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Abstract: Since coding has become a basic tool for practically all 
communication/electronic devices, it is important to carefully study the error 
patterns that actually occur. This allows correction of only partial errors rather 
than those which have been studied using Hamming distance, in non-binary cases.  

The paper considers a class of distances, SK-distances, in terms of which 
partial errors can be defined. Examining the sufficient condition for the existence of 
a parity check matrix for a given number of parity-checks, the paper contains an 
upper bound on the number of parity check digits for linear codes with property 
that corrects all partial random errors of an ( )kn,  code with minimum SK-distance 
at least d. The result generalizes the rather widely used Varshamov-Gilbert bound, 
which follows from it as a particular case.  

Keywords: Hamming distance, SK-metric, error patterns, error control in codes, 
bounds. 

1. Introduction 

In the study of error correcting codes mainly the Hamming metric [2], being 
primarily developed for the binary case, is used even when the coding alphabet is  
q-nary, q>2.  Another metric for q-nary is due to Lee. In case of Hamming metric, 
one digital change in one place is a single error, no matter what the magnitude is, 
whereas in case of Lee metric [2], a digital change of magnitude i is made in one 
place by one of the two i±  entries in one place. In the case of constant length 
codes, error patterns have places where errors occur, at different positions. To 
imbue the efficiency, one has to use tools that can handle these considerations 



 42

efficiently. Hamming weight-distance notion is not sensitive to them. A 
mathematically robust method of making the proper choices out of a class of 
distances was introduced by Sharma and Kaushik in 1977. This SK-class of metric 
provides freedom of choice that might logically correspond best to the error patterns 
that are encountered in different real communication systems.   

In this paper, by the random-error-correction with SK-metric considerations, a 
class of errors is studied, which in some sense is a “part” of the class of errors that 
may arise from Hamming considerations. The paper contains the sufficient 
condition for correcting errors of a certain number of partial random errors. Results 
derived under Hamming considerations follow as particular cases from this study, 
and those for Lee metric can also be directly obtained.  

2.  Preliminaries 

We shall consider n-vectors over {0,1, 2,..., 1},qZ q= −  q>3. Sharma and 

Kaushik consider partitions of qZ  into non-empty disjoint subsets 0 1 1, ,..., mB B B −  
where m is a natural number greater than or equal to two for introducing a class of 
metrics and weights. For this to happen, the partition is such that  

(i) { }00 =B , 
(ii) for qZi∈ , ss BiqBi ∈−⇔∈ ,  

(iii)  if sBi∈ and tBj∈ and s>t (in the order of their natural occurrence in 

qZ ), then { } { }jqjiqi −>− ,min,min . 

(iv)  if ,.ts > ,ts BB ≥ except for 1−= ms , in which case we may have 

,BB mm 21 2
1

−− ≥  

where B is the number of elements in the set B [3]. 

Note. When m = 2, the partition is simply { }0{ 0 =B , { }1 1, 2,..., 1B q= − }, 
they called it Hamming partition of  Zq. This leads to Hamming distance and 
weights as considered in literature. Also, when each 2=sB  for 20 −<< ms , 
the partition may be called Lee partition, since in this case it leads to Lee-metric, 
refer to B e r l e k e m p [1]. 

Definition. SK-Weights and distances [3]. 

SK-Weights: It may be mentioned that in SK-scheme of things, weights and 
distances are defined in reference to a SK-partition. Thus for different SK-partitions 
of  Zq,  they, in general, will have different values for the same element of Zq,  or for 
a vector over qZ . 
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We first define the SK-weight of an element qZj∈  corresponding to a  

SK-partition 0 1 1{ , ,..., }.mP B B B −=   Denoting it by )( jWP , it is given by 
sjWP =)(  if sBj∈ , 10 −≤≤ ms . 

Next, we define SK-weight ( )uWP  of ( ),...,, 21 naaau =  ,qi Za ∈  

corresponding to SK-partition 0 1 1{ , ,..., }mP B B B −=  as the sum of the class-weights of 
its components, i.e., 

( ) ( )∑
−

=
n

i
ipP aWuW

1
. 

SK-Distance between two vectors: Given two n-vectors ( )1 2, ,..., nu a a a=  

and ( )1 2, ,..., ,nv b b b=  where  qii Zba ∈, , the SK-distance between vectors u  

and v associated with SK-partition P  is defined as the sum of the SK-distances 
between their components, i.e., 

( ) ( )
1 1

, , ( ),
n n

P p i i P i i
i i

d u v d a b W a b
= =

= = −∑ ∑  

( ) ( ) ( )∑
=

−=−=
n

i
iipPP badvuWvud

1

, . 

In an earlier paper [6] we have introduced the idea of a partial error pattern and 
Limited Error pattern which is defined as follows. 

Partial Error Pattern and Patterns of a Limited Error [6] 
• Partial sets: It may be noted that in defining the SK-partition 

0 1 1{ , ,..., },mP B B B −=  of qZ  arranged in a circular order, sB  is in fact the collection 

of all elements of qZ  at distance s, on either side of 0, each element of which is 

assigned an SK weight s. We can thus call sB  a subset or a “partial set” of qZ  of 
weight s , and at distance s from 0. 

More generally, for an arbitrary element qZj∈  its “partial set at distance s” 

is given by qss jBjB }{)( += , the addition being in each element of sB  mod q. 
• Patterns of limited errors:  We know that the error detection/correction 

studies are made taking into consideration the patterns of errors, which vary from a 
system to system. The study of block/linear codes is also limited to errors in which 
an entry in a code word is received as another symbol, the error is called a 
“substitution error”. With SK-scheme of things, it is possible to consider various 
different limited kinds of substitution errors that were not possible under Hamming 
scheme of things. These can be in terms of  

(i) number of places of the errors (random or bursts),  
(ii) substitutions limited to one or more of  Bi’s,  
(iii) maximum overall SK-weight of the error patterns, 
(iv) combinations of any two or three of the above.  
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In obtaining a bound on the necessary number of parity-checks for an e-error 
correcting code, it is customary to define the volume of a sphere of radius e around 
every code word and consider their mutual disjointness,  etc. In the SK-study that 
we undertake, this idea can be considered more closely.  Given an n-vector u, we 
can find numbers of patterns which have specified SK-distance from vector u [6]. 

We will need a generalization, which we call “partial independence” of 
vectors. 

Definition. Partial independence: Given a set of n-vectors S over the field 
GF(q), and a subset B of GF(q), the set of vectors S will be called partially 
independent in B, if all linear combinations of vectors in S, with coefficients from 
B, some non-zero, is not zero. In this situation S may be termed “B-independent”. 

In [6] we obtained the necessary condition giving the number of parity check 
digits for linear codes correcting an SK-distance limited partial random error on e or 
fewer positions.  

3. Sufficient condition on the number of parity check digits 

This section presents the sufficient condition on the number of parity check digits 
for linear codes with a property that corrects all random errors of an ( )kn,  code 
with minimum distance at least d , with entries limited to 1B , as also 1B  and 2B . 

Theorem 1. Given an SK-partition 0 1 1{ , ,..., }mP B B B −=  of qZ , q  prime, the 

sufficient condition for the existence of an ( )kn,  code over qZ , with minimum 
SK-distance at least d , when entries in a position of any two code words differ 
only partially by the entry from 1B ’, is given by 

kni
d

i
qB

i
n −

−

=

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑ 1

2

0
. 

P r o o f: Obviously, the existence of such an ( )kn,  code is ensured by 
constructing a parity check matrix H, with n columns and knr −=  rows. Here the 
condition for its existence is to be examined to suit the code in question. We 
proceed as follows. 

First we select any nonzero r-tuple as the first column of the parity check 
matrix. Then select any non-zero r-tuple except those that are 1B  multiples of the 
first (or 1B  independent) as the second column in the parity check matrix. The third 
column then may be any r-tuple which is not a linear combination of the first and 
second column, with coefficients from 1B . In general, the i-th column is chosen as 
any r-tuple that is not a linear combination of any 2−d  or less previous columns 
with coefficients from 1B . This construction ensures that no linear combination of 

1−d  or fewer columns with coefficients from 1B  will be zero, that is, 1−d  
columns will be ” 1B -independent”. 
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If there are 1B  possible coefficients at the time of finding j-th column, the 
number of r-tuples to be excluded is   

2
1

2
11 2

1
2

1
1

1 −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ − dB
d
j

...B
j

B
j

, 

the linear combination of 2−d  or less columns out of total of 1−j  columns. If 
this is less than the total number of non-zero r-tuples, then there is certainly one 
more column, the j-th that can be added to the matrix. That is, if 

rd qB
d
j

...B
j

B
j

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+ −2

1
2

11 2
1

2
1

1
1

1 . 

Now let n be the largest value of j, then an ( )kn, code with minimum SK  

1B -distance d  is given by  

rd qB
d

n
B

n
B

n
≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ −2

1
2

11 2
...

21
1 . 

This proves the result. 

Particular case:  
(i) In case of Hamming metric, we have 2=m , { }10 , BBB = , where  

B1 = {1, 2, …, q–1}, then the expression in Theorem 1 can be stated as 

( ) kni
d

i
qq

i
n −

−

=

≥−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑ 1
2

0

. 

(ii) In case of Lee metric, we have 
2

11 −
=−

qm , so 

1
2

0 1, ,..., ,
q

B B B B
−

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 }1,1{1 −= qB  and then the expression in Theorem 1 

takes the form 

( ) kni
d

i

q
i
n −

−

=

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑ 2
2

0

. 

Broadened partial case. The result of Theorem 1 can be further broadened 
from a single 1B  to that for entries from a group of iB ’s.  

Theorem 2. Given an SK-partition 0 1 1{ , ,..., }mP B B B −= of qZ , q prime, the 

sufficient condition for the existence of an ( )kn,  code over qZ  with a minimum 

SK-distance at least d , and entries from 1B  and 2B , is given by 
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r
d

s

mms

s

m

qBB
msnmms

n
≥

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−∑ ∑

−

=

−
⎥⎦
⎥

⎢⎣
⎢

=

2

1
2

2
1

2

0 ,,2
.  

P r o o f: Let us first consider different linear combinations of length l with 
entries from 1B and 2B having SK-weight s. These are given by various columns of 
Table 1. 

Table 1 

Number of entries from B2 0 1 2 3 … m … ⎥⎦
⎥

⎢⎣
⎢
2
s

 

Number of entries from 1B  s s–2 s–4 s–6 … s–2m … ⎥⎦
⎥

⎢⎣
⎢−
2

2 ss  

Number of 0’s l–s l–s+1 l–s+2 l-s+3 … l-s+m … ⎥⎦
⎥

⎢⎣
⎢+−
2
ssl  

 
Then the total number of such l-vectors is  

( ) ( ) ( ) ( ) ( )

( ) ( )

2
1 1 2

4 2 2
1 2 1 2

2
2 2

1 2

,0, 2 ,1, 1 4 , 2, 2

... ...
2 , ,

2 , ,
2 2 2

s s

s s m m

s ss

l l l
B B B

s l s s l s s l s

l
B B B B

s m m l s m

l
B Bs s ss l s

−

− −

⎢ ⎥ ⎢ ⎥− ⎢ ⎥ ⎢⎣ ⎦ ⎣

⎛ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + ×⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ − − − + − − +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝

⎛ ⎞
× + + + +⎜ ⎟⎜ ⎟− − +⎝ ⎠

⎛ ⎞
⎜ ⎟+ ⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟− − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

⎥⎦

⎞
⎟
=⎟

⎟
⎠

 

2
2

1 2
0 2 , ,

s

s m m

m

l
B B

s m m l s m

⎢ ⎥
⎢ ⎥⎣ ⎦

−

=

⎛ ⎞
⎛ ⎞⎜ ⎟

= ⎜ ⎟⎜ ⎟− − +⎝ ⎠⎜ ⎟
⎝ ⎠

∑ . 

Now we come to examining the existence of the parity-check matrix for the 
code, as in Theorem 1. We first select any nonzero r-tuple as the first column of the 
parity check matrix. Then we select any non-zero r-tuple except those that are 1B  
and 2B  multiples of the first (or 1B  and 2B  independent) as the second column in 
the parity check matrix. The third column may then be any r-tuple which is not a 
linear combination of the first and second column, with coefficients from 1B  and 

2B . In general, the i-th column is chosen as any r-tuple that is not a linear 
combination of any 2−d  or less previous columns with coefficients from 1B  and 

2B . This construction ensures that no linear combination of 1−d  or fewer 
columns with coefficients from 1B  and 2B  will be zero, that is 1−d  columns will 



 47

be “ 1B  and 2B -independent”. 
If there are 1B  and 2B  possible coefficients at the time of finding j-th 

column, the number of r-tuples to be excluded is   

,
1,,2
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1
2
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1

2

0
∑ ∑
−

=

−
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mms

s

m
BB

msjmms
j

 

the linear combination of 2−d  or less columns out of total of 1−j  columns. If 
this is less than the total number of non-zero r-tuples, then there is certainly one 
more column, the j-th, column that can be added to the matrix. That is, if 

r
d

s

mms

s

m
qBB

msjmms
j

≤
⎟
⎟
⎟

⎠
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⎜
⎜
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−
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⎥
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=

2

1
2

2
1

2

0 1,,2
1

. 

Now let n be the largest value of j, then an ( )kn,  code with minimum  
SK-distance d , with entries from 1B  and 2B  is given by  

r
d

s

mms

s

m
qBB

msnmms
n

≥
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
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0 ,,2
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This proves the result. 

Particular result. When m = 0, then the expression in Theorem 2 can be 
written as follows 

2

1
1

sd
r

s

n
B q

s

−

=

⎛ ⎞
≥⎜ ⎟

⎝ ⎠
∑ , 

which is a particular case when the entries are from 1B , the result considered in 
Theorem 1.  

Corollary 1. Given an SK-partition P = { }110 ,...,, −mBBB  of qZ , q prime, the 

sufficient condition for the existence of an ( )kn,  code over qZ , at a minimum 

distance at least d , with coefficients from any two partial sets rB  and sB , is given 
by 

r
d

s
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ms
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s

m
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msnmms
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≥
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0 ,,2
. 

It may be noted that the partial error correction results in reducing the 
redundancy. In the example below we demonstrate, by an example, that for the 
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same redundancy 3=r  and minimum distance at least 5=d , the existence of a 
much larger code word length is possible in comparison to Hamming case of all 
corrections.  

Example. Let { }0,1, 2, 3, 4, 5, 6 ,qZ =  7=q  and r = 3. Then we consider 
the following two cases: 

(i) Partial case. Illustrate the results of Theorem 1, considering the  
SK-partitions of qZ , given by 

{ }2101 ,, BBBP = , 

where  { }00 =B , { }1 1, 2, 5, 6B =  and { }4,32 =B . 

The existence of an ( )kn,  code over qZ , at a minimum distance at least 5, 

from Theorem 1 with coefficients from 1B , is given by 

34264
3

16
2

4
1

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ nnn
, 

( ) ( )( ) 34264
6

21
3

16
2

14 ≥
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

nnnnnnn , 

1026527232 23 ≥+− nnn .  

The minimum value of n for which it holds is 4. The theorem guarantees the 
existence of a code of minimum length 4, correcting 2 entries obtained by addition 
of entries in { }1 1, 2, 5, 6B = . In practice it is possible to try a greater length. In the 
case of the present example, n = 6 has been quite possible as shown by constructing 
the parity-check matrix  

1 0 0 3 0 0
0 1 0 0 3 0
0 0 1 0 0 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

(ii)  Hamming case. For this we have to consider the SK-partition 

{ }10 , BBP = , 

where { }00 =B  and { }1 1, 2, 3, 4, 5, 6B = . 

For the existence of an ( )kn,  code over qZ , the correcting single error in an  
(n, k) code with a minimum distance d = 5, is given by 

1216
3

36
2

6
1

−≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ rq
nnn

, 

( ) ( )( ) 34221361186 ≥−−+−+ nnnnnn , 
342609036 23 ≥+− nnn . 
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The minimum value of n for which it holds is 3, and by trial for 3≥n we get 
the check matrix for 4=n  

1 0 01
0 1 01
0 0 11

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Comparing the two results, it is clear that for 3=r , the partial case has 
6=n , and the total case has 3=n . This should be considered as a rather 

significant advantage.  

4. Concluding remarks 

The study of the partial error corrections is guided by practical considerations. Here 
we have considered only the existence problem. This is an area of research on the 
actual construction of more efficient codes with designed partial errors. We propose 
to undertake further investigations in this direction.  

R e f e r e n c e s  

1. B e r l e k a m p, E. R. Algebraic Coding Theory. New York, McGraw-Hill, 1968. 
2. P e t e r s o n, W. W., E. J. W e l d o n. Error-Correcting Codes. 2nd Ed. Cambridge, Mass., MIT 

Press, 1972. 
3. S h a r m a, B. D., M. L. K a u s h i k. Algebra of Sharma-Kaushik’s Metric Inducing Partitions of 

Zq. − J. Combin. Information System Science, Vol. 11, 1986, 19-32.  
4. S h a r m a, B. D., G. D i a l. Some Tighter Bounds on Code Size with Sharma-Kaushik Metrics. – 

In: Presented at the Intern. Conf. on Math., Mao, Menorca, June 1987, 15-17. 
5. S h a r m a, B. D., M. L. K a u s h i k. Limited Intensity Random and Burst Error Correcting Codes 

with Class Weight Consideration. − Elektronische Informationsverarbeitung und Kybernetik, 
Vol. 15, 1979, 315-321. 

6. S h a r m a , B. D., A. G a u r. Codes Correcting Limited Patterns of Random Errors Using  
SK- METRIC. – Cybernetics and Information Technologies, Vol. 13, 2013, No 1, 34-45.  


