
Vol.:(0123456789)

SN Computer Science (2022) 3:253
https://doi.org/10.1007/s42979-022-01109-w

SN Computer Science

ORIGINAL RESEARCH

Deep Optimisation: Transitioning the Scale of Evolutionary Search
by Inducing and Searching in Deep Representations

Jamie Caldwell1  · Joshua Knowles2,3 · Christoph Thies1 · Filip Kubacki1 · Richard Watson1

Received: 21 July 2021 / Accepted: 24 March 2022 / Published online: 27 April 2022
© The Author(s) 2022

Abstract
We investigate the optimisation capabilities of an algorithm inspired by the Evolutionary Transitions in Individuality. In
these transitions, the natural evolutionary process is repeatedly rescaled through successive levels of biological organisa-
tion. Each transition creates new higher-level evolutionary units that combine multiple units from the level below. We call
the algorithm Deep Optimisation (DO) to recognise both its use of deep learning methods and the multi-level rescaling of
biological evolutionary processes. The evolutionary model used in DO is a simple hill-climber, but, as higher-level represen-
tations are learned, the hill-climbing process is repeatedly rescaled to operate in successively higher-level representations.
The transition process is based on a deep learning neural network (NN), specifically a deep auto-encoder. Our experiments
with DO start with a study using the NP-hard problem, multiple knapsack (MKP). Comparing with state-of-the-art model-
building optimisation algorithms (MBOAs), we show that DO finds better solutions to MKP instances and does so without
using a problem-specific repair operator. A second, much more in-depth investigation uses a class of configurable problems
to understand more precisely the distinct problem characteristics that DO can solve that other MBOAs cannot. Specifically,
we observe a polynomial vs exponential scaling distinction where DO is the only algorithm to show polynomial scaling for
all problems. We also demonstrate that some problem characteristics need a deep network in DO. In sum, our findings sug-
gest that the use of deep learning principles have significant untapped potential in combinatorial optimisation. Moreover,
we argue that natural evolution could be implementing something like DO, and the evolutionary transitions in individuality
are the observable result.

Keywords  Model-building optimisation algorithms · Deep autoencoder · Multi-scale search · Problem structure

Introduction

Deep Optimisation (DO) is a recent addition to the class
of Model-Building Optimisation Algorithms (MBOA) that
exploits deep learning concepts [5, 6]. MBOAs are a class of
black-box optimisation techniques inspired by the process of

variation and selection in natural evolution. MBOAs work by
adapting the solution neighbourhood using a machine learn-
ing model to capture relationships within a distribution of
promising solutions. These relationships form a compressed
representation of the search space allowing variation to
explore in a redefined neighbourhood and find higher qual-
ity solutions. Exploiting problem structure in this way has
been successful in multiple problem domains [1, 7, 33, 41].

There exist multiple MBOAs that show state-of-the-art
performance [16, 22, 36, 46]. However, as we discuss in
this paper, the model used to adapt the solution neighbour-
hood and the method used to then explore this neighbour-
hood differ between the algorithms. However, to the best of
our knowledge, there do not exist known characteristics of
problems, such that one (existing state-of-the-art MBOA)
algorithm can handle efficiently while another cannot. We
also observe that the presently existing state-of-the-art
algorithms do not use a neural network model. MBOAs

This article is part of the topical collection “Applications of
bioinspired computing (to real world problems)” guest edited by
Aniko Ekart, Pedro Castillo and Juanlu Jiménez-Laredo.

 *	 Jamie Caldwell
	 j.r.caldwell@soton.ac.uk

1	 Agents, Interaction and Complexity (AIC) Research Group,
Southampton University, Southampton SO17 1BJ, UK

2	 School of Computer Science, University of Birmingham,
Birmingham B15 2TT, UK

3	 Present Address: Invenia Labs, Cambridge CB2 1AW, UK

http://orcid.org/0000-0002-6531-2289
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01109-w&domain=pdf

	 SN Computer Science (2022) 3:253253  Page 2 of 26

SN Computer Science

that do use a neural network as the model have failed to
show state-of-the-art performance [10, 38, 40]. Against this
(briefly described) background, this paper aims to answer:
Can a deep neural network model improve the performance
of a MBOA? Further, we aim to understand what types of
problem structure separate performance between MBOAs
(including our new one) into can and cannot do.

In this paper, we introduce1 the Deep Optimisation algo-
rithm (DO), which uses a deep autoencoder model to encode
relationships between problem variables. DO differs from
the existing MBOAs in two important ways. First, DO con-
structs a deep representation of the solution by recursively
transforming the solution representation. This is performed
using layerwise learning, where each layer is constructed by
recognising correlations in a distribution of solutions that
are locally optimal relative to the neighbourhood defined by
the preceding layer. Each layer induced by the autoencoder
transforms the representation of the solution, presenting a
solution space with a higher-level of organisation. Specifi-
cally, a change to a single variable in the transformed rep-
resentation corresponds to an organised change to multiple
variables to the solution representation. Secondly, previous
MBOAs that use a neural network model generate complete
solutions from the model—Model-Informed Generation
(MIG). In contrast, DO improves a solution through an
iterative search process with steps that are informed by the
model, i.e. through small changes in the latent representa-
tion—Model-Informed Variation (MIV).

DO, like other MBOAs, is inspired by the processes of
biological evolution. However, whereas other methods aim
to model the structure of allelic associations in a population
of individuals at a single level of biological organisation, DO
is inspired by evolutionary processes operating over multi-
ple levels of organisation. Such Evolutionary Transitions in
Individuality (ETIs) [56], have the characteristic that multi-
ple individuals at one level of organisation form associations
that result in a new evolutionary unit at a higher level of
organisation [42], e.g. the transition from unicellular life to
multicellular organisms. These are not merely cooperative
relationships among coevolving unicellular organisms. They
are new evolutionary units that allow multiple units from the
previous level of organisation to be combined and selected
together, enabling evolution to move through solution space
at a new level of representation [31, 55]. In DO, a deep
network learns to encode solutions into a compressed latent
space. Small variations in this latent space are decoded back
to the solution space, producing large organised variations

to the original problem variables. Using MIV, in an itera-
tive selection process (local search in the latent space), DO
represents the process of variation and selection acting on
high-order evolutionary units. Each subsequent layer recodes
again, in the analogue of successive hierarchical transitions
in individuality [51].

Alternative methods that use machine learning (ML) to
improve optimisation include: learning a heuristic for a set
of problem instances [2, 24, 58]; learning to combine a set
of given heuristics (hyperheuristics) [45]; using a surrogate
model to approximate the fitness function [49], including
‘Bayesian optimization’ in the ML community [19, 43];
adapting the learning function to bias future search [4, 20];
embedding a machine learning model within the model of a
combinatorial problem [25] and using machine learning to
select a suitable solver [48]. In continuous problem spaces,
learning to adapt a variation operator from a population
samples has been an important advance [17] and is increas-
ingly based on manifold learning (information geometry)
approaches [32, 57]. Back in combinatorial spaces, the
cross-entropy method [12] also learns to converge its sam-
ples based on information geometric principles, and, relat-
edly, ant colony optimisation algorithms solve combinatorial
problems by a constructive version of a simple MBOA [59].
The use of deep reinforcement learning (RL) algorithms for
combinatorial optimisation is a popular approach [29]. Deep
reinforcement learning is used to learn a policy that per-
forms an action on a given state to improve the solution.
This policy can then be used on multiple instances from the
same problem class. Unlike DO and other MBOAs, these
methods do not use the model to recode the neighbourhood
of a search space into a higher-level representation.

In this paper, we investigate what type of problem char-
acteristics DO can overcome that other MBOAs cannot.
We first evaluate the performance of MBOAs and DO on
the multi-dimensional Knapsack problem, and show that
DO can find solutions that other MBOAs cannot. We then
explore types of problem characteristics, using a configur-
able problem with controllable structure to distinguish the
capabilities of MBOAs and DO. We show that their exists
problem structure separates the performance of the different
models used, different methods for exploring the reorganised
neighbourhood and ability to induce a deep representation.

The Deep Optimisation Algorithm

In this section, we first provide a high-level motivation for
the architecture of DO and then give the specific details of
how the algorithm works. Detailed comparisons of DO’s
architecture and procedures with related methods (notably
other MBOAs) are left to Sect. 3.

1  We follow the convention that this journal article is the introducing/
defining work, notwithstanding that a preprint version and short con-
ference paper have described the algorithm in outline previously—see
references.

SN Computer Science (2022) 3:253	 Page 3 of 26  253

SN Computer Science

Intuitively, we might learn to use a language by first rec-
ognising the combinations of sounds that make up common
syllables, then combinations of syllables that make up com-
mon words, and so on through phrases and sentences. With
each rescaling of the representation, we are able to construct
meaningful utterances at a higher level of organisation more
easily. This, in turn, provides a better signal for us to learn
the next level of structure. Only with learning of skills at
all of these levels is it possible for an author to learn how to
construct an effective essay or build a narrative arc; search
in the space of individual letters would be useless even if
guided by an accurate objective function. Deep Optimisation
uses a similar intuition to learn multiple levels of representa-
tion, making it increasingly easy to construct high quality
solutions to an optimisation problem, as it learns how to
combine existing units together in useful ways. An evolu-
tionary unit is an entity subjected to variation and selection
and although its fitness may be sensitive to the other units it
is evaluated with, its variation and reproduction is, at least
initially, independent from other evolutionary units. In terms
of optimisation, an evolutionary unit represents any unit of
variation—a partial solution [50]—that can be selected and
combined with others to form a whole solution. For exam-
ple, a change made to a single solution variable is the low-
est level evolutionary unit, and a change made to multiple
solution variables simultaneously (which is retained or dis-
carded together) is a higher-level unit. At the start of the DO
algorithm, each solution variable is a separate evolutionary
unit. A transition describes a transformation process that
induces higher-order evolutionary units. The transformation
performs a coordinate restructuring of a single-unit change
made to a solution, enabling a single-unit change to per-
form a simultaneous change to multiple solution variables
before selection acts. Consequently, evolution is rescaled
to operate at a higher level of organisation that facilitates
informed movements between solutions that were far apart
in the original solution space [54].

This idea of rescaling the search process from searching
combinations of bits to searching combinations of modules
at multiple levels (higher-levels) of organisation is familiar
in many areas of engineering and in genetic algorithms [13,
31]. However, building-block ideas in genetic algorithms
were inspired by the biology of crossover in sexual repro-
duction which suffers from the need to represent the linkage
of variables in a linear chromosome (a limitation largely
responsible for the motivation of MBOAs and their depar-
ture from the biology that inspired the genetic algorithm).
DO takes a different inspiration—specifically, from the ETIs
and not crossover. Each new level of representation in DO
represents the formation of new evolutionary units that in
turn becomes subject to evolutionary processes. These new
units can then form relationships to create further levels of
organisation as the next level is learned, and so on, in the

analogue of successive hierarchical transitions in individual-
ity [51]. Thus a solution is now described by a set of high-
level features rather than the original problem variables.

The term transition is used in DO to describe the process
of inducing higher-order evolutionary units from the existing
set of lower-level evolutionary units. The components that
make up the transition processes are:

1.	 Discovering how existing (lower-level) units combine—
providing a signal for learning a compressed representa-
tion.

2.	 Inducing a compressed representation of these combina-
tions—creating new units at a higher-level of organisa-
tion.

3.	 Rescaling the process of variation and selection to oper-
ate using the higher-order units—to search in the space
defined by the compressed representation.

The following subsections describe these three components.
For clarity, note that the optimisation process (evolutionary
search), is separated from the learning process; the evolu-
tionary process is not used to evolve a neural network as in
NeuroEvolution [44]. In DO, the compressed representa-
tion is induced (by standard ML methods) from information
discovered by the evolutionary search using the lower-level
organisation, and the results are used to instantiate a new
evolutionary process at the higher level of representation.
Also note that, although a case can be made that biological
ETIs naturally implement a form of DO (as is our inspiration
[51, 55]), here our implementation uses abstract ML meth-
ods that do not intend to model that biology in a direct way.

Discovering How Lower‑Level Units Combine

In familiar learning tasks, such as classification and regres-
sion tasks, a model is learned from a data set. In an optimisa-
tion problem, no such data set is provided. We aim to learn
information about the problem structure (which problem
variables ‘go together’) but this information is only implicit
in the fitness function (or objective function of the problem).
To create a data set from which this information can be dis-
covered, we must first gain some visibility of it by ‘probing’
the problem. In DO, this is provided using a local search
process (a simple evolutionary process) where a fitness func-
tion guides the search process to locally optimal solutions.
Although this process is uninformed (knows nothing about
the problem structure except that provided by selection) a
distribution of solutions from different starting positions can
be used as a training set to extract useful information about
the problem structure implicit in the fitness function.

Hill-climbing (also known as a “ (1 + 1) evolution-
ary algorithm”) is a simple evolutionary process suffi-
cient for this. Figure 1 illustrates a fitness landscape of an

	 SN Computer Science (2022) 3:253253  Page 4 of 26

SN Computer Science

optimisation problem. For most optimisation problems, the
fitness landscape is unknown and is used here only to help
demonstrate the idea. The x and y axes represent the solution
space and the z-axis represents the fitness of each solution.
Hill-climbing is an efficient method to exploit local informa-
tion about the search space but is susceptible to becoming
trapped at sub-optimal solutions (a locally optimal solution).
In order to escape a local optimum, a solution can be reset
in a new but random region of the solution space. However,
the solution is likely to become trapped at a different local
optimum. In complex problems, the likelihood of finding a
globally optimal solution via resets becomes exponentially
small as the number of problem dimensions increases.

Instead, an alternative approach to escaping a local opti-
mum is to make a large change to the solution, for example
a multi-variable substitution in the case of a binary problem.
Allowing multi-variable substitutions effectively transforms
the neighbourhood of a solution space such that solutions
that were initially far apart become adjacent. A multi-vari-
able substitution could be performed by making a random
change to a sub-set of the solution variables. However, the
likelihood of this producing an adaptive change vanishes as
the size of the multi-variable substitution increases. Instead,
one requires a multi-variable substitution that is informed,
i.e. has knowledge of the problem structure, and is conse-
quently more likely to improve the fitness of a solution by
enabling a large but coordinated change. The type of multi-
variable substitution that will be adaptive is, however,
dependent on the problem instance—and it is this informa-
tion that DO will learn.

A distribution of locally-optimal solutions, found by
searching combinations of units at the current level of

organisation, contains combinations of variables that work
well together to some degree. The dimensionality of the
variation observed in this distribution is less than the origi-
nal dimensionality of possible variation. Consequently, a
dimensional compression of the distribution of solutions can
be performed to induce higher-order units of variation—
extracting features of variation that appear in the distribution
of locally-optimal solutions. This much is a fairly stand-
ard approach in MBOAs (although we use the technique of
learning from a distribution of locally optimal solutions [23]
rather than the more common practice of using a selected
subset from a population of randomly generated solutions).
But importantly, DO represents this compression using a
standard auto-encoder, enabling well-developed ML tech-
niques to be applied and permitting multiple levels of deep
structure to the learned.

Inducing a Compressed Representation

Learning a compressed representation of a distribution of
solutions found at the current level of organisation permits
a transformation of the space of solutions. The dimensional
reduction will represent the data-set by extracting features
that represent the salient units of variation in the data-set.
For instance, a regular relationship between variables will
be extracted and represented by a variable in the higher level
representation. Consequently, differences between solutions
are described as differences between features. Therefore, ini-
tially, far apart solutions (differing in the values of multiple
variables) may become neighbours in the feature representa-
tion, i.e., differ by a single higher-level feature.

Figure 2 illustrates the corresponding effect to the fitness
landscape by transforming the representation of a solution
into a set of features. Relative to the feature (compressed)
representation of a solution, fitness differences will be due
to differences between features (unlike the original represen-
tation level where differences in individual variables cause
fitness differences). Note, whilst the illustration shows a
transformation of the fitness landscape, DO is neither learn-
ing the fitness landscape, nor a compressed representation
of the fitness landscape, nor learning movements that are
good (like RL methods). DO is learning a compression of
the variation, which corresponds to the reorganisation of the
neighbourhood of a solution and, consequently, the fitness
landscape organisation.

Searching in the Compressed Representation

The compressed representation allows for search to continue
in a reorganised space. This is demonstrated in Fig. 3. A
solution is first optimised in the original search space. Once
at a local optimum, the solution is trapped, and hill-climbing
can no longer be performed at this level of organisation.

Fig. 1   Hill-climbing in a search space can efficiently exploit local
information about the problem structure, but can easily become
trapped at a sub-optimal solution (a local optimum). The search pro-
cess can be repeatedly reset to random start points (light circles) to
explore different regions of the search space and provide a diverse
distribution of locally optimal solutions (dark circles)

SN Computer Science (2022) 3:253	 Page 5 of 26  253

SN Computer Science

Next, the solution is encoded to the first compressed rep-
resentation. At this level of organisation, hill-climbing can
be resumed by changing individual features—local search
at the compressed representation level. Specifically, a local
variation is performed by making a change to a feature rep-
resentation and then decoding back to the original level of
organisation. Relative to the solution representation, the
change appears as a large coordinated change to the original
problem variables—yet at the higher-order representation,
the change was only a local change. The higher-order vari-
ation enabled the solution to escape the local optimum and
‘jump over’ a fitness valley. Note that such a jump does not
guarantee that the point arrived at, on the other side of a
fitness valley, is a point of higher fitness. Rather it is useful
because it can sample this distant point without visiting all
the low fitness points in the valley between. Selection on
this higher-level unit can then assess whether the change
was an improvement or not. The changes thus enabled are
thus not directed in the sense of knowing in advance whether
they will afford an improvement—rather they are useful
because they collapse the dimensionality of the exploration
process (using information learned from past experience to
reduce the sampling of combinations that are rarely unfit).

Consequently, at the compressed representation, hill-climb-
ing can continue to find superior solutions that may other-
wise be pathologically difficult to find at the original level
of organisation (illustrated in Fig. 3a).

Successive Transitions in Individuality

At the solution level, there exist many local optima that trap
a local search operator. Searching at the compressed rep-
resentation causes a higher-order variation that can escape
these fine-scale local optima. In turn, searching in the
compressed solution space can also become trapped, i.e.,
solutions that differ by a single higher-level feature do not
improve the current solution, and, therefore, the problem
contains macro-scale local optimal (Fig. 3a). To escape a
local optimum at the macro-scale, an additional compres-
sion is learned. By encoding to the second layer of organi-
sation, hill-climbing can again be performed. Illustrated in
Fig. 3b, the local change at the second level of organisation
is decoded back, performing a large coordinated change to
the first layer of organisation and an even larger but still
coordinated change to original solution representation. Fur-
ther, the idea of inducing a compressed representation can
be performed indefinitely, constructing a multi-level com-
pressed representation of the search space.

Each level of organisation induces a reorganised represen-
tation of a solution, which in turn transforms the neighbour-
hood, and, therefore, fitness landscape, of the solution space,
as illustrated in Fig. 3b. The evolutionary search process
does not change; it is just rescaled into a new representation.
Specifically, each solution is updated by hill-climbing at
the compressed representation finding locally-optimal solu-
tions in the compressed representation. The distribution of
solutions found at the compressed representation level will
contain information about how the units of variation at the
compressed representation level (higher-order units of vari-
ation) combine to improve the fitness of a solution. In the
language analogy, the distribution of solutions can contain
information about how syllables can combine into words.
An additional compressed representation can be induced,
compressing the units of variation at the first layer of organi-
sation to an even higher-order unit of variation—providing
large coordinated variation when decoded into the first layer
of organisation.

The idea of search in reorganised neighbourhoods shares
similarities with the well-known Variable Neighbourhood
Search method [18], where a fixed search is performed using
a number of different neighbourhoods. However, in VNS these
neighbourhoods are manually defined in advance, whereas
in DO, a compression of a neighbourhood is induced from
solutions found in a larger neighbourhood, providing a new
and intelligent space to search in without requiring a priori
domain knowledge. Also, it has been shown that constraints

Fig. 2   Learning a compressed representation of the solutions found
at the lower-level organisation induces a higher-order search space.
Solutions that were originally far apart appear closer together in the
reorganised space. The induced space contains macro-scale local
optima where local search in the compressed solution space can also
become trapped at sub-optimal solutions. This space, in turn, can be
compressed, constructing a multi-level representation of the solution
space

	 SN Computer Science (2022) 3:253253  Page 6 of 26

SN Computer Science

in a mathematical programming formulation can be used to
adapt the search space during optimisation, which in-turn has
produced good results for challenging problems [39, 47]. Here,
constraints are applied that break the symmetry that can appear
in repeated runs, which in effect filters out and avoids redun-
dant areas of the search space that have already been visited.
This shares similarities with DO, and MBOAs in more general,
where the reorganisation of the solution space is not defined
prior to the run (unlike in VNS) and emerges due to the solu-
tions found during optimisation. However, MBOAs differ to
this approach as a machine learning model is used to adapt
the search space rather than utilising predefined constraints.
Further and more detailed parallels between DO’s architecture
and operation, and those of related methods, is the subject of
the next section.

Comparing Characteristics
of Model‑Building Optimisation Algorithms

Before running experimental comparisons, we first discuss
how different features of various MBOA’s might corre-
spond to different problem-solving abilities. The charac-
teristics of a fitness landscape present challenges that an
algorithm must overcome to find a superior solution effi-
ciently. We are interested in methods that explore the fit-
ness landscape to find a globally optimal solution despite
these challenges. MBOAs explore the landscape using
processes inspired by natural evolution. The model cap-
tures relationships between variables from a distribution of
promising solutions. These relationships are then exploited

Fig. 3   Hill climbing in a higher-order representation can result in a
large and coordinated change in the original solution representa-
tion. This can be achieved by encoding a solution to the higher-order

representation, making a local variation in this new space, and then
decoding back to the original representation

SN Computer Science (2022) 3:253	 Page 7 of 26  253

SN Computer Science

by informing future search. Among different state-of-the-
art MBOAs, there exist substantial differences both in the
type of models that are learned, and also in the way in
which the models (once learned) are used to inform the
search process. Consequently, we expect these differences
to effect the performance of an MBOA. Further, we expect
the introduction of a new MBOA that uses a deep neural
network in a new way, providing a novel contribution to
the class of MBOAs, to also have a significant impact on
the adaptive capabilities. In this section, we introduce the
state-of-the-art MBOAs, and also examine the differences
between the algorithms more closely to separate the capa-
bility of DO from the state-of-the-art MBOAs.

Linkage Tree Genetic Algorithm (LTGA)

LTGA [46] uses agglomerative clustering to construct a hier-
archical tree compression of the linkage information. The
linkage information is provided by the dependency struc-
ture matrix (DSM), representing the variation of informa-
tion between two clusters, populated from a distribution of
promising solutions. Each variable is initially considered
a separate cluster. After each clustering step, the DSM is
updated to include the clustering. The outcome is a tree
data-structure of linkage-sets, with each set representing a
compression of lower-order linkage-sets.

New solutions are found sing a search method called
optimal-mixing: As a generalised analogue of crossover
in sexual recombination, the constructed linkage-set deter-
mines which variables to exchange between solutions. The
model thus represents the structure of dependencies between
variables, not the values assigned to variables. Values are
constructed from a random solution drawn from the popula-
tion. As such, the variation applied to a solution is depend-
ent on the population and linkage-set. Each linkage-set is
utilised by traversing the tree with each beneficial exchange
being kept. This is applied to all solutions in a population.
A new model is then constructed using the new distribution
of solutions.

Parameterless Population Pyramid (P3)

P3 [15] is an advancement of the LTGA, that uses multiple
incremental tree linkage-sets as the model. P3 maintains
multiple populations arranged in a hierarchy. Each level of
the hierarchy can be summarised as an LTGA instance, and
thus each population has its own linkage-tree model that
exploits information contained only at the corresponding
population level. What differs significantly from other state-
of-the-art MBOAs is how the populations are managed. A
solution is generated one at a time. A local search is applied
to the solution to provide a solution containing variable
combinations that contribute to the solution quality. This

solution is then added to the lowest level population that
does not already include this solution. When a new solu-
tion is added to a population, the linkage-tree model for that
population is reconstructed. The solution is then update via
optimal mixing using the population and model only at the
current level in the population hierarchy. If the solution is
improved, the solution is added to the population at the next
level in the hierarchy. If no improvement is found, then the
solution is left in the population, and the algorithm restarts
with a new solution. The significant advantage of P3 is that
it requires no tuning of the population size. However, the
algorithm exploits a type of incremental learning—an online
learning method—to update the model, which can become
costly as many models can be reconstructed at each iteration.

Hierarchical Bayesian Optimisation Algorithm
(hBOA)

hBOA [34] uses a Bayesian network to represent variable
dependencies in a distribution of promising solutions. The
construction process uses a greedy algorithm that adds
directed edges to an empty graph based on how much it
improves the Bayesian information criterion—a pairwise
metric that accounts for the likelihood function and model
complexity. The model construction requires both learning
the linkage structure and conditional probabilities. Learn-
ing high-order interactions causes an exponential increase in
the number of parameters. hBOA limits this by representing
regularities in conditional probabilities using decision trees.

New solutions are generated by sampling the model to
generate a complete solution (MIG). Restricted tournament
replacement (RTR) is then used for solution replacement.
Specifically, the solution, within a subset of the population,
that is the nearest neighbour (Hamming distance) to the gen-
erated solution is used for competition. The solution with
greater fitness is retained. As such, this process is function-
ally related to searching in a redefined neighbourhood. MIG
is repeated to generate a new distribution of solutions. A
new model is then constructed using the new distribution
of solutions.

Dependency Structure Matrix Genetic Algorithm
(DSMGA‑II)

DSMGA-II [22] uses an incremental graph linkage-set as
the model. DSMGA-II maintains a population of candidate
solutions. The model is constructed from the distribution of
solutions selected using binary tournament selection. New
solutions are generated by two extensions of optimal mixing
(restricted-mixing and back-mixing). However, the method
of finding new solutions shares the same idea as LTGA
and P3, where the linkage-set is used to determine which
variables exchange states between solutions. The subtle

	 SN Computer Science (2022) 3:253253  Page 8 of 26

SN Computer Science

difference comes from deciding which solutions to use for
the exchange. Like LTGA, the linkage set is constructed
using a DSM. However, instead of using agglomerate clus-
tering, DSMGA-II constructs a linkage set by searching for
a specific sub-graph called the approximation maximum-
weight connected sub-graph (AMWCS). The linkage set
produced is a graph structure: it is possible for a cluster to
have multiple parents.

Deep Optimisation (DO)

DO [6] constructs a deep autoencoder model using a lay-
erwise procedure. The autoencoder model consists of an
encoder (E) and decoder (D) network that transforms an
input to a latent representation (H) and then back to the orig-
inal input representation. Specifically, Sr = D(E(S)) , where S
and Sr is a solution and solution reconstruction, respectively.

The algorithm is presented in Algorithm 1. A population
is first initialised. Local variation and selection in the solu-
tion representation are applied (to a set of solutions inde-
pendently), generating a distribution of promising candidate
solutions. An autoencoder with a single hidden layer is then
trained using the distribution of solutions as the training
set. The parameters of the encoder and decoder are updated
using back-propagation to minimise the error between the
input solution and reconstructed solution. Dropout is used
during training, to encourage a latent representation that cap-
tures the relationships between the variables.

Search then continues at the new latent representation
using the learned model - this is the first ‘transition’ and
is illustrated in Fig. 4. Specifically, each solution in the
population is updated in the following manner. A solution
is encoded to produce a latent representation, H. A local
change is then made to the latent representation, producing
H′ . Both representations are then decoded and binarized,
to produce Sr and S′

r
 , respectively. A new model-informed

variant, S′ , is constructed from S using S� = S + (S�
r
− Sr) .

Intuitively, this approximates S� = S�
r
 but avoids the require-

ment that the autoencoder reconstruction is perfect. If S′ is

fitter than S then S′ is kept; otherwise, S is retained. MIV
of this form is iterated to accumulate further improvements
if available. We refer to this as ’local search in the latent
space’. When applied to all solutions in the population this
produces a distribution of solutions that are locally optimal
relative to neighbourhood of the latent representation. A new
hidden layer is then added to the model and trained, updating
the parameters for both layers, using the new distribution
of solutions. This is the second transition. This process is
repeated through multiple transitions, applying local search
in the latent representation of solutions and then training
a new layer added on to the autoencoder. When the model
has multiple layers, MIV can be applied by perturbing a
variable at any layer. In this paper, MIV first searches at
the deepest layer of the autoencoder model for a solution,
and then searches at the solution level. DO, as the other
MBOAs, performs best by prioritising simpler models over
more complex models. In hBOA and LTGA this parsimony
pressure is implicit in the model construction. DO enables
this to be explicitly controlled using standard neural network
techniques such as L1 and L2 regularisation.

How Do These Methods Vary in Their Model
Induction and Model‑Informed Search Capabilities?

The algorithms introduced above have many complex fea-
tures and differences one from the other. This makes it
rather difficult to understand what one algorithm might
be able to do that another cannot. Here, we examine these

Fig. 4   Schematic of the transition process performed by DO. First,
the population of solutions is updated by performing local search at
the current level of organisation (initially, the solution representation
L = 0 ). A hidden layer, H

1
 , is then added to the autoencoder model

(1). The autoencoder model is then trained using the distribution
of solutions found (2). After training, a transition occurs, and each
solution is updated by performing local search at the hidden repre-
sentation ( H

1
 ) of the solution (3) a process we call Model-Informed

Variation (MIV). The process repeats: finding a distribution of locally
optimal solutions relative to the deepest layer, adding a further hidden
layer and updating the model, and then performing local search at the
new hidden layer to update the population solutions

SN Computer Science (2022) 3:253	 Page 9 of 26  253

SN Computer Science

differences more carefully in terms of their consequences
for the structure they can represent, their methods to
induce this structure and how they use this structure to
move in solution space. Table 1 summarises the differ-
ences between MBOAs. We make the following hypothesis
about the types of problems that will distinguish their dif-
ferent capabilities.

1.	 LTGA and P3 use a strict binary tree to represent the
dependencies between variables and are, therefore,
restricted to representing non-overlapping dependencies.
For DO, hBOA and DSMGA-II, this is not the case.
Consequently, when the set of adaptive units of varia-
tion have overlapping solution variables, LTGA and P3
will necessarily fail to improve a solution, whereas DO,
hBOA and DSMGA-II will not.

2.	 Model-Informed Generation (MIG) and Model-Informed
Crossover (MIC) use a population of solutions to update
a solution that is considered a neighbour in the com-
pressed search space learned by the model. Model-
Informed Variation (MIV) on the other hand does not
use a population as the model contains all the necessary
information. Therefore, if search removes the diversity
in a population, MBOAs using MIG or MIC (LTGA, P3,
DSMGA-II and hBOA) will necessarily fail to find this
fitter solution, were as MIV (performed by DO) will not.

3.	 All MBOAs, at some point, use pairwise statistics
between variables to construct the model, whereas DO
does not. Consequently, when the set of adaptive direc-
tions of variation appear independent when measured
using pairwise statistics (or cannot be well approximated
using pairwise statistics), all MBOAs will necessarily
fail to search in the higher-order organisation, whereas
DO will not.

The first hypothesis refers to overlapping dependencies
which was identified as an issue early during the develop-
ment of EDAs [3, 35]. However, benchmarks containing
overlap used to demonstrate a multivariate models’ perfor-
mance turned out to be solvable in polynomial time using
LTGA and P3 [8, 16, 22]. Therefore, an important distinc-
tion we make here is that we specifically refer to overlap in

the set of adaptive directions of variation rather than depend-
encies in a fitness function.

The second hypothesis refers to the differences in meth-
ods used by MBOAs to construct a change. The methods
are Model-Informed Generation (MIG), Model-Informed
Crossover (MIC), and Model-Informed Variation (MIV). For
a binary problem, suppose that in a distribution of promising
solutions we observe that two particular solution variables
frequently take the same value as each other i.e., 00 or 11.
And suppose we learn a model that represents this relation-
ship. In MIG, the model is used to generate 00 and 11 more
often than 01 or 10. In MIC, the model represents varia-
bles v1 and v2 as a linkage-set. Crossover is then performed
between two random solutions using the linkage set as a
crossover mask. Considering the model captured this infor-
mation from the same distribution of solutions used to per-
form crossover, the crossover operation is likely to exchange
between values 11 or 00. In MIV, the model compresses and
represents the factor of variation as a single dimension, i.e.,
the model represents 00 and 11 as neighbours even though
they are not neighbours in the original space. The single-
unit change is applied to the compressed representation unit,
decoding back to the original problem variables as a simul-
taneous change to multiple solution variables. MIG is not
pre-conditioned to account for the solution it is to replace
or update. hBOA, however, uses Restricted Tournament
Replacement (RTR), after MIG, that subsequently approxi-
mates the process of updating a solution that is local in the
compressed solution space. Specifically, RTR finds a solu-
tion in the current population that is the minimum Hamming
distance away from the generated solution. Selection is then
applied, updating the solution if the generated solution is
fitter. Therefore, MIG (+RTR) and MIC are limited approxi-
mations of local search in the neighbourhood defined by the
model, where both methods rely on a population of solutions
to update a single solution with a neighbouring solution in
the compressed neighbourhood. MIV on the other hand does
not require a population. Consequently, if search removes
diversity in the population, MIG and MIC can be susceptible
to failure whereas MIV will be less so.

Finally, the third hypothesis refers to the model con-
struction methods used by all MBOAs. All models are

Table 1   Summary of the
key properties of the model-
based optimisation algorithms
considered in our experiments,
where ‘Houpi’ means that
higher order units (of variation)
are population independent

Method Properties

MIG MIC MIV Pair-wise Multi-v’te Tree-based Graph-based Deep ‘Houpi’
DO × × ✓ × ✓ × ✓ ✓ ✓

DO
1

× × ✓ × ✓ × ✓ × ✓

LTGA​ × ✓ × ✓ × ✓ × × ×

hBOA ✓ × × ✓ × × ✓ × ×

DSMGA-II × ✓ × ✓ × × ✓ × ×

P3 × ✓ × ✓ × ✓ × ✓ ×

	 SN Computer Science (2022) 3:253253  Page 10 of 26

SN Computer Science

constructed by adding linkage between nodes that show
greatest measure of dependency in the distribution of solu-
tions. However, as the order of the statistics increases the
complexity of calculating the dependency information
increases exponentially. Therefore, to simplify model con-
struction, all MBOAs excluding DO use pairwise statistics to
approximate the dependency information. DO, on the other
hand, learns the parameter values by incrementally updat-
ing the weights of the network in the direction that reduces
the reconstruction error. Therefore, DO is not limited to
pairwise statistics. Consequently, we hypothesise that DO
will be capable of inducing a higher-order representation of
variation when the information about how lower-level units
interact cannot be measured using pairwise statistics. The
characteristic of pairwise independent functions is known
to cause failure to MBOAs that construct models using pair-
wise statistics [26].

In all discussed methods, an individual solution is per-
turbed using a centralised method (a single model that is
used to update all solutions). The set of all possible adaptive
changes for any given solution must, therefore, be captured
and represented by the model. Which change is adaptive is
dependent on the solution that is being updated. Therefore,
the challenges an MBOA must overcome can be attributed
to distribution of changes that are required to update the
population of solutions. Therefore, the set of all variations
— precisely the challenge of separating and representing the
directions of variation—will directly affect the model induc-
tion and exploitation capability of an MBOA. In Sect. 5, we
explore how optimisation problems can explicitly create the
challenges described in these hypotheses and then evalu-
ate each MBOA’s and DO’s performance to overcome these
challenges. Before that, we provide a more general motiva-
tion of DO’s problem-solving strengths by considering a
well-known NP-hard optimization class: multiple knapsack.

Multi‑Dimensional Knapsack Problem (MKP)

In this section, we evaluate the performance of MBOAs
and DO using a well-known applied problem, with the
focus on considering relationships between problem struc-
ture, and the ability of algorithms to exploit that structure.
We use benchmark MKP instances from [9]. Results for a
simple genetic algorithm (GA), LTGA and dBOA (hBOA
= dBOA + RTR) are provided [27]. Here we compare
these against results for DO and a variant of DO used
as a control. Specifically, because DO has many differ-
ences from the other methods we want to test whether deep
representations are really improving the problem solving
ability, or whether it is the other algorithmic differences
that are doing the work. To do this, we use DO1 which
is DO limited to use only one hidden layer. This control

also enables us to assess whether the problems we are
working on have structure that can be exploited by deep
models that cannot be exploited by shallow models. Fur-
ther, we include results found by a single-bit local search
(LS) and a 2-bit local search (2bLS), allowing for item
swaps, to illustrate the performance improvement made
by the models.

The objective of MKP is to assign a set of items that
maximises the combined value while within the m knap-
sack dimensions. Formally, MKP is expressed as

where pj is the value of item j, N is the number of avail-
able items, xj is a binary assignment determining if item j is
selected, wij is the size of item j in dimension i and ci is the
total capacity of the knapsack in dimension i. The instances
were constructed in the following way. The dimension size
for each item wij was generated from a discrete uniform dis-
tribution U(0, 1000). The capacity of each dimension ci was
calculated as ci = �

∑N

j=1
wij where � is called the tightness

ratio. Instances with a smaller tightness ratio and or higher
knapsack dimension are generally considered more complex.
Comparison is made using an instance size of N=100, knap-
sack dimensions (m) of 5, 10, and 30 and tightness ratios ( � )
of 0.25 and 0.75.

All algorithms, except DO, use a repair operator to
overcome the problem challenge of infeasible solutions.
Given an infeasible solution, the repair operator iteratively
removes individual items, in the order of lowest to highest
utility, calculated by uj = pj∕(

∑m

i=1
rij) , until no constraints

are violated. Then, items are iteratively added, in the order
of highest to lowest utility, to the solution until an item
addition violates a constraint. When this occurs, the item
is not assigned and the repair is terminated. DO does not
use a repair operator; if a variation to a solution violates
a constraint, it is rejected rather than repaired. DO, there-
fore, only stays within the feasible region of the solution
space. Comparing DO with MBOAs that utilise a domain-
specific repair operator puts DO at a significant disadvan-
tage, and serves to demonstrate both the applicability of
DO (without using methods specific to this domain) and
its ability to exploit problem structure in applied problems.

All algorithms use a population size of 1000 and run
until the population converges. The population of dBOA

(1)maximize

N∑

j=1

pjxj ,

(2)subject to

N∑

j=1

wjixj ≤ ci, i = 1,… ,m ,

(3)xj ∈ {0, 1} , j = 1,… ,N ,

SN Computer Science (2022) 3:253	 Page 11 of 26  253

SN Computer Science

and LTGA are initialised using LS to improve the signal
of good variable combinations. For DO, LS and 2bLS all
solution variables are initialised with 0’s (an empty knap-
sack). The average best solution gap found for 10 instances
of a problem type m, � are reported in Table 2 and plotted
in Fig. 5.

The comparison between LS and 2bLS shows a signifi-
cant improvement when a variation operator can swap items
in and out of the knapsack rather than only add items. This
indicates the usefulness of domain-specific operators. The
simple GA using a repair operator outperforms LS. hBOA,
LTGA, and DO all find superior solutions compared to
the basic methods. Significantly, the results show that DO
appears to provide good results compared to other MBOAs,
with greatest performance observed in the most complex
cases (large m). This shows that DO is able to exploit more
structure from the population than other MBOAs. Further,
by comparing DO with DO1 , the results show that a deep
model is required to exploit this structure. The results pre-
sented here are a comparison of the models used in MBOAs.
Whilst improvements can be made to LTGA, hBOA and
DO in the form of utilising domain-specific methods [28],
for these results, the model is the primary method (or only

method in the case of DO) that improves a candidate solu-
tion. Thus, an MBOA’s performance can, we suggest, be
improved using a deep model.

These results demonstrate that DO is able to solve some
problems better than other state-of-the-art methods. But we
want to know why. What exactly is it that DO can do that the
other methods cannot? Our main contribution, therefore, is
to provide this understanding by using a synthetic problem
construction to explore different problem challenges as per
the hypotheses above.

Exploring Characteristics of Problem
Difficulty

In this section, we investigate the types of problem structure
that distinguish the capabilities of MBOAs, including DO.
Specifically, we identify problem characteristics that cause
a polynomial vs exponential time complexity differentiation
between the MBOAs. Previous works comparing MBOAs
[16, 22, 46] have not provided examples that show such a
distinction.

Table 2   Performance evaluation
on MKP instances

% Gap from optimum fitness

m � LS 2bLS GA dBOA LTGA​ DO
1

DO

5 0.25 14.69 6.79 0.67 0.56 0.19 0.65 0.30
10 0.25 15.44 6.03 NA 1.33 0.75 1.43 0.63
30 0.25 14.91 4.70 NA 1.74 1.43 1.18 0.65
5 0.75 5.02 1.69 0.48 0.13 0.19 0.16 0.05
10 0.75 5.66 1.42 0.75 0.37 0.40 0.16 0.07
30 0.75 6.03 0.84 1.08 0.49 0.49 0.26 0.11

Model NA NA NA Bayesian network Linkage tree AE 1D AE 6D

Fig. 5   The average difference between the best solution and best known solution

	 SN Computer Science (2022) 3:253253  Page 12 of 26

SN Computer Science

To clarify the differences between MBOAs we divide
the issues involved into two: the type of models they use,
and how they use those models to enhance search. That
is, the differences between the type of neighbourhood
compression a model can perform (differences in model
capacity and construction) and the differences between
the methods used to exploit information from the model to
inform search. We do this because an MBOA may be capa-
ble of accurately reorganising a solution’s neighbourhood
(sufficient model capacity), but cannot efficiently exploit
the information to explore it. Conversely, an MBOA may
be capable of efficiently exploring the neighbourhood of a
solution if it were given a suitable model, but the method
cannot learn such a model. To explore these capabilities
separately, we use a construction for synthetic optimisation
problems that separates the complexity of reorganising a
solution’s neighbourhood (model induction) and the type
of search to perform in the reorganised neighbourhood
(model exploitation). We achieve this by separating the
fitness function, that normally maps a solution S directly
to fitness, into two parts: a compression mapping C, that
maps S into a higher-level binary representation R, and
an environmental mapping (E) that maps R into fitness;
detailed in Equation 4,

In this way, C is used to control how difficult it is to induce a
compressed representation and E is used to control how dif-
ficult it to find higher-order solutions given that compressed
representation.

What makes this problem construction useful is that the
change at S, informed by the model of an MBOA, required
to make a single-unit change at R can be defined indepen-
dently from how these changes are used to find higher-order
solutions. This problem construction enables us to attribute

(4)F(S) = E(R) = E(C(S)).

the performance differences between MBOAs to specific
problem characteristics related to either the reorganisation
of the neighbourhood of a solution, by changing C, or the
ability to explore the reorganised solution neighbourhood,
by changing E. In the sections that follow we develop three
different compression mappings and three different envi-
ronment mappings, and then we test the algorithms on the
9 combinations of these mappings. Each mapping is con-
structed to test a different capabilities of MBOAs. We begin
with relatively simple aspects of difficulty (such as sim-
ple modularity that requires an algorithm to generate such
modules). We then progress through more difficult proper-
ties that require either more advanced model induction or
more sophisticated search using the model. We empirically
find that some of these properties are more difficult than
others insomuch as fewer of the standard algorithms are
able to cope with these problem characteristics. Accord-
ingly, in a rough sense, we end up with ‘easy’, ‘medium’
and ‘hard’ versions of each mapping (Table 3).

The resulting range of problems is thereby carefully devel-
oped such that if an algorithm can overcome the problem char-
acteristics, finding a global optimum takes polynomial time;
otherwise, the algorithm takes exponential time. This allows
for a scaling analysis to identify problem characteristics that an
MBOA can do (polynomial running time) and problem charac-
teristics that an MBOA cannot do (exponential running time).

In introducing this synthetic problem, some unfamiliar
terminology is introduced. Table 3 provides a glossary of
acronyms used.

The Compression Mapping (C) from Solution Space
to New Representation

The Compression Mapping (C) defines the relationships an
MBOA model must learn and represent to efficiently search

Table 3   Glossary of acronyms
and terms used in Section 6

Term Description

R Higher-level binary representation
C Compression mapping: maps from solution space, S, to R
E Environmental mapping: maps from R to fitness
BB Building block: a subset of solution variables
PS Partial solution: values assigned to a BB
Compression mappings
NOV Non-overlapping variation (easiest case)
OV Overlapping variation (medium difficulty)
NPOV Non-Pairwise overlapping variation (hardest case)
Environment mappings
GC Generating combinations (easiest case)
HGC Hierarchically generating combinations (medium difficulty)
RS Rescaling search (hardest case)

SN Computer Science (2022) 3:253	 Page 13 of 26  253

SN Computer Science

at the higher-level representation R and consequently follow
the fitness signal. An MBOA can only apply variation to the
solution representation S. Therefore, to move efficiently at
R, the MBOA must induce the relationships in C such that
model-informed search applies the correct change at S to
move at R.

To ensure that C is learnable as the problem size
increases, we construct a compression map using a set of
building-blocks (BBs)—a familiar construction used for
evaluating the performance of MBOAs (technically, these
modules are not building blocks in the sense of the building-
block hypothesis familiar in genetic algorithms because they
do not have tight linkage [14]). Each BB maps a disjoint set
of solution variables (Sm ) to representation variables Rm as
detailed in Equation 5,

where bb is a BB mapping and m is the number of BBs. A
BB performing a compression from four solution units to
two binary representation units is sufficient for the purposes
of this paper, i.e., to distinguish the model induction abili-
ties of all the algorithms (compression’s to one unit can be
solved using a simple model [23]). The compression (two
binary units in R) identifies four particular configurations
in S (each containing four solution bits) from the sixteen
possible that we call partial-solutions (PS). Each PS is repre-
sented by a unique binary code at Rm in the two binary units
of R. A Combination in Sm that is not a PS is represented at
Rm by null values. The E map only rewards non-null values
in R. Therefore, in finding a PS to a BB, the PS must be
substituted with an alternative PS to avoid deleterious fit-
ness changes.

The PS set controls the compression complexity of a BB.
We synthetically determine this to induce particular char-
acteristics in the higher-order unit substitutions required in
S to vary between PSs (i.e., the change required to move to

(5)R = C(S) = R1,… ,Rm = bb(S1),… , bb(Sm) ,

an alternative PS in a single step). Note, there exist other
operators to move between PSs, we specifically refer to the
substitutions that allows movements from a PS to its near-
est PS using a single unit change, i.e., a higher-order unit
substitution that makes a single-unit (local) change in R.
The types explored in this paper are Non-Overlapping Varia-
tion (NOV), Overlapping Variation (OV), and Non-Pairwise
Overlapping Variation (NPOV), which are considered easy,
medium and hard difficulty, respectively. Figure 6 illus-
trates, for each variation set type (BB mapping), the change
required in S, ΔS , to make a change in R.

The NOV case (easy case) presents the baseline com-
plexity where substitutions performed to move between
PSs do not overlap. All MBOAs are capable of repre-
senting NOV, evidenced by [16, 22, 36]. The set of PSs:
{0000,0101,1010,1111} create an instance of higher-order
substitutions that do not overlap. Specifically, the single-
point substitution ( ΔS ) that changes a PS to an alternative
neighbouring PS (a hamming distance of 2 away) is accessed
by a substitution in the set ΔS = {{s1s3}, {s2s4}}, where sn
represents that the value of variable n is changed during
the substitution. In the case of NOV, each entry is disjoint
from all other entries, i.e., a variable is one element of the
substitution set.

The OV case (medium difficulty) present a complex-
ity where higher-order substitutions do overlap. The set
of PSs {0000,0101,1001,1111} is an instance that con-
tains overlap in the set of higher-order substitutions. Spe-
cifically, the single-point substitution ( ΔS ) that changes
a PS to an alternative neighbouring PS (a hamming dis-
tance of 2 away) is accessed by a substitution in the set
ΔS = {{s1s4}, {s2s4}, {s1s3}, {s2s3}}. In the case of OV,
each entry is not disjoint, i.e, a variable can be in multiple
elements of the substitution set.

In the example illustrated in Fig. 6b, for PS 0000,
the single-point substitutions that change the PS to a

Fig. 6   A BB of size four contains four partial solutions each repre-
sented by a unique binary code at R. Alternative combinations are
represented by nulls. The set of partial solutions controls the multi-
unit substitution, ΔS , an MBOA needs to perform to make a single-

unit change in R. The characteristics of multi-unit substitutions
explored are a non-overlapping, b overlapping and c non-pairwise
overlapping

	 SN Computer Science (2022) 3:253253  Page 14 of 26

SN Computer Science

neighbouring PS share the variable s4 . For example,
improving S, in the case of OV, the substitutions that
changes S to an alternative PS is {s1, s4} or {s2, s4}, where
s4 is shared. For NOV (Fig. 6a), the substitutions that
changes S to an alternative PS is {s1, s3} or {s2, s4}, where
no variable is shared.

Finally, the NPOV case (hard case) contains an over-
lapping complexity where the linkage cannot be identi-
fied using pairwise statistics. Specifically, the differences
between solutions, and consequently the set of substitu-
tions that moves between PSs, appear univariate using
pairwise statistics—a property called pairwise independ-
ent functions [26]. The set of PSs, {1111,0011,0100,1000}
creates the instance that contains non-pairwise identifiable
overlap. The single-point substitution ( ΔS ) that changes
a PS to an alternative neighbouring PS (a hamming dis-
tance of 2 away) is accessed by a substitution in the set
ΔS = {{s1s2}, {s1s3,4 }}. The complexity is contained at
variables s1 , s2 and s3 , variable s4 is used to maintain a con-
sistent module size across module types and thus takes the
same value as variable s3 (does not add to the complexity).

Figure 7 presents the mutual-information between a pair
of variables for each BB type. In the case of C = NOV,
linkage information does not overlap. For, C = OV, link-
age information does overlap. For C = NPOV, variables
s1 , s2 and s3 , s4 appear independent yet two variables must
change simultaneously to avoid a deleterious fitness effect.
A problem instance uses the same BB mapping for all
BB. Therefore, the complexity of C is attributed to the
particular characteristics of a BB mapping, i.e., if an algo-
rithm can learn a BB mapping, learning more of the same
only increases the complexity of separating the building-
blocks. The optimal PS to use in each BB is a function
of the dependencies between building-blocks, controlled
separately by E. The optimal PS to use in each module is a

function of the dependencies that exist between the mod-
ules, which are defined by the environment mapping E.

The Environment Mapping (E) from the New
Representation to Fitness

The E map defines how PSs, and, therefore, units in R,
interact to provide a higher-order solution (a combination
of PSs). We explore different E mapping types that induce
different search characteristics. The Hierarchically Generat-
ing Combinations (HGC) mapping requires an algorithm to
rescale variation to higher orders of organisation repeatedly
and is considered our medium difficulty case. The Rescaling
Search (RS) mapping requires an algorithm to perform a
local search in the reorganised representation and is consid-
ered our hard difficulty case. Finally, the Generating Com-
binations (GC) mapping is the baseline case, and, therefore,
considered our easy difficulty case, where MIV, MIG, and
MIC can easily follow the fitness signal to higher-order solu-
tions. The types of E mappings investigated here are rela-
tively straightforward, i.e., a globally optimal solution can be
found in polynomial time using a hill-climber or an MBOA
when S = R (when C is an identity map).

A PS is easily found by rewarding only non-null values
in R. Specifically, all E maps have the contribution defined
in Eq. 6,

Note, during optimisation, a MBOA compresses the search
space. Consequently, it is important that during optimisa-
tion, the complexity in the compression mapping is not
removed when combining combining PSs. This is achieved
by ensuring that all PSs are required at all stages of the

(6)Fr =

m∑

i=0

f (Ri), f (Ri) =

{
0, if Ri = null

1, otherwise.

Fig. 7   The mutual information within a BB for each compression mapping (C) type

SN Computer Science (2022) 3:253	 Page 15 of 26  253

SN Computer Science

search process until a global optimum is found (i.e., the loss
of the ability to access a PS will result in failure of the algo-
rithm to find a globally optimal solution). This property is
included in the synthetic optimisation problem by separating
R into two sets, R1 and R2 . Each set contains only a single
representation unit from each BB; thus, each set contains m
representation units (a compression of a module produces
two representation units). Both sets are used to calculate
the fitness of the solution and, therefore, during search, the
compression performed in R1 is independent from the the
compression performed in R2 , and vice versa. Consequently,
a compression only occurs between modules and not within,
ensuring all PSs are required during optimisation.

The baseline E mapping (easy case), called Generating
Combinations (GC), requires a MBOA to only combine a PS
one at a time with the PS that has the majority in the solu-
tion being optimised. Consequently, the signal that leads to
a globally optimal solution can be identified from a distri-
bution of randomly generated solutions that conserve PSs.
Thus all MBOAs, regardless of the differences between their
model-informed search methods, can efficiently follow a sig-
nal to higher-order solutions. Thus the mapping evaluates an
MBOAs capability to learn C. The fitness (Equation 7), is a
summation of the Hamming weight (H()) distance of each R
set from the middle hamming weight of a subset (m/4). The
separation of R1 and R2 produces a problem containing four
global optima; each one containing thesame PS in all BBs,

Interesting cases for MBOAs arise when a subset of low-
order components can form high-order components, such as
the case of hierarchical problem structure. Here we use the
same hierarchical construction used in [52] as all MBOAs
can overcome this characteristic when C is the identity map.
This is because higher-order combinations can be efficiently
identified by generating a distribution of solutions using the
lower-level combinations. Therefore, this mapping evalu-
ates an MBOA’s capability to represent combinations of the
variation operators at multiple scales of organisation. We
name this mapping Hierarchically Generating Combinations
(HGC) (medium difficulty). The hierarchical dependencies
are represented by a binary tree containing D = log2(2m)
layers. Each layer l contains 2D−l parent nodes. Each node
( rl ) represents an additive combination (A) of two child
nodes ( ri

l−1
, r

j

l−1
 ) from the layer below. A parent node repre-

sents the common value if the child nodes contain the same
value (excluding nulls), otherwise it represents a null. This
compression is provided in Equation 8. A parent node with
a non-null value is assigned a fitness benefit. The total fit-
ness, Equation 9, is the sum of all fitness contributions from
all parent nodes,

(7)F = Fr + |H(R
1
) −

m

4
| + |H(R

2
) −

m

4
|.

The hierarchical linkage is shuffled for each instance to
ensure that overlapping variation operators are present at
all representation scales.

Figure 8 illustrates how the depth of overlap can be con-
trolled. The figure contains a problem of size N=16. Each
node on the bottom layer is a solution variable, and each
node on a higher level is a representation variable of the
solution. The lines between nodes represent the linkage
between nodes. At representation L1 , there are 4 representa-
tion nodes, colour coded to identify the dependent solution
variables. Here a solution variables is a member of multiple
representation nodes at L1 . At representation L2 , there are 2
representation nodes, numbered to identify the dependent
solution variables. Here a solution variables is a member of
only a single representation units at L2 . Thus the problem
has been reduced from overlapping variation at representa-
tion L1 to non-overlapping variation for L2.

The last type we explore is when higher-order compo-
nents are not found by combining lower-order components.
Rather they are found by searching in the space of lower-
order components. Therefore, this mapping evaluates an
MBOA’s capability to exploit information from the model
and search in the learnt representation (reorganised neigh-
bourhood), hence we name this mapping Rescaling Search
(RS) (hard case). This characteristic is created by defining
a unique path (UP) to the global solution. The location on
the path is provided by coordinates: The Hamming weight
of each R subset is used as coordinates for a 2D fitness
mapping:

(8)ri
l+1

= A(ri
l
, r

j

l
), A(ri, rj) =

{
ri, if ri = rj
null, otherwise ,

(9)F = Fr +

D∑

l=0

2D−l∑

i=0

f (ri
l
), f (ri) =

{
0, if ri = null

1, otherwise .

Fig. 8   E = HGC with overlap up to L 
1
 Representation. At L 

2
 Rep-

resentation a change to a representation unit, e.g, unit 1, causes a
change to solution units that are disjoint from other representation
units at the same level, e.g., solution variables that are a member of
representation unit 2. At the L 

1
 Representation, changes to represen-

tation units, e.g., colour red shares variables with other representation
units, e.g. colour blue, at the same level. Therefore, L 

1
 Representation

contains overlap and L 
2
 Representation does not contain overlap

	 SN Computer Science (2022) 3:253253  Page 16 of 26

SN Computer Science

The mapping contains a monotonically increasing slope
function that takes any solution towards the start of the path
at coordinates (R1,R2) = (m,m∕2) . The path proceeds to
coordinates (m, 0) → (0,0) → (0,m) → (m,m) , where (m, m)
is the global optimum. Each step along the path increases the
fitness, and thus deviations from the path cause a deleteri-
ous fitness. Using R1 and R2 ensures that local variations in
R must be performed. A non-local change would cause a
change to the other coordinate, causing a deviation from the
path. Note, the path length scales polynomially with respect
to the problem size and is easy to follow via local search in
R, thus differentiating it from the long path problem [21].

Figure 9 presents examples of solution trajectories, from
a random solution initialisation (start of MIV steps) to a
globally optimal solution (end of MIV steps) for each E map
type. In these examples, C = NOV. For E = GC, search first
identifies PSs and then continuous by substituting individual
PS. In the case E=HGC, search is repeatedly rescaled to
higher-orders of organisation, where the last adaptive vari-
ation makes a simultaneous change to half of the solution
variables. For, E = RS, search cycles through multiple PS
for each BB to find the global optimum. Note for E = RS all
PSs are used to search for the global optimum.

The combination of maps C and E create a complex fit-
ness landscape relative to S. The capability of an MBOA
to reorganise the neighbourhood of a solution, by captur-
ing relationships using the model, is evaluated by differ-
ences in the C map. The capability of an MBOA to exploit
the information from the model, to explore the reorganised
neighbourhood, is evaluated by differences in the E map.
The synthetic construction ensures that if an MBOA does
not accurately reorganise and search within the neighbour-
hood, it will take exponential time to find a globally opti-
mal solution. Thus a scaling analysis will suitably demon-
strate if an MBOA can or cannot overcome the problem

(10)F = Fr + UP[H(R
1
),H(R

2
)]. characteristics. We have created three distinct types for each

mapping, namely: non-overlapping; overlapping and non-
pairwise overlapping linkage information types for the C
map, and generating combinations, hierarchically generating
combinations and rescaling search types for the E map. For
each type, we have created an instance of the characteristics,
which we found to be sufficient to differentiate the perfor-
mance of the MBOAs explored in this paper. In our experi-
ments, we explore all nine combinations to investigate the
performance differences between MBOAs.

Performance Evaluation

In this section, we assess the performance of LTGA, P3,
hBOA, DSMGA-II and DO on all combinations of com-
plexity and environment maps. Where appropriate, we also
include results DOl (The autoencoder model in Deep Opti-
misation is limited to l hidden layers). The performance
of an algorithm is evaluated by performing a scalibility
analysis. The results report the average number of function
evaluations performed to find the global optimum solution
in up to 10 independent runs (for runs with greater than 107
function evaluations, three independent runs are performed).
We omit the computational cost of learning from our results
as all learning methods incur a polynomial scaling and our
investigating is to identify if an algorithm shows polynomial
or exponential scaling. From this, we conclude if an algo-
rithm can or cannot overcome the problem structure. Our
results alone are not sufficient to claim which algorithm is
showing greater performance when both algorithms show
polynomial scaling. The population size is set such that
within all independent runs, a global optimum is found.
In the case of P3 no population size is set. The population
is initialised using local search such that the distribution
contained all PSs (removing potential challenges associated
with finding the PSs). Algorithms are terminated if a global

Fig. 9   An example of a solution trajectory, from a random solution (start of MIV) to a globally optimal solution (end of MIV) for each E map
when C= NOV performed by MIV

SN Computer Science (2022) 3:253	 Page 17 of 26  253

SN Computer Science

solution is not found within 109 function evaluations, and,
therefore, no data point is provided. An advantage of LTGA
and hBOA is that they do not have additional parameters to
tune. A disadvantage is that this does not admit control over
the inductive bias. DO, like other neural network methods,
has several tuneable parameters. These values were selected
from preliminary results on a small sample of problems.
Specifically, hidden layer compression = 0.8 (maximum
layers used was 9), dropout rate: 0.2, epochs: 400, learn-
ing rate = 0.002. Regularisation parameters in the range
L1 = [1 × 10−3 ∶ 1 × 10−5], L2 = [2 × 10−3 ∶ 2 × 10−6].

Model Induction

In this subsection, we explore the model induction capabili-
ties of the algorithms by keeping the environment mapping

simple and varying the difficulty of the compression map-
ping (hypothesis 3). The Generation Combinations environ-
ment mapping (E= GC—easy case) is used to evaluate the
performance of an MBOA to learn the C mapping types as
all model-informed search methods can follow the fitness
signal to a globally optimal solution. Figure 10 presents the
scalability performance of all MBOAs.

For the non-Overlapping Variation mapping type (C =
NOV), the easy case, all algorithms show a polynomial
scaling (see Fig. 10a). We know that learning pairwise
dependencies is straightforward for all models. Therefore,
the results verify that all model-informed search methods are
sufficient to find a globally optimal solution in polynomial
time for E = GC if the model can learn C.

For Overlapping Variation mapping type (C=OV), the
medium case, all algorithms show a polynomial scaling

Fig. 10   Performance evaluation of an MBOAs model capacity to
learn the different complexities in the neighbourhood reorganisa-
tion. All methods scale polynomialy when the model induction task

is easy, but P3 and DO are the only methods to scale polynomially
when the model induction task is complex

	 SN Computer Science (2022) 3:253253  Page 18 of 26

SN Computer Science

(see Fig. 10b). DSMGA-II shows a significant change in the
performance compared to C = NOV. Notable is the change
in the comparative performance of LTGA and P3 with DO
and hBOA when compared to the C = NOV case. LTGA
and P3 now show a performance more in line with hBOA.
hBOA and DO, on the other hand, remained insensitive to
the change in compression mapping, indicating that the over-
lap complexity affects the performance of LTGA and P3.
However, as the degree of overlap is constrained to within
modules (between modules, there are no overlapping rela-
tionships), the complexity is insufficient to cause exponential
running times to LTGA nor P3.

For the non-Pairwise Overlapping Variation map-
ping type (C = NPOV), the hard case, DO and P3 are the
only algorithms that scale polynomial (see Fig. 10c). As
expected, the use of pairwise statistics limits the MBOAs
ability to capture higher-order dependencies. It was unex-
pected to observe that P3 was successful. Recall P3 uses

multiple linkage-tree models. We hypothesise P3’s capa-
bility results from using a multi-level representation of the
search distribution where the lower-level representations
filter out a subset of the PSs and thus remove the complex-
ity at higher representations. We also observe that DO1 fails
where as DO does not. This suggests that the higher-order
relationships (greater than pairwise) required to learn the
compression requires a deep model (greater than a single
hidden layer).

Model‑Informed Search

In this subsection, we explore the model-informed search
capabilities of the algorithms (hypothesis 2). The Rescailing
Search environment mapping (E = RS—hard case) is used to
evaluate an MBOA to perform local search in the neighbour-
hood defined by the model. Figure 11 presents the scalability
performance of all MBOAs.

Fig. 11   Performance evaluation of an MBOAs capability to exploit
information from the model to inform search. All MBOAs fail even
when the model induction task is easy where as DO is the method

that shows polynomial scaling. This failure can be directly attributed
to model-informed search methods

SN Computer Science (2022) 3:253	 Page 19 of 26  253

SN Computer Science

For all compression mapping types (see Fig. 11), only DO
shows polynomial scaling. Therefore, Model-Informed Vari-
ation is the only model-informed search method that shows
polynomial scaling. We know that all models are capable of
learning the baseline compression complexity, C = NOV,
(Fig. 10a). Therefore, the failure observed here is due to the
model-informed search method and not the model induction
complexity.

For C = NPOV mapping type (see Fig. 11c), we observe
that DO1 fails but DO does not. This further demonstrates
that C = NPOV requires a deep model to represent a com-
pression accurately. We have already seen that the MBOAs
are unable to learn C = NPOV (evidenced by Fig. 10c). Here
we see that MBOAs other than DO are unable to perform
local search in the space represented by the model. Conse-
qently, this result shows that DO is overcoming the com-
bined challenges that other MBOAs fail to do even when the
problem challenges are separated.

To further demonstrate that E=RS presents a problem
challenge that is easy for local search, we perform an
experiment with C = I, where I is the identity mapping.
Figure 12 presents the results for all MBOAs and includes
a hill-climber that performs single-bit substitutions to S.
All algorithms do not use local at the representation of the
solution (local searching using single-bit substitutions);
otherwise this would not test an MBOAs capability. The
hill-climber was able to find a global solution easily, along
with DO. Note, here, DO must learn the identity function
first and, therefore, is less efficient than the hill-climber.
However, even when there is no complexity in the model
induction, other MBOAs, that use MIG or MIC, fail. This
result verifies that failures observed in the experiments
with E=RS are due to how the model is used to inform
search and not due to model-induction difficulty, supporting
hypothesis two.

Multi‑level Representation

In this subsection, we explore the multi-level representation
capabilities of the algorithm (hypothesis 1). The Hierarchi-
cal Generating Combinations environment mapping (E =
HGC—medium case) is used to evaluate the performance of
an MBOA to combine variation operators to higher-orders
of organisation recursively. The linkage information in E is
shuffled such that overlap occurs between building blocks at
all scales of organisation in the hierarchy. Figure 10 presents
the scalability performance of all MBOAs.

For the Non-Overlapping Variation mapping type (C
= NOV), all algorithms show a polynomial scaling (see
Fig. 13a). We know that pairwise learning dependencies
are straightforward for all algorithms. Therefore, the results
verify that all algorithms can recursively compress a solu-
tions neighbourhood and all model-informed search methods
are sufficient to find a global optimum.

For Overlapping Variation mapping type (C = OV),
LTGA and P3 show exponential scaling, whereas hBOA,
DSMGA-II and DO show polynomial scaling (see Fig. 13b).
The presence of overlapping variation operators is sufficient
to cause methods that use tree-based models to fail. This
result is because searching at higher layers of the hierarchi-
cal representation requires large variation, and in the case of
C = OV, these large variations contain a complex overlap-
ping structure due to the interactions with other large vari-
ations, as illustrated in Fig. 8. This is supported by Fig. 10b
where small overlapping functions did not cause failure to
LTGA and P3. This result is the first time that demonstrates
a problem type that hBOA can solve that LTGA and P3 can-
not, supporting hypothesis one. Further, and as expected
from the construction of the problem, DO1 fails because it
cannot represent deep problem structure whereas DO suc-
ceeds. The effect of deep representation is further explored
in Sect. 6.3.1 by performing experiments with a controlled
depth of the overlap.

For the Non-Pairwise Overlapping Variation mapping
type (C = NPOV), DO is the only algorithm to show poly-
nomial scaling (see Fig. 10c). hBOA and LTGA fail due the
inability to learn C=NPOV as evidence by Fig. 10c. Results
for P3 and DSMGA-II were not obtained, However, we also
now understand that LTGA and P3 would also fail when it is
necessary to recursively combine variation operators includ-
ing overlap Fig. 10c and, therefore, expect P3 to fail in this
case. We also expect DSMGA-II to fail due to its failure on
the more straight-forward environment mapping, E = GC.

Problem Depth

During our experiments, we found that the size of overlapping
variation operators (due to the hierarchical problem structure)

Fig. 12   Local search outperforms MBOAs that use MIG or MIC

	 SN Computer Science (2022) 3:253253  Page 20 of 26

SN Computer Science

caused significant challenges for MBOAs. In this section, we
perform experiments that control the depth of overlap in the E =
HGC environment mapping case to further our understanding.

The depth of overlapping BBs can be controlled by limit-
ing the layer at which linkage is shuffled in the hierarchical
structure of E = HGC. Thus, we can explore how the depth
of overlap challenges these algorithms (whilst keeping the
problem size constant). We perform experiments using the
C = OV complexity for a problem size 256 and change the
depth, d, at which linkage in E is shuffled. At layers greater
than d no overlap is introduced (Refer to Fig. 8). Thus d con-
trols the maximum size of an overlapping variation operator
an MBOA needs to perform to find a global optimum. Fur-
ther, we include results for when DO is limited to shallow
representations where the depth of the autoencoder is lim-
ited to L hidden layers, denoted DOL . We expect that deeper

autoencoders (larger L) will be required to solve problems
with deeper overlap (larger d).

Figure 14a shows that LTGA and P3 are sensitive to the
size of the overlap in the problem. Specifically, as the depth
of the overlap increases the number of function evaluations
required to find a global optimum increases significantly.
DSMGA-II, HBOA and DO show no significant sensitivity.
This demonstrates that the complexity of overlap is not a
challenge for the model induction methods of these algo-
rithms. Finally, we show that representing this complexity
using the autoencoder model requires a deep model. Fig-
ure 14b shows the fitness of the best solution found by DO
in its normal operation (DO) and depth limited versions in
10 repeats. The result shows that as d increases, only deeper
models can find the optimum solution. Therefore, as the
depth of overlap increases, the depth of the neural network
required to capture the problem structure efficiently also

Fig. 13   Performance evaluation of an MBOAs capability to recur-
sively reorganise a solutions neighborhood to higher-orders of organi-
sation. LTGA and P3 show exponential scaling in case of overlap
(C = OV). Only DO shows polynomial scaling in the case of non-

pairwise overlap C = NPOV. MBOAs that uses models limited to tree
data-structures fail to overcome overlap where as more sophisticated
models do not

SN Computer Science (2022) 3:253	 Page 21 of 26  253

SN Computer Science

increases, as expected, confirming that these problems have
deep structure that must be learned and exploited to solve
them, and that this is what the DO method is doing.

Performance Evaluation Summary

The MBOA distinctions we conclude from these experi-
ments are:

1.	 Model-Informed Variation enables local search to be
conducted in the new neighbourhood defined by the
model. This enables DO to use the model in a way
that the other methods (i.e. Model-Informed Crossover
and Model-Informed Generation) cannot (see Figs. 11
and 12).

2.	 Overlap distinguishes the induction capability between
tree and graph structured models. LTGA and P3 fail to
learn and exploit overlapping variation operators and
thus require exponential time complexity as the size of
overlap increases. hBOA, DSMGA-II and DO are suc-
cessful here (see Fig. 13).

3.	 Pairwise independent variation distinguishes the induc-
tion capability of DO and P3 from other MBOAs.
LTGA, hBOA and DSMGA-II scale exponentially as
the number of operators increases (see Fig. 10c).

4.	 A deep representation, and the ability to search in deep
representations, are required when generating hierarchi-

cal combinations of overlapping operators (see Fig. 13)
or mappings containing pairwise independent functions
(see Fig. 10c)—distinguishing the capability of deep
from shallow representations.

Prior explorations of these algorithms have shown cases
where one is better than the other but have not previously
shown a problem class that a subset of the algorithms can
solve easily that the others cannot (here shown rigorously in
the sense of a polynomial vs exponential distinction in the
scaling of their time complexities). By varying the complex-
ity of the compression mapping and environment mapping
we demonstrate how differences in the capability of model-
induction or model-informed search of these algorithms can
limit their performance.

Here we have identified problem challenges that differen-
tiate the performance of MBOAs from DO, and are summa-
rised in Table 15. Further research is required to understand
if MKP instances contain the problem challenges identified
here and if these challenges are responsible for the perfor-
mance differences between DO and MBOAs in MKP. Simi-
larly, we look forward to experimenting with DO on other
binary combinatorial problems (e.g. 3-SAT), and developing
extensions to order-based problems (e.g. flow-shop sched-
uling). Both of these will present further opportunities to
understand the nature of the challenge these types of prob-
lems exhibit, and whether these map well onto the chal-
lenges identified here that give DO an advantage.

Fig. 14   The effect of depth of overlap on the performance of an algo-
rithm. LTGA and P3 are sensitive to the change in the depth of over-
lap (as the size of variation required to a find higher-order solution
containing overlap increases). The depth of the model used by DO

is also sensitive to the depth of overlap and consequently a shallow
model is not capable of representing the problem structure to find a
global optimum

	 SN Computer Science (2022) 3:253253  Page 22 of 26

SN Computer Science

Discussion

Our findings (particularly those in Sects. 4, 5 and 6.4)
merit some further brief reflections. First, we consider how
varying the depth of the autoencoder(s) used in our study
informs us about DO and other MBOA models (or varia-
tion schemes) concerning what is necessary and sufficient
for learning and exploitation of complex structure. We also
consider what is not yet known. In a second subsection, we
discuss how the models studied in this paper are (or may be)
connected to biological evolution.

Autoencoder Model

The number of layers used by DO varied between experi-
ments due to the complexity of a problem instance and the
size of the problem instance. In the simplest case of non-
overlapping dependencies (C = NOV), a single hidden layer
is required to learn the problem structure. However, for large
problem sizes it was observed that DO performed up to 2
transitions for non-hierarchical configurations and up to 3
transitions for hierarchical configurations. For the compres-
sion mapping containing overlapping dependencies (C =
OV) a similar behavior was observed with DO performing
up to 3 transitions for the non-hierarchical configurations.

For the hierarchical configuration, the number of layers used
by DO closely followed the number of layers in the problem.
However, as observed in the non-hierarchical configurations,
as the problem size increased the number of layers used by
DO increased beyond the number of layers in a problem
instance. It is not clear whether the increased number of
hidden layers was necessary for large problem instances con-
taining shallow problem structure. An alternative hypothesis
is that the effect of updating the model with updated solu-
tions, and consequently solutions containing a stronger sig-
nal for good combinations of variables, is what enables the
induction of a representation that is more suitable for MIV.
Results for DO1 (the model limited to a single hidden layer)
supports this hypothesis, however, further investigation is
required as DO1 also failed on some large problem instances.

Finally, for the C = nDOV complexity, DO often required
at least 2 hidden layers to find the globally optimal for the
smallest problems instance. However, DO was not able to
find solutions for large problem instances. For the large non-
hierarchical configurations, we observed up to 5 transitions
occurring. For larger instances that failed, we observed that
the population of solutions was converging onto a sub-opti-
mal solution. We hypothesise that the phenomena of cata-
strophic forgetting [30] is a contributing factor. Specifically,
information learned at lower-levels that were found useful in

Fig. 15   The success or failure of each method to find a global opti-
mum in polynomial time. DO is the only algorithm to find a global
optimum in all problems. When either the environment mapping or
the compression mapping is of the most difficult kind, none of the
hBOA, DSMGA or P3 methods can find the global optimum in poly-
nomial time—and the P3 can only succeed for the difficult compres-

sion mapping when the environment mapping is easy. This leaves a
set of problems (bold border) where DO is the only method to suc-
ceed. DO has different capabilities from DO

1
 that is limited to a shal-

low model (a single layer)—indicating that DO is succeeding because
it is discovering and exploiting useful deep structure in these prob-
lems that the other algorithms cannot (see also Fig. 14)

SN Computer Science (2022) 3:253	 Page 23 of 26  253

SN Computer Science

early populations can be lost if a later population does not
contain this signal (or this signal becomes weaker). This was
observed particularly in the E = RS configuration.

Finally, our investigation primarily focused on separating
the performance between the start-of-the-art MBOAs with
respect to model induction and model informed search capa-
bilities. In particular, we have focused on how a deep neural
network can expand the class of MBOAs and consequently
focused on what DO can do that other MBOAs cannot. To
that end, we have not investigated the reverse. Specifically,
what shallow models, or what other MBOAs, can do that DO
cannot. It remains for future research to understand if there are
other problem types that DO cannot solve (with polynomial
scaling) but other MBOAs can. Understanding this would be
valuable to help further the development of all MBOAs.

Connections with Biological Evolution and Processes
of Natural Induction

These results show that multi-scale evolutionary processes
can solve problems that single-scale evolutionary processes
cannot. This suggests that in biological evolution, evolution-
ary processes that operate at multiple scales of biological
organisation have adaptive capabilities that single-scale evo-
lution does not. Although the methods employed in this paper
use machine learning techniques that are unbiological (as is
appropriate for practical optimisation motives), it is readily
apparent that biological evolution does rescale the evolution-
ary process at successive levels of biological organisation.
The basis of the relevant machine learning methods, including
back-propagation, is the optimisation of an objective function
through local improvement in model parameters. Accordingly,
it makes sense that evolutionary processes effect comparable
results if applied to similar model parameters. In evolution-
ary models, it is also clear that if there is heritable variation
in the connections of a suitable network structure, the effect
of selection on these connections is the same as that of basic
connectionist learning [51]. This ‘natural induction’ has been
shown in gene-regulation networks, social networks [11, 53]
and ecological networks [37]. This might explain how biologi-
cal evolution could achieve the model induction as well as the
local search process using the induced model.

With these observations in mind, it is not implausible that
biological evolution could be implementing something like
Deep Optimisation, or deep natural induction, and the evolu-
tionary transitions in individuality are the observable result
[55]. If true, the notion of biological evolution as a sim-
ple local search process would be over simplistic. Whilst it
might reasonably be described as a process of gradual incre-
mental improvement at any one level of biological organisa-
tion, this description might miss the big picture. Contrary to
its common characterisation as a plodding, unintelligent pro-
cess, the type of problem-solving that biological evolution

can perform, when taking account of its multi-scale nature,
is potentially very different—more akin to a deep associa-
tive learning machine than local incremental improvement.

In DO, a similar kind of rescaling is exploited—enabling
search that changes from searching combinations of primitive
variables, to searching combinations of variables in a higher-
level recoding of the solution space, and so on through multiple
levels. The evolutionary model used is a simple hill-climber,
but as higher-level representations are learned the hill-climbing
process is repeatedly rescaled to operate in successively higher-
level representations. The transition process is based on a deep
learning neural network, specifically a deep auto-encoder. By
training a simple encoder (with a single hidden layer) to com-
press a distribution of locally optimal solutions, it recognises the
effective reduction in the degrees of freedom created by selec-
tion. The hill-climbing process then transitions to operate in the
compressed representation, encoded in the latent variables of
the hidden layer. Variation in this new space can make ‘leaps’
in the original solution space—coordinated changes of multiple
variables, informed by the results of past search. Hill-climbing
in this compressed space can still get stuck, but these intelligent
leaps mean that the ‘local’ optima it finds are less limited than
those found by hill-climbing in the original space. Additional
transitions are enabled by adding further layers, trained on the
local optima that are discovered using the layer below.

Conclusion

In this paper, we have investigated the optimisation capabili-
ties of an algorithm inspired by the Evolutionary Transitions
in Individuality. In these transitions, the natural evolutionary
process is repeatedly rescaled through successive levels of
biological organisation. Each transition creates new higher-
level evolutionary units that combine multiple units from
the level below. We call the algorithm Deep Optimisation
to recognise both its use of deep learning methods and the
multi-level rescaling of biological evolutionary processes.

We started by testing DO in an applied problem. DO showed
impressive performance when compared to other MBOA meth-
ods on MKP instances. This is all the more impressive bearing
in mind that the other methods utilise a problem-specific repair
operator to handle infeasible solutions and DO does not. This
demonstrates that DO learns the structure of the problem well
enough to enable exploration of feasible solutions directly. To
go beyond this empirical result, we wanted to verify that DO
was really able to find and exploit deep structure implicit in a
problem space. The MKP instances on their own cannot con-
firm this because they have a random structure and, in addition
to the use of a deep encoder, there are multiple other differences
between DO and the other MBOA methods.

To investigate this we explored the types of problem
structure that differentiate the performance between MBOA

	 SN Computer Science (2022) 3:253253  Page 24 of 26

SN Computer Science

methods using synthetic problems. In these constructions we
controlled several different problem characteristics, including
the depth of the problem structure. We looked for character-
istics that one algorithm could solve and another algorithm
could not in the formal sense of a polynomial vs exponential
time complexity, respectively. DO was the only method that
solved all problem types (i.e. in polynomial time) where none
of the other methods achieved this. This exploration identified
that overlapping variation, non-pairwise overlapping variation
and local search in the reorganised neighbourhood are distinct
problem characteristics that DO can solve that other MBOAs
cannot. The results showing that DO outperforms DO1 (i.e.,
DO limited to a single hidden layer) verify that it is the deep
representation, not other characteristics of DO on their own,
that enables these results. That is, deep learning is needed,
and DO learns deep problem structure and exploits it properly.
None of the other SOTA methods can do this successfully.

In sum, our findings suggest that the use of deep learning
principles, that have enjoyed success in many other domains,
also have significant previously-untapped potential in optimi-
sation problems. Thus far we have employed only fairly basic
deep learning methods, but the DO approach opens up opti-
misation problems as another area where the vast and rapidly
accelerating knowledge in deep learning techniques might be
applied to significant effect.

Acknowledgements  We acknowledge financial support from the
EPSRC Centre for Doctoral Training in Next Generation Computa-
tional Modelling grant EP/L015382/1. JK acknowledges time granted
to him by Invenia for pursuing personal research goals. Further, we
would like to acknowledge Chrisantha Fernando, David Iclanzan,
David Prosser, Frederick Nash, Rob Mills, Jakob Philbrick for enrich-
ing the ideas for DO.

Funding  We acknowledge financial support from the EPSRC Centre
for Doctoral Training in Next Generation Computational Modelling
Grant EP/L015382/1.

Data availability  Not applicable.

Code availability  Not applicable.

Code availability  This manuscript has no associated data or the data
will not be deposited. [Authors’ comment: ….]

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Aickelin U, Burke EK, Li J. An estimation of distribution algo-
rithm with intelligent local search for rule-based nurse rostering.
J Oper Res Soc. 2007;58(12):1574–85.

	 2.	 Bello I, Pham H, Le QV, Norouzi M, Bengio S. Neural combi-
natorial optimization with reinforcement learning. 2016. arXiv:​
1611.​09940

	 3.	 Bosman PA, Thierens D. Linkage information processing in
distribution estimation algorithms, vol. 1999. Information and
Computing Sciences: Utrecht University; 1999.

	 4.	 Boyan J, Moore AW. Learning evaluation functions to
improve optimization by local search. J Mach Learn Res.
2000;1(Nov):77–112.

	 5.	 Caldwell J, Knowles J, Thies C, Kubacki F, Watson R. Deep
optimisation: multi-scale evolution by inducing and searching
in deep representations. In: Castillo PA, Jiménez Laredo JL, edi-
tors. Applications of evolutionary computation. Cham: Springer
International Publishing; 2021. p. 506–21.

	 6.	 Caldwell JR, Watson RA, Thies C, Knowles JD. Deep optimisa-
tion: solving combinatorial optimisation problems using deep
neural networks. 2018. arXiv:​1811.​00784

	 7.	 Ceberio J, Irurozki E, Mendiburu A, Lozano JA. A distance-
based ranking model estimation of distribution algorithm for
the flowshop scheduling problem. IEEE Trans Evolut Comput.
2013;18(2):286–300.

	 8.	 Chen PL, Peng CJ, Lu CY, Yu TL. Two-edge graphical link-
age model for DSMGA-II. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp 745–752. 2017

	 9.	 Chu PC, Beasley JE. A genetic algorithm for the multidimen-
sional knapsack problem. J Heurist. 1998;4(1):63–86.

	10.	 Churchill AW, Sigtia S, Fernando C. A denoising autoencoder
that guides stochastic search. 2014. arxiv.​org/​abs/​1404.​1614

	11.	 Davies AP, Watson RA, Mills R, Buckley CL, Noble J. “if you
can’t be with the one you love, love the one you’re with’’: how
individual habituation of agent interactions improves global
utility. Artif Life. 2011;17(3):167–81.

	12.	 De Boer PT, Kroese DP, Mannor S, Rubinstein RY. A tutorial on
the cross-entropy method. Ann Oper Res. 2005;134(1):19–67.

	13.	 Goldberg DE (2006) Genetic algorithms. Pearson Education
India

	14.	 Goldberg DE, Holland JH. Genetic algorithms and machine learn-
ing. Mach Learn. 1988;3(2):95–9.

	15.	 Goldman BW, Punch WF (2014) Parameter-less population
pyramid. In: Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, Association for Comput-
ing Machinery, New York, NY, USA, GECCO 14, pp 785–792.
https://​doi.​org/​10.​1145/​25767​68.​25983​50,

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/org/abs/1611.09940
http://arxiv.org/org/abs/1611.09940
http://arxiv.org/org/abs/1811.00784
http://arxiv.org/org/abs/1404.1614
https://doi.org/10.1145/2576768.2598350

SN Computer Science (2022) 3:253	 Page 25 of 26  253

SN Computer Science

	16.	 Goldman BW, Punch WF. Fast and efficient black box optimiza-
tion using the parameter-less population pyramid. Evolut Comput.
2015;23(3):451–79.

	17.	 Hansen N. The CMA evolution strategy: a comparing review. In:
Lozano J, Larrañaga P, Inza I, Bengoetxea E, editors. Towards a
New Evolutionary Computation, Studies in Fuzziness and Soft
Computing, vol. 192. Springer, p. 75–102. 2006

	18.	 Hansen P, Mladenović N, Pérez JAM. Variable neighbour-
hood search: methods and applications. Ann Oper Res.
2010;175(1):367–407.

	19.	 Hernández-Lobato JM, Gelbart M, Hoffman M, Adams R,
Ghahramani Z. Predictive entropy search for Bayesian optimiza-
tion with unknown constraints. In: International Conference on
Machine Learning, PMLR, pp 1699–1707. 2015

	20.	 Hopfield JJ, Tank DW. Neural computation of decisions in opti-
mization problems. Biol Cybern. 1985;52(3):141–52.

	21.	 Horn J, Goldberg DE, Deb K. Long path problems. In: Inter-
national Conference on Parallel Problem Solving from Nature,
Springer, pp 149–158. 1994

	22.	 Hsu SH, Yu TL. Optimization by pairwise linkage detection,
incremental linkage set, and restricted/back mixing: DSMGA-II.
In: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, pp 519–526. 2015

	23.	 Iclanzan D, Dumitrescu D. Overcoming hierarchical difficulty by
hill-climbing the building block structure. In: Proceedings of the
9th Annual Conference on Genetic and Evolutionary Computa-
tion, pp 1256–1263. 2007

	24.	 Khalil E, Dai H, Zhang Y, Dilkina B, Song L. Learning combina-
torial optimization algorithms over graphs. In: Advances in Neural
Information Processing Systems, pp 6348–6358. 2017

	25.	 Lombardi M, Milano M, Bartolini A. Empirical decision model
learning. Artif Intell. 2017;244:343–67.

	26.	 Martins JP, Delbem AC. Pairwise independence and its impact
on estimation of distribution algorithms. Swarm Evolut Comput.
2016;27:80–96.

	27.	 Martins JP, Neto CB, Crocomo MK, Vittori K, Delbem AC. A
comparison of linkage-learning-based genetic algorithms in mul-
tidimensional knapsack problems. In: 2013 IEEE Congress on
Evolutionary Computation, IEEE, pp 502–509. 2013

	28.	 Martins JP, Fonseca CM, Delbem AC. On the performance of
linkage-tree genetic algorithms for the multidimensional knapsack
problem. Neurocomputing. 2014;146:17–29.

	29.	 Mazyavkina N, Sviridov S, Ivanov S, Burnaev E. Reinforcement
learning for combinatorial optimization: a survey. 2020. arXiv:​
2003.​03600

	30.	 McCloskey M, Cohen NJ. Catastrophic interference in connection-
ist networks: The sequential learning problem. In: Psychology of
learning and motivation, vol 24, Elsevier, pp 109–165. 1989

	31.	 Mills R, Watson RA. Multi-scale search, modular variation, and
adaptive neighbourhoods. Author’s Original. 2011

	32.	 Ollivier Y, Arnold L, Auger A, Hansen N. Information-geometric
optimization algorithms: A unifying picture via invariance princi-
ples. Journal of Machine Learning Research. 2017;18(18):1–65.

	33.	 Pelikan M, Goldberg DE. Hierarchical BOA solves ising spin
glasses and MAXSAT. In: Proceedings of the 2003 International
Conference on Genetic and Evolutionary Computation: Part II,
Springer-Verlag, Berlin, Heidelberg, GECCO’03, pp 1271–1282.
2003

	34.	 Pelikan M, Goldberg DE. Hierarchical Bayesian optimization
algorithm. In: Scalable optimization via probabilistic modeling,
Springer, pp 63–90. 2006

	35.	 Pelikan M, Goldberg DE, Cantú-Paz E, et al. BOA: the bayesian
optimization algorithm. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference GECCO-99, vol 1, pp 525–532.
1999

	36.	 Pelikan M, Goldberg DE, Tsutsui S. Hierarchical Bayesian opti-
mization algorithm: toward a new generation of evolutionary
algorithms. In: SICE 2003 Annual Conference (IEEE Cat. No.
03TH8734), IEEE, vol 3, pp 2738–2743. 2003

	37.	 Power DA, Watson RA, Szathmáry E, Mills R, Powers ST,
Doncaster CP, Czapp B. What can ecosystems learn? Expand-
ing evolutionary ecology with learning theory. Biol Direct.
2015;10(1):1–24.

	38.	 Probst M. Denoising autoencoders for fast combinatorial black
box optimization 2015. arXiv:​1503.​01954

	39.	 Rodríguez Rueda D, Cotta C, Fernández-Leiva AJ. Metaheuristics
for the template design problem: encoding, symmetry and hybridi-
sation. J Intell Manuf. 2021;32(2):559–78.

	40.	 Santana R. Gray-box optimization and factorized distribution
algorithms: where two worlds collide. 2017. arXiv:​1707.​03093

	41.	 Santana R, Larrañaga P, Lozano JA. Protein folding in simplified
models with estimation of distribution algorithms. IEEE Trans Evo-
luti Comput. 2008;12(4):418–38.

	42.	 Smith JM, Szathmáry E. The major transitions in evolution. Oxford:
Oxford University Press; 1997.

	43.	 Snoek J, Rippel O, Swersky K, Kiros R, Satish N, Sundaram N,
Patwary M, Prabhat M, Adams R. Scalable bayesian optimiza-
tion using deep neural networks. In: International Conference on
Machine Learning, PMLR, pp 2171–2180. 2015

	44.	 Stanley KO, Miikkulainen R. Evolving neural networks through
augmenting topologies. Evolut Comput. 2002;10(2):99–127.

	45.	 Terashima-Marín H, Ross P, Farías-Zárate C, López-Camacho
E, Valenzuela-Rendón M. Generalized hyper-heuristics for solv-
ing 2d regular and irregular packing problems. Ann Oper Res.
2010;179(1):369–92.

	46.	 Thierens D, Bosman PA. Hierarchical problem solving with the
linkage tree genetic algorithm. In: Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation, pp 877–
884. 2013

	47.	 Vo-Thanh N, Jans R, Schoen ED, Goos P. Symmetry breaking
in mixed integer linear programming formulations for blocking
two-level orthogonal experimental designs. Comput Oper Res.
2018;97:96–110.

	48.	 Volpato R, Song G. Active learning to optimise time-expensive
algorithm selection. 2019. arXiv:​1909.​03261

	49.	 Vu KK, D’Ambrosio C, Hamadi Y, Liberti L. Surrogate-
based methods for black-box optimization. Int Trans Oper Res.
2017;24(3):393–424.

	50.	 Watson RA. On the unit of selection in sexual populations. In: Cap-
carrère MS, Freitas AA, Bentley PJ, Johnson CG, Timmis J, editors.
Advances in artificial life. Berlin, Heidelberg: Springer; 2005. p.
895–905.

	51.	 Watson RA, Szathmáry E. How can evolution learn? Trends Ecol
Evolut. 2016;31(2):147–57.

	52.	 Watson RA, Hornby GS, Pollack JB. Modeling building-block
interdependency. In: International Conference on Parallel Problem
Solving from Nature, Springer, pp 97–106. 1998

	53.	 Watson RA, Buckley CL, Mills R. Optimization in self-modeling
complex adaptive systems. Complexity. 2011;16(5):17–26.

	54.	 Watson RA, Mills R, Buckley CL. Transformations in the scale
of behavior and the global optimization of constraints in adaptive
networks. Adapt Behav. 2011;19(4):227–49.

	55.	 Watson RA, Levin M, Buckley CL. Design for an individual: con-
nectionist approaches to the evolutionary transitions in individual-
ity. Front Ecol Evolut Sect Soc Evolut. 2021

	56.	 West SA, Fisher RM, Gardner A, Kiers ET. Major evolu-
tionary transitions in individuality. Proc Natl Acad Sci.
2015;112(33):10112–9.

	57.	 Yi S, Wierstra D, Schaul T, Schmidhuber J. Stochastic search
using the natural gradient. In: Proceedings of the 26th Annual

http://arxiv.org/org/abs/2003.03600
http://arxiv.org/org/abs/2003.03600
http://arxiv.org/org/abs/1503.01954
http://arxiv.org/org/abs/1707.03093
http://arxiv.org/org/abs/1909.03261

	 SN Computer Science (2022) 3:253253  Page 26 of 26

SN Computer Science

International Conference on Machine Learning, pp 1161–1168.
2009

	58.	 Zhang W, Dietterich TG. Solving combinatorial optimization
tasks by reinforcement learning: a general methodology applied
to resource-constrained scheduling. J Artif Intel Res. 2000;1:1–38.

	59.	 Zlochin M, Dorigo M. Model-based search for combinatorial
optimization: A comparative study. In: International Conference
on Parallel Problem Solving from Nature, Springer, pp 651–661.
2002

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Deep Optimisation: Transitioning the Scale of Evolutionary Search by Inducing and Searching in Deep Representations
	Abstract
	Introduction
	The Deep Optimisation Algorithm
	Discovering How Lower-Level Units Combine
	Inducing a Compressed Representation
	Searching in the Compressed Representation
	Successive Transitions in Individuality

	Comparing Characteristics of Model-Building Optimisation Algorithms
	Linkage Tree Genetic Algorithm (LTGA)
	Parameterless Population Pyramid (P3)
	Hierarchical Bayesian Optimisation Algorithm (hBOA)
	Dependency Structure Matrix Genetic Algorithm (DSMGA-II)
	Deep Optimisation (DO)
	How Do These Methods Vary in Their Model Induction and Model-Informed Search Capabilities?

	Multi-Dimensional Knapsack Problem (MKP)
	Exploring Characteristics of Problem Difficulty
	The Compression Mapping (C) from Solution Space to New Representation
	The Environment Mapping (E) from the New Representation to Fitness

	Performance Evaluation
	Model Induction
	Model-Informed Search
	Multi-level Representation
	Problem Depth

	Performance Evaluation Summary

	Discussion
	Autoencoder Model
	Connections with Biological Evolution and Processes of Natural Induction

	Conclusion
	Acknowledgements
	References

