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This paper considers a simple repairable system with a warning device and a repairman who can have delayed-multiple
vacations. By Markov renewal process theory and the probability analysis method, the system is first transformed into a group of
integrodifferential equations.Then, the existence and uniqueness as well as regularity of the system dynamic solution are discussed
with the functional analysis method. Further, the asymptotic stability, especially the exponential stability of the system dynamic
solution, is studied by using the strongly continuous semigroup theory or 𝐶

0
semigroup theory. The reliability indices and some

applications (such as the comparisons of indices and profit of systems with and without warning device), as well as numerical
examples, are presented at the end of the paper.

1. Introduction

A repairable system is a systemwhich, after failing to perform
one or more of its functions satisfactorily, can be restored to
fully satisfactory performance by any method, rather than
the replacement of the entire system. With different repair
levels, repair can be broken down into three categories (see
[1]): perfect repair, normal repair, and minimal repair. A
perfect repair can restore a system to an “as good as new”
state, a normal repair is assumed to bring the system to any
condition, and a minimal repair, or imperfect repair, can
restore the system to the exact state it was before failure.

Repairable system is not only a kind of important system
discussed in reliability theory but also one of the main
objects studied in reliability mathematics. Since the 1960s,
various repairable system models have been established and
researched.

However, in traditional repairable systems, it is assumed
that the repairman or server remains idle until a failed
component presents. But as Mobley [2] pointed out, one-
third of all maintenance costs were wasted as the result of
unnecessary or improper maintenance activities. Today, the
role of maintenance tends to be a “profit contributor.” There-
fore, much more profit can be produced when the repairman
in a systemmight take a sequence of vacations in the idle time.

Repairman’s vacation may literally mean a lack of work or
repairman taking another assigned job. From the perspective
of rational use of human resources, the introduction of repair-
man’s vacationmakesmodeling of the repairable systemmore
realistic and flexible. This is due to the fact that in practice,
the vast majority of small-and medium-sized enterprises
(SMEs) cannot afford to hire a full-time repairman. So, the
repairman in SMEs usually plays two roles: one for looking
after the equipment and one for other duties. Under normal
circumstances, the repairman has to periodically check the
status of the system. If he finds that the system failed, he
repairs it immediately after the end of vacation; otherwise, he
will leave the system for other duties or for a vacation.

Vacation model originally arised in queueing theory and
has been well studied in the past three decades and success-
fully applied in many areas such as manufacturing/service
and computer/communication network systems. Excellent
surveys on the earlier works of vacation models have been
reported by Doshi [3], Takagi [4], and Tian and Zhang [5].
A number of works (e.g., please see [6–10] and references
therein) have recently appeared in the queueing literature
in which concepts of different control operating politics
along with vacations have been discussed. And Ke et al. [11]
provided a summary of the most recent research works on
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vacation queueing systems in the past 10 years, in which a
wide class of vacation policies for governing the vacation
mechanism is presented.

In the past decade, inspired by the vacation queue-
ing theory, some researchers introduced vacation model
into repairable systems. The available references concerning
repairman vacation in repairable systems can be classified
into two categories: one is focused on the system indices and
the other is the optimization problems.

For the first category, Jain and Rakhee [12] considered
the bilevel control policy for a machining system having two
repairmen. One turns on when queue size of failed units
reaches a preassigned level. The other’s provision in case of
long queue of failed units may be helpful in reducing the
backlog. The steady state queue size distribution is obtained
by applying the recursive method. Hu et al. [13] studied the
steady-state availability and the mean up-time of a series-
parallel repairable system consisting of one master control
unit, two slave units, and a single repairman who operates
single vacation by using the supplementary variable method
and the vectorMarkov process theory. Q. T.Wu and S.M.Wu
[14] analyzed some reliability indices of a cold standby system
consisting of two repairable units, a switch and a repairman
who may not always be at the job site or take vacation. Yuan
[15] and Yuan and Cui [16] studied a k-out-of-n:G system
and a consecutive-k-out-of-n:F system, respectively, with R
repairmen who can take multiple vacations and by using
Markov model; the analytical solution of some reliability
indices was discussed. Yuan and Xu [17] studied a deteriorat-
ing systemwith a repairmanwho can havemultiple vacations.
By means of the geometric process and the supplementary
variable techniques, a group of partial differential equations
of the systemwas presented, and some reliability indices were
derived. Ke andWu [18] studied amultiservermachine repair
model with standbys and synchronous multiple vacations,
and the stationary probability vectors were obtained by using
the matrix-analytical approach and the technique of matrix
recursive.

For the second category, Ke and Wang [19] studied a
machine repair problem consisting of M operating machines
with two types of spare machines and R servers (repairmen)
who can take different vacation policies. The steady-state
probabilities of the number of failed machines in the system
as well as the performance measures were derived by using
the matrix geometric theory, and a direct search algorithm
was used to determine the optimal values of the number
of two types of spares and the number of servers while
maintaining a minimum specified level of system availability.
Jia and Wu [20] considered a replacement policy for a
repairable system that can not be repaired “as good as
new” with a repairman who can have multiple vacations.
By using geometric processes, the explicit expression of
the expected cost rate was derived, and the corresponding
optimal policy was determined analytically and numerically.
Yuan and Xu [21, 22] considered, respectively, a deteriorating
repairable system and a cold standby repairable system with
two different components of different priority in use, both
with one repairman who can take multiple vacations. The
explicit expression of the expected cost rate was given, and

an optimal replacement policy was discussed. Yu et al. [23]
analyzed a phase-type geometric process repair model with
spare device procurement lead time and repairman’s multiple
vacations. Employing the theory of renewal reward process,
the explicit expression of the long-run average profit rate for
the system was derived, and the optimal maintenance policy
was also numerically determined.

However, to the best knowledge of the authors, whichever
the catalogue, the references above only concentrated on
the steady state (the steady-state indices or the steady-state
optimization problems) of the systems. It is because that
the transient behavior of a system is difficult to be studied.
Therefore, in reliability study researchers usually substitute
the steady-state solution for the instantaneous one of a
system, for the steady-state solution can be easily obtained
by Laplace transform and a limit theorem. Whereas, Laplace
transform should be based on the two hypotheses: (1) the
instantaneous solution of the interested system existed and
(2) the instantaneous solution of the system is stable.Whether
the hypotheses hold or not is still an open question and
should be justified. Moreover, the substitution of the steady-
state solution for the instantaneous one is not always rational.
For detailed information or explanations, please see [24, 25].

Warning systems emerge in the background of repairable
systems which are stepping into the times of requiring of
both advanced warning and real-time fault detection.The so-
called warning system is able to send emergency signals and
report dangerous situations prior to disasters, catastrophes
and/or other dangers need to watch out based on previ-
ous experiences and/or observed possible omens. Real-time
warning systems play an important role in fault management
in banking, telecommunications, securities, electric power,
and other industries. If the warning prompts during system
operation, operating staff can choose shut down the system,
operate carefully, or repair the system. Warning systems can
help users to achieve the 24-hour uninterrupted real-time
monitoring and alerting during running of various types of
network infrastructure sand application services. Therefore,
there is a need to study the repairable systems with warning
device.

This paper considers a simple repairable system with
a warning device and a repairman who can have delayed-
multiple vacations.The delayed-multiple vacationsmean that
the repairman will not leave for a vacation immediately if
there is no component failed. However, there is a stochastic
vacation-preparing period in which if a failed component
appears he will stop the vacation preparing and serve it
immediately; otherwise, he will take a rest on the end of the
vacation-preparing period.When he returns from a vacation,
he will either deal with the failed components waiting in
the system or prepare for another vacation. In this paper,
we are devoted to studying the asymptotic behavior of the
system by strongly continuous semigroup theory and make
comparisons of indices (such as reliability, availability, and the
probability of the repairman’s vacation) and profit of the two
systems with and without warning device.

The paper is structured as follows. The coming section
introduces the system model specifically and expresses it
into a group of integrodifferential equations by Markov
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renewal process theory and the probability analysis method.
Section 3 discusses the existence anduniqueness aswell as the
regularity of the system dynamic solution by the functional
analysis method. Section 4 studies the asymptotic behavior
of the system by strongly continuous semigroup theory or 𝐶

0

semigroup theory. Section 5 presents some reliability indices
of the system, and the steady-state indices are discussed from
the viewpoint of eigenfunction of the system operator. In
Section 6, comparisons of indices and profit of systems with
andwithout warning device aremade. And a brief conclusion
is offered in the last section.

2. System Formulation

The system model of interest is a simple repairable system
(i.e., a repairable system with a unit and a repairman) with
repairman vacation and a warning device. It is described
specifically as follows: at the initial time 𝑡 = 0, the unit is
new, the system begins to work, and the repairman starts
to prepare for the vacation. If the unit fails in the delayed-
vacation period, the repairman deals with it immediately,
and the delayed vacation is terminated. Otherwise, he leaves
for a vacation after the delayed-vacation period ends. If the
warning device sends alerts in the delayed-vacation period,
the repairman will stay in the system until the unit fails.
Whenever the repairman returns from a vacation, he either
prepares for the next vacation if the unit is working or deals
with the failed unit immediately or stays in the system if
the warning device has sent alerts. The repair facility neither
failed nor deteriorated. The unit is repaired as good as new.
Further, we assume the following.

(1) The distribution function of the working time of the
unit is 𝐹(𝑡) = 1 − 𝑒

−𝜆𝑡, 𝑡 ≥ 0, 𝜆 is a positive constant,
and the distribution function of its repair time is
𝐺(𝑡) = ∫

𝑡

0
𝑔(𝑥)d𝑥 = 1 − 𝑒

−∫
𝑡

0
𝜇(𝑥)d𝑥 and ∫

∞

0
𝑡d𝐺(𝑡) =

1/𝑏.
(2) The distribution function of the delayed-vacation

time of the repairman is 𝐷(𝑡) = 1 − 𝑒
−𝜀𝑡, 𝑡 ≥ 0, 𝜀 is

a positive constant, and the distribution function of
his vacation time is 𝑉(𝑡) = 1 − 𝑒

−𝜇
0
𝑡, 𝜇
0
is a positive

constant.
(3) The distribution function of the time of the warning

device from its beginning to work to its first sending
alerts is 𝑈(𝑡) = 1 − 𝑒

−𝛼
0
𝑡, 𝑡 ≥ 0; 𝛼

0
is a positive

constant.
(4) The above stochastic variables are independent of

each other.

Set 𝑁(𝑡) to be the state in which the system is at time 𝑡,
and assume all the possible states as follows:

0: the system is working, and the repairman is preparing
for the vacation;

1: the system is working, and the repairman is on
vacation;

2: the system is warning, and the repairman is in the
system;

3: the system is warning, and the repairman is on
vacation;

4: the unit failed, and the repairman is on vacation;

5: the repairman is dealing with the failed unit.

Then, by using probability analysis method, the system
model can be described as the following group of integrodif-
ferential equations:

(
d
d𝑡

+ 𝜀 + 𝛼
0
)𝑃
0 (𝑡) = 𝜇

0
𝑃
1 (𝑡) + ∫

∞

0

𝜇 (𝑥) 𝑃5 (𝑡, 𝑥) d𝑥,

(
d
d𝑡

+ 𝜇
0
+ 𝛼
0
)𝑃
1
(𝑡) = 𝜀𝑃

0
(𝑡) ,

(
d
d𝑡

+ 𝜆)𝑃
2
(𝑡) = 𝛼

0
𝑃
0
(𝑡) + 𝜇

0
𝑃
3
(𝑡) ,

(
d
d𝑡

+ 𝜇
0
+ 𝜆)𝑃

3 (𝑡) = 𝛼
0
𝑃
1 (𝑡) ,

(
d
d𝑡

+ 𝜇
0
)𝑃
4
(𝑡) = 𝜆𝑃

3
(𝑡) ,

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜇 (𝑥)] 𝑃

5
(𝑡, 𝑥) = 0.

(1)

The boundary condition is

𝑃
5
(𝑡, 0) = 𝜆𝑃

2
(𝑡) + 𝜇

0
𝑃
4
(𝑡) . (2)

The initial conditions are

𝑃
0
(0) = 1, the others equal to 0. (3)

Here, 𝑃
𝑖
(𝑡) represents the probability that the system is in

state 𝑖 at time 𝑡, 𝑖 = 0, 1, . . . , 4, and 𝑃
5
(𝑡, 𝑥)d𝑥 represents the

probability that the system is in state 5 with elapsed repair
time lying in [𝑥, 𝑥 + d𝑥) at time 𝑡.

Concerning the practical background,we can assume that

𝜇 (𝑥) ≥ 0, 𝜇 = sup
𝑥∈[0,∞)

𝜇 (𝑥) < ∞. (4)

3. Existence and Uniqueness of
System Solution

In this section, we will study the existence and uniqueness
as well as the regularity of the system solution. Firstly, we
will transform the system (1)–(3) into an equivalent integral
problem (P) by the method of characteristics. Secondly, the
existence and uniqueness of the local solution of problem
(P) are discussed by using the fixed point theory. Then, the
existence and uniqueness of the global solution of problem
(P) is further studied by a uniform priori estimate. Thus, the
existence and uniqueness of the solution of system (1)–(3) are
obtained. Moreover, the regularity or the𝐶

1 continuity of the
system solution is also discussed.
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3.1. Unique Existence of System Local Solution. For conve-
nience, we will give some notations. Let

𝐿
1
= 𝐿
1
[0,∞) , 𝑉

0
= 𝐶 [0, 𝑇] , 𝑉

1
= 𝐶 ([0, 𝑇] , 𝐿1)

(5)

with norm

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐿
1

= ∫

∞

0

󵄨󵄨󵄨󵄨𝜑 (𝑥)
󵄨󵄨󵄨󵄨 d𝑥,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑉
0

= max
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 ,

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑉
1

= max
𝑡∈[0,𝑇]

∫

∞

0

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨 d𝑥.

(6)

Choose

𝑀 = {𝑞 ∈ 𝑉
0
| 𝑞 (0) = 1, 𝑞 ≥ 0,

󵄩󵄩󵄩󵄩𝑞
󵄩󵄩󵄩󵄩 ≤ 2} . (7)

Clearly, 𝑀 is a closed subspace of 𝑉
0
.

By the method of characteristics [26], the following
equivalent proposition can be easily obtained [27, 28].

Theorem 1. For a given constant 𝑇 > 0, 𝑃
𝑖
(𝑡) ∈ 𝑉

0
, 𝑖 =

0, 1, . . . , 4, 𝑃
5
(𝑡, 𝑥) ∈ 𝑉

1
are the solution to (1)–(3) if and only

if they are the solution to the following integral problem (P):

𝑃
0
(𝑡) = 𝑒

−(𝜀+𝛼
0
)𝑡
+ ∫

𝑡

0

[𝜇
0
𝑃
1
(𝑠) + ∫

∞

0

𝜇 (𝑥) 𝑃
5
(𝑠, 𝑥) d𝑥]

× 𝑒
−(𝜀+𝛼

0
)(𝑡−𝑠) d𝑠,

𝑃
1
(𝑡) = ∫

𝑡

0

𝜀𝑃
0
(𝑠) 𝑒
−(𝜇
0
+𝛼
0
)(𝑡−𝑠) d𝑠,

𝑃
2 (𝑡) = ∫

𝑡

0

[𝛼
0
𝑃
0 (𝑠) + 𝜇

0
𝑃
3 (𝑠)] 𝑒

−𝜆(𝑡−𝑠) d𝑠,

𝑃
3
(𝑡) = ∫

𝑡

0

𝛼
0
𝑃
1
(𝑠) 𝑒
−(𝜇
0
+𝜆)(𝑡−𝑠) d𝑠,

𝑃
4 (𝑡) = ∫

𝑡

0

𝜆𝑃
3 (𝑠) 𝑒
−𝜇
0
(𝑡−𝑠) d𝑠,

𝑃
5
(𝑡, 𝑥) = {

0, 𝑥 ≥ 𝑡

[𝜆𝑃
2
(𝑡 − 𝑥) + 𝜇

0
𝑃
4
(𝑡 − 𝑥)] 𝑒

−∫
𝑥

0
𝜇(𝜏) d𝜏

, 𝑥 < 𝑡.

(P)

Clearly, to get the existence anduniqueness of the solution
of system (1)–(3), it is necessary to study the existence and
uniqueness of the solution of the above integral problem (P).
To this end, for any 𝑞 ∈ 𝑉

0
, we define six operators as follows:

𝐾
0
(𝑞) (𝑡) = 𝑒

−(𝜀+𝛼
0
)𝑡

+ ∫

𝑡

0

[𝜇
0
𝐾
1
(𝑞) (𝑠)

+∫

∞

0

𝜇 (𝑥)𝐾5 (𝑞) (𝑠, 𝑥) d𝑥]

× 𝑒
−(𝜀+𝛼

0
)(𝑡−𝑠)d𝑠

(8)

𝐾
1
(𝑞) (𝑡) = ∫

𝑡

0

𝜀𝑞 (𝑠) 𝑒
−(𝜇
0
+𝛼
0
)(𝑡−𝑠)d𝑠, (9)

𝐾
2
(𝑞) (𝑡) = ∫

𝑡

0

[𝛼
0
𝑞 (𝑠) + 𝜇

0
𝐾
3
(𝑞) (𝑠)] 𝑒

−𝜆(𝑡−𝑠)d𝑠, (10)

𝐾
3
(𝑞) (𝑡) = ∫

𝑡

0

𝛼
0
𝐾
1
(𝑞) (𝑠) 𝑒

−(𝜇
0
+𝜆)(𝑡−𝑠)d𝑠, (11)

𝐾
4
(𝑞) (𝑡) = ∫

𝑡

0

𝜆𝐾
3
(𝑞) (𝑠) 𝑒

−𝜇
0
(𝑡−𝑠)d𝑠, (12)

𝐾
5
(𝑞) (𝑡, 𝑥) = [𝜆𝐾

2
(𝑞) (𝑡 − 𝑥) + 𝜇

0
𝐾
4
(𝑞) (𝑡 − 𝑥)]

× 𝑒
−∫
𝑥

0
𝜇(𝜏)d𝜏

.

(13)

It can be seen that for 𝑞 ∈ 𝑉
0
, if the operators𝐾

𝑖
, 𝑖 = 1, 2, . . . , 5

are determined, it needs only to get the fixed point of the
operator 𝐾

0
in order to get the existence and uniqueness of

the solution of the integral problem (P).
From (9)–(13), the following two lemmas can be easily

obtained.

Lemma2. For a given constant𝑇 > 0 such that 𝑡 ∈ [0, 𝑇], then
for any 𝑞 ∈ 𝑀, there exist unique and nonnegative𝐾

𝑖
(𝑞) ∈ 𝑉

0
,

𝑖 = 1, . . . , 4 and 𝐾
5
(𝑞) ∈ 𝑉

1
satisfying (9)–(13).

Lemma 3. For a given constant 𝑇 > 0 such that 𝑡 ∈ [0, 𝑇],
then for any 𝑞, 𝑞 ∈ 𝑀, the following estimations hold:

󵄩󵄩󵄩󵄩𝐾1 (𝑞)
󵄩󵄩󵄩󵄩 ≤ 2𝜀𝑇,

󵄩󵄩󵄩󵄩𝐾1 (𝑞) − 𝐾
1
(𝑞)

󵄩󵄩󵄩󵄩 ≤ 𝜀𝑇
󵄩󵄩󵄩󵄩𝑞 − 𝑞

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝐾3 (𝑞)
󵄩󵄩󵄩󵄩 ≤ 2𝛼

0
𝜀𝑇
2
,

󵄩󵄩󵄩󵄩𝐾3 (𝑞) − 𝐾
3
(𝑞)

󵄩󵄩󵄩󵄩 ≤ 𝛼
0
𝜀𝑇
2 󵄩󵄩󵄩󵄩𝑞 − 𝑞

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝐾2 (𝑞)
󵄩󵄩󵄩󵄩 ≤ 2𝛼

0
𝑇 (1 + 𝜇

0
𝜀𝑇
2
) ,

󵄩󵄩󵄩󵄩𝐾2 (𝑞) − 𝐾
2
(𝑞)

󵄩󵄩󵄩󵄩 ≤ 𝛼
0
𝑇 (1 + 𝜇

0
𝜀𝑇
2
)
󵄩󵄩󵄩󵄩𝑞 − 𝑞

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝐾4 (𝑞)
󵄩󵄩󵄩󵄩 ≤ 2𝜆𝛼

0
𝜀𝑇
3
,

󵄩󵄩󵄩󵄩𝐾4 (𝑞) − 𝐾
4
(𝑞)

󵄩󵄩󵄩󵄩 ≤ 𝜆𝛼
0
𝜀𝑇
3 󵄩󵄩󵄩󵄩𝑞 − 𝑞

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝐾5 (𝑞)
󵄩󵄩󵄩󵄩 ≤ 2𝜆𝛼

0
𝑇
2
(1 + 2𝜇

0
𝜀𝑇
2
) ,

󵄩󵄩󵄩󵄩𝐾5 (𝑞) − 𝐾
5
(𝑞)

󵄩󵄩󵄩󵄩 ≤ 𝜆𝛼
0
𝑇
2
(1 + 2𝜇

0
𝜀𝑇
2
)
󵄩󵄩󵄩󵄩𝑞 − 𝑞

󵄩󵄩󵄩󵄩 .

(14)

Theorem 4. There exists a 𝑇 = 𝑇
0

> 0, such that 𝐾
0
has a

unique fixed point on 𝑀.

Proof. We prove the theorem in two steps. Firstly, we prove
that the operator 𝐾

0
is a mapping from 𝑀 to 𝑀. From the

definition of 𝐾
0
, we can know that if 𝑞 ∈ 𝑀, then 𝐾

0
(𝑞) ∈ 𝑉

0

and 𝐾
0
(𝑞)(0) = 1. Choose 0 < 𝑇

0
< 1 satisfying

𝑇
2

0
[𝜇
0
𝜀 + 𝜇𝜆𝛼

0
(1 + 2𝜇

0
𝜀)] <

1

2
. (15)
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Then, from (8) and Lemmas 2 and 3, it can be derived that

󵄩󵄩󵄩󵄩𝐾0 (𝑞)
󵄩󵄩󵄩󵄩 = max
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝐾0 (𝑞) (𝑡)
󵄨󵄨󵄨󵄨 ≤ 1 + 2𝑇

2

× [𝜇
0
𝜀 + 𝜇𝜆𝛼

0
𝑇 (1 + 2𝜇

0
𝜀𝑇
2
)]

< 1 + 2𝑇
2
[𝜇
0
𝜀 + 𝜇𝜆𝛼

0
(1 + 2𝜇

0
𝜀)] < 2.

(16)

This implies that 𝐾
0
(𝑞) ∈ 𝑀.

Secondly, we prove that the operator 𝐾
0
is a strictly

compressed mapping on 𝑀. For any 𝑞, 𝑞 ∈ 𝑀, from (8) and
Lemma 3, we have

󵄩󵄩󵄩󵄩𝐾0 (𝑞) − 𝐾
0
(𝑞)

󵄩󵄩󵄩󵄩

≤ 𝑇
2
[𝜇
0
𝜀 + 𝜇𝜆𝛼

0
𝑇 (1 + 2𝜇

0
𝜀𝑇
2
)]

󵄩󵄩󵄩󵄩𝑞 − 𝑞
󵄩󵄩󵄩󵄩

< 𝑇
2
[𝜇
0
𝜀 + 𝜇𝜆𝛼

0
(1 + 2𝜇

0
𝜀)]

󵄩󵄩󵄩󵄩𝑞 − 𝑞
󵄩󵄩󵄩󵄩

<
1

2

󵄩󵄩󵄩󵄩𝑞 − 𝑞
󵄩󵄩󵄩󵄩 .

(17)

This means that 𝐾
0
is strictly compressed. According to the

Banach contraction mapping principle combining the above
two steps, it can be deduced readily that𝐾

0
has a unique fixed

point on 𝑀. The proof of Theorem 4 is completed.

Theorems 1 and 4 combing Lemma 2 follows the existence
and uniqueness of the local solution of system (1)–(3).

Theorem 5 (existence and uniqueness of local solution).
There exists a 𝑇 = 𝑇

0
> 0 such that the system (1)–(3) has a

unique nonnegative local solution (𝑃
0
, 𝑃
1
, . . . , 𝑃

4
, 𝑃
5
) ∈ 𝑉
5

0
×𝑉
1
.

3.2. Unique Existence of System Global Solution. In this
section, we will prove the existence and uniqueness of the
global solution of system (1)–(3) by a uniform priori estimate
and extension theorem.

Lemma 6. For a given constant 𝑇 > 0, if (𝑃
0
, 𝑃
1
, . . . , 𝑃

4
, 𝑃
5
) ∈

𝑉
5

0
× 𝑉
1
is the nonnegative solution of system (1)–(3), then one

has:

𝐸 (𝑡) ≤ 𝑒
𝑄𝑇

, ∀𝑡 ∈ [0, 𝑇] , (18)

where 𝐸(𝑡) = ∑
4

𝑖=0
𝑃
𝑖
(𝑡)+∫

∞

0
𝑃
5
(𝑡, 𝑥) d𝑥,𝑄 = max{𝜀+𝛼

0
, 𝜇
0
+

𝛼
0
, 𝜇
0
+ 𝜆, 𝜇} and 𝜇 is defined in (4).

Proof. Because the solution of system (1)–(3) is the solution
of problem (P), the estimation of the system solution can be
obtained easily as follows:

𝑃
0
(𝑡) ≤ 𝑒

−(𝜀+𝛼
0
)𝑡
+ ∫

𝑡

0

𝜇
0
𝑃
1
(𝑠) d𝑠

+ ∫

𝑡

0

[∫

∞

0

𝜇 (𝑥) 𝑃
5
(𝑠, 𝑥) d𝑥] d𝑠

≤ 1 + 𝜇
0
∫

𝑡

0

𝑃
1
(𝑠) d𝑠

+ 𝜇∫

𝑡

0

[∫

∞

0

𝑃
5 (𝑠, 𝑥) d𝑥] d𝑠,

𝑃
1 (𝑡) ≤ 𝜀 ∫

𝑡

0

𝑃
0 (𝑠) d𝑠,

𝑃
2
(𝑡) ≤ 𝛼

0
∫

𝑡

0

𝑃
0
(𝑠) d𝑠 + 𝜇

0
∫

𝑡

0

𝑃
3
(𝑠) d𝑠,

𝑃
3 (𝑡) ≤ 𝛼

0
∫

𝑡

0

𝑃
1 (𝑠) d𝑠, 𝑃

4 (𝑡) ≤ 𝜆∫

𝑡

0

𝑃
3 (𝑠) d𝑠,

∫

∞

0

𝑃
5
(𝑡, 𝑥) d𝑥 ≤ 𝜆∫

∞

0

𝑃
2
(𝑡 − 𝑥) d𝑥

+ 𝜇
0
∫

∞

0

𝑃
4 (𝑡 − 𝑥) d𝑥

= 𝜆∫

𝑡

0

𝑃
2
(𝑠) d𝑠 + 𝜇

0
∫

𝑡

0

𝑃
4
(𝑠) d𝑠.

(19)

Thus,

𝐸 (𝑡) =

4

∑

𝑖=0

𝑃
𝑖 (𝑡) + ∫

∞

0

𝑃
5 (𝑡, 𝑥) d𝑥

≤ 1 + (𝜀 + 𝛼
0
) ∫

𝑡

0

𝑃
0 (𝑠) d𝑠

+ (𝜇
0
+ 𝛼
0
) ∫

𝑡

0

𝑃
1
(𝑠) d𝑠 + 𝜆∫

𝑡

0

𝑃
2
(𝑠) d𝑠

+ (𝜇
0
+ 𝜆)∫

𝑡

0

𝑃
3 (𝑠) d𝑠 + 𝜇

0
∫

𝑡

0

𝑃
4 (𝑠) d𝑠

+ 𝜇∫

𝑡

0

[∫

∞

0

𝑃
5
(𝑠, 𝑥) d𝑥] d𝑠.

(20)

Let 𝑄 = max{𝜀 + 𝛼
0
, 𝜇
0
+ 𝛼
0
, 𝜇
0
+ 𝜆, 𝜇}, then 𝐸(𝑡) ≤ 1 +

𝑄∫
𝑡

0
𝐸(𝑠)d𝑠. The Gronwall Inequality follows the estimation

immediately: 𝐸(𝑡) ≤ 𝑒
𝑄𝑇, for all 𝑡 ∈ [0, 𝑇]. The proof of

Lemma 6 is completed.

From Theorem 5, Lemma 6, and extension theorem, the
existence and uniqueness of the system solution can be
derived readily as below.

Theorem 7 (existence and uniqueness of global solution).
For any 𝑇 > 0, the system (1)–(3) has a unique nonnegative
solution (𝑃

0
, 𝑃
1
, . . . , 𝑃

4
, 𝑃
5
) ∈ 𝑉
5

0
× 𝑉
1
.

3.3. Regularity of System Solution. In this section, we discuss
the regularity or the 𝐶

1 continuity of the solution of system
(1)–(3).

FromTheorem 1 and the expressions in problem (P) and
noting the assumption (4), the following result is obvious.
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Theorem 8. For any 𝑇 > 0, if (𝑃
0
, 𝑃
1
, . . . , 𝑃

4
, 𝑃
5
) ∈ 𝑉
5

0
× 𝑉
1
is

the nonnegative solution of system (1)–(3), then 𝑃
𝑖
∈ 𝐶[0, 𝑇],

𝑖 = 0, 1, . . . , 4 and 𝑃
5
∈ 𝐶([0, 𝑇] × [0,∞)).

Theorem 9. For any 𝑇 > 0, assume 𝜇(𝑥) is continuous on
[0, 𝑇]. If (𝑃

0
, 𝑃
1
, . . . , 𝑃

4
, 𝑃
5
) ∈ 𝑉
5

0
× 𝑉
1
is the nonnegative solu-

tion of system (1)–(3), then 𝑃
𝑖
∈ 𝐶
1
[0, 𝑇], 𝑖 = 0, 1, . . . , 4, 𝑃

5
∈

𝐶
1
(𝐷), where 𝐷 = {(𝑡, 𝑥) | 0 < 𝑡 ≤ 𝑇, 0 ≤ 𝑥 < 𝑡}.

Proof. From Theorem 1 and the expressions in problem (P)
combing the assumption (4), it is not difficult to know that for
any 𝑇 > 0, if (𝑃

0
, 𝑃
1
, . . . , 𝑃

4
, 𝑃
5
) ∈ 𝑉
5

0
× 𝑉
1
is the nonnegative

solution of system (1)–(3), then𝑃
𝑖
(𝑡) is differentiable on [0, 𝑇]

and 𝑃
󸀠

𝑖
(𝑡) ∈ 𝐶[0, 𝑇] by Theorem 8, 𝑖 = 0, 1, . . . , 4. That is,

𝑃
𝑖
(𝑡) ∈ 𝐶

1
[0, 𝑇], 𝑖 = 0, 1, . . . , 4. And with the expression of

𝑃
5
(𝑡, 𝑥) in problem (P), we have

{{{

{{{

{

𝜕𝑃
5
(𝑡, 𝑥)

𝜕𝑡
= [𝜆𝑃

󸀠

2
(𝑡 − 𝑥) + 𝜇

0
𝑃
󸀠

4
(𝑡 − 𝑥)] 𝑒

−∫
𝑥

0
𝜇(𝜏)d𝜏

,

𝑥 < 𝑡

0, 𝑥 > 𝑡,

{{{{{{

{{{{{{

{

𝜕𝑃
5
(𝑡, 𝑥)

𝜕𝑥
=[−𝜆𝑃

󸀠

2
(𝑡 − 𝑥) − 𝜇

0
𝑃
󸀠

4
(𝑡 − 𝑥)] 𝑒

−∫
𝑥

0
𝜇(𝜏)d𝜏

−𝜇 (𝑥) [𝜆𝑃2 (𝑡 − 𝑥) + 𝜇
0
𝑃
4 (𝑡 − 𝑥)] 𝑒

−∫
𝑥

0
𝜇(𝜏)d𝜏

,

𝑥 < 𝑡

0, 𝑥 > 𝑡.

(21)

Then,

𝜕𝑃
5
(𝑡, 𝑥)

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑥<𝑡
𝑥→ 𝑡

= 𝜆𝛼
0
𝑒
−∫
𝑥

0
𝜇(𝜏)d𝜏

,

𝜕𝑃
5
(𝑡, 𝑥)

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑥>𝑡
𝑥→ 𝑡

= 0,

𝜕𝑃
5
(𝑡, 𝑥)

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑥<𝑡
𝑥→ 𝑡

= −𝜆𝛼
0
𝑒
−∫
𝑥

0
𝜇(𝜏)d𝜏

,

𝜕𝑃
5
(𝑡, 𝑥)

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑥>𝑡
𝑥→ 𝑡

= 0.

(22)

Therefore, by the continuity of𝑃󸀠
2
(𝑡), 𝑃
󸀠

4
(𝑡), and 𝜇(𝑥) on [0, 𝑇],

it can be yielded that𝑃
5
(𝑡, 𝑥) ∈ 𝐶

1
(𝐷), where𝐷 = {(𝑡, 𝑥) | 0 <

𝑡 ≤ 𝑇, 0 ≤ 𝑥 < 𝑡}. The proof of Theorem 9 is completed.

4. Stability of System Solution

In this section, we will study the asymptotic stability and
exponential stability of the solution of system (1)–(3). For
convenience, we will first translate the system equations into
an abstract Cauchy problem in a Banach space. Then, the
asymptotic stability of the system solution is discussed by
analyzing the spectral distributions of the system operator
and that of its adjoint operator. Further, the exponential
stability of the system solution is studied by analyzing the
essential spectrum bound of the system operator.

4.1. System Transformation. In this section, we will translate
the system equations into an abstract Cauchy problem in a
suitable Banach space.

First, choose the state space 𝑋 to be

𝑋 = {𝑃 = (𝑃
0
, 𝑃
1
, . . . , 𝑃

4
, 𝑃
5
(𝑥))

T
| 𝑃
𝑖
∈ R, 𝑖 = 0, 1, . . . , 4,

𝑃
5
(𝑥) ∈ 𝐿

1
(R
+
) , ‖𝑃‖ =

4

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑃𝑖
󵄨󵄨󵄨󵄨 +

󵄩󵄩󵄩󵄩𝑃5
󵄩󵄩󵄩󵄩𝐿1(R

+
)
< ∞} .

(23)

Here, R
+

denotes the set of nonnegative real numbers.
Obviously, 𝑋 is a Banach space.

Next, define operator 𝐴 as follows:

𝐴𝑃 =

(
(
(
(
(
(
(

(

−(𝜀 + 𝛼
0
) 𝑃
0
+ 𝜇
0
𝑃
1
+ ∫

∞

0

𝜇 (𝑥) 𝑃5 (𝑥) d𝑥

− (𝛼
0
+ 𝜇
0
) 𝑃
1
+ 𝜀𝑃
0

−𝜆𝑃
2
+ 𝛼
0
𝑃
0
+ 𝜇
0
𝑃
3

− (𝜆 + 𝜇
0
) 𝑃
3
+ 𝛼
0
𝑃
1

−𝜇
0
𝑃
4
+ 𝜆𝑃
3

−𝑃
󸀠

5
(𝑥) − 𝜇 (𝑥) 𝑃

5
(𝑥)

)
)
)
)
)
)
)

)

,

𝐷(𝐴) = {𝑃 = (𝑃
0
, 𝑃
1
, . . . , 𝑃

4
, 𝑃
5 (𝑥))

T

∈ 𝑋 | 𝑃
󸀠

5
(𝑥) ∈ 𝐿

1
(R
+
) ;

𝑃
5
(𝑥) is an absolutely continuous

function satisfying

𝑃
5
(0) = 𝜆𝑃

2
+ 𝜇
0
𝑃
4
} .

(24)

Then, the system (1)–(3) can be rewritten as an abstract
Cauchy problem in the Banach space 𝑋:

d𝑃 (𝑡, ⋅)

d𝑡
= 𝐴𝑃 (𝑡, ⋅) , 𝑡 ≥ 0

𝑃 (𝑡, ⋅) = (𝑃
0
(𝑡) , . . . , 𝑃

4
(𝑡) , 𝑃
5
(𝑡, 𝑥))

T

𝑃 (0, ⋅) ≜ 𝑃
0
= (1, 0, . . . , 0)

T
.

(25)

4.2. Properties of System Operator 𝐴. In this section, we will
study some properties of the system operator 𝐴.

Lemma 10. The system operator 𝐴 is a densely closed dissipa-
tive operator.

Proof. Firstly, we prove that 𝐴 is a closed operator. Choose
𝑃
𝑛

= (𝑃
𝑛0
, 𝑃
𝑛1
, . . . , 𝑃

𝑛4
, 𝑃
𝑛5
(𝑥))

T
∈ 𝐷(𝐴), 𝑃

𝑛
→ 𝑃 = (𝑃

0
,

𝑃
1
, . . . , 𝑃

4
, 𝑃
5
(𝑥))

T, 𝐴𝑃
𝑛

→ 𝑄 = (𝑄
0
, 𝑄
1
, . . . , 𝑄

4
, 𝑄
5
(𝑥))

T,
𝑛 → ∞. By Proposition 1 ([29, II.2.10]), we know that the
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differential operatorD is the infinitesimal generator of a left
translation semigroup {𝑇

𝑙
(𝑡)}
𝑡≥0

with domain

𝐷 (D)

= {𝑓 ∈ 𝐿
1
(R
+
) | 𝑓

is absolutely continuous satisfying

𝑓
󸀠
∈ 𝐿
1
(R
+
)} .

(26)

Because 𝐷(D) is closed and 𝑃
𝑛5

∈ 𝐷(D), then 𝑃
5

∈ 𝐷(D),
that is, 𝑃󸀠

5
(𝑥) ∈ 𝐿

1
(R
+
), and 𝑃

5
(𝑥) is absolutely continuous.

Moreover, 𝑃
𝑛5
(0) = 𝜆𝑃

2𝑛
+ 𝜇
0
𝑃
4𝑛

→ 𝜆𝑃
2
+ 𝜇
0
𝑃
4
, 𝑛 → ∞.

Thus, 𝑃 ∈ 𝐷(𝐴). Therefore, it is not difficult to get that 𝐴𝑃 =

𝑄 by noting the bounded measure of 𝜇(𝑥). This implies that
𝐴 is a closed operator.

Next, we prove that 𝐷(𝐴); the domain of 𝐴 is dense in
𝑋. For any 𝐹 = (𝐹

0
, 𝐹
1
, . . . , 𝐹

4
, 𝐹
5
(𝑥))

T
∈ 𝑋, let 𝑃

𝑖
= 𝐹
𝑖
, 𝑖 =

0, 1, . . . , 4. Because 𝐹
5
(𝑥) ∈ 𝐿

1
(R
+
), then for any 𝜀 > 0, there

exist 𝛿
1
> 0 and 𝐺 > 0 such that

∫

𝛿
1

0

󵄨󵄨󵄨󵄨𝐹5 (𝑥)
󵄨󵄨󵄨󵄨 d𝑥 <

𝜀

6
, ∫

∞

𝐺

󵄨󵄨󵄨󵄨𝐹5 (𝑥)
󵄨󵄨󵄨󵄨 d𝑥 <

𝜀

3
. (27)

Set 𝛿 = min{𝛿
1
, 1/6(1 + |𝜆𝑃

2
+ 𝜇
0
𝑃
4
|)}, and define

𝑃
5
(𝑥) =

{{

{{

{

𝜆𝑃
2
+ 𝜇
0
𝑃
4
, 0 ≤ 𝑥 < 𝛿

𝑔 (𝑥) , 𝛿 ≤ 𝑥 ≤ 𝐺

0, 𝑥 > 𝐺.

(28)

Here, 𝑔(𝑥) is continuously differentiable function on [𝛿, 𝐺]

satisfying 𝑔(𝛿) = 𝜆𝑃
5
+ 𝜇𝑃
4
, 𝑔(𝐺) = 0 and

∫

𝐺

𝛿

󵄨󵄨󵄨󵄨𝑃5 (𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨 d𝑥 <

𝜀

3
. (29)

Choose 𝑃 = (𝑃
0
, 𝑃
1
, . . . , 𝑃

4
, 𝑃
5
(𝑥))

T, then 𝑃 ∈ 𝐷(𝐴), and

‖𝑃 − 𝐹‖ = ∫

𝛿

0

󵄨󵄨󵄨󵄨𝑃5 (𝑥) − 𝐹
5 (𝑥)

󵄨󵄨󵄨󵄨 d𝑥

+ ∫

𝐺

𝛿

󵄨󵄨󵄨󵄨𝑃5 (𝑥) − 𝐹
5 (𝑥)

󵄨󵄨󵄨󵄨 d𝑥

+ ∫

∞

𝐺

󵄨󵄨󵄨󵄨𝑃5 (𝑥) − 𝐹
5
(𝑥)

󵄨󵄨󵄨󵄨 d𝑥

< ∫

𝛿

0

󵄨󵄨󵄨󵄨𝑃5 (𝑥)
󵄨󵄨󵄨󵄨 d𝑥 + ∫

𝛿

0

󵄨󵄨󵄨󵄨𝐹5 (𝑥)
󵄨󵄨󵄨󵄨 d𝑥

+
𝜀

3
+

𝜀

3
< (𝜆𝑃

2
+ 𝜇
0
𝑃
4
) 𝛿 +

𝜀

6
+

2𝜀

3

< 𝜀.

(30)

This implies that 𝐷(𝐴) is dense in 𝑋.
Thirdly, we prove that 𝐴 is a dissipative operator. In

fact, for any 𝑃 = (𝑃
0
, 𝑃
1
, . . . , 𝑃

4
, 𝑃
5
(𝑥))

T
∈ 𝐷(𝐴), choose

𝑄 = (𝑄
0
, 𝑄
1
, . . . , 𝑄

4
, 𝑄
5
(𝑥))

T, where 𝑄
𝑖

= ‖𝑃‖ sgn(𝑃
𝑖
),

𝑖 = 0, 1, . . . , 4, 𝑄
5
(𝑥) = ‖𝑃‖ sgn(𝑃

5
(𝑥)). Clearly, 𝑄 ∈ 𝑋

∗
=

R5 × 𝐿
∞

(R
+
), the dual space of 𝑋, and ⟨𝑃, 𝑄⟩ = ‖𝑃‖

2
=

‖𝑄‖
2. Moreover, it is not difficult to know that ⟨𝐴𝑃,𝑄⟩ ≤ 0.

This manifests that 𝐴 is a dissipative operator. The proof of
Lemma 10 is completed.

Lemma 11. {𝛾 ∈ C | Re 𝛾 > 0 or 𝛾 = 𝑖𝑎, 𝑎 ∈ R \ {0}} ⊂ 𝜌(𝐴),
the resolvent set of the system operator 𝐴.

Proof. For any 𝐺 = (𝐺
0
, 𝐺
1
, . . . , 𝐺

4
, 𝐺
5
(𝑥))

T
∈ 𝑋, consider

the operator equation (𝛾𝐼 − 𝐴)𝑃 = 𝐺. That is,

(𝛾 + 𝜀 + 𝛼
0
) 𝑃
0
= 𝐺
0
+ 𝜇
0
𝑃
1
+ ∫

∞

0

𝜇 (𝑥) 𝑃5 (𝑥) d𝑥, (31)

(𝛾 + 𝛼
0
+ 𝜇
0
) 𝑃
1
= 𝐺
1
+ 𝜀𝑃
0
, (32)

(𝛾 + 𝜆) 𝑃
2
= 𝐺
2
+ 𝛼
0
𝑃
0
+ 𝜇
0
𝑃
3
, (33)

(𝛾 + 𝜆 + 𝜇
0
) 𝑃
3
= 𝐺
3
+ 𝛼
0
𝑃
1
, (34)

(𝛾 + 𝜇
0
) 𝑃
4
= 𝐺
4
+ 𝜆𝑃
3
, (35)

𝑃
󸀠

5
(𝑥) + (𝛾 + 𝜇 (𝑥)) 𝑃

5
(𝑥) = 𝐺

5
(𝑥) , (36)

𝑃
5
(0) = 𝜆𝑃

2
+ 𝜇
0
𝑃
4
. (37)

Solving (36) with the help of (37) yields

𝑃
5 (𝑥) = 𝑃

5 (0) 𝑒
−∫
𝑥

0
(𝛾+𝜇(𝑠))d𝑠

+ ∫

𝑥

0

𝐺
5 (𝜏) 𝑒

−∫
𝑥

𝜏
(𝛾+𝜇(𝑠))d𝑠d𝜏

= (𝜆𝑃
2
+ 𝜇
0
𝑃
4
) 𝑒
−∫
𝑥

0
(𝛾+𝜇(𝑠))d𝑠

+ 𝑌
5
(𝑥) ,

(38)

where 𝑌
5
(𝑥) = ∫

𝑥

0
𝐺
5
(𝜏)𝑒
−∫
𝑥

𝜏
[𝛾+𝜇(𝑠)]d𝑠d𝜏. By [30], there exists a

constant 𝑁, such that

∫

∞

𝑡

𝑒
−∫
𝑥

0
𝜇(𝑠)d𝑠d𝑥 ≤ 𝑁, ∀𝑡 ≥ 0. (39)

Thus, 𝑃
5
(𝑥) ∈ 𝐿

1
(R
+
).

Substituting (38) into (31) derives

(𝛾 + 𝜀 + 𝛼
0
) 𝑃
0
= 𝐺
0
+ 𝜇
0
𝑃
1

+ ∫

∞

0

𝜇 (𝑥)

× [𝑃
5
(0) 𝑒
−∫
𝑥

0
(𝛾+𝜇(𝑠))d𝑠

+ 𝑌
5
(𝑥)] d𝑥

= 𝜇
0
𝑃
1
+ (𝜆𝑃

2
+ 𝜇
0
𝑃
4
)

× ∫

∞

0

𝜇 (𝑥) 𝑒
−∫
𝑥

0
(𝛾+𝜇(𝑠))d𝑠d𝑥 + 𝑌

0
,

(40)

where 𝑌
0
= 𝐺
0
+ ∫
∞

0
𝜇(𝑥)𝑌

5
(𝑥)d𝑥.
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Combing (40) and (32)–(35) follows the following matrix
equation:

(

𝛾 + 𝜀 + 𝛼
0

−𝜇
0

−𝜆∫
∞

0
𝜇 (𝑥) 𝑒

∫
𝑥

0
(𝛾+𝜇(𝑠))d𝑠d𝑥 0 −𝜇

0
∫
∞

0
𝜇 (𝑥) 𝑒

−∫
𝑥

0
(𝛾+𝜇(𝑠))d𝑠d𝑥

−𝜀 𝛾 + 𝛼
0
+ 𝜇
0

0 0 0

−𝛼
0

0 𝛾 + 𝜆 −𝜇
0

0

0 −𝛼
0

0 𝛾 + 𝜆 + 𝜇
0

0

0 0 0 −𝜆 𝛾 + 𝜇
0

)(

𝑃
0

𝑃
1

𝑃
2

𝑃
3

𝑃
4

)(

𝑌
0

𝐺
1

𝐺
2

𝐺
3

𝐺
4

). (41)

For Re 𝛾 > 0 or 𝛾 = 𝑖𝑎, 𝑎 ∈ R \ {0}, it is not difficult to get
the following estimation from the definition of modulus of
complex number:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

∞

0

𝜇 (𝑥) 𝑒
−∫
𝑥

0
(𝛾+𝜇(𝑠))d𝑠d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1. (42)

Thus, the coefficient matrix of the matrix equation (41) is
a strictly diagonally dominant matrix for column. So, it is
inverse, and the matric equation (41) has a unique solution
(𝑃
0
, 𝑃
1
, 𝑃
2
, 𝑃
3
, 𝑃
4
)
T. Combing (38), it can be seen that (31)–

(37) have a unique solution 𝑃 = (𝑃
0
, 𝑃
1
, 𝑃
2
, 𝑃
3
, 𝑃
4
, 𝑃
5
(𝑥))

T
∈

𝐷(𝐴). This means that 𝛾𝐼 − 𝐴 is surjective. Because 𝛾𝐼 − 𝐴 is
closed and 𝐷(𝐴) is dense in 𝑋, then (𝛾𝐼 − 𝐴)

−1 exists and is
bounded by Inverse Operator Theorem, for any Re 𝛾 > 0 or
𝛾 = 𝑖𝑎, 𝑎 ∈ R \ {0}. The proof of Lemma 11 is completed.

Lemma 12. 0 is an eigenvalue of the system operator 𝐴 with
algebraic multiplicity one.

Proof. Consider the operator equation (𝛾𝐼 − 𝐴)𝑃 = 0. Let
𝐷(𝛾) be the determinant of coefficient of the matrix equation
(41), then we have

𝐷(𝛾) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 + 𝜀 + 𝛼
0

−𝜇
0

−𝜆 (1 − 𝛾𝑔 (𝛾)) 0 −𝜇
0
(1 − 𝛾𝑔 (𝛾))

−𝜀 𝛾 + 𝛼
0
+ 𝜇
0

0 0 0

−𝛼
0

0 𝛾 + 𝜆 −𝜇
0

0

0 −𝛼
0

0 𝛾 + 𝜆 + 𝜇
0

0

0 0 0 −𝜆 𝛾 + 𝜇
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝛾𝐹 (𝛾) . (43)

Here, 𝑔(𝛾) = ∫
∞

0
𝑒
−∫
𝑥

0
(𝛾+𝜇(𝑠))d𝑠 and

𝐹 (𝛾) = 𝛼
0
𝜆𝜇
0
𝑔 (𝛾) (𝜆 + 𝜇

0
) (𝜀 + 𝛼

0
+ 𝜇
0
)

+ 𝛼
0
(𝜀𝜇
2

0
+ 𝜇
3
+ 𝜇
2

0
𝛼
0
)

+ 𝜆 (𝛼
0
+ 𝜇
0
) [𝜆 (𝜇

0
+ 𝜀)

+𝜇
0
(𝛼
0
+ 𝜀 + 𝜇

0
)]

+ 𝛼
0
𝜆𝛾𝑔 (𝛾) (2𝜀𝜇

0
+ 2𝛼
0
𝜇
0

+3𝜇
2

0
+ 2𝜆𝜇

0
+ 𝛼
0
𝜆)

+ 𝛾 [ (𝜆𝜇
0
+ 𝜆𝛼
0
+ 𝛼
0
𝜇
0
) (4𝜇
0
+ 2𝜀 + 𝜆)

+ (𝜆
2
+ 𝜇
2

0
) (𝜇
0
+ 𝜀)

+2𝜇
0
𝛼
2

0
+ 𝜀𝜆𝜇

0
+ 𝜆𝛼
2

0
]

+ 𝛼
0
𝜆𝛾
2
𝑔 (𝛾) (3𝜇

0
+ 𝛼
0
+ 𝜆)

+ 𝛾
2
(5𝜆𝜇
0
+ 2𝜀𝜆 + 𝜆

2
+ 𝛼
2

0
+ 3𝜇
2

0

+𝜀𝛼
0
+ 5𝜇
0
𝛼
0
+ 3𝜆𝛼

0
+ 2𝜀𝜇
0
)

+ 𝛾
3
(2𝜆 + 𝜀 + 2𝛼

0
+ 3𝜇
0
+ 𝛼
0
𝜆𝑔 (𝛾))

+ 𝛾
4
.

(44)

Because

𝐹 (0) = 𝛼
0
𝜆𝜇
0
𝑔 (0) (𝜆 + 𝜇

0
) (𝜀 + 𝛼

0
+ 𝜇
0
)

+ 𝛼
0
(𝜀𝜇
2

0
+ 𝜇
3
+ 𝜇
2

0
𝛼
0
) + 𝜆 (𝛼

0
+ 𝜇
0
)

× [𝜆 (𝜇
0
+ 𝜀) + 𝜇

0
(𝛼
0
+ 𝜀 + 𝜇

0
)] > 0.

(45)

This means 𝛾 = 0 is an eigenvalue of the system operator
𝐴 with algebraic multiplicity one. The proof of Lemma 12 is
completed.

4.3. Properties of Adjoint Operator𝐴∗. In this section, we will
study some properties of 𝐴∗, the adjoint operator of system
operator 𝐴.

The dual space of 𝑋 is

𝑋
∗
= R
5
× 𝐿
∞

(R
+
) (46)

with norm ‖𝑄‖ = sup{|𝑄
𝑖
|, ‖𝑄
5
‖
𝐿
∞
(R
+
)
, 𝑖 = 0, 1, . . . , 4} for𝑄 =

(𝑄
0
, 𝑄
1
, . . . , 𝑄

4
, 𝑄
5
(𝑥))

T
∈ 𝑋
∗.
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Lemma 13. 𝐴
∗, the adjoint operator of the system operator 𝐴

is as follows:

𝐴
∗
𝑄 =

(
(
(
(
(

(

−(𝜀 + 𝛼
0
) 𝑄
0
+ 𝜀𝑄
1
+ 𝛼
0
𝑄
2

− (𝛼
0
+ 𝜇
0
) 𝑄
1
+ 𝜇
0
𝑄
0
+ 𝛼
0
𝑄
3

−𝜆𝑄
2
+ 𝜆𝑄
5 (0)

− (𝜆 + 𝜇
0
) 𝑄
3
+ 𝜇
0
𝑄
2
+ 𝜆𝑄
4

−𝜇
0
𝑄
4
+ 𝜇
0
𝑄
5
(0)

𝑄
󸀠

5
(𝑥) + 𝜇 (𝑥) [𝑄

0
− 𝑄
5
(𝑥)]

)
)
)
)
)

)

≜ (𝐶 + 𝐷)𝑄

(47)

with domain

𝐷(𝐴
∗
)

= {𝑄 = (𝑄
0
, 𝑄
1
, . . . , 𝑄

4
, 𝑄
5
(𝑥))

T

∈ 𝑋
∗
| 𝑄
󸀠

5
(𝑥) ∈ 𝐿

∞
(R
+
) , 𝑄
5
(𝑥)

is absolutely continuous satisfying

𝑄
5
(∞) < ∞} .

(48)

Here,

𝐶𝑄 = diag( − (𝜀 + 𝛼
0
) , − (𝛼

0
+ 𝜇
0
) ,

−𝜆, − (𝜆 + 𝜇
0
) , −𝜇
0
,
d
d𝑥

− 𝜇 (𝑥))𝑄,

𝐷𝑄 =

(
(
(
(
(

(

0 𝜀 𝛼
0

0 0 0

𝜇
0

0 0 𝛼
0

0 0

0 0 0 0 0 𝜆𝜃 (⋅)

0 0 𝜇
0

0 𝜆 0

0 0 0 0 0 𝜇
0
𝜃 (⋅)

𝜇 (𝑥) 0 0 0 0 0

)
)
)
)
)

)

𝑄

(49)

and 𝜃(⋅) : 𝐿
∞

(R
+
) → C, satisfying 𝜃(𝑓) = 𝑓(0).

Proof. For any 𝑃 ∈ 𝐷(𝐴) and 𝑄 ∈ 𝑋
∗, 𝐴∗ and its domain

𝐷(𝐴
∗
) can be readily derived by the equality ⟨𝐴𝑃,𝑄⟩ =

⟨𝑃, 𝐴
∗
𝑄⟩. The proof of Lemma 13 is completed.

Lemma 14. 𝑆 = {𝛾 ∈ C | sup{(𝜀 + 𝛼
0
)/|𝛾 + 𝜀 + 𝛼

0
|, (𝜇
0
+

𝛼
0
)/|𝛾 + 𝜇

0
+ 𝛼
0
|, 𝜆/|𝛾 + 𝜆|, (𝜆 + 𝜇

0
)/|𝛾 + 𝜆 + 𝜇

0
|, 𝜇
0
/|𝛾 + 𝜇

0
|,

𝑀/(Re 𝛾 + 𝑀)} < 1} ⊂ 𝜌(𝐴
∗
), the resolvent set of 𝐴∗, where

𝑀 = sup
𝑥≥0

𝜇(𝑥).

Proof. For any 𝑊 = (𝑊
0
,𝑊
1
, . . . ,𝑊

4
,𝑊
5
(𝑥))

T
∈ 𝑋

∗,
consider the equation (𝛾𝐼 − 𝐶)𝑄 = 𝐷𝑊. That is,

(𝛾 + 𝜀 + 𝛼
0
) 𝑄
0
= 𝜀𝑊
1
+ 𝛼
0
𝑊
2
, (50)

(𝛾 + 𝛼
0
+ 𝜇
0
) 𝑄
1
= 𝜇
0
𝑊
0
+ 𝛼
0
𝑊
3
, (51)

(𝛾 + 𝜆)𝑄
2
= 𝜆𝑊
5
(0) , (52)

(𝛾 + 𝜆 + 𝜇
0
) 𝑄
3
= 𝜇
0
𝑊
2
+ 𝜆𝑊
4
, (53)

(𝛾 + 𝜇
0
) 𝑄
4
= 𝜇
0
𝑊
5
(0) , (54)

d𝑄
5
(𝑥)

d𝑥
= (𝛾 + 𝜇 (𝑥))𝑄

5
(𝑥) − 𝜇 (𝑥)𝑊

0
. (55)

Solving (50)–(54) yields

𝑄
0
=

𝜀𝑊
1
+ 𝛼
0
𝑊
2

𝛾 + 𝜀 + 𝛼
0

, 𝑄
1
=

𝜇
0
𝑊
0
+ 𝛼
0
𝑊
3

𝛾 + 𝛼
0
+ 𝜇
0

,

𝑄
2
=

𝜆𝑊
5
(0)

𝛾 + 𝜆
,

𝑄
3
=

𝜇
0
𝑊
2
+ 𝜆𝑊
4

𝛾 + 𝜆 + 𝜇
0

, 𝑄
4
=

𝜇
0
𝑊
5 (0)

𝛾 + 𝜇
0

.

(56)

Solving (55) derives

𝑄
5
(𝑥) = 𝑒

∫
𝑥

0
(𝛾+𝜇(𝑠))d𝑠

[𝑄
5
(0) − ∫

𝑥

0

𝑊
0
𝜇 (𝜏) 𝑒

−∫
𝜏

0
(𝛾+𝜇(𝑠))d𝑠d𝜏]

(57)

multiplying 𝑒
−∫
𝑥

0
(𝛾+𝜇(𝑠))d𝑠 to the two sides of (57) and letting

𝑥 → ∞ by noting 𝑄
5
(∞) < ∞ follows

𝑄
5 (0) = ∫

∞

0

𝑊
0
𝜇 (𝜏) 𝑒

−∫
𝜏

0
(𝛾+𝜇(𝑠))d𝑠d𝜏. (58)

Substituting (58) into (57) yields

𝑄
5 (𝑥) = 𝑒

∫
𝑥

0
(𝛾+𝜇(𝑠))d𝑠

∫

∞

𝑥

𝑊
0
𝜇 (𝜏) 𝑒

−∫
𝜏

0
(𝛾+𝜇(𝑠))d𝑠d𝜏. (59)

Thus, we can get the following estimation:

󵄩󵄩󵄩󵄩𝑄5
󵄩󵄩󵄩󵄩𝐿∞[0,∞)

= sup
𝑥∈[0,∞)

󵄨󵄨󵄨󵄨𝑄5 (𝑥)
󵄨󵄨󵄨󵄨

= sup
𝑥∈[0,∞)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
∫
𝑥

0
(𝛾+𝜇(𝑠))d𝑠

×∫

∞

𝑥

𝑊
0
𝜇 (𝜏) 𝑒

−∫
𝜏

0
(𝛾+𝜇(𝑠))d𝑠d𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ‖𝑊‖ sup
𝑥∈[0,∞)

𝑒
∫
𝑥

0
(Re 𝛾+𝜇(𝑠))d𝑠

× ∫

∞

𝑥

−𝑒
−Re 𝛾𝜏d𝑒−∫

𝜏

0
𝜇(𝑠)d𝑠
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= ‖𝑊‖ sup
𝑥∈[0,∞)

𝑒
∫
𝑥

0
(Re 𝛾+𝜇(𝑠))d𝑠

× [𝑒
−∫
𝑥

0
(Re 𝛾+𝜇(𝑠))d𝑠

−Re 𝛾∫

∞

𝑥

𝑒
−∫
𝜏

0
(Re 𝛾+𝜇(𝑠))d𝑠d𝜏]

= ‖𝑊‖ sup
𝑥∈[0,∞)

[1 − Re 𝛾𝑒Re 𝛾𝑥

×∫

∞

𝑥

𝑒
−∫
𝜏

𝑥
(Re 𝛾+𝜇(𝑠))d𝑠d𝜏]

≤ ‖𝑊‖ sup
𝑥∈[0,∞)

[1 − Re 𝛾𝑒Re 𝛾𝑥

× ∫

∞

𝑥

𝑒
−∫
𝜏

𝑥
(Re 𝛾+𝑀)d𝑠d𝜏]

= ‖𝑊‖ sup
𝑥∈[0,∞)

[1 − Re 𝛾𝑒(Re 𝛾+𝑀)𝑥

×∫

∞

𝑥

𝑒
−(Re 𝛾+𝑀)𝜏d𝜏]

= ‖𝑊‖ sup
𝑥∈[0,∞)

[1 − Re 𝛾𝑒(Re 𝛾+𝑀)𝑥

×
𝑒
−(Re 𝛾+𝑀)𝑥

Re 𝛾 + 𝑀
]

=
𝑀

Re 𝛾 + 𝑀
‖𝑊‖ ,

(60)

where 𝑀 = sup
𝑥≥0

𝜇(𝑥).
Equation (56) derive the following estimations:

󵄨󵄨󵄨󵄨𝑄0
󵄨󵄨󵄨󵄨 ≤

𝜀 + 𝛼
0

󵄨󵄨󵄨󵄨𝛾 + 𝜀 + 𝛼
0

󵄨󵄨󵄨󵄨

‖𝑊‖ ,
󵄨󵄨󵄨󵄨𝑄1

󵄨󵄨󵄨󵄨 ≤
𝜇
0
+ 𝛼
0

󵄨󵄨󵄨󵄨𝛾 + 𝛼
0
+ 𝜇
0

󵄨󵄨󵄨󵄨

‖𝑊‖ ,

󵄨󵄨󵄨󵄨𝑄2
󵄨󵄨󵄨󵄨 ≤

𝜆

󵄨󵄨󵄨󵄨𝛾 + 𝜆
󵄨󵄨󵄨󵄨

‖𝑊‖ ,
󵄨󵄨󵄨󵄨𝑄3

󵄨󵄨󵄨󵄨 ≤
𝜆 + 𝜇
0

󵄨󵄨󵄨󵄨𝛾 + 𝜆 + 𝜇
0

󵄨󵄨󵄨󵄨

‖𝑊‖ ,

󵄨󵄨󵄨󵄨𝑄4
󵄨󵄨󵄨󵄨 ≤

𝜇
0

󵄨󵄨󵄨󵄨𝛾 + 𝜇
0

󵄨󵄨󵄨󵄨

‖𝑊‖ ,
󵄨󵄨󵄨󵄨𝑄5

󵄨󵄨󵄨󵄨 ≤
𝑀

Re 𝛾 + 𝑀
‖𝑊‖ .

(61)

Then, for 𝛾 ∈ 𝑆, we have

‖𝑄‖ =

4

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑄𝑖
󵄨󵄨󵄨󵄨 +

󵄩󵄩󵄩󵄩𝑄5
󵄩󵄩󵄩󵄩

≤ sup{
𝜀 + 𝛼
0

󵄨󵄨󵄨󵄨𝛾 + 𝜀 + 𝛼
0

󵄨󵄨󵄨󵄨

,
𝜇
0
+ 𝛼
0

󵄨󵄨󵄨󵄨𝛾 + 𝛼
0
+ 𝜇
0

󵄨󵄨󵄨󵄨

,

𝜆

󵄨󵄨󵄨󵄨𝛾 + 𝜆
󵄨󵄨󵄨󵄨

,
𝜆 + 𝜇
0

󵄨󵄨󵄨󵄨𝛾 + 𝜆 + 𝜇
0

󵄨󵄨󵄨󵄨

,

𝜇
0

󵄨󵄨󵄨󵄨𝛾 + 𝜇
0

󵄨󵄨󵄨󵄨

,
𝑀

Re 𝛾 + 𝑀
}‖𝑊‖

< ‖𝑊‖ .

(62)

This implies that ‖(𝛾𝐼 − 𝐶)
−1

𝐷‖ < 1. Thus, [𝐼 − (𝛾𝐼 − 𝐶)
−1

𝐷]

is invertible. Therefore, (𝛾𝐼 − 𝐴
∗
) is invertible and

(𝛾𝐼 − 𝐴
∗
)
−1

= [𝛾𝐼 − (𝐶 + 𝐷)]
−1

= [𝐼 − (𝛾𝐼 − 𝐶)
−1

𝐷]
−1

(𝛾𝐼 − 𝐶)
−1

,

𝛾 ∈ 𝑆.

(63)

The proof of Lemma 14 is completed.

Lemma 15. 0 is an eigenvalue of operator 𝐴
∗ with algebraic

multiplicity one.

Proof. We prove Lemma 15 in two steps. Firstly, we prove
that 0 is an eigenvalue of operator 𝐴

∗. For any 𝑄 ∈ 𝐷(𝐴
∗
),

consider the operator equation 𝐴
∗
𝑄 = 0, that is,

(𝜀 + 𝛼
0
) 𝑄
0
= 𝜀𝑄
1
+ 𝛼
0
𝑄
2
, (64)

(𝛼
0
+ 𝜇
0
) 𝑄
1
= 𝜇
0
𝑄
0
+ 𝛼
0
𝑄
3
, (65)

𝜆𝑄
2
= 𝜆𝑄
5
(0) , (66)

(𝜆 + 𝜇
0
) 𝑄
3
= 𝜇
0
𝑄
2
+ 𝜆𝑄
4
, (67)

𝜇
0
𝑄
4
= 𝜇
0
𝑄
5
(0) , (68)

𝑄
󸀠

5
(𝑥) = 𝜇 (𝑥)𝑄

5
(𝑥) − 𝑄

0
𝜇 (𝑥) . (69)

Solving (69) yields

𝑄
5
(𝑥) = 𝑒

∫
𝑥

0
𝜇(𝑠)d𝑠

[𝑄
5
(0) − 𝑄

0
∫

𝑥

0

𝜇 (𝜏) 𝑒
−∫
𝜏

0
𝜇(𝑠)d𝑠d𝜏] (70)

multiplying 𝑒
−∫
𝑥

0
𝜇(𝑠)d𝑠 to the two sides of (70) and letting 𝑥 →

∞ by noting 𝑄
5
(∞) < ∞ derive

𝑄
5 (0) = 𝑄

0
∫

∞

0

𝜇 (𝜏) 𝑒
−∫
𝜏

0
𝜇(𝑠)d𝑠d𝜏 = 𝑄

0
. (71)

Combing (64)–(68) with (71) follows

𝑄
0
= 𝑄
1
= 𝑄
2
= 𝑄
3
= 𝑄
4
= 𝑄
5
(0) . (72)

Substituting (71) into (70) yields

𝑄
5
(𝑥) = 𝑄

0
𝑒
∫
𝑥

0
𝜇(𝑠)d𝑠

[1 + ∫

𝑥

0

d𝑒−∫
𝜏

0
𝜇(𝑠)d𝑠

] = 𝑄
0
. (73)

This implies that 𝜂𝑄
∗

(𝜂 ̸= 0) is the eigenfunction corre-
sponding to eigenvalue 0 of operator 𝐴

∗, where 𝑄
∗

=

(1, 1, . . . , 1)
T.

Next, we prove that the algebraic multiplicity of 0 in 𝑋
∗

is one. From the above step, we can see that the geometric
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multiplicity of 0 in 𝑋
∗ is one. Then, we only need to verify

the algebraic index of 0 in 𝑋
∗ which is also one according

to [31]. We use the reduction to absurdity. Suppose that the
algebraic index of 0 in𝑋

∗ is 2 without loss of generality, then
there exists 𝑌 ∈ 𝑋

∗, such that 𝐴∗𝑌 = 𝑄
∗. It is obvious that

0 = ⟨𝐴𝑃, 𝑌⟩ = ⟨𝑃, 𝐴
∗
𝑌⟩ = ⟨𝑃,𝑄

∗
⟩ , (74)

where 𝑃 is the positive eigenfunction corresponding to
eigenvalue 0 of 𝐴. However,

⟨𝑃, 𝑄
∗
⟩ =

4

∑

𝑖=0

𝑃
𝑖
+ ∫

∞

0

𝑃
5
(𝑥) d𝑥 > 0 (75)

which contradicts (74). Thus, the algebraic index of 0 in 𝑋
∗

is one. Therefore, the algebraic multiplicity of 0 in 𝑋
∗ is one.

The proof of Lemma 15 is completed.

4.4. Asymptotic Stability of System Solution. In this section,
we will present the asymptotic stability of the system solution
by using 𝐶

0
semigroup theory.

Recalling PhillipsTheorem (see [32]) together with Lem-
mas 10, 11, and 3, we can obtain the following results.

Theorem 16. The system operator 𝐴 generates a positive 𝐶
0

semigroup of contraction 𝑇(𝑡).

Theorem 17. The system (25) has a unique nonnegative time-
dependent solution 𝑃(𝑡, ⋅) which satisfies

‖𝑃 (𝑡, ⋅)‖ = 1, ∀𝑡 ∈ [0,∞) . (76)

Proof. From Theorem 16 and [32], it can be derived that the
system (25) has a unique nonnegative solution 𝑃(𝑡, ⋅) which
can be expressed as

𝑃 (𝑡, ⋅) = 𝑇 (𝑡) 𝑃
0
, ∀𝑡 ∈ [0,∞) . (77)

Because 𝑃(𝑡, ⋅) satisfies (1)–(3), it is not difficult to know that

d ‖𝑃 (𝑡, ⋅)‖

d𝑡
= 0. (78)

Therefore,

‖𝑃 (𝑡, ⋅)‖ =
󵄩󵄩󵄩󵄩𝑇 (𝑡) 𝑃

0

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑃0

󵄩󵄩󵄩󵄩 = 1, ∀𝑡 ∈ [0,∞) . (79)

This just reflects the physical meaning of 𝑃(𝑡, ⋅). The proof of
Theorem 17 is completed.

Remark 18. Because the initial value 𝑃
0
of the system (25)

belongs to the domain 𝐷(𝐴) of the system operator 𝐴,
then the nonnegative time-dependent solution of the system
expressed in (77) is the strong solution of the system (25).

Noting that the 𝐶
0
semigroup 𝑇(𝑡) generated by 𝐴 is

contractive according toTheorem 16, it is uniformly bounded
certainly. Thus, recalling [33] combining Lemmas 11, 12, 14,
and 15, we can know that the time-dependent solution of the
system strongly converges to its steady-state solution. That is
the following result.

Theorem 19. Let 𝑃̂ be the eigenfunction corresponding to
eigenvalue 0 of the system operator𝐴 satisfying ‖𝑃̂‖ = 1, and let
𝑄
∗ be defined in Lemma 15, then the time-dependent solution

𝑃(𝑡, ⋅) of the system (25) converges to the nonnegative steady-
state solution 𝑃̂. That is,

lim
𝑡→∞

𝑃 (𝑡, ⋅) = ⟨𝑃
0
, 𝑄
∗
⟩ 𝑃̂ = 𝑃̂, (80)

where 𝑃
0
is the initial value of the system.

4.5. Exponential Stability of System Solution. In Section 4.4,
we have obtained the asymptotic stability of the system. In
other words, the dynamic solution of the system asymptot-
ically converges to its steady-state solution. However, there
are still two problems: first, the convergence rate is unknown;
second, the convergence is subject to some factors such
as failure rate and repair rate. Both can be well settled if
the system is exponentially stable. For this purpose, in this
section, wewill discuss the exponential stability of the system.

For simplicity, we will divide the system operator 𝐴

into two operators. The one is a compact operator, and the
other generates a quasicompact semigroup. Then, by the
perturbation of compact operator, it is derived readily that the
systemoperator also generates a quasicompact𝐶

0
semigroup.

Therefore, the system solution is exponentially stable.
For convenience, we will introduce three operators first:

𝐵𝑃 = (∫

∞

0

𝜇 (𝑥) 𝑃5 (𝑥) d𝑥 + 𝜇
0
𝑃
1
, 𝜀𝑃
0
, 𝛼
0
𝑃
0

+𝜇
0
𝑃
3
, 𝛼
0
𝑃
1
, 𝜆𝑃
3
, 0)

T
with 𝐷 (𝐵) = 𝑋,

𝐴 = 𝐴 − 𝐵 with 𝐷(𝐴) = 𝐷

= {
𝑃=(𝑃

0
, 𝑃
1
, . . . , 𝑃

4
, 𝑃
5
(𝑥))

T
∈𝑋 | 𝑃

󸀠

5
(𝑥)∈𝐿

1
(R
+
),

𝑃
5
(𝑥) is an absolutely continuous function }

𝐴
0
= 𝐴 with 𝐷(𝐴

0
) = {𝑃 ∈ 𝐷 | 𝑃

5
(0) = 0} .

(81)

It is easy to know that 𝐴 and 𝐴
0
are both closed operators

with dense domains in 𝑋. And with the perturbation of 𝐶
0

semigroup, it is clear that 𝐴 also generates a 𝐶
0
semigroup

𝑆(𝑡).

Lemma 20. Assume that the mean of the repair rate exists and
greater than zero, that is,

0 < 𝜇 = lim
𝑥→∞

1

𝑥
∫

𝑥

0

𝜇 (𝑠) d𝑠. (82)

Then, 𝐴
0
generates a quasicompact semigroup 𝑇

0
(𝑡).

Proof. Firstly, we will prove that𝐴
0
generates a𝐶

0
semigroup

𝑇
0
(𝑡). Consider the following abstract Cauchy problem:

d𝑃 (𝑡, ⋅)

d𝑡
= 𝐴
0
𝑃 (𝑡, ⋅) , 𝑡 ≥ 0,

𝑃 (0, ⋅) = Φ,

(83)
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where Φ = (𝜑
0
, 𝜑
1
, . . . , 𝜑

4
, 𝜑
5
(𝑥))

T
∈ 𝑋. That is,

(
d
d𝑡

+ 𝜀 + 𝛼
0
)𝑃
0
(𝑡) = 0, (84)

(
d
d𝑡

+ 𝛼
0
+ 𝜇
0
)𝑃
1 (𝑡) = 0, (85)

(
d
d𝑡

+ 𝜆)𝑃
2
(𝑡) = 0, (86)

(
d
d𝑡

+ 𝜆 + 𝜇
0
)𝑃
3
(𝑡) = 0, (87)

(
d
d𝑡

+ 𝜇
0
)𝑃
4 (𝑡) = 0, (88)

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜇 (𝑥)] 𝑃

5
(𝑡, 𝑥) = 0, (89)

𝑃
5
(𝑡, 0) = 0, (90)

𝑃
𝑖
(0) = 𝜑

𝑖
, 𝑖 = 0, 1, . . . , 4, (91)

𝑃
5
(0, 𝑥) = 𝜑

5
(𝑥) . (92)

Solving (84)–(88) with the help of (91) yields

𝑃
0
(𝑡) = 𝜑

0
𝑒
−(𝜀+𝛼

0
)𝑡
, 𝑃

1
(𝑡) = 𝜑

1
𝑒
−(𝛼
0
+𝜇
0
)𝑡
,

𝑃
2
(𝑡) = 𝜑

2
𝑒
−𝜆𝑡

,

𝑃
3
(𝑡) = 𝜑

3
𝑒
−(𝜆+𝜇

0
)𝑡
, 𝑃

4
(𝑡) = 𝜑

4
𝑒
−𝜇
0
𝑡
.

(93)

Solving (89) with the help of (90) and (92) by the method of
characteristics yields

𝑃
5 (𝑡, 𝑥) =

{{{

{{{

{

𝑃
5
(𝑡 − 𝑥, 0) 𝑒

−∫
𝑥

0
𝜇(𝜏)d𝜏

= 0, 𝑡 > 𝑥

𝑃
5
(0, 𝑥 − 𝑡) 𝑒

−∫
𝑡

0
𝜇(𝑥−𝑡+𝜏)d𝜏

= 𝜑
5 (𝑥 − 𝑡) 𝑒

−∫
𝑥

𝑥−𝑡
𝜇(𝜏)d𝜏

, 𝑡 ≤ 𝑥.

(94)

Therefore, it is easy to prove that𝐴
0
generates a𝐶

0
semigroup

𝑇
0
(𝑡) satisfying

(𝑇
0
(𝑡) Φ) (𝑥) =

{

{

{

(Ψ
1
, 0)

T
, 𝑥 < 𝑡

(Ψ
1
, 𝜑
5
(𝑥 − 𝑡) 𝑒

−∫
𝑥

𝑥−𝑡
𝜇(𝜏)d𝜏

)

T
, 𝑥 ≥ 𝑡.

(95)

Here,

Ψ
1
= (𝜑
0
𝑒
−(𝜀+𝛼

0
)𝑡
, 𝜑
1
𝑒
−(𝛼
0
+𝜇
0
)𝑡
, 𝜑
2
𝑒
−𝜆𝑡

, 𝜑
3
𝑒
−(𝜆+𝜇

0
)𝑡
, 𝜑
4
𝑒
−𝜇
0
𝑡
) .

(96)

Next, we will prove that 𝑇
0
(𝑡) is quasicompact. We only

need to prove that the essential growth bound𝑊ess(𝐴0) is less
than zero.

The assumption condition (82) implies that for any 𝜀 > 0,
there exists 𝑡

0
> 0 such that

1

𝑡
∫

𝑥

𝑥−𝑡

𝜇 (𝑠) d𝑠 > 𝜇 − 𝜀, 𝑥 ≥ 𝑡 ≥ 𝑡
0
. (97)

With the help of (97), it is not difficult to deduce that

󵄩󵄩󵄩󵄩𝑇0 (𝑡) Φ
󵄩󵄩󵄩󵄩 =

󵄨󵄨󵄨󵄨𝜑0
󵄨󵄨󵄨󵄨 𝑒
−(𝜀+𝛼

0
)𝑡
+

󵄨󵄨󵄨󵄨𝜑1
󵄨󵄨󵄨󵄨 𝑒
−(𝛼
0
+𝜇
0
)𝑡

+
󵄨󵄨󵄨󵄨𝜑2

󵄨󵄨󵄨󵄨 𝑒
−𝜆𝑡

+
󵄨󵄨󵄨󵄨𝜑3

󵄨󵄨󵄨󵄨 𝑒
−(𝜆+𝜇

0
)𝑡

+
󵄨󵄨󵄨󵄨𝜑4

󵄨󵄨󵄨󵄨 𝑒
−𝜇
0
𝑡

+ ∫

∞

𝑡

󵄨󵄨󵄨󵄨𝜑5 (𝑥 − 𝑡)
󵄨󵄨󵄨󵄨 𝑒
−∫
𝑥

𝑥−𝑡
𝜇(𝜏)d𝜏d𝑥

<
󵄨󵄨󵄨󵄨𝜑0

󵄨󵄨󵄨󵄨 𝑒
−(𝜀+𝛼

0
)𝑡
+

󵄨󵄨󵄨󵄨𝜑1
󵄨󵄨󵄨󵄨 𝑒
−(𝛼
0
+𝜇
0
)𝑡

+
󵄨󵄨󵄨󵄨𝜑2

󵄨󵄨󵄨󵄨 𝑒
−𝜆𝑡

+
󵄨󵄨󵄨󵄨𝜑3

󵄨󵄨󵄨󵄨 𝑒
−(𝜆+𝜇

0
)𝑡

+
󵄨󵄨󵄨󵄨𝜑4

󵄨󵄨󵄨󵄨 𝑒
−𝜇
0
𝑡

+ ∫

∞

𝑡

󵄨󵄨󵄨󵄨𝜑5 (𝑥 − 𝑡)
󵄨󵄨󵄨󵄨 𝑒
−(𝜇−𝜀)𝑡d𝑥

=
󵄨󵄨󵄨󵄨𝜑0

󵄨󵄨󵄨󵄨 𝑒
−(𝜀+𝛼

0
)𝑡
+

󵄨󵄨󵄨󵄨𝜑1
󵄨󵄨󵄨󵄨 𝑒
−(𝛼
0
+𝜇
0
)𝑡

+
󵄨󵄨󵄨󵄨𝜑2

󵄨󵄨󵄨󵄨 𝑒
−𝜆𝑡

+
󵄨󵄨󵄨󵄨𝜑3

󵄨󵄨󵄨󵄨 𝑒
−(𝜆+𝜇

0
)𝑡

+
󵄨󵄨󵄨󵄨𝜑4

󵄨󵄨󵄨󵄨 𝑒
−𝜇
0
𝑡

+ 𝑒
−(𝜇−𝜀)𝑡

∫

∞

0

󵄨󵄨󵄨󵄨𝜑5 (𝑥)
󵄨󵄨󵄨󵄨 d𝑥

≤ 𝑒
−min{𝜀+𝛼

0
,𝛼
0
+𝜇
0
,𝜆,𝜆+𝜇

0
,𝜇
0
,𝜇−𝜀}𝑡

‖Φ‖ .

(98)

This manifests that
󵄩󵄩󵄩󵄩𝑇0 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝑒
−min{𝜀+𝛼

0
,𝜆,𝜇
0
,𝜇−𝜀}𝑡

. (99)

Then,

𝑊ess (𝐴0) ≤ 𝑊(𝐴
0
) = lim
𝑡→∞

ln 󵄩󵄩󵄩󵄩𝑇0 (𝑡)
󵄩󵄩󵄩󵄩

𝑡

≤ −min {𝜀 + 𝛼
0
, 𝜆, 𝜇
0
, 𝜇 − 𝜀} < 0.

(100)

Therefore, 𝐴
0
generates a quasicompact 𝐶

0
semigroup 𝑇

0
(𝑡).

The proof of Lemma 20 is completed.

For 𝛾 > 0, 𝑃 ∈ 𝑋, let

Φ
𝛾 (𝑃) (𝑥) = [diag (0, 0, 0, 0, 0, 𝜆𝑃

2
+ 𝜇
0
𝑃
4
)] ⋅ 𝐸
𝛾 (𝑥) , (101)

where 𝐸
𝛾
(𝑥) = (0, 0, 0, 0, 0, 𝑒

−∫
𝑥

0
[𝛾+𝜇(𝑠)]d𝑠

)
T
∈ Ker(𝛾𝐼 − 𝐴) and

Φ
𝛾
is a compact operator.Then, it is not difficult to obtain the

following result.

Lemma 21. 𝐼 + Φ
𝛾
is a bijection from 𝐷(𝐴

0
) to 𝐷(𝐴) and

[𝛾𝐼 − (𝐴 − 𝐵)] (𝐼 + Φ
𝛾
) = 𝛾𝐼 − 𝐴

0
. (102)

Lemma 22. 𝑆(𝑡) − 𝑇
0
(𝑡) is a compact operator, for any 𝑡 ≥ 0.

Here 𝑆(𝑡) is the 𝐶
0
semigroup generated by 𝐴.

Proof. From Lemma 21, we can see that 𝑅(𝛾, 𝐴 − 𝐵) ≥

𝑅(𝛾, 𝐴
0
), for any 𝛾 > 0. Therefore 𝑆(𝑡) ≥ 𝑇

0
(𝑡), for any 𝑡 ≥ 0.
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For 𝑃 ∈ 𝐷(𝐴
0
), set

Ψ (𝑠) 𝑃 = 𝑆 (𝑡 − 𝑠) (𝐼 + Φ
𝛾
) 𝑇
0
(𝑠) 𝑃, (103)

where 0 ≤ 𝑠 ≤ 𝑡, 𝛾 > 0. Recalling the properties of 𝐶
0
-

semigroup and Lemma 21, we can obtain

Ψ
󸀠
(𝑠) 𝑃 = −𝑆 (𝑡 − 𝑠) (𝐴 − 𝐵) (𝐼 + Φ

𝛾
) 𝑇
0 (𝑠) 𝑃

+ 𝑆 (𝑡 − 𝑠) (𝐼 + Φ
𝛾
)𝐴
0
𝑇
0
(𝑠) 𝑃

= 𝑆 (𝑡 − 𝑠) [𝛾𝐼 − (𝐴 − 𝐵)] (𝐼 + Φ
𝛾
) 𝑇
0
(𝑠) 𝑃

+ 𝑆 (𝑡 − 𝑠) (𝐼 + Φ
𝛾
) [−𝛾𝐼 + 𝐴

0
] 𝑇
0
(𝑠) 𝑃

= 𝑆 (𝑡 − 𝑠) [𝛾𝐼 − 𝐴
0
] 𝑇
0 (𝑠) 𝑃

+ 𝑆 (𝑡 − 𝑠) (𝐼 + Φ
𝛾
) (−𝛾𝐼 + 𝐴

0
) 𝑇
0 (𝑠) 𝑃

= 𝑆 (𝑡 − 𝑠)Φ𝛾 (−𝛾𝐼 + 𝐴
0
) 𝑇
0 (𝑠) 𝑃.

(104)

Since [Ψ(𝑡) − Ψ(0)]𝑃 = ∫
𝑡

0
Ψ
󸀠
(𝑠)𝑃d𝑠, then

[Ψ (𝑡) − Ψ (0)] 𝑃 = ∫

𝑡

0

𝑆 (𝑡 − 𝑠)Φ
𝛾
(−𝛾𝐼 + 𝐴

0
) 𝑇
0
(𝑠) 𝑃d𝑠.

(105)

That is,

𝑆 (𝑡) 𝑃 − 𝑇
0
(𝑡) 𝑃 = −∫

𝑡

0

𝑆 (𝑡 − 𝑠)Φ
𝛾
(−𝛾𝐼 + 𝐴

0
)

× 𝑇
0
(𝑠) 𝑃d𝑠 + Φ

𝛾
𝑇
0
(𝑡) 𝑃 − 𝑆 (𝑡)Φ

𝛾
𝑃.

(106)

Therefore, 𝑆(𝑡) − 𝑇
0
(𝑡) (𝑡 ≥ 0) is compact because the right-

hand side of the above equation is the sum of three compact
operators for the compactness ofΦ

𝛾
. The proof of Lemma 22

is completed.

From the above preparations, we can present the main
results of this section.

Theorem 23. 𝐶
0
semigroup 𝑇(𝑡) generated by the system

operator 𝐴 is quasicompact.

Proof. According to Proposition 9.20 (see [34]) combing
Lemmas 22 and 20, we can deduce that

𝑊ess (𝐴) ≤ 𝑊(𝐴
0
) < 0. (107)

This shows that 𝑆(𝑡), the 𝐶
0
semigroup generated by 𝐴

is quasicompact. Because 𝐵 is a compact operator, then
according to [35], it is evident that

𝑊ess (𝐴) = 𝑊ess (𝐴 − 𝐵) < 0. (108)

This implies that 𝑇(𝑡) is quasicompact. The proof of
Theorem 23 is completed.

Theorem 24. The time-dependent solution of the system (1)–
(3) strongly converges to its steady-state solution. That is,

lim
𝑡→∞

𝑃 (𝑡, ⋅) = 𝑃̂. (109)

Moreover, there exist 𝐶 > 0 and 𝜀 > 0 such that
󵄩󵄩󵄩󵄩󵄩
𝑃 (𝑡, ⋅) − 𝑃̂

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝑒
−𝜀𝑡

. (110)

Here, 𝑃̂ is defined in Theorem 19.

Proof. Recalling Theorem 2.10 (see [35]) combing
Theorem 23, we can derive that 𝐶

0
semigroup 𝑇(𝑡)

generated by the system operator 𝐴 can be decomposed as
𝑇(𝑡) = 𝑃

0
+ 𝑅(𝑡), where 𝑃

0
is the residue corresponding to

eigenvalue 0 and ‖𝑅(𝑡)‖ ≤ 𝐶𝑒
−𝜀𝑡 for suitable constants 𝜀 > 0

and 𝐶 > 0.
However, byTheorem 19, the nonnegative solution of the

system (1)–(3) can be expressed as𝑃(𝑡, ⋅) = 𝑇(𝑡)𝑃
0
, 𝑡 ∈ [0,∞).

Then, combingTheorem 12.3 in [36], we can derive that

𝑃 (𝑡, ⋅) = 𝑇 (𝑡) 𝑃
0
= (𝑃
0
+ 𝑅 (𝑡)) 𝑃

0

= ⟨𝑃
0
, 𝑄
∗
⟩ 𝑃̂ + 𝑅 (𝑡) 𝑃

0
= 𝑃̂ + 𝑅 (𝑡) 𝑃

0
,

(111)

where 𝑄
∗ is defined in Lemma 15. Hence, we can get

󵄩󵄩󵄩󵄩󵄩
𝑃 (𝑡, ⋅) − 𝑃̂

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝑒
−𝜀𝑡

. (112)

The proof of Theorem 24 is completed.

5. Reliability Indices

In this section, we will discuss some reliability indices of
the system. Noting that the eigenfunction corresponding to
eigenvalue 0 of the system operator 𝐴 is just the steady-state
solution of system (1)–(3), we are dedicated to studying some
primary steady-state indices of the system from the point of
eigenfunction.

We first analyze the eigenfunction corresponding to
eigenvalue 0 of the system operator𝐴. In the proof process of
Lemma 11, solving (31)–(36) with the help of (37) by letting
𝛾 = 0 and 𝐺 = 0 derives

𝑃
1
=

𝜀

𝛼
0
+ 𝜇
0

𝑃
0
, (113)

𝑃
2
=

𝛼
0

𝜆
𝑃
0
+

𝜇
0

𝜆
𝑃
3
= [

𝛼
0

𝜆
+

𝜀𝛼
0
𝜇
0

𝜆 (𝜆 + 𝜇
0
) (𝛼
0
+ 𝜇
0
)
] 𝑃
0
, (114)

𝑃
3
=

𝛼
0

𝜆 + 𝜇
0

𝑃
1
=

𝜀𝛼
0

(𝜆 + 𝜇
0
) (𝛼
0
+ 𝜇
0
)
𝑃
0
, (115)

𝑃
4
=

𝜆

𝜇
0

𝑃
3
=

𝜆𝜀𝛼
0

𝜇
0
(𝜆 + 𝜇

0
) (𝛼
0
+ 𝜇
0
)
𝑃
0
, (116)

𝑃
5
(𝑥) = 𝛼

0
(1 +

𝜀

𝛼
0
+ 𝜇
0

)𝑃
0
𝑒
−∫
𝑥

0
𝜇(𝑠)d𝑠

. (117)

Let

𝑃
5
= ∫

∞

0

𝑃
5
(𝑥) d𝑥 = 𝛼

0
(1 +

𝜀

𝛼
0
+ 𝜇
0

)𝑃
0
𝑔 (0) , (118)
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where 𝑔(0) = ∫
∞

0
𝑒
−∫
𝑥

0
𝜇(𝑠)d𝑠d𝑥 and

𝑆 =

5

∑

𝑖=0

𝑃
𝑖

=
𝜇
0
(𝜆 + 𝜇

0
) (𝛼
0
+ 𝜇
0
+ 𝜀) (𝜆 + 𝛼

0
+ 𝜆𝛼
0
𝑔 (0)) + 𝜆

2
𝜀𝛼
0

𝜆𝜇
0
(𝛼
0
+ 𝜇
0
) (𝜆 + 𝜇

0
)

𝑃
0
.

(119)

Theorem 25. The steady-state availability of the system is

𝐴V =
𝜇
0
(𝜆 + 𝛼

0
) (𝜆 + 𝜇

0
) (𝛼
0
+ 𝜇
0
+ 𝜀)

𝜇
0
(𝜆 + 𝜇

0
) (𝛼
0
+ 𝜇
0
+ 𝜀) (𝜆 + 𝛼

0
+ 𝜆𝛼
0
𝑔 (0)) + 𝜆2𝜀𝛼

0

.

(120)

Proof. The instantaneous availability of the system at time 𝑡 is

𝐴V (𝑡) =

3

∑

𝑖=0

𝑃
𝑖
(𝑡) . (121)

Let 𝑡 → ∞, then the steady-state availability of the system is
obtained as follows:

𝐴V =
∑
3

𝑖=0
𝑃
𝑖

𝑆

=
𝜇
0
(𝜆 + 𝛼

0
) (𝜆 + 𝜇

0
) (𝛼
0
+ 𝜇
0
+ 𝜀)

𝜇
0
(𝜆 + 𝜇

0
) (𝛼
0
+ 𝜇
0
+ 𝜀) (𝜆 + 𝛼

0
+ 𝜆𝛼
0
𝑔 (0)) + 𝜆2𝜀𝛼

0

.

(122)

The proof of Theorem 25 is completed.

Theorem 26. The steady-state probability of the repairman
vacation is

𝑃V =
𝜆𝜀 (𝛼
0
+ 𝜇
0
) (𝜆 + 𝜇

0
)

𝜇
0
(𝜆 + 𝜇

0
) (𝛼
0
+ 𝜇
0
+ 𝜀) (𝜆 + 𝛼

0
+ 𝜆𝛼
0
𝑔 (0)) + 𝜆2𝜀𝛼

0

.

(123)

Proof. The instantaneous probability of the repairman vaca-
tion at time 𝑡 is

𝑃V (𝑡) = 𝑃
1
(𝑡) + 𝑃

3
(𝑡) + 𝑃

4
(𝑡) . (124)

Letting 𝑡 → ∞ derives the steady-state probability of the
repairman vacation:

𝑃V =
𝑃
1
+ 𝑃
3
+ 𝑃
4

𝑆

=
𝜆𝜀 (𝛼
0
+ 𝜇
0
) (𝜆 + 𝜇

0
)

𝜇
0
(𝜆 + 𝜇

0
) (𝛼
0
+ 𝜇
0
+ 𝜀) (𝜆 + 𝛼

0
+ 𝜆𝛼
0
𝑔 (0)) + 𝜆2𝜀𝛼

0

.

(125)

The proof of Theorem 26 is completed.

Theorem 27. The steady-state probability of the system in
warning state is

𝑃
𝑤

=
𝛼
0
𝜇
0
(𝜆 + 𝜇

0
) (𝛼
0
+ 𝜇
0
+ 𝜀)

𝜇
0
(𝜆 + 𝜇

0
) (𝛼
0
+ 𝜇
0
+ 𝜀) (𝜆 + 𝛼

0
+ 𝜆𝛼
0
𝑔 (0)) + 𝜆2𝜀𝛼

0

.

(126)
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Figure 1: Instantaneous probabilities of the systemwithout warning
device in good state with different 𝜆.
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Figure 2: Instantaneous probabilities of the system with warning
device in good state with different 𝜆.

Proof. The instantaneous probability of the system in warn-
ing state at time 𝑡 is

𝑃
𝑤
(𝑡) = 𝑃

2
(𝑡) + 𝑃

3
(𝑡) . (127)
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Figure 3: Instantaneous probabilities of the systemwithout warning
device in good state with different 𝜇.

Letting 𝑡 → ∞ yields the steady-state probability of the
system in warning state:

𝑃
𝑤

=
𝑃
2
+ 𝑃
3

𝑆

=
𝛼
0
𝜇
0
(𝜆 + 𝜇

0
) (𝛼
0
+ 𝜇
0
+ 𝜀)

𝜇
0
(𝜆 + 𝜇

0
) (𝛼
0
+ 𝜇
0
+ 𝜀) (𝜆 + 𝛼

0
+ 𝜆𝛼
0
𝑔 (0)) + 𝜆2𝜀𝛼

0

.

(128)

The proof of Theorem 27 is completed.

Theorem 28. The steady-state failure frequency of the system
is

𝑊
𝑓

= 𝜆𝑃
𝑤
. (129)

Proof. Let 𝑃
5
(𝑡) = ∫

∞

0
𝑃
5
(𝑡, 𝑥)d𝑥 and 𝜇(𝑡) =

∫
∞

0
𝜇(𝑥)𝑃

5
(𝑡, 𝑥)d𝑥/𝑃

5
(𝑡). Then, the matrix of the transition

probability of the system (1)–(3) can be obtained by (1)-(2)
as follows:

𝑇 = (

(

−𝜀 − 𝛼
0

𝜇
0

0 0 0 𝜇 (𝑡)

𝜀 −𝛼
0
− 𝜇
0

0 0 0 0

𝛼
0

0 −𝜆 𝜇
0

0 0

0 𝛼
0

0 −𝜆 − 𝜇
0

0 0

0 0 0 𝜆 −𝜇
0

0

0 0 𝜆 0 𝜇
0

−𝜇 (𝑡)

)

)

.

(130)

Thus, by [37] the instantaneous failure frequency of the
system at time 𝑡 can be derived as

𝑊
𝑓 (𝑡) = 𝜆 [𝑃

2 (𝑡) + 𝑃
3 (𝑡)] . (131)
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Figure 4: Instantaneous probabilities of the system with warning
device in good state with different 𝜇.

Let 𝑡 → ∞, then the steady-state failure frequency is
immediate

𝑊
𝑓

=
𝜆 (𝑃
2
+ 𝑃
3
)

𝑆
= 𝜆𝑃
𝑤
. (132)

The proof of Theorem 28 is completed.

6. Applications and Numerical Examples

Reference [38] discussed the effects of the delayed vacation
and vacation policies on a system. That is, the shorter the
delayed vacation time, the larger the reliability and failure
frequency of a system; and the reliability of a system with
multiple vacations is smaller than that of a system with single
vacation, while the profit of a system with multiple vacations
is larger than that of a system with single vacation.Therefore,
in this section, we only concentrate on that how the warning
device will affect the system. Specifically, we will compare the
reliability, availability, and profit of the system with warning
device and those of the system without warning device and
present some numerical examples.

6.1. System without Warning Device. The simple repairable
system without warning device and with a repairman follow-
ing delayed-multiple vacations policy is as follows:

(
d
d𝑡

+ 𝜀 + 𝜆)𝑃
0 (𝑡) = 𝜇

0
𝑃
1 (𝑡) + ∫

∞

0

𝜇 (𝑥) 𝑃5 (𝑡, 𝑥) d𝑥,

(133)

(
d
d𝑡

+ 𝜇
0
+ 𝜆)𝑃

1
(𝑡) = 𝜀𝑃

0
(𝑡) , (134)
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Figure 5: Instantaneous availabilities of the systems with and
without warning device.

(
d
d𝑡

+ 𝜇
0
)𝑃
4
(𝑡) = 𝜆𝑃

1
(𝑡) , (135)

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜇 (𝑥)] 𝑃

5 (𝑡, 𝑥) = 0 (136)

with boundary condition

𝑃
5
(𝑡, 0) = 𝜆𝑃

0
(𝑡) + 𝜇

0
𝑃
4
(𝑡) (137)

and initial conditions

𝑃
0
(0) = 1, the others equal to 0. (138)

Then, by the samemethod ofTheorems 25, 26, and 28, the
corresponding reliability indices of the system (133)–(138) are
as follows.

Theorem 29. The steady-state availability of the system (133)–
(138) is

𝐴V =
𝜇
0
(𝜇
0
+ 𝜆 + 𝜀)

𝜇
0
(𝜇
0
+ 𝜆 + 𝜀) (1 + 𝜆𝑔 (0)) + 𝜆𝜀

, (139)

where 𝑔(0) is defined in Section 5.

Theorem 30. The steady-state probability of the repairman
vacation of the system (133)–(138) is

𝑃̃V =
𝜀 (𝜇
0
+ 𝜆)

𝜇
0
(𝜇
0
+ 𝜆 + 𝜀) (1 + 𝜆𝑔 (0)) + 𝜆𝜀

. (140)

Theorem 31. The steady-state failure frequency of the system
(133)–(138) is

𝑊̃
𝑓

= 𝜆𝐴V. (141)
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Figure 6: Instantaneous failure frequencies of the systems with and
without warning device with 𝛼 = 0.01.

6.2. Numerical Examples. By comparing the two groups of
(120) and (139) and (129) and (141), it is not difficult to deduce
the following results.

(i) The steady-state availability of the system with warn-
ing device (i.e., system (1)–(3)) is larger than that of
the systemwithout warning device (i.e., system (133)–
(138)). That is, 𝐴V > 𝐴V.

(ii) If 𝛼
0

≤ 𝜆, then the steady-state failure frequency of
the system with warning device is less than that of the
system without warning device. That is, 𝑊

𝑓
< 𝑊̃
𝑓
.

While if 𝛼
0
> 𝜆, the magnitude of𝑊

𝑓
and 𝑊̃

𝑓
cannot

be determined.

Let 𝐼 and 𝐼 be the total profit of the system with and
without warning device, respectively. That is,

𝐼 = 𝑐
1
𝐴V − 𝑐

2
𝑊
𝑓
+ 𝑐
3
𝑃V,

𝐼 = 𝑐
1
𝐴V − 𝑐

2
𝑊̃
𝑓
+ 𝑐
3
𝑃̃V.

(142)

Here, 𝑐
1
, 𝑐
2
, and 𝑐

3
represent the income of the system for

working unit per unit time, the loss of the system for failed
unit per unit time, and the income of the system for the
repairman vacation per unit time, respectively. Given 𝜀 = 1,
𝜇
0

= 0.5, 𝛼
0

= 0.2, 𝑐
1

= 50, 𝑐
2

= 15, 𝑐
3

= 30, let 𝐷 = 𝐼 − 𝐼.
Then,𝐷 is a function of 𝜆 and𝜇. FromFigure 10, we can know
that the profit of the systemwithwarning device is larger than
that of the system without warning device.

From the above discussions, we can deduce that because
both the availability and profit of a system with warning
device are larger than those of a system without warning
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Figure 7: Instantaneous failure frequencies of the systems with and
without warning device with 𝛼 = 0.2.

device. Then, a system with warning device is better than a
system without warning device in practice.

In the following, we will present some numerical exam-
ples to illustrate the conclusions.

(1) Let 𝜀 = 1, 𝜇
0

= 𝜇 = 0.5, 𝛼
0

= 0.2, 𝜆 =

0.01, 0.05, 0.1, and 0.5, respectively. Figures 1 and 2 present the
instantaneous probabilities of the systems with and without
warning device in good state with different values of 𝜆. Let
𝜀 = 1, 𝜆 = 0.1, 𝜇

0
= 0.5, 𝛼

0
= 0.2, 𝜇 = 0.1, 0.3, 0.5,

and 1, respectively. Figures 3 and 4 present the instantaneous
probabilities of the systems with and without warning device
in good state with different values of 𝜇. From the four figures,
we can see that the instantaneous probabilities of the system
without warning device in good state decrease with the
increasing of 𝜆, while the instantaneous probabilities of the
system with warning device in good state increase with the
increasing of 𝜆. But both the instantaneous probabilities of
the systems with and without warning device in good state
increase with the increasing of 𝜇 in general.

(2) Let 𝜀 = 1, 𝜆 = 0.1, 𝜇
0
= 0.5, 𝜇 = 0.2, 𝛼

0
= 0.2. Figure 5

presents the instantaneous availabilities of the systems with
and without warning device. From the figure, we can see that
the availability of the system with warning device is larger
than that of the system without warning device.

(3) Let 𝜀 = 1, 𝜆 = 0.1, 𝜇
0

= 0.5, 𝜇 = 0.2 and
𝛼
0

= 0.01, 0.2, 1, and 5, respectively. Figures 6, 7, 8, and 9
present the instantaneous failure frequencies of the systems
with and without warning device. It can be derived from the
four figures that when 𝛼

0
< 𝜆, the instantaneous failure

frequency of the system with warning device is less than
that of the system without warning device. But when 𝛼

0
≥
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Figure 8: Instantaneous failure frequencies of the systems with and
without warning device with 𝛼 = 1.
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Figure 9: Instantaneous failure frequencies of the systems with and
without warning device with 𝛼 = 5.

1 ≫ 𝜆, the instantaneous failure frequency of the system
with warning device is larger than that of the system without
warning device.
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Figure 10: Profit difference between the systems with and without
warning device.

(4) Let 𝜀 = 1, 𝜇
0
= 0.5, 𝛼

0
= 0.2, 𝑐

1
= 50, 𝑐

2
= 15, 𝑐

3
= 30.

Figure 10 presents the profit difference between the systems
with and without warning device. From the figure, it can be
derived easily that the profit the system with warning device
is more than that of the system without warning device.

7. Conclusion

In this paper, we proposed a simple repairable system with
a warning device and a repairman who can have delayed-
multiple vacations. Because the two hypotheses used for
Laplace transform in order to obtain the steady-state solution
of a repairable system in traditional reliability research that
needs to be verified, and the substitution of steady-state solu-
tion for the dynamic one that should be based on some con-
ditions, the study of well-posedness of the time-dependent
solution of a system is in demand in terms of theory and
practice. In this paper, we first transformed the systemmodel
into a group of operator equations and obtained the existence
and uniqueness as well as𝐶1 continuity of the system solution
by functional analysis method. Then to study the stability of
the system, we translated the system model into an abstract
Cauchy problem in a suitable Banach space. The asymptotic
stability and further the exponential stability of the system
solution were derived by using 𝐶

0
semigroup theory and

compact operator disturbance theorem. Because the stable
solution of the system is just the eigenfunction corresponding
to eigenvalue 0 of the system operator, we also presented
some reliability indices, such as reliability, failure frequency,
probabilities of repairman vacation, and system in warning
state of the system in the viewpoint of eigenfunction. At the
end of the paper, by the theoretical and numerical analyses,
we give the conclusion that the system with warning device is
better than the system without warning device in practice.
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