Toward Robotic Robbery on the Touch Screen

ABDUL SERWADDA, Texas Tech University

VIR V. PHOHA, Syracuse University

ZIBO WANG, Louisiana Tech University

RAJESH KUMAR and DIKSHA SHUKLA, Syracuse University

Despite the tremendous amount of research fronting the use of touch gestures as a mechanism of continuous
authentication on smart phones, very little research has been conducted to evaluate how these systems
could behave if attacked by sophisticated adversaries. In this article, we present two Lego-driven robotic
attacks on touch-based authentication: a population statistics—driven attack and a user-tailored attack. The
population statistics—driven attack is based on patterns gleaned from a large population of users, whereas
the user-tailored attack is launched based on samples stolen from the victim. Both attacks are launched
by a Lego robot that is trained on how to swipe on the touch screen. Using seven verification algorithms
and a large dataset of users, we show that the attacks cause the system’s mean false acceptance rate
(FAR) to increase by up to fivefold relative to the mean FAR seen under the standard zero-effort impostor
attack. The article demonstrates the threat that robots pose to touch-based authentication and provides
compelling evidence as to why the zero-effort attack should cease to be used as the benchmark for touch-
based authentication systems.

Categories and Subject Descriptors: C.2 [Computer-Communication Networks]: Security and Protection
General Terms: Security

Additional Key Words and Phrases: Touch gestures, behavioral biometrics, robotic attacks, smartphone
security

ACM Reference Format:

Abdul Serwadda, Vir V. Phoha, Zibo Wang, Rajesh Kumar, and Diksha Shukla. 2016. Toward robotic robbery
on the touch screen. ACM Trans. Inf. Syst. Secur. 18, 4, Article 14 (May 2016), 25 pages.

DOI: http://dx.doi.org/10.1145/2898353

1. INTRODUCTION

The zero-effort attack—a form of impostor attack in which a given user’s samples are
used to test another user’s biometric template (without any forgery whatsoever)—is
the defacto performance evaluation method for touch-based authentication systems
on smart phones and other touch input devices (e.g., see Govindarajan et al. [2013],
Alexander et al. [2012], Feng et al. [2012], and Frank et al. [2013]). In this article,
we argue that this kind of attack majorly underestimates the magnitude of the threat
that a touch-based authentication system could face in practice. In particular, we show
that a robot costing less than $400 on the open market can be trained to swipe (i.e.,

This work was supported in part by DARPA Active Authentication contract: FA 8750-13-2-0274 and by
National Science Foundation Award Number: 1527795.

Authors’ addresses: A. Serwadda, 211H, Computer Science Department, Texas Tech University, TX 79414;
email: abdul.serwadda@ttu.edu; V. V. Phoha, CST 4-206, EE & CS, Syracuse University, NY 13210; email:
vvphoha@syr.edu; Z. Wang, Department of Engineering and Science, Louisiana Tech University, 305 Wisteria
Street, P.O. Box 3178, Ruston, LA 71272; email: zwa006@latech.edu; R. Kumar and D. Shukla, 4-178, Center
for Science and Technology, Syracuse University, NY 13210; emails: {rkumal02, dshukla}@syr.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2016 ACM 1094-9224/2016/05-ART14 $15.00

DOI: http://dx.doi.org/10.1145/2898353

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

http://dx.doi.org/10.1145/2898353
http://dx.doi.org/10.1145/2898353

14:2 A. Serwadda et al.

originate touch gestures) in such a way as to cause a touch-based authentication system
to perform much worse than depicted by the traditional zero-effort attack.

We showcase two types of Lego-driven robotic attacks: (1) population statistics—based
attack, in which patterns gleaned from a large database are used to formulate the input
supplied to the robot, and (2) user-tailored attack, which uses samples stolen from the
victim in question as a basis to formulate input to the robot. Using seven state-of-the-
art classification algorithms, we rigorously analyze the impact of the attacks, showing
that both attacks significantly degrade the performance of a touch-based authentication
system.

Perhaps the major indicator of the feasibility of our attacks is the ease with which
they could be launched. The Lego robot used to implement the attack can be easily
operated by a middle school student (see Mauch [2001]), whereas the population data
required to launch the population-based version of the attack is easily accessible on the
Web. Further, no knowledge of the features and/or underlying software implementation
is needed, as the robot just has to swipe on the phone screen with no other technicalities
required to break the authentication system. This extent of simplicity of the attack is in
stark contrast to common biometric spoofing attacks whose design typically requires a
deep understanding of the theory and techniques used in the domain (e.g., see Uludag
and Jain [2004]) in addition to intricate software manipulations in some cases (e.g., see
Khandaker et al. [2013]).

The following are the contributions of this article:

(1) We propose a new family of attacks for the performance evaluation of touch-based
authentication systems. Based on the Lego robot, we present both an algorithmic
and mechanical design for the attack. Given the success rates of the attack and
the ease with which it could be launched by an adversary, our belief is that this
kind of attack will become the standard impostor testing method for touch-based
authentication. Our designs should thus serve as a blueprint to refinements of this
attack that researchers will apply to different touch-based authentication systems
or different robots.

(2) We thoroughly explore the impact of the attack on the average classification ac-
curacy seen across the population and each user’s performance. We show that the
population-based attack increases the mean false acceptance rate (FAR) of the ma-
jority of the classification algorithms by more than 100% of the mean FAR seen
before the attack. The user-specific attack even has a much more drastic effect on
the authentication system, driving the postattack classifier FAR to almost 1 (with
FAR measured on the scale 0 to 1) in some of the cases studied in the article.

(3) We perform a rigorous analysis of the discriminability properties of the features
used for our classification system. Because touch-based authentication does not
yet have a standard set of widely used features, our feature analysis will help to
improve the community’s understanding of the properties of the different features
that a touch-based authentication system could be designed to use.

The rest of the article is organized as follows. We discuss related work in Section 2,
our data collection experiments and feature analysis in Section 3, and the design of the
robotic attacks in Section 4. We finally present our performance evaluation framework
in Section 5, the results of the attacks in Section 6, and our conclusions in Section 7.

2. RELATED WORK

This article builds upon a previous conference paper (see Serwadda and Phoha [2013b]),
in which we first showcased a Lego robot breaching a touch-based authentication
system. The current work covers a much wider scope than our previous work. The
important differences between this work and the previous paper are as follows:

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

Toward Robotic Robbery on the Touch Screen 14:3

(1) We introduce the Lego-driven user-tailored robotic attack and compare it to the
generic population statistics—driven attack that we studied in the previous work.
The former attack uses input derived from swiping samples stolen from the victim
in question, whereas the latter uses inputs gleaned from the general population.
Comparison of the two attacks gives interesting new insights into the relative
impact of the different kinds of threats facing touch-based authentication systems.

(2) We analyze the impact of both user-specific attacks and population statistics—based
attacks on seven different classification algorithms. In the previous work, our per-
formance evaluation was based on only two classification algorithms. Our evalua-
tion of the attack based on a wide range of classifiers helps to address the question
of whether certain classifiers, by virtue of differences in operational philosophies,
could be particularly vulnerable or resistant to the attack.

(3) We perform a thorough analysis of the discriminative power of different touch
biometrics features. Findings from the feature analysis help to provide a better
understanding of the quality of different touch biometrics features. In the previous
work, we defined a set of features and subjected them to the robotic attack without
any feature analysis or feature selection whatsoever.

(4) We redesign the robot to further emphasize the simplicity of the attack. In the
conference version, we implemented the attack algorithm using BricxCC, an IDE
that provides a programming language similar to the C language. In this work,
we present a design that can very easily be implemented based on the drag and
drop Lego IDE used for instruction to novice programmers (e.g., middle school
students [Mauch 2001]). The fact that the design presented in this work can easily
be implemented by a novice programmer helps to cement the argument that this
family of attacks represents a major threat to touch-based authentication.

We categorize the rest of the related works into two families: those studying the
performance of touch-based authentication systems and those studying algorithmic
attacks on behavioral biometric authentication.

2.1. Touch-Based Authentication

There is now a fast-growing body of work on touch-based authentication. This body of
work is categorized into two parts: (1) single-point authentication, a form of authenti-
cation in which touch gestures are only monitored at the entry point to an application
(e.g., at login), and (2) continuous authentication, a form of authentication in which
touch gestures are monitored throughout a user’s session on a touchscreen device.
Here, we only survey past works on continuous authentication, as this is the type of
authentication for which our attack is designed and evaluated.

Frank et al. [2013] obtained median equal error rates (EERs) of between 0% and 4%
when they used a k-nearest neighbor (kNN) classifier and a support vector machine
(SVM) to classify touch strokes generated by a group of 41 users. The lowest EERs, of
about 0%, were obtained when both training and testing data were drawn from a single
phone usage session, whereas the highest EERs, of approximately 4%, were obtained
when training and testing data were collected 1 week apart. When training and testing
data were drawn from two sessions on the same day, EERs were between 2% and 3%.

In Serwadda et al. [2013], we compared the performance of 10 classification algo-
rithms for touch-based authentication. The comparison was done under the zero-effort
attack model (i.e., without the use of robotic forgeries). The lowest EER of 10.5% was
obtained with the logistic regression classifier, whereas the highest EER of 42% was
obtained with the J48 tree. With the aid of a series of statistical tests of significance,
it was found that the random forest and SVM verifiers were comparable to the logistic
regression verifier in overall performance. Feng et al. [2012] used a dataset of 40 users

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

14:4 A. Serwadda et al.

and obtained an FAR of approximately 7.5% at a false rejection rate (FRR) of approx-
imately 8% for the random forest verifier, which performed best among a set of three
verifiers. When users wore a digital glove, which provided more information about the
movement of users’ hands, the FARs and FRRs of all classifiers in the study were found
to drastically reduce.

More recently, Zhao et al. [2013] proposed a new graphic feature that expresses touch
strokes in terms of shapes and intensity values that are used to create an image. The
feature was found to be highly discriminative, as an EER of about 2% was obtained
when swiping and zooming features were fused.

All works cited previously were based on biometrics data collected in a controlled
setup where users interacted with specifically designed applications. The work in Li
et al. [2013] differs from this common experimental design by virtue of studying the
performance of a live touch-based authentication system in which users took the phones
with them and freely interacted with any applications of their choice. To be able to
monitor the touch gestures associated with all applications installed on the phone, the
authors exploited a “hack” in the lower layers of the Android system. The authentication
system, evaluated based on a group of 75 users and an SVM classifier, was found to
attain up to 75% classification accuracy.

The classification performance reported in all five works cited earlier assumes a
naive adversary who makes no attempt to forge a given swiping pattern. Our work
advances the state of the art by proposing a more rigorous family of attacks that more
closely simulate the kinds of adversarial technologies being used against computing
systems today.

2.2, Algorithmic Attacks on Behavioral Authentication Systems

Several recently proposed attacks on behavioral biometrics systems share the same
motivation as our work. Ballard et al. [2007] used population statistics as input to
an algorithmic attack on a handwriting biometrics system. Relative to the attacks
launched by trained forgers, the attack was found to be much more effective for certain
users. In Serwadda and Phoha [2013a], an algorithmic attack that leverages generic
information extracted from a large database of typing data was shown to severely
degrade the performance of password-based (or short text) keystroke authentication
system. Compared to the standard zero-effort impostor attack, the algorithmic attack
was shown to cause a greater than 80% increment in the mean EER when the keystroke
profiles being attacked were built from a short seven-character string.

Meng et al. [2013], Wang et al. [2012], and Khandaker et al. [2013] propose three
attacks on keystroke authentication. All three attacks assume an adversary who steals
some typing samples from the intended victim before using them as input to the attack
algorithm. Meng et al. [2013] used the stolen samples as a basis for training humans
who iteratively forge the intended victim’s pattern, whereas Wang et al. [2012] used
the stolen samples to launch attacks that distort the victim’s template and expose
it to further attacks. Khandaker et al. [2013], on the other hand, simply replayed the
stolen samples into the authentication system. In the most extreme case, the attacks in
Meng et al. [2013], Wang et al. [2012], and Khandaker et al. [2013] respectively caused
the system EER to increase by 395%, 305%, and 2,730.55% relative to the zero-effort
attack.

Just like our work, these attacks provide evidence that it is no longer adequate to
evaluate behavioral biometrics systems under the assumption of a naive adversary.
Notably, however, our attack is clearly different from these attacks, as it occurs in the
analog domain, requires very little expertise on the part of the attacker, and does not
require extraordinary privileges, such as attacks in Khandaker et al. [2013] where the
adversary is assumed to successfully install a keylogger on the victim’s computer.

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

Toward Robotic Robbery on the Touch Screen 14:5

3. DATA COLLECTION, FEATURE EXTRACTION, AND FEATURE ANALYSIS
3.1. Data Collection and Feature Extraction

Following IRB approval (IRB HUC-1086 from Louisiana Tech University), we collected
data using an Android app that recorded users’ swiping patterns while they answered
a set of multiple choice questions. Although the target activity in this experiment was
the answering of multiple choice questions, we designed the experiment to simulate a
broad range of applications that involve users processing content on the screen while
they browse (e.g., email, Web browsing). In particular the multiple choice questions
were organized in such a way that users had to carefully browse back and forth while
reading and processing text read on the phone screen so as to locate the segment of
text that contained the solution (or clues to the solution). To ensure that users did
not just aimlessly browse around and select random answers to the questions, the app
computed a score that expressed the number of correct answers as a fraction of the
total number of questions in the exercise. We found that the expectation to receive a
grade at the end of the exercise motivated users to focus on the exercise and carefully
undertake all tasks assigned.

The majority of participants were students between 18 and 25 years of age. All data
was collected using Google Nexus S phones. Participants were notified about the study
through mass emails that were sent out to the whole university. As part of our IRB
requirements, the users were told about the purpose of the experiments in advance.
Each user participated in this exercise over two sessions that were one or more days
apart. Our decision to have each user provide data over multiple days (as opposed to
a single session on a single day) was to capture some of the variability in behavior
that a user might have from one day to the next. Data from one session was used for
classifier training, whereas data from the other was used for classifier testing (more
details on the training and testing process are discussed in Section 5.2). To eliminate
the possibility of users memorizing the solutions and answering questions without
having to swipe back and forth to find the solutions, users had to answer a different
set of questions during each session.

While each user swiped, the app recorded at regular intervals the coordinates of the
point that the finger touched, the pressure exerted by the finger on the screen, the
area between the finger and the screen, the orientation of the phone (i.e., portrait or
landscape), and the time at which the finger touched the point in question. From these
raw readings, we extracted a wide range of features that draw from those used in past
works on touch-based authentication (e.g., see Li et al. [2013], Serwadda et al. [2013],
Serwadda and Phoha [2013b], and Frank et al. [2013]). As done in past work (e.g., see
Frank et al. [2013]), feature computation was done after the elimination of very short
strokes (comprising three or fewer touch points), as they were likely a result of clicking
(or tapping) as opposed to swiping. A description of the extracted features follows.

Over a complete touch stroke, a vector corresponding to each of the previously
described raw measurements (i.e., coordinates, area, pressure) was fully populated.
From each of the area and pressure vectors, we computed 5 features, namely the first,
second, and third quartiles and the mean and standard deviation of the elements
in the vector (i.e., a total of 10 features). Using the time and coordinate vectors, we
computed a velocity vector, which we in turn used to compute an acceleration vector.
From the velocity and acceleration vectors, we again computed the earlier mentioned
5 features, creating another 10 features. Finally, for each stroke, we computed the
following 8 features to make a total of 28 features: the x-coordinate of the start-point,
the x-coordinate of the end-point, the y-coordinate of the start-point, the y-coordinate
of the end-point, the time taken to complete a stroke, the direct distance between the
ends of a stroke, the sum of the distances between every pair of adjacent points on a

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

14:6 A. Serwadda et al.

Table I. IDs Assigned to the Features Used to Represent a Touch Stroke

ID Feature Description
1 x-coordinate of the start-point

2 y-coordinate of the start-point

3 x-coordinate of the end-point

4 y-coordinate of the end-point

5 Direct distance between ends of a stroke
6 Time taken to complete a stroke

7 Tangent of the angle between the line joining the end-points and the horizontal
8 Sum of the distances between every pair
9 Mean velocity

10 Velocity standard deviation

11 Velocity quartile #1

12 Velocity quartile #2

13 Velocity quartile #3

14 Mean acceleration

15 Acceleration standard deviation

16 Acceleration quartile #1

17 Acceleration quartile #2

18 Acceleration quartile #3

19 Mean pressure

20 Pressure standard deviation

21 Pressure quartile #1

22 Pressure quartile #2

23 Pressure quartile #3

24 Mean area

25 Area standard deviation

26 Area quartile #1

27 Area quartile #2

28 Area quartile #3

stroke, and the tangent of the angle between the line joining the end-points of a stroke
and the horizontal. Table I summarizes the full list of features.

In the following sub-section we analyze the informativeness of each of the 28 features
before selecting the final set of features used for the authentication system.

3.2. Feature Analysis and Selection

To gain insights into the properties of the 28 extracted features, we studied three mea-
sures of feature quality: the relative mutual information between each feature and the
class labels, comparison between feature distributions, and the correlation coefficients
between features. Before performing the feature quality investigations, we first catego-
rized each user’s touch strokes into four categories: portrait-vertical strokes, portrait-
horizontal strokes, landscape-vertical strokes, and landscape-horizontal strokes. The
meanings of theses stroke categories are easily inferred from the names. For example,
portrait-vertical strokes are those strokes that were executed to move screen content
vertically while the phone was held in a portrait orientation. We make distinctions be-
tween these stroke types to ensure meaningful feature comparisons during the feature
quality measure computations. For example, comparing a feature vector derived from
a portrait-horizontal stroke with that derived from a portrait-vertical stroke would be
meaningless, as certain features (e.g., the start coordinates) change depending on how
the phone is held. In the feature analysis investigations that follow in the following

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

Toward Robotic Robbery on the Touch Screen 14:7

025 T
~
~:'s - - Mean of |
02F TS LN R
=== N 2T = = = 95% Confidence Bounds
- = - - .
0.15F N am asia = (| = = = 99% Confidence Bounds
N oy
_o AN v -
01*~~-__—_- \"—-"s\., -
" -—-_—-—~\—~=.~ PR ~
S =" \\:’—~-::
0.05 ,
<
.Q
1 1 | 1 [| 1 | | 1 | | | | 1 | | 1 | | | | | | 1 4

| |
2319 4 22 9 131228 2 5 7 272411 1 6 3 21261820161417 8 102515

Feature ID

Fig. 1. The 95% and 99% confidence bounds of I for the horizontal strokes generated when the phone was
held in a portrait orientation. Bootstrap resampling was done 1,000 times, with data from a sample size of
35 randomly selected users being used to compute each bootstrap estimate.

three sections, we only present findings from the horizontal-portrait strokes, as they
capture the general trends that we observed in our dataset. We do not discuss the other
stroke categories, as they provide no significant new insights.

3.2.1. Relative Mutual Information. Let F' denote the random variable representing the
outputs of a feature across the population, and let C denote the random variable

representing the class labels. The quantity Ir = Ig(;cc)') is a measure of the relative

mutual information between F and C if I(F'; C) is the mutual information between F
and C and H(C) is the entropy of C. Ir assumes values between 0 and 1, with values
close to 1 indicating a feature that is very informative. Frank et al. [2013] also used
this measure of informativeness to analyze the properties of their features.

However, we take a different perspective of Iz from that studied by Frank et al.
[2013]. In particular we use bootstrap resampling to compute the mean of Iz and the
95% and 99% confidence intervals of I for each feature. Frank et al. computed a single
value of I for each of their features. In general, the bootstrap bounds give a more rigor-
ous understanding of the performance limits of the features compared to a single value
of Iz computed for each feature across the population. Further, our mean value of Iy
computed from random subsamples of the population is likely to represent the perfor-
mance of a feature in more general terms than a value of Iz computed once for a fixed
set of users. We use the standard nonparametric bootstrapping method in Bolle et al.
[2000] with a random sample size of 35 users for each of 1,000 repetitions. Because this
method does not make any assumptions about the underlying statistical distributions
of the data, the bounds reported from this analysis should very closely represent the
true behavior of the features. Figure 1 shows the results of our bootstrap analysis for
the horizontal strokes in the portrait mode. To compute Iz, we first discretize each
feature using 20 equally spaced bins. The figure reveals a clear distinction in the mean
value of Ir between the best-performing features (e.g., features 23 (pressure quartile
#3), 19 (mean pressure), 4 (y-coordinate of end-point), and 22 (pressure quartile #2))
and the worst-performing features (e.g., features 17 (acceleration quartile #1), 8 (sum
of distances between each pair), 10 (velocity standard deviation), 25 (area standard
deviation), and 15 (acceleration standard deviation)). The figure also shows that the
best-performing features had wider confidence bounds on I than the worst-performing
features, an indication that the poor-performing features were consistently poor during
the various bootstrap runs. This trait enables us to more concretely conclude about the
identities of the poor features, which in turn helps inform the decisions to eliminate
certain features.

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

14:8 A. Serwadda et al.

Table Il. Selection of the Features That for a Large Number of User Pairs Did Not Provide
Enough Evidence to Enable Us to Reject the Hypothesis That the Underlying
Feature Distributions Did Not Differ Across Users. In Practice, Such Features are Likely
to be Poor at Separating Users

Feature ID Feature Name User Pairs for Whom H, Not Rejected (%)
15 Acceleration standard deviation 40
16 Acceleration quartile #1 33
17 Acceleration quartile #2 28
18 Acceleration quartile #3 31
25 Area standard deviation 30

3.2.2. Underlying Feature Distributions. For a given pair of users, a feature is likely to
be more discriminative if the underlying statistical distributions of the users’ feature
values are distinct from each other. If the distribution is the same for two users, such
a feature is likely to be poor at separating the users in question. We conducted an
analysis of the statistical distributions exhibited by the features to complement our
findings from the mutual information-based analysis.

We used the two-sample Kolmogorov-Smirnov (K-S) test [Gail and Green 1976] for
this analysis. Based on 100 randomly selected user pairs, we carried out this test
for each of our 28 features. In each test, the null hypothesis was that feature data
from the two users being compared had the same underlying continuous distribution.
Failure to reject the null hypothesis means that the users have the same distribution
for the feature in question. Table II shows a summary of the results for the features
that performed worst. For the 100 user pairs, we count the number of user pairs for
whom H, cannot be rejected for each of the four categories of strokes (i.e., portrait-
vertical, landscape-vertical, portrait-horizontal, and landscape-horizontal). We tabu-
late the highest average values across the four stroke categories.

The table reveals that most of the poor-performing features under the mutual in-
formation criteria also were featured among the worst performers under the K-S test
procedure. For example, the standard deviation of the finger acceleration (feature 15)
that had H, rejected in 40% of the cases also had the lowest value of I in Figure 1. Like-
wise, the three acceleration quartiles (features 16 through 18) and the area standard
deviation (feature 25) performed poorly based on the Iy criteria (see Figure 1).

3.2.3. Correlation Coefficients Between Features. Figure 2 represents the correlation co-
efficients between each pair of features. The color bar on the right maps colors to
actual correlation coefficients. The figure shows that a good number of features are
very slightly correlated with each other (i.e., correlation coefficients approximately
equal to zero). However, there are some very strong correlations seen for feature pairs
comprised of features whose IDs are between 19 and 28 (see Table I). These features
actually correspond to statistical measures extracted from the pressure and area vec-
tors, for which correlation is not surprising given the theoretical relationship between
these measures.

Features selected. For our final feature set, we drop feature 15 (acceleration standard
deviation), which performed worst in all of our rankings and the five area metrics due
to their strong correlations with the pressure metrics. Although a set of correlated
features may perform well if used as part of a larger set of features, we drop these
features to speed up learning, as was done in Frank et al. [2013]. Because a continuous
authentication system is expected to run all the time, our use of a compact feature set
should be in line with the need to minimize the amount of resources that the authen-
tication application could consume in a setting where a good number of potentially
resource-intensive applications could be competing for resources.

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

Toward Robotic Robbery on the Touch Screen 14:9

Feature ID

5 10 15 20 25
Feature ID

Fig. 2. Correlation plot for the 28 features.

4. ATTACK DESIGN
4.1. General Assumptions

Our attacks assume an adversary who gets physical access to a phone for which touch-
based continuous authentication is the only active layer of defense. In practice, this
scenario may arise for an attacker who (1) breaks the PIN lock mechanism (e.g., using
methods such as those in Aviv et al. [2010] and Owusu et al. [2012]), (2) finds a phone
in which the PIN lock has been disabled temporarily (e.g., a user who sets a very long
timeout for the PIN lock), or (3) finds a phone in which the PIN lock has been completely
disabled by the owner [Frank et al. 2013]. To be able to determine the amount of extra
security that touch-based continuous authentication adds to the standard PIN lock in
the worst case, we believe that these assumptions must necessarily be made. Ballard
et al. [2008] present an investigation in which a similar assumption (i.e., that the
adversary has access to the victim’s password) was made to enable rigorous evaluation
of the security of randomized biometric templates (RBTs).

In the attack itself, the attacker will seek to view private information on the phone
(e.g., emails, pictures) without triggering the anomaly detection mechanism. The at-
tack thus basically proceeds by scrolling/swiping through documents on the phone. In
practice, we believe that the attacker could even assist the robot during certain opera-
tions (e.g., occasionally clicking at a challenging location), as the anomaly detector will
most likely not be sensitive enough to detect a few anomalous clicks.

4.2. Examining Users’ Swiping Behavior

To design the attacks, we first examine the way in which people swipe in general. How
random is swiping behavior across a population? Are there certain distinct traits that
manifest frequently across a large number of users? This section provides answers to
these and related questions. We present results on the pressure exerted on the screen,
the area between the finger and the screen, and the region of the phone at which most
swiping is done.

4.2.1. Location of Swiping Activity. Figure 3 shows the density of touch strokes captured
at different positions of the phone screen. The dark blue color corresponds to regions
that saw very little or no swiping/scrolling activity, whereas a high intensity of red
corresponds to regions that saw a lot of swiping. Observe (Figure 3(a)) that most
vertical strokes generated by our user population originated from points having x
values in the neighborhood of 300 units and terminated at a position with an x value

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

14:10 A. Serwadda et al.

800
700 @

800
700
600 600
500

> 400

500
> 400
300
200
100

300

200
100

E e " - 0
0 100 200 300 400 0 100 200 300 400

X X
(a) Spatial distribution of swiping activ- (b) Spatial distribution of swiping activ-
ity during vertical swiping ity during horizontal swiping

Fig. 3. Color map showing the spatial distribution of touch strokes on the phone screen. A high intensity of
blue corresponds to regions that saw very few strokes, whereas a high intensity of red implies a region that
saw intense swiping activity. The phone was being used in portrait mode when the strokes were generated.
Note that the coordinate system used on the figures is different from that used by the Android system.

close to 400 units (and vice versa). Notably, this region of high activity comprises less
than 50% of the screen display. The heart of the red region (which tends toward black)
occupies an even much smaller portion of the screen. Similar traits (see Figure 3(b))
were seen with horizontal swiping.

Based on evidence provided through this plot, an adversary with access to general
population statistics could potentially significantly narrow down the scope of features,
such as (1) the x-coordinate of the start-point of a stroke, (2) the y-coordinate of the start-
point of a stroke, (3) the x-coordinate of the end-point of a stroke, (3) the y-coordinate
of the end-point of a stroke, (4) the duration of a stroke, (5) the summation of distances
between consecutive points of a stroke, and (6) the direction of the end-to-end line,
among other features. These features represent a good proportion of the features used
to characterize users’ touch gestures in past research (e.g., see Frank et al. [2013] and
Li et al. [2013]) and will also be used in this study.

Regarding the cause of the clustering tendency, our conjecture is that the high density
of strokes on the right side of the screen (i.e., taking the case of vertical swiping) was
likely because the majority of users are right handed, tending to hold the phone in
the right hand and swiping with the thumb, or holding the phone in the left hand and
swiping using one of the fingers on the right hand.

In any of these two scenarios, a user is very likely to swipe in the manner reflected
in the figure. We do not rule out the possibility that certain applications could depict
variations from the pattern shown in the figure. In this case, we argue that a committed
attacker who has interest in breaking into such applications can undertake research
on the swiping traits associated with these applications.

4.2.2. Finger Area and Pressure on the Screen. Figure 4(a) shows the distribution of the
mean area touched by the finger and the mean pressure exerted on the screen across
a subset of our full user population. To plot the figures, we computed each user’s mean
area (and mean pressure) and plotted the results on the CDF. Observe that more than
80% of the population had a mean area between 0.1 and 0.25 and that about 50% of
the population had mean pressure values between 0.4 and 0.6. These user proportions

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

Toward Robotic Robbery on the Touch Screen

1 = 1 =
’
0.8 0.8
’
1
L 06 7 " 0.6
8 ’ S Area
04 0.4 = = = Pressure
0.2 : Area 0.2
’ = = = Pressure
0 4 | 0
0 0.2 04 0.6 0.8 1 0 0.1 0.2 0.3

14:11

Standard Deviation
(b) Distribution of the standard devia-
tion of the mean pressure and mean area
across touch strokes

Mean
(a) Distribution of the mean pressure
and mean area across touch strokes

Fig. 4. CDFs expressing the mean and variability of area and pressure seen across the population.

already suggest that a large number of users could be clustered around a narrow band
of values (for both pressure and area). To get more concrete insight into the possible
clustering of users’ profiles, we studied the variability seen by users for each of these
two variables.

Particularly, we computed the standard deviation of the mean area and mean pres-
sure exhibited by each of the users represented in Figure 4(a) and then plotted these
values on a CDF (Figure 4(b)). Taking the case of pressure, for instance, the figure
shows that about 40% of the users had a standard deviation greater than 0.15. As-
suming that users’ mean pressure values follow a Gaussian distribution, a user with
standard deviation of 0.15 could see his or her biometric pattern fall on a band having
a width up to 0.6 units (i.e., 2 standard deviations on either side of the mean). Given
such a wide span, an input selected from the earlier mentioned clustered regions
(Figure 4(a)) could have a good chance of falling within such a user’s feature range.

Similar observations made for the other features (e.g., velocity, length of strokes,
start-point of stroke) further prompted us to hypothesize that generic information
from the population could possibly enable us to implement a successful attack on a
subset of the users.

4.3. Mechanical Design of the Robot

Figures 5 and 6 illustrate the mechanical design of the robot. Figure 5 shows how the
robot components are connected, whereas Figure 6(a) and (b) respectively show the
robotic “finger” used to touch the screen and a closer view of how some of the motors
are connected. The piece of Play-Doh [Walsh 2005] at the bottom of the finger simulates
the softness of a human finger, whereas the AA battery connected to it helps to increase
the extent of electrical contact between the finger and the screen. Increased electrical
contact between the finger and the screen enables the effective finger area and pressure
on the screen registered by the Android system to be fairly high without having to push
the finger so firmly against the screen (which in turn would complicate the swiping
process and potentially deform the Play-Doh).

Motor C drives a network of gears that move the robotic finger vertically on and off
the phone screen (see Movement C). As Motor C drives the finger vertically, the motor
(i.e., Motor C) is itself also driven along a pair of rails (see Movement A) by Motor A.
The resultant motion of the finger is hence a superposition of movements due to the
Motors A, B, and C.

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

14:12 A. Serwadda et al.

Connecting Wire

Motor C

Motor B

Wi-Fi Adapter

Robotic Finger Motor A

Movement B

Front Wheels
Back Wheels

Fig. 5. Mechanical design of the robot. Motor C moves the robot vertically on and off the phone screen,
whereas Motors A and B control the trajectory of the touch stroke as illustrated later in Figure 7. The
parameters passed to each of these motors control attributes such as the speed, pressure, and length of a
stroke.

Electric Wi

(a) Motor C viewed from the top (b) Design of robotic finger

Fig. 6. Zooming in on the robot parts.

4.4. Algorithmic Design of Robot

The trajectory of the stroke is determined by Motors A and B, which move the robot (i.e.,
the robotic finger in particular) in the plane of the phone screen. Figure 7 illustrates
how a touch stroke is generated. The basic design is that Motors A and B move approx-
imately at right angles to each other (see Movement A and Movement B in Figure 5)
to create a stroke whose trajectory is the result of the two motor movements. Each mo-
tor’s movement is controlled based on two parameters: the average speed of movement

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

Toward Robotic Robbery on the Touch Screen 14:13

motor_A(v,,d,)

(v2,d,)
\

motor_B
\
\

Fig. 7. How the motors generate a touch stroke. Two motors move concurrently at right angles to each other
to generate a stroke (approximately) represented by the dashed line.

(e.g., v1 for Motor A) and the distance moved (e.g., d; for Motor A). The values of these
parameters determine the basic properties of the generated stroke, such as the stroke
length and angular orientation and the finger speed along the stroke trajectory. In
Figure 7, the dashed line represents a stroke that is generated when Motor A (whose
trajectory is represented by the horizontal line) and Motor B (whose trajectory is rep-
resented by the vertical line) move concurrently in the directions shown in the figure.
The stroke is not straight, as the mechanical dynamics of the robot parts cause the
directions of motion of Motors A and B to deviate from the perpendicular paths shown
in the figure. This stroke curvature, however, enables our strokes to be more similar to
the generic human stroke, which is itself not exactly straight. Algorithm 1 summarizes
the full swiping process. The input at the top of the inputs list is the number of strokes
to be executed, whereas the next six inputs are the earlier mentioned speed and dis-
tance parameters for the three motors (i.e., each pair of inputs is for one motor). The
Lego system specifies the speed inputs as units of motor power (that range from 1 to
100) and the distance inputs in terms of the number of rotations. Here, rf's is a noise
term that we add to the distance parameter for one of the motors to ensure that the
generated strokes are not exactly the same.

The Finger Down() method moves the robotic finger vertically on and off the phone
screen, whereas the Finger Forward() and Finger Right() methods run in parallel to
move the motors as already described in Figure 7. At the end of a stroke, the method
FingerUp() is called to remove the robotic finger off of the phone before the methods
Finger Backward() and FingerLeft() run in parallel to return the robotic finger to the
start point of a stroke after a short wait interval.

Figure 8 shows the GUI components used to implement Algorithm 1. An operation
such as the forward component of finger motion due to Motor B is implemented based
on the combination of the three blocks. For instance, input from the File Access block is
passed to the Arithmetic Operation block, which manipulates this input (e.g., by adding
a noise term) to produce a result that is passed to the Action block, which causes the
movement of the motor. Reverse movement of the same motor calls for a similar set of
blocks. The complete implementation of Algorithm 1 is hence a large network of blocks
that we do not show here due to space limitations.

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

14:14 A. Serwadda et al.

Motor Port Id

Divide

Multiply Degree of

Input v Output | rotation input
[ﬁ_ﬁ[Delete
a" Expaonent
B Close Advanced
(a) File access block (b) Arithmetic operation block (¢) Action block

Fig. 8. Some of the core GUI components that we used to program the robot. A File Access block specifies
a file from which input parameters are read. The Arithmetic Operation block performs arithmetic manip-
ulations on the input. The Action block executes the motor movement operations. On this block, the Motor
Port Id specifies the motor (e.g., Motor B) that the block controls, whereas the power input and degree of
rotation parameters respectively correspond to the speed and distance inputs that were discussed during
our description of Figure 7. The full network of blocks required to implement Algorithm 1 is quite large and
not shown here due to space limitations.

ALGORITHM 1: Swiping Mechanism

Input: numOfSwipes//Number of strokes;

Input: lenLeftRight//Swipe length left-right;

Input: speedLeftRight//Speed left-right;

Input: lenFwdBkwd//Swipe length forward-backward,
Input: speedFwdBkwd//Speed forward-backward;
Input: lenUpDown//Finger up-down length;

Input: speedUpDown//Finger up-down speed;
GenerateSwipes()

for i <1 to numOfSwipes do

rfs = GRandom(u1,01); //Gaussian noise in swipe length
//Creating swipe

FingerDown(speedUpDown, lenUpDown);
FingerForward(speedFwdBkwd, lenFwdBkwd+rfs);
FingerRight(speedLeftRight, lenLeftRight);
//Setting finger back to the original position
FingerUp(-speedUpDown, lenUpDown);
FingerBackward(-speedFwdBkwd, lenFwdBkwd-+rfs);
FingerLeft(-speedLeftRight, lenLeftRight);
Wait(swipelnterval);//Inter-swipe interval

end

4.5. Algorithm Inputs and Attack Types

4.5.1. Computing the Inputs. The two inputs to each motor (see Algorithm 1) are calcu-
lated based on simple arithmetic. Assume a scenario where the robot is to be used to
forge the stroke represented by the dotted line in Figure 7 for a phone having a known
pixel density. The distance input, d;, for Motor A (which is essentially the number of
rotations for Motor A; see Section 4.4) is computed as the length of the horizontal line
(in pixels) in Figure 7 divided by the length (in pixels) that Motor A drives the robotic
finger in one rotation. Having calculated the distance input, we proceed to divide it
by the time taken! along the stroke to obtain the speed, V. Recall that the speed

IThis time is gleaned from population statistics or user-specific data.

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

Toward Robotic Robbery on the Touch Screen 14:15

Table Ill. Input Parameters for Population Attack

Portrait Swipe Landscape Swipe
Input Horizontal ‘ Vertical | Horizontal ‘Vertical
lenFwdBkwd 68 67 63 50
lenLeftRight 37 25 14 23
speedFwdBkwd 49 25 49 25
speedLeftRight 26 10 11 10

input to the Lego is in terms of a power metric ranging from 1 to 100. We hence do not
directly input V* to the algorithm. To convert V;* to units of power, we apply a simple
calculation of ratios. In other words, if a speed input of 100 units gives a speed of «

rotations per unit time, then our speed V;* can be converted to v; (which is the speed
1005V

in units of power) using the following expression: v; = . The same logic is used to
compute the distance and speed inputs for Motor B. We next discuss the attack types
and how we apply the preceding formulation to each one of them.

4.5.2. Population Statistics—Based Attack. In this attack, the adversary is assumed to have
access to a large repository of touch biometrics data (e.g., publicly accessible datasets
such as the one used in Frank et al. [2013]). Based on this data, the attacker identifies
common traits across a population (e.g., typical stroke velocity and pressure of the
common user) and then formulates the attack such that its inputs translate into robotic
strokes that match the observed common traits. For this attack, our algorithmic input
was based on mean values observed across a small section of the population that was
specifically dedicated to tuning the attack.

Using the mean start-point and mean end-point of touch strokes across this subpop-
ulation, we computed the horizontal and vertical distances represented in Figure 7,
which we then used in the formulation described in Section 4.5.1. Further, we com-
puted the mean time taken along a stroke for this population and used it to com-
pute the speed input as described in the formulation. For each of landscape-vertical,
landscape-horizontal, portrait-vertical, and portrait-horizontal strokes, we computed
separate sets of inputs. Table III shows the algorithm inputs for each type of stroke.
Note that these inputs are computed based on the Samsung Google Nexus S phone
that has a pixel density of 233 pixels per inch. The tabulated values of lenFwdBkwd
and lenLeftRight are in degrees (as opposed to number of rotations) and were computed
based on wheels of diameter 1.6 inches.

For the pressure and area inputs, we molded the Play-Doh lamp at the tip of the
robotic finger to produce a pressure between 0.4 and 0.6 units and an area of 0.15 units,
which were the mean values observed across the earlier mentioned training subpopu-
lation that was dedicated to tuning the attack. This process of molding the Play-Doh
was undertaken during a set of trial and error experiments run before the attack. For
each of the four stroke categories, we placed the robotic finger at a point corresponding
to the mean start-point observed for the training subpopulation before starting the
robotic swiping process.

4.5.3. User-Tailored Attack. In this attack, the adversary designs the robot to specifically
mimic a given user’s swiping pattern. To be able to do this, the adversary is assumed
to have somehow accessed the intended victim’s swiping samples before gleaning
information from them to train the robot. Such an attack can be launched by an
insider attacker who is interested in retrieving high-value information on the phone
of a person he or she knows so well and has access to. Consider a scenario in which
Alice wants to access private information from Bob’s phone. A simple way in which
Alice could access Bob’s swiping data is by asking Bob to browse some pages (pages

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

14:16 A. Serwadda et al.

containing some interesting images, tweets, etc.) on Alice’s phone while an application
in the background captures Bob’s swiping behavior.

In the long run, Alice would then either (1) wait for a moment when Bob leaves his
phone unattended for some time or (2) outrightly steal Bob’s phone so as to use the
robot to overcome the touch-based authentication system on the phone. In the event
that Alice is unable to access Bob’s phone, she could advertise his swiping pattern in
underground networks where another adversary could target Bob to get the phone.

To generate algorithmic input for this attack, we use the same formulation that was
described in Section 4.5.1 and applied to the population attack. The only variation
from the population attack is that while algorithm inputs were calculated based on
population statistics under the population attack, this time around they are computed
based on the victim’s own data. For this attack, we hence do not tabulate the set of
inputs, as each user subjected to the attack had his or her own set of inputs.

5. VERIFICATION ALGORITHMS AND PERFORMANCE EVALUATION METHODOLOGY
5.1. Verification Algorithms Used

We used the following classification algorithms to evaluate the impact of the attacks:
naive Bayes [Duda et al. 2002], logistic regression [Witten and Frank 2005], SVM
[Cortes and Vapnik 1995], kNN [Cover and Hart 2006], random forests [Breiman 2001],
Bayesian networks [Duda et al. 2002], and neural networks [Duda et al. 2002] (i.e., mul-
tilayer perceptron). These algorithms are known to address both linear and nonlinear
recognition problems (e.g., SVM is suited for both linear and nonlinear recognition prob-
lems, whereas kNN, neural networks, and random forests are for nonlinear problems),
and they have different operational philosophies (e.g., naive Bayes is generative, logis-
tic regression is discriminative, and random forests is induction and ensemble based).
This wide range of algorithms will help provide a rigorous understanding of the impact
of the attack on different classification methodologies. Due to space limitations, we do
not discuss the operational mechanisms of these algorithms, as they are widely used
and well understood in the machine learning community.

5.2. Training and Testing Method

For each user, data collected during the first session was used for training, whereas data
collected during the second session was used for testing (recall data collection sessions
described in Section 3.1). For reasons already given in Section 3.2, each user’s strokes
were categorized as either portrait-vertical, portrait-horizontal, landscape-vertical, or
landscape-horizontal. For each of these stroke categories, training was done to build a
user’s model, with testing later done to assess the user’s performance for each stroke
category. Training (for each category of stroke) was done using at least 80 strokes for
each user (i.e., users who had fewer than 80 strokes were excluded from the analysis).
We fixed this minimum number of strokes because we found that classification per-
formance suffered significantly when user models were built based on much smaller
numbers of strokes.

For each user’s four training models (i.e., templates), we carried out three types of
tests: one in which the user’s own strokes were matched against the template (we also
refer to this as the genuine attack), one in which strokes drawn from random impostors
were matched against the template (we also refer to this test as the zero-effort attack),
and one in which strokes generated by the robot were matched against the template
(we refer to this test as the robotic attack?). For the genuine attack, we used 80 strokes

2The robotic attack is further subdivided into the user-specific and population statistics—based attack, each
of which has a separate test.

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

Toward Robotic Robbery on the Touch Screen 14:17

executed by the user in question, whereas for the zero-effort attack, we used 10 strokes
from each of 30 randomly selected impostors. To evaluate the robotic attack, we used
300 strokes generated by the robot.

For both template building and the three kinds of tests, each feature vector was
formulated from a window of 10 consecutive touch strokes (as opposed to a single touch
stroke). The single vector was computed such that its elements were the component-
wise means of the elements of the 10 (28-dimensional) vectors comprising a window
(refer to Section 3.1 for details of the vector elements). Because a user will every now
and then execute a stroke that is distinct from the rest of her strokes, the combination
of multiple strokes—also used in Frank et al. [2013] and Li et al. [2013]—helps to
formulate a more coherent representation of a user’s touch behavior than the use of
a single stroke. For each additional stroke in excess of the 10 strokes comprising a
window, the window slides forward to contain the 10 latest touch strokes.

5.3. Performance Evaluation Approach

We evaluate the impact of the robotic attack based on the increase in FAR caused by
the attack. The FAR is the ratio of the number of impostor attempts that get accepted
by the system to the total number of impostor attempts input to the system. To compute
the FAR, one must first set a classification threshold based on which a given sample is
accepted or rejected by the system. We use the EER threshold, as it is widely used in
behavioral biometrics in general and in touch-based authentication in particular (e.g.,
see Frank et al. [2013], Killourhy and Maxion [2009], and Govindarajan et al. [2013]).
The EER is the error rate of an authentication system when the FAR equals the FRR,;
the EER threshold is the verification score at which the EER is obtained.

We first compute the EER (and its associated threshold) when the system is being
used normally (i.e., before the robotic attacks are launched) and then compute the
FAR based on the same threshold after the robotic attack is launched. Recall that by
definition, EER = FAR = FRR at the EER threshold, which implies that the previously
mentioned EER computed before the robotic attack is equivalent to the FAR of the
system before the attack is launched. This in turn implies that the change in FAR
due to the attack can simply be computed by subtracting the EER before the attack
from the FAR obtained after the attack. Since each user has four distinct biometric
profiles (review Section 3.2 for the rationale behind this design choice), we compute
four different thresholds for each user and evaluate the attack separately for each
category of strokes.

6. ATTACK RESULTS
6.1. Baseline Results

Here we discuss the performance of our system before the robotic attack was launched
(i.e., when legitimate users’ data was input to it). We refer to the system’s performance
under these conditions as the baseline performance of the system. If our baseline
performance can be found to be comparable to the performance seen with existing
continuous authentication systems, it is reasonable to hypothesize that our attack
results should to a good extent be reflective of the performance of other systems in
the literature. Table IV summarizes the baseline performance of our system (see two
columns under the heading Baseline). The table shows that our lowest FAR at baseline
(recall that this was equivalent to the EER; see Section 5.3) was 17%. This EER/FAR is
much higher than the error rates reported in some works (e.g., 4% reported in Frank
et al. [2013]) but is comparable to the error rates reported in several other papers
(e.g., FARs of just under 15% reported in Feng et al. [2012] in the experiments where
users did not wear a glove, whereas EERs of about 20% are reported in Govindarajan

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

14:18 A. Serwadda et al.

Table IV. Impact of the Population Attack on the Classification Performance of the Horizontal
and Vertical Portrait Strokes

Portrait Horizontal Strokes
Classifier Baseline Population Attack
urar Before | opag Before AR After opAr After Increase in | Increase in
Attack Attack Attack Attack urAR (%) oFaR (%)
log-reg 0.17 0.17 0.42 0.48 143 130
knn 0.18 0.16 0.41 0.47 130 198
ran-for 0.18 0.18 0.48 0.39 168 121
svm 0.19 0.19 0.56 0.46 189 145
bay-net 0.21 0.20 0.58 0.38 181 94
mul-per 0.22 0.24 0.64 0.41 182 73
nai-bay 0.23 0.24 0.60 0.38 159 57
Portrait Vertical Strokes
log-reg 0.22 0.17 0.43 0.46 95 167
knn 0.31 0.19 0.52 0.47 71 148
ran-for 0.28 0.23 0.49 0.46 170 96
svm 0.23 0.17 0.51 0.47 126 172
bay-net 0.32 0.24 0.64 0.47 102 93
mul-per 0.27 0.24 0.62 0.46 129 88
nai-bay 0.32 0.27 0.67 0.47 108 73
Log-Reg kNN Ran-For SVM Bay-Net Mul-Per Nai-Bay
1 1 1 1 1 1 1
0.8 0.8] - 08| 4 0.8] - 0.8 0.8 0.8
E 0.6 0.6 0.6 0.6 0.6 0.6 0.6
O 04 0.4 0.4 0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2 0.2 0.2 0.2
0 0 0 0 0 0 0

1 0 1 -1 0 1
Horizontal

1 0 1
Vertical

Fig. 9. Impact of the population attack on the classification performance of each user for the vertical and
horizontal portrait strokes.

et al. [2013]). The differences in performance across studies are likely due to a wide
range of reasons (e.g., differences in study populations, differences in the specific tasks
undertaken by the users during data collection) that are difficult to standardize. What
is crucial for our investigations, however, is that our system is comparable to several
systems in the literature. In the following section, we discuss how the attacks change
the baseline performance of the system.

6.2. Population Attack

6.2.1. Impact of the Attack with All Users Allowed to Enroll. Table IV and Figure 9 show
the impact of the attack when all users in our study were allowed to enroll. We focus
here on the horizontal and vertical portrait strokes because the other kinds of strokes
gave no new insights. Table IV shows the mean EER and standard deviation of the
EERs across the population before and after the population-based robotic attack and
the percentage change in these two variables as a result of the robotic attack. The
table helps to capture the global impact of the attack. Figure 9, on the other hand,
captures the effect of the attack on each user. Observations on Table IV and Figure 9
are summarized next:

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

Toward Robotic Robbery on the Touch Screen 14:19

(1) Increased mean FAR: The attack caused a drastic increment in the mean EER
across all seven verifiers. For example, the logistic regression verifier had an FAR
of 0.17 before the robotic attack, which was more than doubled to 0.42 as a result
of the attack. A similar trend is seen for the other verifiers and for both kinds of
strokes. This increment in mean FAR shows that an impostor using a robot would
see much higher success rates than the naive impostor who makes no effort to forge
swiping patterns.

(2) Increased standard deviation of FAR: The table also shows that the standard devia-
tion of the FARs across the population increased remarkably under the attack. For
example, for the logistic regression verifier with the portrait-horizontal strokes, the
standard deviation of the FAR increased by 130% as a result of the attack. For both
types of strokes, the naive Bayes verifier had the lowest increment in the standard
deviation of the FAR (57% and 73% for the horizontal and portrait vertical strokes,
respectively); however, the impact of the attack is still clear. In general, a high stan-
dard deviation of the error rates implies that the system becomes unpredictable as
a result of the attack.

(3) Some users are immune to the population-based attack: Figure 9 shows the impact
of the attack on each user’s classification performance. To plot the figure, we sub-
tract each user’s FAR before the attack from that after the attack and then plot a
CDF of the differences. As seen from the figure, there are certain users who had
differences less than zero, implying that their FARs were lower after the attack.
This phenomena, also reported for the population-based attack on the keystroke
authentication system in Serwadda and Phoha [2013a], shows that there is a cer-
tain group of users whose behavior is distinct from that of the population. For such
users, patterns gleaned from the general population cannot be used as a basis for
a successful attack. For each of the verifiers, the proportion of users depicting this
trait was between 20% and 40% of the population.

(4) Change in verification algorithm has no marked impact on attack: All seven veri-
fication algorithms were markedly negatively impacted by the attacks. The lowest
increment in mean FAR due to the attack was about 71% (see the kNN verifier for
the portrait vertical strokes), which is a very high percentage of the baseline FAR.
Overall, this means that changes in the philosophy behind the classification engine
cannot help to thwart the attack.

6.2.2. Impact of a Failure-to-Enroll Policy. To more rigorously explore the effect of the
attack, we employed a failure-to-enroll policy and excluded all users whose baseline
FAR was greater than a certain threshold «. The logic behind this exclusion of certain
users is that for users who have a very high FAR at baseline (i.e., under the zero-effort
attack), there is likely no need to use a robot to break their touch patterns given that a
nonzero-effort attack is already highly successful. By eliminating these users, we are
hence able to analyze the effect of the attack on the most consistent users of the system.
Figure 10 and Table V summarize the impact of our attack at different failure-to-enroll
thresholds.

The threshold « = 1 (see Figure 10) means that no user who met the earlier described
80 strokes requirement (see Section 5.2) was denied enrollment, whereas « = 0.4 means
that all users whose mean FAR? at baseline was above 0.4 are excluded from the
evaluation. The former case (i.e., « = 1) is included for comparison purposes. For each
value of a, Figure 10 also shows the number of users who are able to enroll (e.g., at a =
0.4, 92 users were able to enroll).

3This mean FAR is computed based only on the four verification algorithms having the lowest mean FAR at
baseline.

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

14:20 A. Serwadda et al.
| I Bascline M Population attack
0.6
o
< 0.4
0.2
0
. 06 o = 0.4, 92 users
< 04}
402}
0
. 0.6 la = 0.3, 74 users
< 04}
L 0.2t
0
r 06 loo = 0.2, 56 users
< 04}
L 0.2t
0
. 06 loe = 0.1, 25 users
< 04
L o0.2f
0 N AR\ X <
o) o v oc N
\0 x RN\ RN
Fig. 10. Effect of the population attack at different failure-to-enroll thresholds.
Table V. Effect of a Failure-to-Enroll Policy on the Performance of the Population Attack with the
Portrait Vertical Touch Strokes
a=04
Baseline Population Attack
urar Before | opag Before EAR After orpar After Increase in | Increase in
Classifier Attack Attack Attack Attack pAR (%) orAR (%)
log-reg 0.15 0.12 0.55 0.48 260 349
knn 0.24 0.11 0.52 0.44 119 237
ran-for 0.19 0.11 0.50 0.47 164 250
svm 0.16 0.14 0.53 0.48 236 326
bay-net 0.23 0.12 0.57 0.43 144 189
mul-per 0.19 0.20 0.62 0.40 2217 154
nai-bay 0.22 0.17 0.66 0.42 205 181
a=0.1
log-reg 0.04 0.09 0.54 0.41 1,387 1330
knn 0.10 0.10 0.48 0.35 397 466
ran-for 0.05 0.10 0.47 0.43 808 1,011
svm 0.05 0.10 0.47 0.43 936 1,152
bay-net 0.09 0.11 0.52 0.33 464 425
mul-per 0.07 0.17 0.66 0.37 900 681
nai-bay 0.08 0.13 0.69 0.38 730 468

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

Toward Robotic Robbery on the Touch Screen 14:21

0 I Bascline

8 | I Population attack
x 0 [15 stolen samples
m 8 I 10 stolen samples

0

0

0

o WRUION®©
T T T T T T T T

Log-Reg kNN Ran-For SVM Bay-Net Mul-Per Nai-Bay

Fig. 11. Effect of user-specific robotic attack for different amounts of stolen swiping data.

Figure 10 shows that even with a failure-to-enroll policy in place, the attack is
still effective. The figure is such that the first column of bars corresponds to the logistic
regression verifier (Log-Reg), the second column of bars corresponds to the kNN verifier,
and so on. Taking the case of « = 0.3, for example, the figure shows that all seven
verifiers have their mean FAR equal to or greater than 0.4 after the robotic attack,
whereas none of them had a mean FAR exceeding 0.2 before the robotic attack was
launched. This is equivalent to more than a 100% increment in mean FAR for each of
the verifiers as a result of the attack.

Table V gives the exact percentage increments in mean FAR for the thresholds « =
0.4 and o = 0.1. The table also shows the change in standard deviation of the FARs
due to the attack. We only show results for the portrait-vertical strokes and the two
thresholds because the other kinds of strokes and thresholds gave no notable new
insights. Observe that both the mean FARs and standard deviations of FARs increased
drastically for all verifiers, confirming that the attack is still effective even when the
poor-performing users are barred from enrolling onto the system.

6.3. User-Tailored Attack

We finally evaluate the effect of the user-specific form of the robotic attack on the subset
of users who were most resistant to the population-based attack. We selected 30 users
who were most resistant to the population attack and subjected their profiles to the
user-specific attack. By most resistant, we mean the users whose FARs decreased, or
those who had the lowest increments in mean FAR as a result of the population attack.
Our assumption is that if a given user’s profile easily succumbs to the population
attack, an attacker would have no motivation to carry out the more intricate user-
specific attack for that user. It is for this reason that we focus on the subset of users
who had the lowest FAR increment under the population attack.

We vary the amount of data stolen by the attacker between 1, 5, and 10 touch
strokes. Choice of these three small (stolen) sample sizes is due to the assumption that
the attacker is unlikely to get the victim to perform a great deal of swiping.

Figure 11 summarizes the impact of the user-specific attack in comparison to the
zero-effort attack and the population attack. For each set of bars on the figure, the first
bar on the left corresponds to the zero-effort attack, the second bar corresponds to the
population attack, and the last two bars represent the user-specific attack with the
attacker using 5 and 10 stolen samples, respectively. The stolen samples are randomly
selected. Observe that for some cases, the mean FAR under the population attack is
less than the baseline FAR under the zero-effort attack. This is because the EERs
plotted on this graph are computed based on the earlier mentioned subpopulation of
resistant users for whom the population attack sometimes caused lower FARs than the
zero-effort attack.

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

14:22 A. Serwadda et al.

In comparison to both the zero-effort and population attacks, Figure 11 shows that
the user-specific attack causes the system to attain much higher mean FARs for all
seven verification algorithms. Interestingly, stealing 10 samples does not appear to
produce significant performance gains from the attacker’s perspective relative to when
just 5 samples are used. This implies that 5 samples already provide a significant
amount of information about the user.

7. DISCUSSION AND CONCLUSIONS

In this section, we explore some of the weaknesses of our attack design and performance
evaluation methodology before presenting our conclusions.

7.1. Discussion

Attack performance evaluation. Although the system to which we subjected our at-
tacks (i.e., the baseline authentication system) is comparable to and in some cases
performs better than several systems (in terms of classification error rates) that have
recently been proposed in the literature (see Sections 2.1 and 6.1), there are studies
that have showcased systems with error rates lower than our baseline error rates.
These differences in error rates across independent studies emanate from a range of
factors (e.g., user composition, feature sets, experimental conditions, i.e., a specific use
case for which users provide data, constraints imposed on users as they provide data,
phone screen resolutions, data sampling rates) that are difficult to precisely standard-
ize across different studies. One weakness of our performance evaluation methodology
is that we were unable to compare the performance of our attacks across a wide range
of previously proposed systems.

For some of the previously proposed systems, it is possible that our attacks would
not perform as well as they performed in our experiments. This dip in attack perfor-
mance, however, is more likely for the population statistics—driven attack (see Sec-
tion 6.2), which heavily relies on the overlap across user profiles. Our belief is that the
user-tailored attack—by virtue of closely mimicking the victim’s swiping behavior—
would still cause a significant performance degradation irrespective of the system being
evaluated.

Patterns in swiping behavior. In Section 4.2, we made observations on users’ swip-
ing patterns (e.g., regions of swiping activity, common values of pressure). In practice,
these swiping patterns should be influenced by the design of the user interface of
the application under consideration. For example, if one used an app that has but-
tons on the entire bottom half of the screen with text occupying only the top half
of the screen, swiping activity would potentially be concentrated more in the region
having text than the region having the buttons (i.e., users would likely browse in
the region not containing the buttons to avoid inadvertently clicking the buttons).
This observation implies that if one were to capture swiping patterns using an app
whose interface or nature of operation was markedly different from the one used in
our work, it is possible that patterns different from those seen in our work would be
observed.

That said, as described in Section 3.1, our experiment very closely simulated the
standard browsing process that is seen with many apps in which users have to read
and process content on the screen (e.g., Web browsing, reading e-mails). In particular,
as users searched for solutions to the multiple choice questions, they had to carefully
browse the page while reading and processing text that contained the clues. Our belief
is that our observations should be representative of a large subset of smartphone apps

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

Toward Robotic Robbery on the Touch Screen 14:23

that involve reading text,* and thus could be used for the design of attacks on a broad
range of apps in this family.

Irrespective of whether our observed patterns apply to a given app or not, a more
interesting option for the attacker is to exploit data obtained from the app that is to be
attacked so as to glean patterns that precisely represent this app. For example, if the
attacker intends to break into a banking app, he or she would have to glean patterns
seen with people using this very app. In practice, this should not be so difficult, as
the attacker can use data provided by accomplices (e.g., see Ballard et al. [2006] and
Serwadda and Phoha [2013a]) or data from unsuspecting users (who may be fooled into
browsing on the attacker’s phone).

Mechanical design issues. Another aspect that manifests as a weakness of our attack
design is the fact that the mechanical design of the Lego is in a way “hard coded” to
the shape and size of the phone. In particular, the identities of the Lego parts, their
orientation, sizes, and mechanism of interaction were all very tightly coupled to the
device that was attacked in our study. In practice, this implies that for the adversary
to launch the attack against a device such as a touchscreen laptop, a new mechani-
cal design that meshes well with the mechanical dynamics of the laptop (e.g., bigger
screen, laptop keyboard occupying space in front of the keyboard) would need to be
implemented. A general-purpose form of the attack would require a more sophisticated
robot (e.g., a humanoid robot) that only requires programmatic manipulation as one
switches from one victim device (e.g., smart phone) to another (e.g., touchscreen TV).

7.2. Conclusions

In this article, we have presented a population-based and a user-specific robotic attack
on touch-based authentication. For a set of seven verification algorithms having base-
line FARs of between 0.17 and 0.32, we have shown the population attack to cause
an FAR increment of greater than 70% for the least affected algorithm. For the user-
specific attack, we have shown that the effect of the attack is even much more drastic,
with the baseline FAR of the least affected algorithm being multiplied over twofold as
a result of the attack.

Because the attacks require only basic programming skills and are launched using
cheap off-the-shelf hardware, they represent a realistic threat that should be expected
to be faced by a real deployment of a touch-based authentication system. The article
not only calls for the incorporation of robotic attacks in the standard impostor testing
routine of touch-based authentication systems but also calls for research into mecha-
nisms that could defeat these attacks. One appealing approach to fortify touch-based
authentication is to leverage information from the multitude of sensors built in smart
phones these days to implement some kind of fusion framework that identifies a user
based on multiple modalities. For example, using the motion and inertial sensors in
the phone, such a system could capture the signature of the subtle movements of the
phone while a user swipes and then use them in conjunction with the swiping signature
to identify the user. Although the use of mechanical devices (e.g., robots) to forge this
fortified signature might not be completely impossible, it could make the attacker’s
work significantly more difficult.

Another possible defense against these kinds of attacks is the use of pattern recog-
nition techniques (i.e., liveness tests) that can delineate between the swiping pattern
of a human and that of a robot. The principal idea behind this kind of defense is that
robotic movements rotate around a small set of canonical movements. For example,

4Recall that the primary use case of our attack is for the adversary to read/browse sensitive private infor-
mation on the phone without being detected by the touch-based authentication system.

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

14:24 A. Serwadda et al.

a given motor could rotate left or right through one of a finite set of possible angles,
and the full combination of all motors could only be able to execute a certain set of
movements at a given point in time. Humans, on the other hand, are able to execute
much more complex movements (many possibilities of angles, step sizes of rotation,
etc.). By analyzing a presented pattern for certain predictable robotic behavior, one
could determine the probability that the presented pattern is robotic. This option of
defense, however, seems much more complex than the first, as different robots might
have differences in operational dynamics. Thus, a defense that works against a certain
family of robots mightnot work the same way against a different family of robots. Part
of our future work will involve examining the various approaches to defending against
these attacks.

REFERENCES

De Luca Alexander, Alina Hang, Frederik Brudy, Christian Lindner, and Heinrich Hussmann. 2012. Touch
me once and I know it’s you! Implicit authentication based on touch screen patterns. In Proceedings of
the 2012 ACM Annual Conference on Human Factors in Computing Systems (CHI'12). ACM, New York,
NY, 987-996. DOI : http://dx.doi.org/10.1145/2208516.2208544

Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and Jonathan M. Smith. 2010. Smudge attacks
on smartphone touch screens. In Proceedings of the 4th USENIX Conference on Offensive Technologies
(WOOT’10). 1-7. http://dl.acm.org/citation.cfm?id=1925004.1925009.

Lucas Ballard, Seny Kamara, Fabian Monrose, and Michael K. Reiter. 2008. Towards practical biometric
key generation with randomized biometric templates. In Proceedings of the 15th ACM Conference on
Computer and Communications Security (CCS’08). ACM, New York, NY, 235-244. DOI : http://dx.doi.org/
10.1145/1455770.1455801

L. Ballard, D. Lopresti, and F. Monrose. 2007. Forgery quality and its implications for behavioral bio-
metric security. Transactions on Systems, Man, and Cybernetics, Part B 37, 5, 1107-1118. DOI:http://
dx.doi.org/10.1109/TSMCB.2007.903539

Lucas Ballard, Fabian Monrose, and Daniel Lopresti. 2006. Biometric authentication revisited: Un-
derstanding the impact of wolves in sheep’s clothing. In Proceedings of the 15th Conference on
USENIX Security Symposium, Vol. 15 (USENIX-SS’06). Article No. 3. http:/dl.acm.org/citation.
c¢fm?id=1267336.1267339.

R. M. Bolle, S. Pankanti, and N. K. Ratha. 2000. Evaluation techniques for biometrics-based authentication
systems (FRR). In Proceedings of the 15th International Conference on Pattern Recognition, Vol. 2. 831—
837 DOI:http://dx.doi.org/10.1109/ICPR.2000.906204

Leo Breiman. 2001. Random forests. Machine Learning 45, 1, 5-32. DOI:http:/dx.doi.org/10.1023/
A:1010933404324

Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine Learning 20, 3 , 273-297.
DOI:http:/dx.doi.org/10.1023/A:1022627411411

T. Cover and P. Hart. 2006. Nearest neighbor pattern classification. IEEE Transactions on Information
Theory 13, 1, 21-27. DOI : http://dx.doi.org/10.1109/TIT.1967.1053964

R. Duda, P. Hart, and D. Stork. 2002. Pattern Classification (2nd ed.). John Wiley & Sons.

Tao Feng, Liu Ziyi, Carbunar Bogdan, Boumber Daining, and Shi Weidong. 2012. Continuous mobile au-
thentication using touchscreen gestures. In Proceedings of the 12th IEEE Conference on Technologies for
Homeland Security (HST’12).

Mario Frank, Ralf Biedert, Ma Eugene, Martinovic Ivan, and Song Dawn. 2013. Touchalytics: On the applica-
bility of touchscreen input as a behavioral biometric for continuous authentication. IEEE Transactions
on Information Forensics and Security 8, 1, 136-148.

Mitchell H. Gail and Sylvan B. Green. 1976. Critical values for the one-sided two-sample Kolmogorov-
Smirnov statistic. Journal of the American Statistical Association 71, 355, 757-760.

S. Govindarajan, P. Gasti, and K. S. Balagani. 2013. Secure privacy-preserving protocols for outsourc-
ing continuous authentication of smartphone users with touch data. In Proceedings of the 2013
IEEE 6th International Conference on Biometrics: Theory, Applications, and Systems (BTAS’13). 1-8.
DOI:http://dx.doi.org/10.1109/BTAS.2013.6712742

A. Rahman Khandaker, Kiran S. Balagani, and Vir V. Phoha. 2013. Snoop-forge-replay attacks on continuous
verification with keystrokes. IEEE Transactions on Information Forensics and Security 8, 3, 528-541.

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

http://dx.doi.org/10.1145/2208516.2208544
http://dl.acm.org/citation.cfm?id=1925004.1925009
http://dx.doi.org/10.1145/1455770.1455801
http://dx.doi.org/10.1145/1455770.1455801
http://dx.doi.org/10.1109/TSMCB.2007.903539
http://dx.doi.org/10.1109/TSMCB.2007.903539
http://dl.acm.org/citation.cfm?id=1267336.1267339
http://dl.acm.org/citation.cfm?id=1267336.1267339
http://dx.doi.org/10.1109/ICPR.2000.906204
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1109/BTAS.2013.6712742

Toward Robotic Robbery on the Touch Screen 14:25

Kevin S. Killourhy and Roy A. Maxion. 2009. Comparing anomaly-detection algorithms for keystroke dy-
namics. In Proceedings of the 39th Annual IEEE | IFIP International Conference on Dependable Systems
and Networks (DSN’09). 125-134.

Lingjun Li, Xinxin Zhao, and Guoliang Xue. 2013. Unobservable reauthentication for smart phones. In
Proceedings of the 20th Network and Distributed System Security Symposium (NDSS’13).

Elizabeth Mauch. 2001. Using technological innovation to improve the problem-solving skills of middle school
students: Educators’ experiences with the LEGO mindstorms robotic invention system. Clearing House
74, 4,211-214.

Tey Chee Meng, Payas Gupta, and Debin Gao. 2013. I can be you: Questioning the use of keystroke dynamics
as a biometric. In Proceedings of the 20th Annual Network and Distributed System Security Symposium
(NDSS’13).

Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. 2012. ACCessory: Password infer-
ence using accelerometers on smartphones. In Proceedings of the 12¢th Workshop on Mobile Computing
Systems and Applications (HotMobile’12). ACM, New York, NY, Article No. 9. DOI:http:/dx.doi.org/
10.1145/2162081.2162095

Abdul Serwadda and Vir V. Phoha. 2013a. Examining a large keystroke biometrics dataset for statistical-
attack openings. ACM Transactions on Information and System Security 16, 2, Article No. 8.
DOI:http://dx.doi.org/10.1145/2516960

Abdul Serwadda and Vir V. Phoha. 2013b. When kids’ toys breach mobile phone security. In Proceedings of
the 2013 ACM SIGSAC Conference on Computer and Communications Security (CCS’13). ACM, New
York, NY, 599-610. DOI : http://dx.doi.org/10.1145/2508859.2516659

Abdul Serwadda, Vir V. Phoha, and Zibo Wang. 2013. Which verifiers work? A benchmark evalua-
tion of touch-based authentication algorithms. In Proceedings of the 2013 IEEE 6th International
Conference on Biometrics: Theory, Applications, and Systems (BTAS’13). 1-8. DOI:http://dx.doi.org/
10.1109/BTAS.2013.6712758

Umut Uludag and Anil K. Jain. 2004. Attacks on biometric systems: A case study in fingerprints. In Proceed-
ings of SPIE5306: Security, Steganography, and Watermarking of Multimedia Contents VI. 622—633.

Tim Walsh. 2005. Timeless Toys: Classic Toys and the Playmakers Who Created Them. McMeel Publishing.

Z. Wang, A. Serwadda, K. S. Balagani, and V. V. Phoha. 2012. Transforming animals in a cyber-behavioral
biometric menagerie with frog-boiling attacks. In Proceedings of the 2012 IEEE 5th International Con-
ference on Biometrics: Theory, Applications, and Systems (BTAS’12). 289-296. D0I:http://dx.doi.org/
10.1109/BTAS.2012.6374591

Tan H. Witten and Eibe Frank. 2005. Data Mining: Practical Machine Learning Tools and Techniques
(2nd ed.). Morgan Kaufmann, San Francisco, CA.

Xi Zhao, Tao Feng, and Weidong Shi. 2013. Continuous mobile authentication using a novel graphic touch
gesture feature. In Proceedings of the 2013 IEEE 6th International Conference on Biometrics: Theory,
Applications, and Systems (BTAS’13). 1-6. DOI : http://dx.doi.org/10.1109/BTAS.2013.6712747

Received March 2015; revised December 2015; accepted February 2016

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 14, Publication date: May 2016.

http://dx.doi.org/10.1145/2162081.2162095
http://dx.doi.org/10.1145/2162081.2162095
http://dx.doi.org/10.1145/2516960
http://dx.doi.org/10.1145/2508859.2516659
http://dx.doi.org/10.1109/BTAS.2013.6712758
http://dx.doi.org/10.1109/BTAS.2013.6712758
http://dx.doi.org/10.1109/BTAS.2012.6374591
http://dx.doi.org/10.1109/BTAS.2012.6374591
http://dx.doi.org/10.1109/BTAS.2013.6712747

