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ABSTRACT

Nuage are RNA-rich condensates that assemble around the nuclei of developing germ cells.Many proteins required for the
biogenesis and function of silencing small RNAs (sRNAs) enrich in nuage, and it is often assumed that nuage is the cellular
site where sRNAs are synthesized and encounter target transcripts for silencing. Using C. elegans as a model, we examine
the complex multicondensate architecture of nuage and review evidence for compartmentalization of silencing pathways.
We consider the possibility that nuage condensates balance the activity of competing sRNA pathways and serve to limit,
rather than enhance, sRNA amplification to protect transcripts from dangerous runaway silencing.
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INTRODUCTION

In eukaryotic cells, transcription and translation occur in
separate compartments, and mRNAs must be exported
from the nucleus for translation in the cytoplasm. In somatic
cells, mRNAs immediately encounter ribosomes upon exit
from the nucleus. In developing germ cells, the journey in-
volves an extra step: mRNAs traverse a perinuclear com-
partment called nuage before reaching the cytoplasm.
Nuage is a conserved feature of germ cells in metazoans
and was first identified using electron microscopy as a col-
lection of electron-dense, amorphous “clouds” surround-
ing germ cell nuclei (Eddy 1975; Voronina et al. 2011).
We now know that nuage is a collection of membraneless
condensates rich in RNA and RNA-binding proteins.
Many proteins in nuage are implicated in RNA-mediated
interference, and it is often assumed that silencing small
RNAs are synthesized in nuage.

In this review, we use the C. elegans model to examine
our current understanding of nuage structure and function.
We begin with a brief introduction to sRNA pathways in C.
elegans and a description of the cell biology of nuage. We
review evidence that implicates nuage condensates in
sRNA amplification and activity, as well as evidence that
challenges the hypothesis that nuage is an obligate com-
partment for sRNA amplification. Finally, we consider a
unifying model where nuage condensates limit, rather

than enhance, sRNA amplification to prevent dangerous
runaway loops.

SMALL RNA PATHWAYS IN C. ELEGANS

sRNAs are regulatory RNAs, 20–30 nt in length, that associ-
ate with a class of proteins known as Argonautes. In C. ele-
gans, there are two general categories of sRNAs: primary
sRNAs and secondary sRNAs (Fig. 1). Primary sRNAs
originate from genomically encoded transcripts (e.g., “piR-
NAs”), from RNA-dependent RNA polymerases (RdRPs)
that target particularmRNAs (e.g., 26G-sRNAs), or fromDic-
er-mediated processing of double-stranded RNAs derived
from endogenous or exogenous sources (including bacteria
engineered to produce double-stranded RNA in “feeding
RNAi” experiments). Primary sRNA/Argonaute complexes
recognize cognate mRNAs through base-pair complemen-
tarity (Fig. 1). Upon recognitionbyprimary sRNA/Argonaute
complexes, transcripts are cleaved by the endonuclease
RDE-8 (Tsai et al. 2015) and tailed by the poly(UG) polymer-
ase MUT-2/RDE-3 (“pUGylation,” Shukla et al. 2020). pUG
tails recruit RdRPs that synthesize “secondary” sRNAs com-
plementary to thepUGylated transcripts (22G-RNAs; Shukla
et al. 2020). This step serves to amplify the pool of sRNAs
against the targeted RNA. Secondary sRNAs associate
with “secondary Argonautes.” The worm genome encodes
19 functional Argonautes, 12 ofwhich are thought to associ-
ate with amplified secondary sRNAs (Yigit et al. 2006;
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Sundby et al. 2021). Depending on the Argonaute, second-
ary sRNAs target cognate mRNAs in the cytoplasm for deg-
radation (Yigit et al. 2006; Gu et al. 2009) or nascent
transcripts in nuclei to initiate chromatin-based silencing of
the locus (Guang et al. 2008; Burkhart et al. 2011; Burton
et al. 2011; Buckley et al. 2012; Gu et al. 2012). Secondary
sRNAs inherited by progeny can also restart the pUGylation
amplificationcycle togeneratemore secondary sRNAs (Shu-
kla et al. 2020). Amplification cycles initiated by secondary
sRNAs continue even in the absence of primary sRNA trig-
gers, allowing for the transmission of secondary sRNAs
from parent to progeny in a process known as RNAi inheri-
tance (Fire et al. 1998; Grishok et al. 2000; Alcazar et al.
2008; Ashe et al. 2012; Shirayama et al. 2012).
sRNAs are typically associated with silencing, but there

also exists a class of sRNAs that target transcripts that are
robustly expressed in the germline. CSR-1 sRNAs (so
named because of their association with the Argonaute
CSR-1) are synthesized by an RdRP that uses germline-ex-
pressed transcripts as templates in a process that is not

well understood (Billi et al. 2014; Weiser and Kim 2019;
Reed et al. 2020). CSR-1 sRNAs have been proposed to
protect germline transcripts from piRNA-induced silenc-
ing. The C. elegans genome encodes over 15,000
piRNAs with sufficient sequence diversity to theoretically
silence the entire C. elegans transcriptome (Bagijn et al.
2012; Lee et al. 2012; Shen et al. 2018; Zhang et al.
2018). By opposing piRNA silencing, CSR-1 sRNAs have
been proposed to “license” genuine germline transcripts
for expression (Seth et al. 2013; Wedeles et al. 2013;
Shen et al. 2018). CSR-1 has also been shown to use its slic-
er activity to fine-tune the levels of certain transcripts cod-
ing for maternal proteins active in embryos (Gerson-
Gurwitz et al. 2016; Quarato et al. 2021).

CELL BIOLOGY OF NUAGE

As in other organisms (Czołowska 1969; Strome andWood
1982; Kloc et al. 2004; Chuma et al. 2009), nuage inC. ele-
gans ismostprominent in transcriptionally active, immature
germ cells in early stages of meiosis (pachytene). By elec-
tronmicroscopy, nuage condensates appear as half-moons
spread over nucleopore-rich regions of the nuclear enve-
lope (Fig. 2). Pitt et al. (2000) have estimated that 75% of
nucleopores in immature germ cells are covered by nuage.
Nuage stains strongly with RNA dyes and probes (Pitt et al.
2000; Schisa et al. 2001; Sheth et al. 2010). Visualization of
newly transcribed RNAs by [3H]uridine pulse labeling and
by in situ hybridization confirmed that newly synthesized
transcripts enrich in nuage upon exit from the nucleus
(Schisa et al. 2001; Sheth et al. 2010). The transcriptional in-
hibitor α-amanitin causes the nuage proteins PGL-1 and
MUT-16 to disperse in the cytoplasm, suggesting that new-
ly transcribed RNAs are an integral component of nuage
(Sheth et al. 2010; Uebel et al. 2020). Nuage components
also disperse in the cytoplasm when germ cells mature
into transcriptionally silent gametes. In oocytes, a subset
of nuage components associate with other condensates
to form complex assemblies (“germ granules”) in the cyto-
plasm (Updike and Strome 2010; Seydoux 2018; Marnik
and Updike 2019). After fertilization, germ granules be-
come asymmetrically localized in the cytoplasm for segre-
gation to the germline founder cells of the embryo (Fig.
2B). When transcription restarts in these cells, nuage con-
densates reassemble at the nuclear membrane (Updike
and Strome 2010; Uebel et al. 2020, 2021). The continuity
of nuage during development suggests thatmost, if not all,
germline transcripts experience nuage before entering the
bulk cytoplasm.
Nuage is not a homogenous structure but rather a col-

lection of distinct condensates. By electron microscopy,
nuage contains subdomains of differing electron density
including a dense layer closest to the nuclear envelope
and dense “crests” facing the cytoplasm (Sheth et al.
2010). Localization of nuage proteins by fluorescence

FIGURE 1. Silencing by sRNAs in C. elegans. Primary sRNAs (blue
wavy lines) bind to primary Argonaute proteins (blue ovals) and target
complementary transcripts for cleavage by RDE-8 and “pUGylation”
by the pUGylase MUT-2/RDE-3. The pUG tail recruits RNA-depen-
dent RNA polymerases (RdRPs) that use the RNA fragment as a tem-
plate for synthesis of secondary sRNAs antisense to the pUGylated
transcript. Secondary sRNAs bind to secondary Argonautes (yellow)
and target complementary transcripts for degradation, transcriptional
inhibition, or additional rounds of sRNA amplification. Dotted arrows
indicate a sRNA targeting event.

Nuage condensates: accelerators or circuit breakers

www.rnajournal.org 59

 Cold Spring Harbor Laboratory Press on February 9, 2022 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


microscopy has confirmed that nuage is a layered structure
containing at least four condensate classes each defined by
two or more unique components (Fig. 2A): SIMR foci,
Mutator foci, P granules, and Z granules (for review, see
Sundby et al. 2021). SIMR and Mutator foci are adjacent
(Manage et al. 2020), and Z granules reside between P gran-
ules and SIMR/Mutator foci (Fig 2A; Wan et al. 2018;
Manage et al. 2020). Interestingly, the spatial organization
of nuage evolves over developmental time (Wan et al.
2018; Toraason et al. 2021). For example, markers for P
granules and Z granules overlap in a subset of nuage assem-
blies in immature germ cells and merge completely in the
cytoplasmic germ granules of early embryos (Wan et al.
2018; Toraason et al. 2021). P and Z granules de-mix again
when nuage condensates re-form around the nuclei of the
embryonic germline founder cell (Wan et al. 2018).

LIQUID-LIKE PROPERTIES OF NUAGE
CONDENSATES

Nuage condensates are thought to form by liquid–liquid
phase separation, a thermodynamic process that drives
condensation of interacting polymers into dense droplets
(Brangwynne et al. 2009; Hyman et al. 2014; Seydoux
2018; Dodson and Kennedy 2020). Weak, multivalent pro-
tein:protein and protein:RNA interactions create large in-
teraction networks that drive phase separation while

maintaining molecules in a dynamic
state, free to diffuse within the
condensate and to exchange with
the cytoplasm. Liquid-like behavior
has been most thoroughly document-
ed for the P granule subdomain of
nuage. P granule proteins exchange
rapidly between nuage and cytoplasm
and disperse into the cytoplasm
when exposed to high temperatures
(Brangwynne et al. 2009; Putnam
et al. 2019; Fritsch et al. 2021). P gran-
ules also fuse and “drip off” nuclei
when subjected to shear forces
(Brangwynne et al. 2009).
P granules are assembled by the

VASA-related GLH helicases and
RGGdomain-containing PGL proteins
(Updike and Strome 2010). GLH heli-
cases contain FG repeats also found
in nucleoporins that line the central
channel of nucleopores (Updike
et al. 2011; Marnik et al. 2019). FG
nucleoporins form a matrix that func-
tions as the nucleus’ permeability bar-
rier (Beck and Hurt 2017). P granules
exhibit similar permeability properties

and have been proposed to function as extensions of the
nucleopore environment (Updike et al. 2011). PGL pro-
teins contain two dimerization domains and RNA-binding
RGG domains (Aoki et al. 2016, 2021). Purified PGL-3
forms condensates in vitro in a manner that is stimulated
by RNA, consistent with the apparent RNA requirement
for P granule integrity in vivo (Saha et al. 2016; Putnam
et al. 2019).

Other nuage condensates have also been reported to
exhibit liquid-like behavior. Fluorescently labeled proteins
in Z granules and Mutator foci exhibit rapid recovery after
photobleaching, consistent with rapid exchange with a cy-
toplasmic pool (Uebel et al. 2018; Wan et al. 2018).
Mutator foci components dissolve when exposed to high
temperatures and have been shown to form in a manner
dependent on the concentration of the core scaffolding
component MUT-16 (Phillips et al. 2012; Uebel et al.
2018). While a core Z granule protein has not been identi-
fied, Z granule morphology appears to depend on the
piRNA biogenesis factor PID-2/ZSP-1 (Placentino et al.
2021; Wan et al. 2021). Super-resolution microscopy has
revealed that PID-2/ZSP-1 localizes to the outside surface
of Z granules (Wan et al. 2021), and mutants lacking PID-
2/ZSP1 have enlarged Z granules (Placentino et al. 2021;
Wan et al. 2021). Less is known about the underling forma-
tion and properties of SIMR foci.

What causes nuage condensates to contact each other
while maintaining distinct compositions? Reconstitution

B

A

FIGURE 2. Nuage compartments. (A) Nuage are perinuclear condensates adsorbed to the cy-
toplasmic face of the nucleus in immature germ cells. Nuage contains at least four distinct con-
densates that enrich different components of the sRNA machinery. The exact orientation of
nuage condensates relative to each other and the nucleus is not known and varies depending
on developmental stage. (B) In transcriptionally quiescent oocytes, Mutator and SIMR foci dis-
assemble (not shown), and P and Z granules merge and relocalize to the cytoplasm with other
cytoplasmic condensates to form large assemblies called germ granules (green circles). Germ
granules segregate to the posterior of zygotes for segregation to the germline. Distinct
Mutator, SIMR, P, and Z condensates re-form in the germline founder cell.
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experiments in human cells suggest that competition be-
tween overlapping interaction networks tune the segrega-
tion of select proteins into P bodies or stress granules.
Interaction nodes that connect the competing networks
cause P bodies and stress granules to “wet”—come in
close contact—with each other (Sanders et al. 2020).
Similar principles could potentially apply to nuage, since
interactions between proteins enriched in different con-
densates have been reported. For example, the Z granule
protein ZNFX-1 coimmunoprecipitates with the P granule
proteins EGO-1, PRG-1, and CSR-1 (Ishidate et al. 2018;
Barucci et al. 2020). Similarly, the SIMR granule protein
SIMR-1 was identified throughmass spectrometry analyses
of MUT-16 complexes (Manage et al. 2020). In principle,
developmentally regulated changes in protein–protein in-
teractions could tune the overlap between competing net-
works, leading to condensate mixing and de-mixing over
developmental time, as observed for Z and P granules dur-
ing oogenesis and early embryogenesis.

COMPARTMENTALIZATION OF THE sRNA
MACHINERY IN NUAGE CONDENSATES

Functional modules in the sRNA machinery segregate to
different condensates in nuage (Table 1). Six Argonautes,
including the competing Argonautes PRG-1 and CSR-1,
enrich in P granules (Batista et al. 2008; Claycomb et al.
2009; Gu et al. 2009; Conine et al. 2010; Gerson-Gurwitz
et al. 2016; Brown et al. 2017). Consequently, P granules
have been proposed to function as the principal site
for transcript recognition by Argonautes, allowing Argo-
nautes to survey every germline transcript immediately
upon exiting the nucleus (Sundby et al. 2021). In contrast,
components of the sRNA amplification machinery, includ-
ing the endonuclease RDE-8, the pUGylaseMUT-2/RDE-3,
and the RdRP RRF-1, localize to Mutator foci (Phillips et al.
2012; Tsai et al. 2015; Uebel et al. 2018). Genetic loss of

Mutator foci components, including the core scaffold
MUT-16, prevents the production of secondary sRNAs
(Zhang et al. 2011; Phillips et al. 2014). Mutator foci, there-
fore, have been proposed to function as centers for sRNA
amplification (Dodson and Kennedy 2020; Sundby et al.
2021). Other factors required for sRNA amplification, how-
ever, enrich in condensates adjacent to mutator foci. The
Tudor domain protein SIMR-1, required for amplification
of sRNAs downstream from endogenous piRNAs, is the
defining protein for SIMR foci (Manage et al. 2020). Lastly,
the helicase ZNFX-1 and the Argonaute WAGO-4 (Wan
et al. 2018), required for RNAi inheritance, enrich in Z gran-
ules (Ishidate et al. 2018; Wan et al. 2018; Xu et al. 2018).
ZNFX-1 interacts with the RdRP EGO-1 (Ishidate et al.
2018), suggesting that Z granules also function in sRNA
amplification. These localizations suggest that several
nuage condensates specialize in sRNA amplification. In
the next section, we review evidence in support of this
“guilt by association” hypothesis.

EVIDENCE LINKING NUAGE TO sRNA FUNCTION

A common hypothesis is that the unique material proper-
ties of nuage condensates create a favorable biochemical
environment for sRNA biogenesis and/or recognition of
target mRNAs by sRNA/Argonaute complexes (Phillips
et al. 2012; Dodson and Kennedy 2020; Sundby et al.
2021). Transcripts recognized by Argonautes in P granules
are hypothesized to be funneled to other nuage conden-
sates for sRNA amplification. The dynamic liquid-like
environment of nuage could theoretically accelerate ampli-
fication by enabling the fast exchange of intermediates be-
tween neighboring nuage condensates. Support for this
model has come from examining the localization of tran-
scripts targeted by RNAi. In situ hybridization experiments
have shown that transcripts targeted by feeding RNAi, as
well as pUGylated transcripts, accumulate in nuage (Shukla

TABLE 1. Summary table of nuage condensates and key constituents

Subdomain Proposed function Key components Protein features

P granules Transcript surveillance PGL-1/3 RGG domain
GLH-1/2/3/4 Vasa-related helicases
PRG-1 Argonaute
CSR-1 Argonaute
WAGO-1 Argonaute

Mutator foci sRNA amplification MUT-16 Q/N-rich intrinsically disordered protein
MUT-2/RDE-3 Nucleotidyltransferase
RRF-1 RdRP

Z granules RNAi inheritance ZNFX-1 SF1 helicase
WAGO-4 Argonaute
ZSP-1/PID-2 Intrinsically disordered protein

SIMR foci sRNA amplification downstream from piRNAs SIMR-1 Tudor domain

For a more comprehensive list of components, see Sundby et al. (2021).
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et al. 2020; Ouyang et al. 2021). Although the resolution of
in situ hybridization experiments makes the identification
of the exact condensate difficult, RNAi-targeted transcripts
were found to overlapwith Pgranule and Zgranulemarkers
(Ouyang et al. 2021), and pUGylated transcripts over-
lappedwithMutator foci (Shukla et al. 2020). Additional ev-
idence for a role for P granules in transcript silencing has
come from elegant experiments using a GFP reporter tran-
script artificially tethered to the P granule protein PGL-1.
The tethered transcript was silenced in a manner depen-
dent on P granule assembly and the Argonaute WAGO-1,
consistent with a sRNA-dependent mechanism (Aoki
et al. 2021). Other studies have shown that disassembly
of P granules by knocking down key P granule scaffolds
leads to accumulation of transcripts normally expressed in
somatic and sperm cells (Updike et al. 2014; Knutson
et al. 2017). These studies have cemented the hypothesis
that P granules function as triage centers where genuine
germline transcripts are separated from unwanted tran-
scripts that need to be silenced.

sRNA MACHINERY IS ALSO ACTIVE IN THE
CYTOPLASM?

The liquid-like properties of nuage condensates indicate
that nuage components are constantly exchanging be-
tween nuage and the cytoplasm. Germ cells share a com-
mon cytoplasm (rachis) that runs through the entire
germline; the relative proportion of nuage molecules in
the bulk cytoplasm versus nuage is not known but is likely
to be significant since the bulk cytoplasm occupies a
much larger volume. A systematic study in yeast revealed
that, even for proteins that are highly enriched in P bodies,
70% of molecules are in the cytoplasm (Xing et al. 2020).
We cannot discount, therefore, the possibility that a signifi-
cant proportion of nuage proteins are present and active in
the cytoplasm. Several lines of evidence in fact support this
view. First, sRNA amplification has been observed in ho-
mogenizedC. elegans lysates, suggesting that this process
can function outside of condensates (Aoki et al. 2007).
Second, sRNA amplification also occurs robustly in somatic
cells, where the sRNA machinery does not visibly concen-
trate in condensate structures (Phillips et al. 2012). Third,
levels of pUGylated transcripts produced in response to
feeding RNAi increase inmut-16mutants, which do not as-
sembleMutator condensates (Shukla et al. 2020). Fourth, in
animals lacking the helicase ZNFX-1, mRNAs targeted by
RNAi no longer accumulate in nuage, yet are still subjected
to robust pUGylation, sRNA amplification, and degrada-
tion, presumably in the cytoplasm (Ouyang et al. 2021).
Finally, mutants that prevent nuage assembly in embryonic
germline founder cells cause an increase, rather than
decrease, in sRNA amplification leading to the inappropri-
ate silencing of endogenous transcripts (Dodson and
Kennedy 2019; Lev et al. 2019; Ouyang et al. 2019). In

meg-3 meg-4 mutants, condensation of nuage proteins is
delayed in the germline founder cells (Wang et al. 2014).
The first transcripts expressed in these cells are released
directly into the cytoplasm (Ouyang et al. 2019).
Transcripts targeted by piRNAs become hyper-targeted
by secondary sRNAs and silenced in meg-3 meg-4 mu-
tants, presumably because they are no longer protected
by CSR-1 in the P granule environment (Ouyang et al.
2019). Similarly, silencing initiated by feeding RNAi can
be perpetuated for more generations inmeg-3 meg-4mu-
tants compared to wild-type animals (Lev et al. 2019).
Together, these findings suggest that condensation of
nuage proteins restrain, rather than promote, sRNA
amplification.

HYPOTHESIS: SPATIAL SEGREGATION OF THE
sRNA MACHINERY ACROSS MULTIPLE NUAGE
CONDENSATES PROTECTS GERM CELLS FROM
DANGEROUS AMPLIFICATION LOOPS

Reiterative cycles of sRNA amplification pose serious risks
to organisms as theoretically they could lead to irreversible
silencing of endogenous genes. Pak et al. (2012) showed
that such dangerous feedback loops are avoided in
somatic cells by allowing only primary sRNAs to initiate
sRNA amplification. In somatic cells, secondary sRNA/
Argonaute complexes cause degradation of targeted tran-
scripts and are not allowed to engage with RNA-depen-
dent RNA polymerases. Sapetschnig et al. (2015) showed
that, in contrast, in the germline, secondary sRNA/
Argonaute complexes are permitted to initiate sRNA am-
plification, leading to the production of “tertiary sRNAs.”
This ability is essential to perpetuate silencing frommother
to progeny (RNAi inheritance). Breaks on transgenera-
tional inheritance, however, must also exist as gene silenc-
ing initiated by feeding RNAi typically only lasts for four to
five generations (Rechavi and Lev 2017).

We hypothesize that compartmentalization of the sRNA
machinery in nuage serves to prevent dangerous runaway
sRNA amplification loops by sequestering different bio-
chemical activities into different compartments (Fig. 3). In
particular, we propose that concentration of Argonautes
in P granules away from sRNA amplification centers in oth-
er condensates increases the stringency by which tran-
scripts are screened before silencing. Juxtaposition of
competing licensing and silencing Argonautes in P gran-
ules could create a “silencing rheostat” that precisely
tunes the number of RNA molecules for each transcript
that are shuttled directly to cytoplasm or allowed to visit
other nuage condensates to be used as templates for
sRNA amplification.

We also suggest that nuage allows for the separation of
sRNA amplification mechanisms initiated by primary ver-
sus secondary sRNAs (Fig. 3). We propose that, in the cyto-
plasm of germ cells, only primary sRNA/Argonaute
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complexes are permitted to initiate sRNA amplification.
Secondary Argonautes in the cytoplasm target transcripts
for degradation, as in somatic cells. Such a linear pathway
guarantees self-extinction of the silencing event when pri-
mary sRNAs are no longer present. We propose that sec-
ondary Argonautes are permitted to engage with the
sRNA amplification machinery only in specialized nuage
condensates, such as the Z granules, Mutator foci and
SIMR foci. Amplification driven by secondary sRNAs has
the potential to be self-perpetuating, since amplified sec-
ondary sRNAs can feedback and generate more sRNAs
even in the absence of primary sRNAs. Sequestration in
nuage of such potentially permanent sRNA amplification
loops would ensure that these loops only form on rare tran-
scripts that have first been vetted for sRNA amplification in
P granules.
Recent reports have shown that prg-1 mutants inappro-

priately generate sRNAs against histone and ribosomal
RNAs and exhibit remarkably extended transgenerational
inheritance lasting for hundreds of generations (Barucci
et al. 2020; Reed et al. 2020; Shukla et al. 2021; Wahba

et al. 2021). These observations
suggest sRNA amplification mecha-
nisms become dangerously promiscu-
ous in mutants lacking piRNAs, and
consistent with this, prg-1mutants be-
come completely sterile over succes-
sive generations (Barucci et al. 2020;
Wahba et al. 2021). Interestingly,
in prg-1 mutants, the secondary
Argonaute WAGO-1 mislocalizes to
the cytoplasm (Barucci et al. 2020)
and late generation prg-1mutants fre-
quently lose PGL-1 localization to P
granules (Spichal et al. 2021). One
possibility, therefore, is that lack of
piRNAs/PRG-1 degrades nuage orga-
nization over time leading to inapp-
ropriate mixing of Argonautes and
sRNA amplification machineries in
the cytoplasm. Careful analyses com-
paring protein and RNA localizations
in nuage in different genetic contexts
will be needed to test these hypothe-
ses further.

OUTLOOK

We have described how nuage in
C. elegans is a multicondensate struc-
ture that segregates sRNA factors
into different compartments. Intrigu-
ingly, compartmentalization of nuage
has also been reported in other organ-
isms. For example, in the fetal gono-

cytes of mice, two adjacent nuage domains, pi-bodies,
and piP-bodies, contain the piRNA Argonaute proteins
MILI, andMIWI2, respectively (Aravin et al. 2008, 2009; Sho-
ji et al. 2009). Similarly, piNG-bodies, nuage-like structures
in Drosophila testes required for piRNA silencing, contain
an outer layer surrounding a core composed of the PIWI
Argonaute Ago3 (Kibanov et al. 2011). The nuage-like Bal-
biani bodies of fish oocytes are alsomultilayered assemblies
(Roovers et al. 2018). Thus, compartmentalization is likely a
conserved feature of nuage across metazoans.
We have proposed that nuage condensates restrict

sRNA amplification to prevent dangerous amplification
loops. C. elegans is unique in relying on RNA-dependent
RNA polymerases to generate sRNAs, and therefore it
may be argued that animals that use different mechanisms
to generate sRNAs may not utilize nuage condensates in
the same way. A similar restrictive function, however, has
been attributed to Yb bodies, nuage-like compartments
in the follicle cells of the Drosophila ovary. Armitage is
an RNA helicase involved in piRNA biogenesis (Ge et al.
2019; Ishizu et al. 2019). Localization of Armitage in the

B

A

C

FIGURE 3. Working model for functional compartmentalization of sRNA pathways. Dotted ar-
rows link sRNA production sites to sites where sRNAs/Argonautes target transcripts.
Continuous arrows denote evolution of mRNAs. (A) In the cytoplasm, primary sRNAs associate
with primary Argonautes (blue), leading to pUGylation, and synthesis of secondary sRNAs (yel-
low). Secondary sRNA/Argonaute complexes target complementary mRNAs for degradation
in the cytoplasm or target transcripts emerging from the nucleus (see below). (B) Upon exit
from the nucleus, newly transcribedmRNAs are “read” by competing silencing and nonsilenc-
ing Argonautes in “triage condensates” (likely to correspond to P granules). mRNAs are then
sent off to three possible fates: (i) translation or storage in the cytoplasm, (ii) degradation in the
cytoplasm, or (iii) use as templates for secondary sRNA amplification in other nuage conden-
sates (SIMR, Mutator foci or Z granules) that house self-perpetuating amplification loops initi-
ated by secondary sRNAs (C ).
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nuage-like Yb bodies increases its RNA-binding specificity
to ensure generation of piRNAs from specific piRNA
precursors derived from the flamenco piRNA cluster
(Ishizu et al. 2019). In the absence of Yb bodies,
Armitage binds transcripts promiscuously and aberrantly
generates piRNAs from transcripts abundant in the cyto-
plasm (Ishizu et al. 2019). Nuage compartments serving
as “circuit breakers” to prevent promiscuous silencing
may therefore be a conserved feature of sRNA silencing
pathways. A challenge for the future will be to understand
how the liquid-like properties of nuage condensates tune
the selectivity of RNA–protein interactions in the sRNA si-
lencing machinery.
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