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ABSTRACT
Computational modeling of neuroactivity plays a central role in our effort to understand brain dynamics in the advancements of neural
engineering such as deep brain stimulation, neuroprosthetics, and magnetic resonance electrical impedance tomography. However, analytic
solutions do not capture the fundamental nonlinear behavior of an action potential. What is needed is a method that is not constrained to
only linearized models of neural tissue. Therefore, the objective of this study is to establish a robust, straightforward process for modeling
neurodynamic phenomena, which preserves their nonlinear features. To address this, we turn to decomposition methods from homotopy
analysis, which have emerged in recent decades as powerful tools for solving nonlinear differential equations. We solve the nonlinear ordi-
nary differential equations of three landmark models of neural conduction—Ermentrout–Kopell, FitzHugh–Nagumo, and Hindmarsh–Rose
models—using George Adomian’s decomposition method. For each variable, we construct a power series solution equivalent to a generalized
Taylor series expanded about a function. The first term of the decomposition series comes from the models’ initial conditions. All subsequent
terms are recursively determined from the first. We show rapid convergence, achieving a maximal error of <10−12 with only eight terms. We
extend the region of convergence with one-step analytic continuation so that our complete solutions are decomposition splines. We show that
this process can yield solutions for single- and multi-variable models and can characterize a single action potential or complex bursting pat-
terns. Finally, we show that the accuracy of this decomposition approach favorably compares to an established polynomial method, B-spline
collocation. The strength of this method, besides its stability and ease of computation, is that, unlike perturbation, we make no changes to
the models’ equations; thus, our solutions are to the problems at hand, not simplified versions. This work validates decomposition as a viable
technique for advanced neural engineering studies.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0124414

I. INTRODUCTION

New advanced MRI techniques allow for in vivo quantitative
inquiries of properties of tissue by perturbing it in synchrony with
the imaging pulse sequence such that its response is encoded in
the phase component of the complex magnetic resonance (MR) sig-
nal.1 From the phase map, we can then calculate the key parameters
that can serve as biomarkers for tissue health. For example, in brain

MR elastography, the tissue is vibrated, and the mechanical shear
waves are encoded in the phase maps from which we can determine
the tissue’s complex shear modulus.2 In MR electrical impedance
tomography (MREIT), the perturbation is injected electric current
whose density J(r) throughout the tissue is determined by the dis-
tributed electrical conductivity σ(r). The phase contrast encodes the
magnetic field B(r) arising from J(r), whence we can determine
σ(r).3 Sadleir et al. proposed4 and experimentally demonstrated5
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using MREIT to detect neural activity directly, exploring the con-
ductivity changes that result from active membrane dynamics. It is
therefore appropriate to focus our analytic power on models of the
active membrane, which are highly nonlinear.

Most biologic—indeed, most engineering—phenomena are
characterized by nonlinear differential equations, which most ana-
lytic methods cannot solve directly but instead must have the equa-
tions simplified through, e.g., linearization or dramatically restrict-
ing the parameter space, that is, the solutions are to problems
different from the original modeling, curtailing their applicability.
Sometimes such changes are perfectly sensible because the nonlin-
ear behavior is not the salient detail under scrutiny, such as Rall and
Agmon-Snir using the cable equation to model neurons to consider
impulse transmission along large distances6 or how in the first study
of this series Schwartz et al. held the membrane as purely resistive to
consider a snapshot of electromagnetic field distribution throughout
a bidomain.7 In this study, we will look at three increasingly com-
plex models of membrane conduction. The first is the theta model
by Ermentrout and Kopell.8,9 Using only one variable, this quadratic
integrate and fire model describes bursting in Aplysia neurons. Next
we consider the model by Fitzhugh10 and Nagumo et al.,11 which
shows the all-or-nothing phenomenon of an action potential once
the transmembrane voltage has surpassed a certain threshold. The
final model is by Hindmarsh and Rose12 and adds a third variable
that allows for the description of oscillatory burst discharge. The
nonlinear nature of these models is key to the frontier problems of
neural engineering, e.g., MREIT; hence, our solution method must
include it.

Over the last 30 or so years, a rich scholarship comprising the
broad field of homotopy analysis has been developed13 with the goal
of a unified method for solving all sorts of mathematic models of the
natural world—linear, nonlinear, deterministic, and stochastic—and
which remains largely unexplored in the neural engineering com-
munity. Broadly, these techniques are recursive, starting with the
initial or boundary conditions and creating an analytic series solu-
tion. Specifically in this work, we will use the decomposition method
developed by Adomian14 but with modifications added later, which
we will note. For convenience, we will simply refer to it as the Ado-
mian decomposition method (ADM). The ADM creates a power
series solution, called a decomposition series, which is equivalent
to a Taylor series, by decomposing the unknown function into an
infinite series, defining the first term as the initial condition. The
nonlinear components are decomposed into their own infinite series
called Adomian polynomials, which also start with the initial con-
dition. Each term in the decomposition series depends on the one
before it; hence, starting from the initial conditions, all terms are
recursively calculated. The reviews by Adomian15 and Rach16 are
both excellent primers on this method.

The ADM has gained some traction in the realms of biomedical
phenomena, having been applied to nonlinear models of cellu-
lar population growth,17 cellular systems and aging,18 and infec-
tion diseases and immune response.19 Adomian20 and Adomian
et al.21 discussed a limited time-and-space-dependent version of the
FitzHugh–Nagumo model, which had only one state variable, as
well as the Hodgkin–Huxley model,21 to describe impulse propaga-
tion down an axon. These studies are largely theoretic, serving more
as proposals, without worked concrete examples, error analysis, or
analytic continuation, all of which we address here. Furthermore,

we will only consider models described by ordinary differential
equations, neglecting spatial dependence.

We will start with a brief description of the ADM in Sec. II,
continue with detailed analyses of our three models in Sec. III, com-
pare the Adomian spline solutions to cardinal basis spline solutions
in Sec. IV, and end with remarks on future directions.

II. MATHEMATICAL PRELIMINARIES
A. Operator notation

Consider a heterogeneous nonlinear ordinary differential equa-
tion ℱ{u(t)} = g(t) whose operator ℱ is the sum of linear ℒ and
ℛ and nonlinear 𝒩 terms,

ℱ{u} =ℒ{u} +ℛ{u} +𝒩{u} = g, (1)

where ℒ = dn

dtn is the highest order differential operator, which we
assume to be easily invertible, ℛ is the remaining part(s) of the lin-
ear operation, 𝒩 is the nonlinear operator, and g is a given function.
Hereafter, we will neglect the curly brackets around arguments with
only one variable. We assume that ℒ −1ℒu = u −Φ, where ℒ−1 is
the n-fold definite integral operator from 0 to t, whence we deter-
mine Φ by the initial value(s). Thus, if ℒ = d

dt , then ℒ−1
= ∫

t
0 dt and

Φ = u(0). Applying ℒ−1 through (1) and solving for u yield

u = Φ +ℒ−1g −ℒ−1ℛu −ℒ−1𝒩u. (2)

B. Decomposition series
The ADM assumes that we can decompose the solution into an

infinite series,14

u =
∞
∑
n=0

un, (3)

with the first term coming from the initial condition. The non-
linear terms 𝒩u are themselves decomposed into the Adomian
polynomials,

𝒩u =
∞
∑
n=0

An, (4)

which are defined as22

An =
1
n!

dn

dζn 𝒩(
∞
∑
n=0

unζn
)∣

ζ=0

. (5)

See Appendix A for an example of the Mathematica code for gener-
ating An. The components of u are determined from the recursion
scheme,23

u0 = Φ,

u1 =ℒ
−1g −ℒ−1ℛu0 −ℒ

−1A0,

un+2 = −ℒ
−1ℛun+1 −ℒ

−1An+1.

(6)

From Eq. (5), we see that A0 comes from the initial condition u0,
A1 from u0 and u1, A2 from u0, u1, and u2, and so on. Thus, all
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components in Eq. (3) are determined. The solution converges
quickly,24 so in practice, the m-term partial sum will suffice, given
here as

φm(t) =
m−1

∑
n=0

un(t); lim
m→∞φm(t) = u(t). (7)

C. One-step analytic continuation
The decomposition series φm(t) is equivalent to a generalized

Taylor series25 about the function u0(t)26 and whose radius of con-
vergence r is insufficient to characterize, e.g., rapidly varying neural
dynamics.27 The solution28,29 to this shortcoming—built into the
ADM itself—is a self-starting, simple to use, and accurate one-step
method of analytic continuation of φm(t) in terms of its family of
elemental functions φ(k)m (t) with overlapping r(k),

φm(t) = φ(0)m (t); t0 − r(0) < t < t0 + r(0),

φm(t) = φ(1)m (t); t1 − r(1) < t < t1 + r(1),
⋮

φm(t) = φ(k)m (t); tk − r(k) < t < tk + r(k).

(8)

The domain of interest is partitioned into (variable) time inter-
vals [0, t1), [t1, t2), . . . , [tk−1, tk), each with its analytic continuant
φ(k)m (t) of primitive φ(0)m (t). From the condition of continuity
φ(k+1)

m (tk+1) = φ(k)m (tk+1), the values at the end of each element
are the initial conditions for the following element.27 The resultant
spline of N + 1 elements is conveniently expressed as30

φm(t) =
N

∑
k=0

φ(k)m (t)Π(t; tk, tk+1), (9)

where Π is the boxcar function.31 Appendix B shows our code
for generating the spline elements. Neither the intervals’ durations
hk = tk+1 − tk nor orders m of their partial sums need to be the
same.28,29 Indeed, the spline can be optimized by (1), fixing each m
while varying the intervals’ duration from hk = λr(k) where the dila-
tion constant λ < 1 and the radii of convergence are estimated by

the mth coefficient of each φ(k)m (t) as r(k)m =
m
√

∣a(k)m ∣
−1

,32 or by (2),
fixing hk = h while varying m to be the smallest required to bring
the interval’s maximum truncation error ε(k) = maxtk≤t≤tk+1 ∣φ

(k)
m (t)

− φ(k)m+1(t)∣ below a set tolerance εtol, or both.33

III. ACTIVE MEMBRANE MODELS
A. Ermentrout–Kopell model

Let us begin with a single variable model from Ermentrout and
Kopell8,9 that can describe parabolic bursting behavior in Aplysia
neurons. The theta model, as it is also known, is canonic for
type I membrane dynamics—characterized by a wide range of fir-
ing frequencies34—because all other type I models can be reduced
thereto35,36 and is given as

dθ
dt
= q(1 − cos(θ)) + (1 + cos(θ))η,

θ ∈ [0, 2π], θ(0) = θ(2π) = 0,
(10)

where θ is the voltage, the constant η represents the input current,
and q is the membrane time constant, which we can set to unity
without loss of generality. When η > 0, via quadrature, the analytic
solution in closed form is found to be34

θ(t) = 2 arctan(
√

η tan(
√

ηt)). (11)

To approach the θ model with the ADM, let us re-arrange Eq. (10),
conveniently isolating the nonlinear component,

dθ
dt
= 1 + η + (η − 1) cos(θ). (12)

We see that our operators are ℒθ = dθ
dt , 𝒩θ = cos(θ), g = 1 + η, and

ℛ = 0, so Eq. (12) becomes

ℒθ = g + (η − 1)𝒩θ. (13)

We write θ = ∑∞n=0 θn and 𝒩θ = ∑∞n=0 An(cos(θ)), and, after apply-
ing ℒ−1

= ∫
t

0 dt throughout, Eq. (13) becomes

θ(t) =
∞
∑
n=0

θn = θ(0) + (1 + η)t + (η − 1)
∞
∑
n=0

ℒ−1An(cos(θ)). (14)

From Eq. (6), each θn is found from our recursion scheme,

θ0 = θ(0),

θ1 = (1 + η)t + (η − 1))ℒ−1A0(cos(θ)),

θn+2 = (η − 1)ℒ−1An+1(cos(θ)).

(15)

Thus, our decomposed θ(t) is fully determined, completing our
analysis. Because this model has a known analytic solution in closed
form, we can easily verify our solution by hand. The first few
An(cos(θ)) values are

A0 = cos(θ0),
A1 = − sin(θ0)θ1,

A2 = − cos(θ0)θ2
1 − sin(θ0)θ2,
⋮

(16)

so the first few terms of our decomposition series are

θ1 = 2ηt,
θ2 = 0,

θ3 =
2
3
(η2
− η3
)t3,

⋮

(17)

thus, we can see emerging the Taylor series representation of
the a priori known solution 2 arctan(√η tan(√ηt) , which is
expressed as37
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θ(t) = 2
⎛
⎜
⎝

∞
∑
j=0

⎛
⎜
⎝

(−1)j

2j + 1
⎛

⎝

√
η
∞
∑
k=1

⎛

⎝

(−1)k−1
(22k
− 1)22kB2k

(2k)!
(
√

ηt)2k−1⎞

⎠

⎞

⎠

2j+1
⎞
⎟
⎠

⎞
⎟
⎠

, (18)

where B are the Bernoulli numbers.38

B. FitzHugh–Nagumo model
First devised as an oscillator10 and then as an equivalent

circuit,11 the Fitzhugh–Nagumo model consists of two coupled
nonlinear differential equations given as39

dV
dt
= V −

V3

3
−W + σ, (19)

dW
dt
= ϕ(V + α − βW), (20)

where V is the transmembrane potential, W is the recovery variable,
σ is the stimulating current, and ϕ, β, and α are positive constants.
The operators of the V Eq. (19) are ℒV = dV

dt , ℛ{V , W} = V −W,
𝒩V = V3

/3, and g(t) = σ while the W Eq. (20) has ℒW = dW
dt ,

ℛ{V , W} = ϕ(V − βW), g(t) = ϕα, and no 𝒩 term. Let V(t)
= ∑

∞
n=0Vn, W(t) = ∑∞n=0Wn, and 𝒩V = 1

3∑
∞
n=0An(V3

). When we
apply ℒ−1 to Eqs. (19) and (20) we respectively get

V(t) = V(0) + σt +ℒ−1
{
∞
∑
n=0
(Vn −

An(V3
)

3
−Wn)}, (21)

W(t) =W(0) + ϕαt + ϕℒ−1
{
∞
∑
n=0
(Vn − βWn)}. (22)

The recursion schemes are

V0 = V(0),

V1 = σt +ℒ−1
{V0 −

A0(V3
)

3
−W0},

Vn+2 =ℒ
−1
{Vn+1 −

An+1(V3
)

3
−Wn+1},

(23)

and

W0 =W(0),

W1 = ϕαt + ϕℒ−1
{V0 − βW0},

Wn+2 = ϕℒ−1
{Vn+1 − βWn+1}.

(24)

However, for a few highly restricted cases, e.g., Demina and
Kudryashov’s meromorphic,40 we have no a priori solution, so we
must verify our results with the error e = ℱ{φm(t)} − g(t), which
comes from Eq. (1). If we write our m-term partial sums as vm(t)
= ∑

m−1
n=0 Vn(t) and wm(t) = ∑m−1

n=0 Wn(t), then the infinity norm of
the error ∥e∥∞ from the V Eq. (19) and the W Eq. (20) (denoted by
subscript) are, respectively, given as

∥ev∥∞ = max
tk≤t≤tk+1

∣
dvm(t)

dt
− vm(t) +

vm(t)3

3
+ wm(t) − σ∣, (25)

∥ew∥∞ = max
tk≤t≤tk+1

∣
dwm(t)

dt
− ϕ(vm(t) + α − βwm(t))∣. (26)

Figure 1 shows the ∥ev∥∞ for the primitive element k = 0 whose
r(0)
= 1.8 for λ = 0.05, 0.1, and 0.2, and as expected, our solution con-

verges more quickly as λ is decreased. Note that, by inspection, we
can see that the error decreases linearly, which means that, since this
is a logarithmic scale, the rates of convergence are exponential. The
∥ew∥∞ (not shown) looks the same as ∥ev∥∞ for all intervals, which
is expected since their interval length hk corresponds to the local r(k).

Let us now use our solution to construct splines (shown in
Fig. 2) depicting an action potential using v10(t) and w10(t) and
varying the interval length. We take the inputs (listed in Table I)
from FitzHugh’s work.39 The bottom panel shows the full dynamic
behavior of the two state variables. Right above it, we zoom into
a sample of the v10(t) spline to show the varying interval lengths.
Above that, we zoom in even further to focus on just one element
v(10)

10 (t) to show how quickly the curve converges as we add terms.

C. Hindmarsh–Rose model
Hindmarsh and Rose first modified the two state variable

FitzHugh–Nagumo model of action potentials to allow for long
interspike intervals to resemble the behavior of real neurons more
closely.41 Later they added a third state variable, which allows for
a qualitative description of bursting behavior,12 which we now
consider. The model is given as

dX
dt
= Y − aX3

+ bX2
− Z + I, (27)

dY
dt
= c − dX2

− Y , (28)

FIG. 1. Maximum error from Eq. (25) as a function of m over the interval size
h0 = λr (0) where r (0) = 1.8.
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FIG. 2. (Bottom) The splines of v10(t) and w10(t) over the course of one action
potential. The modeling inputs are listed in Table I. (Middle) A zoomed in view of
v10(t) where the light blue vertical lines separate the spline’s individual elements.
A few of the intervals are labeled. (Top) A zoomed in view of v(10)

10 (t) where 1, 2,
and 3 term partial sum solutions are also plotted. The vertical axes’ units are mV.

dZ
dt
= r(s(X − XR) − Z), (29)

where X is the transmembrane potential, Y reflects the spiking Na+

and K+ currents, Z is an adaptive current that terminates them, thus

TABLE I. FitzHugh–Nagumo modeling inputs.

Parameter Value

Stimulating current, σ 0.35
Interval dilate, λ 0.25
Solution order, m 10

Tunable constants

α 0.7
β 0.8
ϕ 0.08

Initial conditions

V(t)∣t=0 −1.1994
W(t)∣t=0 −0.6243

creating an isolated burst of spikes, I is the stimulating current, and
a, b, c, d, r, s, and XR are constants. In all three equations of Eq. (24),
we recognizeℒ = d

dt , and thus,ℒ−1
= ∫

t
0 dt. We decompose the vari-

ables X(t) = ∑∞n=0Xn, Y(t) = ∑∞n=0Yn, and Z(t) = ∑∞n=0Zn as well as
the nonlinear terms in Eq. (27) 𝒩X = ∑∞n=0(An(X3

) + An(X2
)) and

Eq. (28) 𝒩X = ∑∞n=0An(X2
), and we apply ℒ−1 throughout Eq. (24)

to obtain

X(t) =
∞
∑
n=0

Xn = X(0) + It

+ ℒ−1
{
∞
∑
n=0
(yn − aAn(X3

) + bAn(X2
) − Zn)}, (30)

Y(t) =
∞
∑
n=0

Yn = Y(0) + ct −ℒ−1
{
∞
∑
n=0
(dAn(X2

) + Yn)}, (31)

Z(t) =
∞
∑
n=0

Zn = Z(0) − rsXRt +ℒ−1
{
∞
∑
n=0
(rsXn − rZn)}. (32)

FIG. 3. Maximum error for the partial sum solutions from Eq. (36) as a function of
m over the intervals k = 266 and 342 whose respective radii of convergence are
3.5 and 0.57, respectively.
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The recursion schemes are

X0 = X(0),

X1 = It +ℒ−1
{Y0 − aA0(X3

) + bA0(X2
) − Z0},

Xn+2 =ℒ
−1
{Yn+1 − aAn+1(X3

) + bAn+1(X2
) − Zn+1},

(33)

Y0 = Y(0),

Y1 = ct −ℒ−1
{dA0(X2

) + Y0},

Yn+2 =ℒ
−1
{dAn+1(X2

) + Yn+1},

(34)

and

Z0 = Z(0),

Z1 = −rsXRt +ℒ−1
{rsX0 − rZ0},

Zn+2 =ℒ
−1
{rsXn+1 − rZn+1}.

(35)

Writing our m-term partial sums as xm(t) = ∑m−1
n=0 Xn(t), ym(t)

= ∑
m−1
n=0 Yn(t), and zm(t) = ∑m−1

n=0 Zn(t) means our ∥e∥∞ values are
written as

∥ex∥∞ = max
tk≤t≤tk+1

RRRRRRRRRRRRRR

dxm(t)
dt

− ym(t) + ax3
m(t)

−bx2
m(t) + zm(t) − I

RRRRRRRRRRRRRR

(36)

∥ey∥∞ = max
tk≤t≤tk+1

∣
dym(t)

dt
− c + dx2

m(t) + ym(t)∣, (37)

∥ez∥∞ = max
tk≤t≤tk+1

∣
dzm(t)

dt
− r(s(xm(t) − XR) − zm(t))∣. (38)

Figure 3 shows the ∥ex∥∞ at intervals k = 266 and 342 whose
respective r(k)

= 3.5 and 0.57, respectively. Once again, by inspection,

TABLE II. Hindmarsh–Rose modeling inputs.

Parameter Value

Stimulating current, I 1.5
Interval length, h 0.1
Tolerance, εtol 0.001

Tunable constants

a 1
b 3
c 1
d 5
r 0.0021
s 4
XR − 8

5

Initial conditions

X(t)∣t=0 −1.200 49
Y(t)∣t=0 −6.270 14
Z(t)∣t=0 1.277 97

FIG. 4. (Bottom) The splines of xm(t), ym(t), and zm(t) over the course of a three
spike burst. The spline interval length h = 0.1, and the truncation error tolerance
is εtol = 0.001. (Top) A zoomed in view of ym(t). Since the time interval is fixed,
each element corresponds to an easily calculated time. The vertical axes’ units are
mV.

we can recognize exponential convergence rates from the (approx-
imately) linear shape on the log scale. Furthermore, we see a faster
convergence in the interval with the smaller radius. The ∥ey∥∞ and
∥ez∥∞ are similar (not shown).

Using inputs from the work by Hindmarsh and Rose12 (listed
in Table II), we now construct splines (plotted in Fig. 4) that show a
burst of spikes. This time, however, we hold the interval length fixed
at h = 0.1 and allow the order of each element to vary, maintaining a
truncation error at or below a set tolerance of εtol. In the top panel of
Fig. 4, we zoom in to a section of the ym(t) spline to see individual
elements labeled with their respective orders.

IV. COMPARISON WITH CARDINAL BASIS SPLINES
A. Meromorphic FitzHugh–Nagumo model

Having shown how to construct spline solutions with the ADM
(A-splines), we now validate this method through comparison to
the method of collocation and cardinal basis splines (B-splines).
For convenience, we will solve a version of the FitzHugh–Nagumo
model (inputs in Table III),
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TABLE III. Meromorphic FitzHugh–Nagumo modeling inputs.

Parameter Value

Stimulating current, σ 0.35
Solution order, m 3
Interval, T 1
Knot spacing. δ 3h

Tunable constants

α βσ
β 5
ϕ 3

25

Initial conditions

V(t)∣t=0
3√
10

W(t)∣t=0
7

20 +
1
5

√
2
5

dv
dt
= v − v3

− w + σ,

dw
dt
= ϕ(v + α − βw),

(39)

for which we have the analytic solutions in closed form,40

v(t) =
√

7
10
+

1
5

e−
2
5 t +

1
10

tanh(
4
5
), (40)

w(t) =
4
√

10 + 25σ
√

7 + 2e−
2
5 t + tanh( 4

5) − e−
4
5 t√10

25
√

7 + 2e−
2
5 t + tanh( 4

5)
. (41)

B. B-spline collocation
We adopt the approach given by Pitolli;42 however, for a thor-

ough treatment of B-spline theory and applications, please see the
works by Schumaker43 and Prenter.44 Briefly, we partition △ the
time interval [0, T] into uniformly spaced integers l (called knots)
as△δ ∶= {lδ, 0 ≤ l ≤ N}, where N = T

δ and δ is the dilate for the knot
time interval. We use spline curves for our approximating functions,

vδ(t) =
N

∑
l=0

νlB
m
l (t),

wδ(t) =
N

∑
l=0

ωlB
m
l (t),

(42)

where νl and ωl are unknown coefficients and Bm
l (t) are the B-spline

functions, piecewise polynomials of order m interleaved at the knots,
recursively defined as45

B0
l (t) =

⎧⎪⎪
⎨
⎪⎪⎩

1, tl ≤ t ≤ tl+1,

0, otherwise,
m = 0, (43)

Bm
l (t) =

t − tl

tl+m − tl
Bm−1

l (t) +
tl+m+1 − t

tl+m+1 − tl+1
Bm−1

l+1 (t), m ≥ 1. (44)

TABLE IV. The maximum error for the B and A splines.

h ∥eB∥∞ ∥eA∥∞
1
6 3.7751 × 10−6 5.0039 × 10−7

1
12 3.3928 × 10−7 6.8181 × 10−8

1
24 2.3888 × 10−8 8.8124 × 10−9

1
48 1.5699 × 10−9 1.1175 × 10−9

Our knot vector is equally spaced with t = 0 having multiplicity
m + 1.46 The solution then involves solving for νl and ωl through
the method of collocation. We do this by substituting Eq. (42) into
Eq. (39) to get

νl
d
dt

Bm
l (t) = νlB

m
l (t) − (νlB

m
l (t))

3
− ωlB

m
l (t) + σ,

ωl
d
dt

Bm
l (t) = ϕ(νlB

m
l (t) − βωlB

m
l (t)) + ϕα,

(45)

(summation over l ∈ [0, N] is understood) and evaluating our
B-splines at collocation points, which are expressed as △τ ∶= {tp

= pτ, 0 ≤ p ≤ P}, where P = T
τ ≤ N. We solve this nonlinear sys-

tem of 2(P + 1) equations through 2(m +N) unknowns by the
Gauss–Newton method on Mathematica 13.1 (Wolfram Research,
Inc., Champaign, IL). A detailed description of the method can be
found in Ref. 42.

C. Example results
For our numeric example, we look at a small interval [0, 1] and

use cubic splines, i.e., m = 3. All inputs are summarized in Table III.
In this example, we want to show that the ADM is at least as accu-
rate as the B-spline collocation method by comparing the infinity
norm of the errors, which we define as eB = v − vδ and eA = v − vm at
various discretizations h = 1

3 δ. We list in Table IV the errors for an
increasingly fine mesh. As expected, when the error goes down, the
time steps are shorter. At all levels, the A-spline is around an order
of magnitude more accurate than the B-spline approximation.

Finally, as a further check of the ADM, following the same steps
in Sec. III B but this time with the meromorphic formulation and
inputs, the first few terms of our decomposition series are

vm(t) =
3
√

10
−

t
10
√

10
+

t2

40
√

10
+ ⋅ ⋅ ⋅ ,

wm(t) =
35

100
−

4
√

10
+

3t
25
√

10
−

21t2

500
√

10
+ ⋅ ⋅ ⋅ ,

(46)

revealing the Taylor series expansions for our known solutions.

V. CONCLUSION
The solutions we presented here represent a new way for neu-

ral engineers to approach key biophysical models. They are just a
tiny fraction of the analytic possibilities with the ADM. For instance,
besides analytic continuation, the solutions’ validity can also be
expanded through, e.g., diagonal Padé approximates47 or iter-
ated Shanks transforms.48 For the purposes of MREIT, generaliza-
tions worth considering include partial differential equations49 for
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impulse propagation, state variables describing multi-physics phe-
nomena like the neural bilayer sonophore,50 and arbitrary derivative
order51 to model non-ohmic conductivities in tissue.52
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APPENDIX A: MATHEMATICA CODE FOR ADOMIAN
POLYNOMIALS

Here now is some of our Mathematica codes written in the
Wolfram language, which allows for 2D input, Greek letters, and
symbolic operations. First is the code for calculating the Adomian
polynomials defined by Eq. (5) for 𝒩v = v3.

AP[m_]∶=Module[{F}, (∗define the operation∗)
f[v_]∶= v3;
F0 = f[∑m

k=0(vm−1,k[t]Sk
)];

For [i = 0, i ≤ m, i + +,
A[i] = Expand[Fi/.S→ 0];
Fi+1 =

1
i+1 D[Fi,S]]]

AP[n] (∗calculate n polynomials∗)

APPENDIX B: MATHEMATICA CODE FOR A-SPLINE

Finally, we present our code for the elements of a basic A-spline
solution for the FitzHugh–Nagumo model given in Eqs. (19) and
(20). For simplicity, the K intervals each have a constant duration
h = T and polynomial order m =M.

v0,0[t_] = −1.199 41; (∗first terms from initial conditions∗)
w0,0[t_] = −0.6243;

Fork = 1, k ≤ K, k = k+1, (∗intervals loop∗)
vk−1,1[t_] = σ t+∫

t
0 (vk−1,0[t]– 1

3 A[0]– wk−1,0[t])dt;
wk−1,1[t_] = ϕαt+ϕ(∫

t
0 (vk−1,0[t] – βwk−1,0[t])dt);

For [m = 1, m ≤M, m =m + 1, (∗series loop∗)
vk−1,m[t_] = ∫

t
0 (vk−1,m−1[t]– 1

3 A[m –1]−wk−1,m−1[t])dt;
wk−1,m[t_] = ϕ(∫

t
0 (vk−1,m−1[t] – βwk−1,m−1[t])dt);]

vk,0[t_] = ∑M
m=0(vk−1,m[T]); (∗end of each interval∗)

wk,0[t_] = ∑M
m=0(wk−1,m[T]);]
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