a vector of IDs, but the CNN codes learned in the penultimate layer can be used as the
extracted features.

Table 2. CMC accuracies on VIPeR [60].

Method Rank 1 Rank 10 Rank 20

RGB 37.1 77.6 89.1
RGB+ SM 43.8 82.5 92.7
Ours 49.2 89.3 96.4
[62] 45.9 88.9 95.8
[59] 38.6 – –

“RGB” means only color image is input and “RGB+ SM” means a four-
channel image is input. “Ours” means color image and its saliency map
are input and the deterministic dropout is used.
Bold significance accuracy of our proposed method which includes all of
our functions.

V . USE CASES IN REAL SCENES

Thanks to the aforementioned advantages of our facial
recognition technology, we are able to apply the technol-
ogy directly for retrieval or mining applications on large-
scale surveillance videos rather than utilizing conventional
person-tracking techniques. To demonstrate the feasibility
of such a straightforward approach, we introduce three real
industrial applications in this section.

First, it is a well-known difficulty that person tracking
across multiple cameras often fails to monitor a large area
without the camera view overlapping. Since conventional
tracking techniques require continuous frames in which the
same person appears, it becomes too difficult to recover the
tracking of the same person when two frames are from two
different cameras without any view overlapping or when
images are captured from different angles.

To overcome this difficulty, we completely abandon the
conventional tracking techniques and instead perform per-
son retrieval across multiple cameras by utilizing only facial
recognition to achieve the person tracking. The key idea is
as follows.We first simply apply pairwisematching between
every two facial features extracted from multiple camera
videos. Then the same person extracted from different and
non-continuous frames can be easily connected into a track-
ing sequence, which has the same effect as person tracking.
However, the computation of such pairwise facial match-
ing is costly, as we have the complexity of O(N2), where

N is the number of facial features. Suppose we have only
10K facial features, although we need 100 million times
of pairwise matching. It is obvious that such computation
is very inefficient no matter how fast our facial matching
might be.

To tackle this problem, we designed a novel indexing
method called Luigi [63, 64] to dynamically self-organize a
large amount of feature data into a hierarchical tree struc-
ture based on the similarity scores between any two facial
features. We take a generic approach to build the Luigi tree
structure on-the-fly and form similar face groups along the
tree traversal path near the leaf levels, as shown in Fig. 12.
With this novel approach, the originalO(N2) computational
complexity can be maximally reduced toO(NlogN) in ideal
cases, which enables person retrieval without conventional
tracking in a practical, efficient way.

We adopted the Luigi index in our development of an
automated system (AntiLoiter [63] and its visualization Vis-
Loiter [65]) to discover loitering people from long-time
multiple surveillance videos. A screenshot of the VisLoiter
system is shown in Fig. 13, which depicts the visualized dis-
covery results of loiterers who most frequently appeared in
multiple cameras. This loiterer discovery system has been
transformed into a real product, namedNeoFace image data
mining (IDM) [66], for surveillance purposes in the public
safety domain.

Second, although this automated system could discover
frequent loiterer candidates, it was still far from mak-
ing a clear decision to detect real loiterers. Therefore, we
extended the AntiLoiter system to analyze the character-
istics of the appearance patterns of potential loiterer can-
didates [67]. We developed a novel analytical model by
utilizing the mathematical entropy to capture the change of
movement, durations, and re-appearances of loiterer candi-
dates, which enables us to understand the common char-
acteristics of behavior patterns regarding true loiterers. As
shown in Fig. 14, potential loitering people are likely to
appear in similar graph patterns of entropy changes (hej),
such as blue, red, and green curves. For this purpose, we
extended VisLoiter [65] to a system called VisLoiter+ [68],
shown in Fig. 15, to enhance the visualization of loiterer
discovery results.
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Fig. 12. An example of face grouping by Luigi index [64].

Fig. 13. Visualization results [65] of loiterer candidates discovered by AntiLoiter [63].

Fig. 14. Examples of behavior patterns regarding potential loiterers.

Third, to demonstrate the feasibility of person retrieval
utilizing only face recognition, we developed a novel
method to discover “stalker patterns” [69] based on the sim-
ilar person re-identification and frequent loiterer discovery.
Figure 16 shows an example of a stalking scenario [69] in
which the same man (marked in a green box) keeps follow-
ing the same woman (marked in a red box) across different
surveillance cameras. The key idea of our approach is to
retrieve the same person across videos from different cam-
eras and then to mine the frequently co-appearing patterns
of man–woman pairs from the videos in an efficient way,

Fig. 15. System VisLoiter+ [68] implemented with the models proposed in [67].
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Fig. 16. An example of stalking scenario [69].

such as adopting Luigi to index large numbers of feature
data.

In addition to the aforementioned three use cases in real
scenes of person retrieval utilizing only our face recognition
technology, there are many potentially interesting applica-
tions related to group re-identification and group activity
analysis. It would prove fruitful for research communities
to explore the potential of adopting only face recognition as
much as possible for real-world applications in a straight-
forward yet challenging new direction.

V I . CONCLUS ION AND FUTURE
CHALLENGES

In this paper, we have provided an overview of face recogni-
tion technology, the PAD technology required for practical
utilization of face recognition, gaze estimation and person
re-identification as an aspect of application technologies,
and IDM by time series analysis.

To guide future directions, we suggest the research chal-
lenges that still need to be addressed for more practical
applications as follows.

(1) Face recognition algorithms suitable for changes to facial
appearance throughout life from baby to old age. Life-
time invariance is a crucially important factor for face
recognition. In particular, the question of how long face
images registered for newborns or children will work is
interesting from the viewpoint of technical challenges
and limitations.

(2) Countermeasures for shields against face recognition.
Although extreme high matching accuracy in normal
situation has already been envisaged, improvements are
needed for situations where the people to be authenti-
cated arewearing a facemask and/or sunglasses, orwhen
their faces are totally covered by a scarf or beard.

(3) Gaining higher matching accuracy for authenticating
twins, siblings, or relatives. This is still a technical chal-
lenge [19]. The face similarity of non-mate-pair twins is
higher than that of the same person at different ages.

We also suggest to develop a practical, more robust tech-
nology for detecting face spoofing and protecting against
various kinds of attacks, come up with techniques for
template protection of feature values, and develop a pro-
tection technology to combat cyber-attacks by artificial

intelligence, as well as to combine them with existing face
recognition technologies. With the development of such
technologies, face recognition will seep into society more
widely.
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