
Chapter 14
Integrity Verification Through File
Container Analysis

Alessandro Piva and Massimo Iuliani

In the previous chapters, multimedia forensics techniques based on the analysis
of the data stream, i.e., the audio-visual signal, aimed at detecting artifacts and
inconsistencies in the (statistics of the) content were presented. Recent research
highlighted that useful forensic traces are also left in the file structure, thus offering
the opportunity to understand a file’s life-cycle without looking at the content itself.
This Chapter is then devoted to the description of the main forensic methods for the
analysis of image and video file formats.

14.1 Introduction

Most forensic techniques look for traces within the content itself that are, however,
mostly ineffective in some scenarios, for example, when dealing with strongly com-
pressed or low resolution images and videos. Recently, it has been shown that also the
image or video file containermaintain some traces of the content history. The analysis
of the file format and metadata allows to determine their compatibility, complete-
ness, and consistency based on the expected media’s history. This analysis proved to
be strongly promising since the image and video compression standards leave some
freedom in the file container’s generation. This fact allows forensic practitioners to
identify media’s container signatures related to a specific brand, model, social media
platform, etc. Furthermore, the cost for analyzing a file header is usually negligible.
This is even more relevant when dealing with digital videos where the stream analy-
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sis can quickly become unfeasible. Indeed, recent methods highlight that video can
be analyzed in seconds, independently of their length and resolution.

It is worth also mentioning that most of the achieved results highlighted that most
interesting containers’ signatures usually have a low intra-variability, thus suggesting
that this analysis can be promising even when only a few training data are available.
On the other side, these techniques’ main drawback is that they only allow forgery
detection while localization is usually beyond its capabilities.

Furthermore, the design of practical media containers’ parsers is not to be under-
estimated since it requires a deep comprehension of image and video formats, and the
parser should be updated when newmodels are introduced in the market or unknown
elements are added to the media header. Finally, we are currently not aware of any
publicly available software that would allow users to consistently forge such infor-
mation without advanced programming skills. This makes the creation of plausible
forgeries undoubtedly a highly non-trivial task and thereby reemphasizes that file
characteristics and metadata must not be dismissed as unreliable source of evidence
for the purpose of file authentication per se. The Chapter is organised as follows:
in Sects. 14.1.1 and 14.1.2 the main image and video file format specifications are
summarized. Then, in Sect. 14.2 and 14.3 the main methods for the analysis of image
and video file formats are described. Finally, in Sect. 14.4 the main findings of this
research area are provided, along with some possible future works.

14.1.1 Main Image File Format Specifications

Multimedia technologies allow digital image generation based on several image for-
mats. DSLR cameras and proficient acquisition devices can store images in uncom-
pressed formats (e.g., DNG, CR2, BMP). When necessary, lossless compression
schemes (e.g., PNG) can be applied to reduce the image size without impacting its
quality. Furthermore, lossy compression schemes (e.g., JPEG, HEIF) are available
to strongly reduce image size with minimal impact on visual quality.

Nowadays, most of the devices on the market and social media platforms generate
and store JPEG images. For this reason, most of the forensic literature focuses on this
image type. The JPEG standard itself JPEG (1992) defines the pixel data encoding
and decoding, while the full-featured file format implementation is defined in the
JPEG Interchange Format (JIF) ISO/IEC (1992). This format is quite complicated,
and some simpler alternatives are generally preferred for handling and encapsulating
JPEG-encoded images: the JPEG File Interchange Format (JFIF) Eric Hamilton
(2004) and the Exchangeable Image File Format (Exif) JEITA (2002), both built on
JIF.

Each of the formats defines the basic structure of JPEG files as a set of marker
segments, either mandatory or optional. An identifier of the marker id indicates
the beginning of each marker segment. Abbreviations for marker ids are denoted
by 16 bit short values starting with 0xFF. Marker segments can encapsulate either
data compression parameters (e.g., in DQT, DHT, or SOF) or application-specific



14 Integrity Verification Through File Container Analysis 365

metadata, like thumbnails or EXIF metadata (e.g., in APP0(JFIF) or APP1(EXIF)).
Additionally, somemarkers consist of themarker id only and indicate state transitions
necessary to parse the file format. For example, SOI andEOI indicate the start and end
of a JPEG file, requiring all other markers to be placed between these two mandatory
markers.

The JIF standard also allows application markers (APPn), populated with entries
in the form of key-value pairs. The values can vary from human-readable strings to
complex structures like binary data. The APP0 segment defines pixel densities and
pixel ratios, and an optional thumbnail of the actual image can be placed here. In
APP1, theEXIF standard enables cameras to save a vast range of optional information
(EXIF-Tags) related to the camera’s photographic settingswhen andwhere the image
was taken. The information are split into five main image file directories (IFDs): (i)
Primary; (ii) Exif; (iii) Interoperability; (iv) Thumbnail; and (v) GPS. However, the
content of each IFD is customizable by cameramanufacturers, and the EXIF standard
also allows for the creation of additional IFDs. Other metadata are customizable
within the file header, such as XMP and IPTC that provide additional information
like copyright or the image’s editing history. Furthermore, image processing software
can introduce a wide variety of marker segment sequences.

These differences in the file formats and the not strictly standardization of several
sequences may expose forensic traces within the image file container Thomas Gloe
(2012). Indeed, not all segments are mandatory and different combinations thereof
can occur. Some segments can appear multiple times (e.g., quantization tables can
be either encapsulated in one single or multiple separate DQT segments). Further-
more, the sequence of segments is generally not fixed (with some exceptions) and
customizable. For example, JPEG thumbnails exist in different segments and employ
their own complete sequence ofmarker segments. Eventually, arbitrary data can exist
after EOI.

In the next sections, we report the main technologies and the results achieved
based on the technical analysis of these formats.

14.1.2 Main Video File Format Specifications

When a camera acquires a digital video, image sequence processing and audio
sequence processing are performed in parallel. After compression and synchro-
nization, the streams are encapsulated in a multimedia container, simply called a
video container from now on. There are several compression standards; however,
H264/AVC or MPEG-4 Part 10 International Telecommunication Union (2016), and
H265/HEVC or MPEG-H Part 2 International Telecommunication Union (2018) are
themost relevant sincemostmobile devices implement them.Video and audio tracks,
plus additional information (such as metadata and sync information), are then encap-
sulated in the video container based on specific format standards. In the following,
we describe the two most adopted formats.
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MP4-like videos

Most smartphones and compact cameras output videos in mp4, mov, or 3gp format.
This video packaging refers to the same standard, ISO/IEC 14496 Part 12 ISO/IEC
(2008), that defines the main features ofMP4 File Format ISO/IEC (2003) andMOV
File Format Apple Computer, Inc (2001). The ISO Base format is characterized by
a sequence of atoms or boxes. A unique 4-byte code identifies each node (atom)
and each atom consists of a header and a data box, and possibly nested atoms. As
an example, we report in Fig. 14.1 a typical structure of an MP4-like container. The
file type box, ftyp, is a four-letter code that is used to identify the type of encod-
ing, the compatibility, or the intended usage of a media file. According to the latest
ISO standards, it is considered a semi-mandatory atom, i.e., the ISO expects it to be
present and explicit as soon as possible in the file container. In the example given in
Fig. 14.1 (a), the fields of the ftyp descriptor explain that the video file is MP4-like
and it is compliant to the MP4 Base Media v1 [IS0 14496-12:2003] (here isom)
and the 3GPP Media (.3GP) Release 4 (here 3gp4) specifications.1 The movie box,
moov, is a nested atom containing the metadata needed to decode the data stream,
which is embedded in the following mdat atom. It is important to note that moov

Fig. 14.1 Representation of
a fragment of an MP4-like
video container, of an
original video acquired by a
Samsung Galaxy S3

1 The reader can refer to http://www.ftyps.com/ for further details.

http://www.ftyps.com/
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may contain multiple trak box instances, as shown in Fig. 14.1. The trak atom is
mandatory, and its numerosity depends on the number of streams included in the file;
for example, if the video contains a visual-stream and an audio-stream, there will be
two independent trak atoms. A more detailed description of these structures can
be found in Carlos Quinto Huamán et al. (2020).

AVI videos

Audio video interleave (AVI) is a container format developedbyMicrosoft in 1992 for
Windows software Microsoft. Avi riff file (1992). AVI files are based on the RIFF
(resource interchange file format) document format consisting of a RIFF header
followed by zero or more lists and chunks.

A chunk is defined as ckID, ckSize, and ckData, where ckID identifies the data
contained in the chunk, ckSize is a 4-byte value giving the size of the data in ckData,
and ckData is zero or more bytes of data.

A list consists of LIST, listSize, listType, and listData, where LIST is the literal
code LIST, listSize is a 4-byte value giving the size of the list, listType is a 32-bit
unsigned integer, and listData consists of chunks or lists, in any order.

An AVI file might also include an index chunk, which gives the location of the
data chunks within the file. All AVI files must keep these three components in the
proper sequence: the hdrl list defining the format of the data and is the first required
LIST chunk; the movi list containing the data for the AVI sequence; the idx1 list
containing the index.

Depending on the specific camera or phone model, additional lists and JUNK
chunks may exist between the hdrl and movi lists. These optional data segments are
either used for padding or to store metadata. The idx1 chunk indexes the data chunks
and their location in the file.

14.2 Analysis of Image File Formats

The first studies in the image domain considered JPEG quantization tables and image
resolution values Hany Farid (2006); Jesse D. Kornblum (2008); H. Farid (2008).
Just with these few features, the authors demonstrated that it is possible to link
a probe image to a set of devices or editing software. Then, in Kee Eric (2011),
the authors increased the set of features by also considering JPEG coding data and
Exif metadata. These studies provided better results in terms of integrity verification
and device identification. The main drawback of such approaches is that a user can
easily edit the metadata’s information, limiting these methods’ reliability. Following
studies demonstrated that the file structure also contains a lot of traces of the content’s
history. These data are also more reliable, being much more challenging to extract
and modify for a user than metadata. Furthermore, available editing software and
metadata editors do not allow themodification of such low-level information Thomas
Gloe (2012). However, like the previous ones, this method is based on a manual
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analysis of the extracted features, to be compared with a set of collected signatures.
In Mullan Patrick et al. (2019), the authors present the first automatic method for
characterizing the source device, based on the analysis of features extracted from
the JPEG header information. Finally, another branch of research demonstrated that
the JPEG file format can be exploited to understand whether a probe image has
been exchanged through a social network service. In the following, we describe the
primary studies of this domain.

14.2.1 Analysis of JPEG Tables and Image Resolution

InHany Farid (2006), the author shows, for the first time, thatmanufacturers typically
configure the compression of devices differently according to their own needs and
preferences. This difference, primarily manifested in the JPEG quantization table,
can be used to identify the device that acquired a probe image.

To carry out this analysis, the authors collect a single image, at the highest quality,
from each of 204 digital cameras. Then, they extract the JPEG quantization table,
noticing that 62 cameras show a unique table.

The remaining cameras fall into equivalence classes of sizes between 2 and 28
(i.e., between 2 and 28 devices share the same quantization tables). Usually, cameras
that share the same tables belong to the same manufacturer. Conversely, different
makes and models usually share the same table. These results highlight that JPEG
quantization tables can partially characterize the source device. Thus, they effectively
narrow the source of an image, if not to a single camera make and model, at least to
a small set of possible cameras (on average, this set size is 1.43).

This study was performed by also saving the images with five Photoshop versions
(at that time, version CS2, CS, 7, 4, and 3) at each of the 13 available levels of
compression available. As expected, quantization tables at each compression level
were different fromone another.Moreover, at each compression level, the tableswere
the same for all five versions of Photoshop. More importantly, no one of these tables
can be found in the images belonging to the 204 digital cameras. These findings
allow arguing the possibility to link an image to specific editing software, or at least
to a set of possible editing tools.

Similar results have been presented in Jesse D. Kornblum (2008). The authors
examined images from devices (a Motorola KRZR K1m, a Canon PowerShot 540, a
FujiFilm Finepix A200, a Konica Minolta Dimage Xg, and a Nikon Coolpix 7900)
and images edited by several software programs such as libjpeg, Microsoft Paint,
the Gimp, Adobe Photoshop, and Irfanview. The analysis carried out on this dataset
shows that, although some cameras always use the same quantization tables, most of
them use a different set of quantization tables in each image. Moreover, these tables
usually differ according to the source or editing software.

In H. Farid (2008), the author expands the earlier work by considering a much
larger dataset of images and adding the image resolution to the quantization table as
discriminating features for source identification.
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The author analyzes over 330 thousand Flickr images from 859 different camera
models from 48manufacturers. Quantization tables and resolutions allowed to obtain
10153 different image classes.

The resolution and quantization table were then combined to narrow the search
criteria to identify the source camera. The analysis revealed that 2704 out of 10153
entries (26.6%) have a unique paired resolution and quantization table. In these cases,
the features can correctly discriminate the source device. Moreover, 37.2% of the
classes have at most two matches, and 44.1% have at most three matches. These
results show that the combination of JPEG quantization table and image resolution
allows matching the source of an image to a single camera make and model or at
least to a small set of possible devices.

14.2.2 Analysis of Exif Metadata Parameters

InKeeEric (2011), the authors expand theprevious analysis by creating a larger image
signature for identifying the source camera with greater accuracy than only using
quantization tables and resolution. This approach considers a set of features of the
JPEG format, namely properties of the run-length encoding employed by the JPEG
standard and some Exif header format characteristics. In particular, the signature
is composed of three kinds of features: image parameters, thumbnail parameters,
and Exif metadata parameters. The image parameters consist of the image size,
quantization tables, and the Huffman codes; the Y, Cb, and Cr 8 × 8 quantization
tables are represented as a vector of 192 values; the Huffman codes are specified
as six vectors (one for the dc DCT coefficients and one for the ac DCT coefficients
of each of the three channels Y, Cb, and Cr) storing the number of codes of length
from 1 to 15. This part of the signature is then composed of 284 values: 2 image
dimensions, 192 quantization values, and 90 Huffman codes.

The same components are extracted from the image thumbnail, usually embedded
in the JPEGheader. Thus, the thumbnail parameters are other 284 values: 2 thumbnail
dimensions, 192 quantization values, and 90 Huffman codes.

A compact representation of EXIF Metadata is finally obtained by counting the
number of entries in each of the five image file directories (IFDs) that compose the
EXIF metadata, as well as the total number of any additional IFDs, and the total
number of entries in each of these. It worth noticing that some manufacturers adopt
metadata representation that does not conform to the EXIF standard, yielding errors
when parsing the metadata. The authors also consider these errors as discriminating
features, so the total number of parser errors, as specified by the EXIF standard, is
also stored. Thus, they consider 8 values from the metadata: 5 entry values from the
standard IFDs, 1 for the number of additional IFDs, 1 for the number of entries in
these additional IFDs, 1 for the number of parser errors.

The image signature is then composed of 284 header features extracted from the
full resolution image, 284 header features from the thumbnail image, and another 8
from the EXIF metadata, for a total of 576 features. These signatures are extracted
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Table 14.1 The percentage of camera configurations with an equivalence class size from 1 to 5.
Each row corresponds to different subsets of the complete signature

Equivalence class size

1 2 3 4 5

Image 12.9% 7.9% 6.2% 6.6% 3.4%

Thumbnail 1.1% 1.1% 1.0% 1.1% 0.7%

EXIF 8.8% 5.4% 4.2% 3.2% 2.6%

Image+thumbnail 24.9% 15.3% 11.3% 7.9% 3.7%

All 69.1% 12.8% 5.7% 4.0% 2.9%

from the image files and analyzed to verify if they can assign the image to a given
camera make and model.

Tests are carried out on over 1.3 million Flickr images, acquired by 773 camera
and cell phone models, belonging to 33 different manufacturers.

These images span 9, 163 different distinct pairings of the camera make, model,
and signature, referred to as a camera configuration. It is worth noting that each
camera model can produce different signatures based on the acquisition resolutions
and quality settings. Indeed, in the collected dataset, wefind an average of 12 different
signatures for each camera make and model.

The camera signature analysis on the above collection shows that the image,
thumbnail, and EXIF parameters are not distinctive individually. However, when
combined, they provide a highly discriminative signature. This result indicates that
the three classes of parameters are not highly correlated, and hence their combination
improves overall distinctiveness, as show in Table14.1.

Eventually, the signature was tested on images edited by Adobe Photoshop (ver-
sions 3, 4, 7, CS, CS2, CS3, CS4, CS5 at all qualities), by exploiting, in this case,
image and thumbnail quantization tables and Huffman codes only. No overlaps were
found between any Photoshop version/quality and camera manufacturer. The Photo-
shop signatures, each residing in an equivalence class of size 1, are unique.Thismeans
that any photo-editing with Photoshop can be easily and unambiguously detected.

14.2.3 Analysis of the JPEG File Format

In Thomas Gloe (2012), the author makes a step forward with respect to the previous
studies. They analyze the JPEG file format structure to identify new characteristics
that are more discriminating than JPEG metadata only. In this study, a subset of
images extracted from the Dresden Dataset (Thomas Gloe and Rainer Bähme 2014)
was used. In particular, 4, 666 images belonging to the JPEG scenes (a part of the
dataset built to specifically study model-specific JPEG compression algorithms) and
16, 956 images of natural scenes were considered. Images were captured with one
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device of each available camera model while iterating over all combinations of com-
pression, image size, and flash settings) Overall, they considered images acquired by
73 devices from 26 camera models of 14 different brands. A part of these authentic
images was re-saved with each of the eight investigated image processing software
(ExifTool, Gimp, IrfanView, Jhead, cjpeg, Paint.NET, PaintShop, and Photoshop),
with all available combinations of JPEG compression settings. Finally, they obtained
and analyzed more than 32, 000 images.

The study focuses firstly on analyzing the sequence and occurrence of marker
segments in the JPEG data structures. The main findings of the author are that:

1. some optional segments can occur with different combinations;
2. segments can appear multiple times;
3. the sequence of segments is generally not fixed, with the exception of some

required combinations;
4. JPEG thumbnails exist in different segments and employ their complete sequence

of marker segments;
5. arbitrary data can exist after the marker end of image (EOI) of the main image.

The markers’ analysis allows to distinguish between pristine and edited images cor-
rectly. Furthermore, none of the investigated software allows to recreate the sequence
of markers consistently.

The author also considered the sequence of EXIF data structures that store cam-
era properties and image acquisition settings. Interestingly, they found differences
between digital cameras, image processing software, and metadata editors. In par-
ticular, the following four characteristics appear to be relevant:

1. the byte order is different between camera models (and the default setting
employed by ExifTool);

2. sequences of image file directories (IFDs) and corresponding entries (including
tag, data type and often also offsets) appear constant in images acquired with the
same model and differ between different sources;

3. some manufacturers use different data types for the same entry;
4. raw values of rational types differ between different models while resulting in the

same interpreted values (e.g., 200/10 or 20/1).

These findings allow to conclude that the analysis of EXIF data structures can be
useful to discriminate between authentic and edited images.

14.2.4 Automatic Analysis of JPEG Header Information

All previousworks analyzed images acquired bydigital cameras,whereas today,most
of the visual content is generated by smartphones. These two classes of devices are
somewhat different.While traditional digital cameras typically have a fixed firmware,
modern smartphones keep updating their acquisition software and operating system,
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making it harder to achieve a unique characterization of device models based on the
image file format.

InMullan Patrick et al. (2019), the authors performed a large-scale study onApple
smartphones to characterize the source device based on JPEG header information.
The results confirm that identifying the hardware is much harder for smartphones
than for traditional cameras, while we can identify the operating system version and
selected apps.

The authors exploit Flickr images following the rules adopted in Kee Eric (2011).
Starting from a crawling of one million images, they filtered the downloaded media
to remove edited images, obtaining at the end a dataset of 432, 305 images. All
images belong to Apple devices, including all models comprised between iPhone 4
and iPhone X, between iPad Air and iPad Air 2, with operating system versions from
iOS 5 to iOS 12.

They consider two families of features: the number of entries in the image
file directories (IFDs) and the quantization tables. The selected directories include
the standard IFDs “ExifIFD”, “IFD0”, “IFD1”, “GPS”, and the special directories
“ICC_Profile” and “MakerNotes”. The Y and Cb quantization tables are concate-
nated, and their hash is computed, obtaining one alphanumeric number, called QC-
Table. Differently from Kee Eric (2011), the Huffman tables were not considered
since, in the collected database, they are identical in the vast majority of cases. For
similar reasons, they also discarded the sequence of JPEG syntax elements studied
by Thomas Gloe (2012).

First, the authors verified the modification of the header information for Apple
smartphones over time. They showed that image metadata change more often than
compression matrices, and that different hardware platforms with same operating
system exhibit very similar metadata information. These findings highlight that it is
more complicated to analyse smartphones than digital cameras.

After that, the authors design an algorithm for determining the smartphone hard-
ware model from the header information in an automatic way. This is the first algo-
rithm designed to perform an automatic source identification on images through file
format information. The classification is performed with a random forest, that uses
numbers of entries per directory and quantization tables, as described before, as
features.

Firstly, a random forest classifier was trained to identify seven different iPhone
models marketed in 2017. Secondly, the same algorithm was trained to verify its
ability to identify the operating system from header information, considering all
versions from iOS 4 to iOS 11. In all the two cases, experiments were performed
by considering as input features: (i) the Exif directories only, (ii) the quantization
tables only, (iii) metadata and quantization features together. We report the achieved
results in Table14.2. It worth noticing that using only the quantization tables gives
the lowest results, whereas the highest accuracy is reached with all the considered
features. Moreover, it is easier to discriminate among operating systems than among
hardware models.
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Table 14.2 Overall accuracy of models and iOS version classification when using EXIF directories
(EXIF-D), quantization matrices (QT), or both

EXIF-D QT Both

iPhone Models
classification

61.9% 35.4% 65.6%

iOS version
Classification

80.4% 33.7% 81.7%

14.2.5 Methods for the Identification of Social Networks

Several works investigated how JPEG file format modifications can be exploited to
understand whether a probe image has been exchanged through a social network
service. Indeed, a social network usually recompresses, resizes, and alters image
metadata.

Castiglione et al. Castiglione et al. (2011) made the first study on image resizing,
compression, renaming, andmetadatamodifications introduced byFacebook,Badoo,
and Google+.

Giudice et al. Oliver Giudice et al. (2017) built a dataset of images from different
devices, including digital cameras and smartphones with Android and iOS operating
systems. Then, they exchanged all the images through ten different social networks.

The considered features are a 44-dimensional vector composed of pixel width and
height, an array containing the Exif metadata, the number of JPEG markers, the first
32 coefficients of the luminance quantization table, and the first 8 coefficients of the
chrominance quantization table. These features are fed to an automatic detector based
on two K-NN classifiers and a decision tree fitted on the built dataset. The method
can predict the social network the image belongs to and the client application with
an accuracy of 96% and 97.69% respectively.

Summarizing, the authors noticed that modifications left by the process in the
JPEG file depend on both the platform (server-side) and the application used for the
upload (client-side).

In Phan et al. (2019), the previous method was extended by merging JPEG meta-
data information (including quantization tables, Huffman coding tables, image size)
with content-related features, namely the histograms of DCT coefficients. A CNN is
trained on these features to detect an image’s multiple exchanges through Facebook,
Flickr, and Twitter.

The adopted dataset consists of two parts: R-SMUD (RAISE Social Multiple Up-
Download), generated by the RAISE dataset Duc-Tien Dang-Nguyen et al. (2015),
containing images shared over the three Social Networks; V-SMUD (VISION Social
Multiple Up-Download), obtained from a part of theVISIONdataset Dasara Shullani
et al. (2017), shared three times via the three social networks, following different
testing configurations.

The experiments demonstrated that JPEG metadata’s information improves the
performancewith respect to using content-based information only.When considering
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single-shared contents, the accuracy improves from 85.63% to 99.87% on R-SMUD
and is in both cases 100.00% on V-SMUD. When considering images shared both
once and twice, the accuracy improves from 43.24% to 65.91% on R-SMUD and
from 58.82% to 77.12% on V-SMUD.When dealing with three times shared images
also, they achieve an accuracy of 36.18% on R-SMUD and 49.72% on V-SMUD.

14.3 Analysis of Video File Formats

Gloe et al. proposed the first more in-depth analysis of video file containers Gloe
Thomas et al. (2014). The authors observe that videos from different cameras and
phone models expose different container formats and compression. This allows a
forensic practitioner to extract this informationmanually and, based on a comparison
with a reference, expose forensic findings. In Jieun Song et al. (2016) the authors
studied 296 video files in AVI format acquired with 43 video event data recorders
(VEDRs), and theirmanipulated versionwith 5 different video editing software tools.
All videos were classified according to a sequence of field data structure types. This
study showed that the field data structure represents a valid feature set to determine
whether video editing software was used to process a probe video. However, these
methods require themanual analysis of the video container information, thus needing
high effort and high programming skills. Some attempts were proposed to identify
the containers’ signature of the most relevant brands and social media platforms
Carlos Quinto Huamán et al. (2020). Another path tried to automatize the forensic
analysis of video file structures by verifying their multimedia stream descriptors
with simple binary classifiers through a supervised approach David Güera et al.
(2019). However, in Iuliani Massimo (2019), the authors propose a way to formalize
the MP4-like (.mp4, .mov, .3gp) video file structure. A probe video is converted
in an XML tree-based structure; then, the comparison between the parsed data and
a reference dataset addresses both integrity verification and brand classification. A
similar approach has been also proposed in Erik Gelbing (2021), but the experiments
have been applied only to the scenario of brand classification.

Both Iuliani Massimo (2019) and David Güera et al. (2019) allow the integrity
assessment of a digital video with negligible computational costs. A further improve-
ment was finally proposed in Yang Pengpeng et al. (2020), where decision trees were
employed to reduce further the computational effort required to a fixed amount of
time, independently of the reference dataset’s size. These latest works also introduced
an open-world scenario where the tested device was not available in the training set.
The issue is also addressed in Raquel Ramos López et al. (2020), where information
extracted from the video container was used to cluster sets of videos by data source,
consisting in brand, model, or social media. In the next sections, we briefly summa-
rize the main works: (i) the first relevant paper on video container Gloe Thomas et al.
(2014), (ii) the first video container formalization and usage Iuliani Massimo (2019),
(iii) the most recent work for efficient video file format analysis Yang Pengpeng et al.
(2020).
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14.3.1 Analysis of the Video File Structure

In Gloe Thomas et al. (2014), the authors identify the manufacturer and model-
specific video file format characteristics and show how processing software further
modifies those features. In particular, they consider 19 digital cameras and 14 mobile
phones belonging to different models, and they consider from 3 to 14 videos per
device, with all available video quality settings (e.g., frame size and frame rate).
In Table14.3, we report the list of these devices. Most of these digital cameras

Table 14.3 The list of devices analyzed in the study

Make Model Container

Digital camera models

Agfa DC-504, DC-733s, DC-830i,
Sensor530s

AVI

Agfa Sensor505-X AVI

Canon S45,S70, A640, Ixus IIs AVI

Canon EOS-7D MOV

Casio EX-M2 AVI

Kodak M1063 MOV

Minolta DiMAGE Z1 MOV

Nikon CoolPix S3300 AVI

Pentax Optio A40 AVI

Pentax Optio W60 AVI

Praktica DC2070 MOV

Ricoh GX100 AVI

Samsung NV15 AVI

Mobile phone models

Apple IPhone 4 MOV

Benq Siemens S88 3GP

BlackBerry 8310 3GP

Google Nexus 7 3GP

LG KU990 3GP, AVI

Motorola MileStone 3GP

Nokia 6710 3GP, MP4

Nokia E61i 3GP, MP4

Nokia E65 3GP, MP4

Nokia X3-00 3GP

Palm Pre MP4

Samsung GT-5500i MP4

Samsung SGH-D600 MP4

Sony Ericsson K800i 3GP
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store videos in AVI format, and some use Apple Quicktime MOV containers and
compress video data using motion JPEG (MJPEG), and only three use more efficient
codecs (DivX,Xvid, orH.264). All themobile phones store video data inMOV-based
container formats (MOV, 3GP,MP4), except for the LGKU990 camera phone, which
supports AVI. On the contrary, the mobile phones adopt H.263, H.264, MPEG-4 or
DivX, and not MJPEG compression.

A subset of the camera models has also been used to generate cut short videos,
10 seconds long, through video editing tools (FFmpeg, Avidemux, FreeVideoDub,
VirtualDub, Yamb, and Adobe Premiere. Except for Adobe Premiere, all of them
have allowed lossless video editing, i.e., the edited files have been saved without re-
compressing the original stream. After that, they have analyzed the extracted data.
This analysis reveals considerable differences between device models and software
vendors, and some general findings are summarized here.

The authors carry out the first analysis by grouping the devices according to the file
structure, i.e., AVI or MP4. Original AVI videos do not share the same components.
Both the content and the format of specific chunks may vary, depending on the
particular Camera model. Their edited versions, with all software tools, even when
lossless processing is applied, leave distinct traces in the file structure, which do
not match any of the camera’s features in the dataset. It is then possible to use
these differences to spot if a video file was edited with these tools by comparing a
questioned file’s file structure with a device’s reference container.

Original MP4 videos, due to the by far more complex file format, exhibit an even
more considerable degree of source-dependent internal variations than AVI files.
However, none of the cut videos produced through the editing tools is compati-
ble with any source device considered in the study. Dealing with original MJPEG-
compressed video frames, different camera models adopt different JPEG marker
segment sequences when building MJPEG-compressed video frames. Moreover,
content-adaptive quantization tables are generally used in a video sequence, such
that 2914 unique JPEG luminance quantization tables in this small dataset have been
found. On these contents, lossless video editing leaves compression settings unal-
tered, but they introduce very distinctive artifacts in container files’ structure. These
findings stated that videos from different digital cameras and mobile phones appear
to employ different container formats and compression. It worth noticing that this
study is not straightforward since the authors had to write customized file parsers
to extract the file format information from the videos. On the other side, this diffi-
culty is also advantageous since we are currently unaware of any publicly available
software that consistently allows users to forge such information without advanced
programming skills. This fact makes the creation of realistic forgeries undoubtedly
a highly non-trivial undertaking and thereby reemphasizes that file characteristics
and metadata must not be dismissed as unreliable sources of evidence to address file
authentication.
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14.3.2 Automated Analysis of mp4-like Videos

The previous method is subjected to two main limitations: Firstly, being manual
is time demanding. Secondly, it is prone to error since the forensic practitioner
have to subjectively assess the finding’s value. In Iuliani Massimo (2019), an auto-
mated method for unsupervised analysis of video file containers to assess video
integrity and classify the source device brand. The authors developed an MP4 Parser
libraryApache (2021) that automatically extracted a video container and store it in an
XMLfile. The video container is represented as a labeled treewhere internal nodes are
labeled by atoms names (e.g.,moov-2), and leaves are labeled by field-value attributes
(e.g.,@stuff:MovieBox[]). To take into account the order of the atoms, each XML-
node is identified by a 4-byte code of the corresponding atom along with an index
that represents the relative position with respect to the other siblings at a certain level.

Technical Description

A video file container, extracted from a video X , can be represented as an ordered
collection of atoms a1, . . . , an , possibly nested.

We can describe each atom in terms of a set of field-value attributes, as ai =(
ω1(ai ), . . . , ωmi (ai )

)
.

By combining the two previous descriptions, the video container can be charac-
terized by the set of field-value attributes X = (

ω1, . . . , ωm
)
, each with its associated

path pX (ω), that is the ordered list of atoms to be crossed to reach ω in X starting
from the root. As an example, consider the video X , whose fragments are reported in
Fig. 14.1.Thepath to reach thefield-valueω =@timescale: 1000 in X is the sequence
of atoms (ftyp-1, moov-2, mvhd-1). In this sense, we state that pX (ω) = pX ′ (ω

′
) if

the same ordered list of atoms is crossed to reach the field-values in the two trees,
respectively, which is not the case in the previous example.

In summary, the video container structure is completely described by a list of m
field-value attributes X = (

ω1, . . . , ωm
)
, and their corresponding paths pX (ω1), . . . ,

pX (ωm).
From now on, we will denote with X = {X1, . . . , XN } the world set of digital

videos, and with C = {C1, . . . ,Cs} the set of disjoint possible origins, e.g., device
Huawei P9, iPhone 6s, and so on.

When a video is processed in anyway (with respect to its native form), its integrity
is compromised SWGDE-SWGIT (2017).

More generally, given a query video X and a native reference video X
′
coming

from the same supposed device model, their container structure dissimilarities can
be exploited to expose integrity violation evidence, as follows.

Given two containers X = (ω1, . . . , ωm), X
′ = (ω

′
1, . . . , ω

′
m) with the same car-

dinality2 m, we define a similarity core function between two field-values as

2 If the two containers have a different cardinality, we pad the smaller one with empty field-values
to obtain the same value m.
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S(ωi , ω
′
j ) =

{
1 if ωi = ω

′
j and pX (ωi ) = pX ′ (ω

′
j )

0 otherwise
(14.1)

We can easily extend the measure to the comparison between a single field-value
ωi ∈ X and the whole X

′
as

1X ′ (ωi ) =
{
1 if ∃ ω

′
j ∈ X

′ : S(ωi , ω
′
j ) = 1

0 otherwise
(14.2)

Then, the dissimilarity between X and X
′
can be computed as the mismatching

percentage of all field-values, i.e.,

mm(X, X
′
) = 1 −

m∑

i=1
1X ′ (ωi )

m
(14.3)

and, to preserve symmetry, the degree of dissimilarity between X and X
′
can be

computed as

D(X, X
′
) = mm(X, X

′
) + mm(X

′
, X)

2
. (14.4)

Based on its definition, D(X, X
′
) ∈ [0, 1], D(X, X

′
) = 1 when X = X

′
, and D(X,

X
′
) = 0, when they have no elements in common.

Experiments

The method is tested on 31 portable devices from VISION dataset Dasara Shullani
et al. (2017) that leads to an available collection of 578 videos in the native format
plus their corresponding social versions (YouTube and WhatsApp are considered).

The metric in Eq. (14.4) is applied to determine whether a video’s integrity is
preserved or violated. The authors consider four different scenarios of integrity vio-
lation3:

• exchange through WhatsApp;
• exchange through YouTube;
• cut without re-encoding through FFmpeg;
• date editing through ExifTool.

For each of the four cases, we consider the set of videos X1, . . . , XNCi
, avail-

able for each device Ci , and we compute the intra-class dissimilarities between two
native videos Xi , X j belonging to the same model Di, j = D(Xi , X j ),∀i �= j based
on Eq. (14.4). For simplicity, we denote with Doo this set of dissimilarities. Then,
we consider the corresponding inter-class dissimilarities Dt

i, j = D(Xi , Xt
j ), ∀i �= j ,

3 See the paper for the implementation details.
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Table 14.4 AUC values computed for all devices for each of the four attacks, and when the native
video is compared to videos from other devices. In the case of ExifTool and Other Devices, the
achieved min and max AUC values are represented. For all other cases, an AUC equal to 1 is always
obtained

Case WhatsApp YouTube FFmpeg ExifTool

AUC 1.00 1.00 1.00 [0.64 1.00]

between a native video Xi and its corrupted version Xt
j obtained with the tool-t

(WhatsApp, YouTube, ffmpeg, or Exiftool). We denote with Dt
oa this set of dissimi-

larities. By applying this procedure to all the considered devices, we collected 2890
samples for both Doo and any of the four Dt

oa .
In most of the performed tests the maximum value achieved for Doo is lower than

the minimum value of Dt
oa , thus indicating that the two classes can be separated.

In Table14.4 we report the AUCs for each of the considered cases. Noticeably,
the integrity violation through ffmpeg, YouTube, and WhatsApp, the AUC is 1 for
all devices. These values clearly show that the exchange through WhatsApp and
YouTube strongly compromises the container structure, and thus it is easily possible
to detect the corresponding integrity violation. Interestingly, cutting the video using
ffmpeg, without any re-encoding, also results in a substantial container modification
that we can detect. On the contrary, the date change with Exiftoolinduced on some
containers a modification that is comparable with the observed intra-variability of
native videos; in these cases, the method can not detect it. Fourteen devices still
achieve unitary AUC, eight more devices yield an AUC greater than 0.8, and the
remaining nine devices yield AUC below 0.8, with the lowest value of 0.64 obtained
for D02 and D20 (Apple iPhone 4s and iPad mini).

To summarize, for the video integrity verification tests, the method obtains perfect
discrimination for videos altered by social networks or ffmpeg, while for Exiftoolit
achieves an AUC greater than 0.82 on 70% of the considered devices. It worth also
noticing that analyzing a video query requires less than a second.

More detailed results are reported in the corresponding paper. The authors also
show that this container description can be immersed in a likelihood ratio framework
to determine which atoms and field-values are highly discriminative for specific
classes. In this way, they also show how to classify the brand of the originating
device Iuliani Massimo (2019).

14.3.3 Efficient Video Analysis

The method described in Iuliani Massimo (2019), although effective, has a linear
computational cost since it requires checking the dissimilarity of the probe video
with all available reference containers. As a consequence, increasing the reference
dataset size leads to a higher computational effort.
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In this section, we summarize themethod proposed inYang Pengpeng et al. (2020)
that provides an efficient way to analyze video file containers independently on the
reference dataset’s size.

The method, called EVA from now on, is based on Decision Trees Ross Quinlan
(1986), a non-parametric learning method used for classification problems in many
signal processing fields.

Their key feature is breaking down a complex decision-making process into a
collection of more straightforward decisions.

The process is extremely efficient since a decision can be taken by checking a
small number of features.

Furthermore, EVA allows both to characterize the identified manipulations and to
provide an explanation for the outcome.

The method is also enriched with a likelihood ratio framework designed to
automatically clean up the container elements that only contribute to source intra-
variability (for the sake of brevity, we do not report these details here).

In short, EVA can identify the manipulating software (e.g., Adobe Premiere, ffm-
peg, …) and provide additional information related to the original content history
such as the source device operating system.

Technical Description

Similarly to the previous case, we consider a video container X as a labeled tree
where internal nodes and leaves correspond to, respectively, atoms and field-value
attributes. It can be characterised by the set of symbols {s1, . . . sm}, where si can be:
(i) the path from the root to any field (value excluded), also called field-symbols; (ii)
the path from the root to any field-value (value included), also called value-symbols.
An example of this representation can be4:

s1 = [ftyp/@majorBrand]
s2 = [ftyp/@majorBrand/isom]
…
si= [moov/mvhd/@duration]
si+1= [moov/mvhd/@duration/73432]
…

Overall, we denote with � the set of all unique symbols s1, . . . , sM available
in the world set of digital video containers X = {X1, . . . , XN }. Similarly, C =
{C1, . . . ,Cs} denotes a set of possible origins (e.g., Huawei P9, Apple iPhone 6s).
Let a container X , the different structure of its symbols {s1, . . . , sm} can be exploited
to assign the video to a specific class Cu .

For this purpose, binary decision trees Rasoul Safavian and Landgrebe (1991) are
employed to build a set of hierarchical decisions. In each internal tree node the input
data is tested against a specific condition; the test outcome is used to select a child
as the next step in the decision process. Leaf nodes represent decisions taken by the

4 Note that @ is used to identify atom parameters, and root is used for visualization purposes.
Still, it is not part of the container data.
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algorithm. More specifically, EVA adopts the growing-pruning-based Classification
And Regression Trees (CART) Leo Breiman (2017).

Given the size of unique symbols |�| = M , a video container X is converted
into a vector of integers X �→ (x1 . . . xM) where xi is the number of times that si
occurs into X . This approach is inspired by the bag-of-words representation Hinrich
Schütze et al. (2008) which is used to reduce variable-length documents to a fixed-
length vectorial representation.

For the sake of example, we consider two classes:

Cu : iOS devices, native videos;
Cv: iOS devices, dates modified through Exiftool (see Sect. 14.3.3 for details).

With these settings, the decision tree highlights that the usage of Exiftool can be
simply decided by looking, for instance, at the presence of moov/udta/XMP_/
@stuff.

Experiments

Testswere performed on 34 smartphones of 10 different brands.Over a thousand tam-
pered videos were tested, considering both automated (ffmpeg, Exiftool) and manual
editing operations (Kdenlive, Avidemux and Adobe Premiere). The manipulations
mainly include cut with and without re-encoding, speed up, and slow motion.

Achieved videos (both native and manipulated) were also exchanged through
YouTube, Facebook, Weibo, and TikTok.

All testswere performed by adopting an exhaustive leave-one-out cross-validation
strategy: the dataset is partitioned in 34 subsets, each one of them containing pristine,
manipulated, and social-exchanged videos belonging to a specific device. In this
way, test accuracy collected after each iteration is computed on videos belonging
to an unseen device. When compared to state of the art, EVA exposes competitive
effectiveness at the lowest computational effort (see 14.5).

In comparison with David Güera et al. (2019), it achieves higher accuracy.We can
reasonably attribute this performance to their use of a smaller feature space; indeed,
only a subset of the available pieces of information are extracted without considering
their position within the video container. On the contrary, EVA features also include
the path from the root to the value, thus providing a higher discriminating power.
Indeed, this approach distinguishes between two videos where the same information

Table 14.5 Comparison of our method with the state of the art. Values of accuracy and time are
averaged over the 34 folds

Balanced accuracy Training time Test time

Guera et al. David
Güera et al. (2019)

0.67 347s < 1s

Iuliani et al. Iuliani
Massimo (2019)

0.85 N/A 8s

EVA 0.98 31s < 1s



382 A. Piva and M. Iuliani

is stored in different atoms. When compared with Iuliani Massimo (2019), EVA is
capable of obtaining better classification performance with a lower computational
cost. In Iuliani Massimo (2019), O(N ) comparisons are required since all the N
reference-set examples must be compared with a tested video; on the contrary, the
cost for a decision tree analysis is O(1) since the output is reached in a constant
number of steps. Furthermore, EVA allows a simple explanation for the outcome.
For the sake of example, we report in Fig. 14.2a a sample tree from the integrity
verification experiments: the decision is taken by up to four checks, just based on
the presence of the symbols ftyp/@minorVersion = 0,uuid/@userType,
moov/udta/XMP_ and moov/udta/auth. Then, a single decision tree can han-
dle both easy- and hard-to-classify cases at the same time.

Manipulation Characterization
EVA is also capable of identifying themanipulating software and the operating system
of the originating device. More specifically, three main questions were posed:

A Software identification: Is the proposed method capable of identifying the soft-
ware used to manipulate a video? If yes, is it possible to identify the operating
system of the original video?

B Integrity Verification on Social Media: Given a video from a social media
platform (YouTube, Facebook, TikTok or WeiBo), can we determine whether
the original video was pristine or tampered?

C Blind scenario:Given a video that may or may not has been exchanged through
a social media platform, is it possible to retrieve some information on the video
origin?

In the Software Identification, the experiment comprises the following classes:
“native” (136 videos), “Avidemux” (136 videos), “Exiftool” (136 videos), “ffmpeg”
(680 videos), “Kdenlive” (136 videos), and “Premiere” (136 videos). As shown in
Table14.6, EVA obtains a balanced global accuracy of 97.6% with slightly lower
accuracy in identifying ffmpeg with respect to the other tools. These wrong classifi-
cations are reasonable because ffmpeg library is used byother software and, internally,
by Android devices.

The algorithmmaintains a high discriminative power evenwhen trained to identify
the originating operating system (Android vs. iOS).

In a few cases, EVA wrongly classifies only the source’s operating system. This
mistake happens explicitly in the case of Kdenlive and Adobe Premiere. At the same
time, these programs are always correctly identified. This result indicates that the
container’s structure of videos saved by Kdenlive and Adobe Premiere is probably
reconstructed in a software-specific way. More detailed performance is reported in
the related paper.

With regard to Integrity Verification on Social Media, EVA was also tested
on YouTube, Facebook, TikTok, and Weibo videos to determine whether they were
pristine or manipulated before the upload (Table14.7).

Results highlight poor performance due to the social media transcoding process
that flattens the containers almost independently on the video origin. For example,
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Fig. 14.2 Pictorial representation of some of the generated decision trees
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Table 14.6 Confusion matrix under the software identification scenario for native contents (Na),
Avidemux (Av), Exiftool (Ex), ffmpeg (Ff), Kdenlive (Kd), Premiere (Pr)

Na Av Ex Ff Kd Pr

Na 0.97 – 0.03 – – –

Av – 1.00 – – – –

Ex 0.01 – 0.99 – – –

Ff – 0.01 – 0.90 0.09 –

Kd - – – – 1.00 –

Pr – – – – – 1.00

Table 14.7 Performance achieved for integrity verification on social media contents. We report for
each social network the obtained accuracy, true positive rate (TPR), and true negative rate (TNR).
All these performance measures are balanced

Accuracy TNR TPR

Facebook 0.76 0.40 0.86

TikTok 0.80 0.51 0.75

Weibo 0.79 0.45 0.82

YouTube 0.60 0.36 0.74

after YouTube transcoding, videos produced by Avidemux and by Exiftool are shown
tohave exactly the samecontainer representation.Wedonot knowhow the considered
platforms process the videos due to the lack of public documentation, but we can
assume that uploaded videos undergo custom/multiple processing. Indeed, social
media videos need to be viewable on a great range of platforms and thus need to be
transcoded to multiple video codecs and adapted for various resolutions and bitrates.
Thus, it seems plausible that those operations could discard most of the original
container structure.

Eventually, in the Blind Scenario, the authors show that we can remove the prior
information (whether the video belongs to social media or not) without degrading
detection performances.

In summary, EVA can be considered an efficient forensic method for checking
video integrity. If manipulation is detected,EVA can also identify the editing software
and, in most cases, the video source device’s operating system.

14.4 Concluding Remarks

In this chapter, we described how features extracted from image and video file con-
tainers can be exploited for integrity verification. In some cases, these features also
provide insights into the probe’s previous history. In several cases, they allow the
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characterization of the source device’s brand or model. Similarly, they allow deriving
that the content was exchanged through a particular social network.

This kind of information shows several advantages with respect to content-based
traces. Firstly, it is usually much faster to be extracted and analyzed than content-
based ones. It also requires an almost fixed computational effort, independently on the
media size and resolution (this characteristic is particularly relevant for videos). Sec-
ondly, it is also much more challenging to perform anti-forensics operations on these
features since the structure of an image, or video file is overly complicated. Thus, it
is not straightforward to mimic a native file container. There are, however, several
drawbacks to be taken into account. First of all, current editing tools and metadata
editors cannot access such low-level information. It is required to design a proper
parser to extract the information stored in the file container.Moreover, these features’
effectiveness strongly depends on the availability of updated reference datasets of
native and manipulated contents. Eventually, these features cannot discriminate the
full history of a media since some processing operations, like uploading to a social
network, tend to remove the traces left by previous steps. It is also worth mentioning
that the forensic analysis of social media content is fragile since the providers’ set-
tings keep changing. This fact makes collected data and achieved results outdated in
a short time. Furthermore, collecting large datasets can be challenging depending on
the social media provider’s upload and download protocol. Future work should be
devoted to the fusion of content-based and format-based features since it is expected
that the exploitation of these two domains can provide a better performance, as wit-
nessed in Phan et al. (2019), where images exchanged on multiple social networks
were studied.
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